746 research outputs found

    Advanced Design Architecture for Network Intrusion Detection using Data Mining and Network Performance Exploration

    Get PDF
    The primary goal of an Intrusion Detection System (IDS) is to identify intruders and differentiate anomalous network activity from normal one. Intrusion detection has become a significant component of network security administration due to the enormous number of attacks persistently threaten our computer networks and systems. Traditional Network IDS are limited and do not provide a comprehensive solution for these serious problems which are causing the many types security breaches and IT service impacts. They search for potential malicious abnormal activities on the network traffics; they sometimes succeed to find true network attacks and anomalies (true positive). However, in many cases, systems fail to detect malicious network behaviors (false negative) or they fire alarms when nothing wrong in the network (false positive). In accumulation, they also require extensive and meticulous manual processing and interference. Hence applying Data Mining (DM) techniques on the network traffic data is a potential solution that helps in design and develops better efficient intrusion detection systems. Data mining methods have been used build automatic intrusion detection systems. The central idea is to utilize auditing programs to extract set of features that describe each network connection or session, and apply data mining programs to learn that capture intrusive and non-intrusive behavior. In addition, Network Performance Analysis (NPA) is also an effective methodology to be applied for intrusion detection. In this research paper, we discuss DM and NPA Techniques for network intrusion detection and propose that an integration of both approaches have the potential to detect intrusions in networks more effectively and increases accuracy

    Generative Models for Novelty Detection Applications in abnormal event and situational changedetection from data series

    Get PDF
    Novelty detection is a process for distinguishing the observations that differ in some respect from the observations that the model is trained on. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains observations that were not known at the training time. In other words, the novelty class is often is not presented during the training phase or not well defined. In light of the above, one-class classifiers and generative methods can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end model is a challenging task itself. Therefore, detecting the Novel classes in unsupervised and semi-supervised settings is a crucial step in such tasks. In this thesis, we propose several methods to model the novelty detection problem in unsupervised and semi-supervised fashion. The proposed frameworks applied to different related applications of anomaly and outlier detection tasks. The results show the superior of our proposed methods in compare to the baselines and state-of-the-art methods

    WiFi Miner: An online apriori and sensor based wireless network Intrusion Detection System

    Get PDF
    This thesis proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms. The proposed system, WiFi Miner, solution approach is to find frequent and infrequent patterns on pre-processed wireless connection records using infrequent pattern finding Apriori algorithm also proposed by this thesis. The proposed Online Apriori-Infrequent algorithm improves the join and prune step of the traditional Apriori algorithm with a rule that avoids joining itemsets not likely to produce frequent itemsets as their results, thereby improving efficiency and run times significantly. A positive anomaly score is assigned to each packet (record) for each infrequent pattern found while a negative anomaly score is assigned for each frequent pattern found. So, a record with final positive anomaly score is considered as anomaly based on the presence of more infrequent patterns than frequent patterns found

    NeuDetect: A neural network data mining system for wireless network intrusion detection

    Get PDF
    This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network technique to wireless network packets captured through hardware sensors for purposes of real time detection of anomalous packets. To address the problem of high false alarm rate confronted by the current wireless intrusion detection systems, this thesis presents a method of applying the artificial neural networks technique to the wireless network intrusion detection system. The proposed system solution approach is to find normal and anomalous patterns on preprocessed wireless packet records by comparing them with training data using Back-propagation algorithm. An anomaly score is assigned to each packet by calculating the difference between the output error and threshold. If the anomaly score is positive then the wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be sent back to training process for re-evaluation

    Prognostic Health Assessment of an Automotive Proton Exchange Membrane Fuel Cell System

    Get PDF
    Proton exchange membrane fuel cells are a promising technology for the automotive industry. However, it is necessary to develop effective diagnostic tools to improve system reliability and operational life to be competitive in the automotive market. Early detection and diagnosis of fuel cell faults may lead to increased system reliability and performance. An efficient on-line diagnosis system may prevent irreparable damage due to poor control and system fatigue. Current attempts to monitor fuel cell stack health are limited to specialized tests that require numerous parameters. An increased effort exists to minimize parameter input and maximize diagnostic robustness. Most methods use complex models or black-box methods to determine a singular fault mode. Limited research exists with pre-processing or statistical methods. This research examines the effectiveness of a Na¨ıve Bayes classifier on determining multiple states of health; such as healthy, dry, degraded catalyst, and inert gas build-up. Independent component analysis and principal component analysis are investigated for pre-processing. An automotive style fuel cell model is developed to generate data for these purposes. Since automotive applications have limited computational power, a system that minimizes the number of inputs and computational complexity is preferred
    corecore