
Intrusion Detection Systems using

Machine Learning and Deep Learning

Techniques

A thesis submitted for the degree of

Doctor of Philosophy (PhD)

by

Hanan Hindy

Division of Cybersecurity

School of Design and Informatics

Abertay University

April, 2021

Declaration

Candidate’s declarations:

I, Hanan Hindy, hereby certify that this thesis submitted in partial fulfilment of the

requirements for the award of Doctor of Philosophy (PhD), Abertay University, is

wholly my own work unless otherwise referenced or acknowledged. This work has

not been submitted for any other qualification at any other academic institution.

Signed:

Date: 21st April 2021.

Supervisor’s declaration:

I, Natalie Coull, hereby certify that the candidate has fulfilled the conditions of the

Resolution and Regulations appropriate for the degree of Doctor of Philosophy (PhD)

in Abertay University and that the candidate is qualified to submit this thesis in

application for that degree.

Signed:

Date: 23rd April 2021.

Certificate of Approval

I certify that this is a true and accurate version of the thesis approved by the examiners,

and that all relevant ordinance regulations have been fulfilled.

Supervisor: .

Date: 7th September 2021.

i

“You can’t connect the dots looking forward; you can only connect them looking

backwards. So, you have to trust that the dots will somehow connect in your future.”

—Steve Jobs,

1955-2011

ii

Acknowledgements
First of all, I would like to praise and thank God for his countless blessings, and for

giving me the wisdom and strength to accomplish this research.

I would like to express my deep gratitude to my supervisors; Dr Xavier Bellekens,

for allowing me to undertake this research and for his unceasing guidance and

invaluable support, Dr Natalie Coull for believing in me and for her unlimited support,

Dr Ethan Bayne, for his beneficial advice, continuous encouragement and patience,

and Dr Salma Hamdy, for her help and for motivating me all through the PhD.

I would also like to sincerely thank Dr Robert Atkinson and Dr Christos Tachtatzis

for their time, valuable advice, interesting and challenging conversations that enriched

my knowledge, and research over the past three years.

I would like to express my appreciation to my external examiner, Prof Gordon

Morison, and my internal examiner, Dr Kean Lee Kang, for their valuable comments

and suggestions, that helped me improve and strengthen my thesis.

I would like to thank my mum and dad for their unconditional love and support, for

bearing with me through all tough times. I thank my brother and his family for their

encouragement. Thank you to all my family for looking up to me.

My friends have always been there for me, without their support, I would not have

come that far. Thank you — in alphabetical order — Donia Gamal, Ghada Hamed,

Kholoud ASalam, Dr Nivin Atef, Sydney Dreves, Vicky Price, Dr Wedad Hussein, and

Dr Yasmine Afify.

My Dundee family made my PhD journey not only bearable but enjoyable. A

genuine thank you to: Sheila & Crawford Mackenzie, Marjorie & David Dutton, Ruth

& Malcolm Farquhar, Liz Higgins, and Friends International Dundee.

Last but not least, I would like to thank all my professors, colleagues, and students

who never stopped supporting me.

iii

Abstract
The increased reliance on networked technologies has led to a digital transformation
of general- and special-purpose networks that further interlace technologies and
heterogeneous systems. The ever-evolving technological landscape of interconnected
devices constantly expands the network attack surface, which has contributed to the
number and complexity of cyber attacks in recent years. The analysis of network traffic
through Intrusion Detection Systems (IDS) has become an essential element of the
networking security toolset. To cope with the increased rate and complexity of cyber
attacks, researchers have utilised Machine Learning (ML) and Deep Learning (DL)
techniques to develop IDS to cope with new and zero-day attacks. However, the lack
of large, realistic, and up-to-date datasets hinders the IDS development process.

This thesis proposes an empirical investigation of ML and DL algorithms to detect
known and unknown attacks in general- and special-purpose networks. The thesis
further investigates how ML and DL algorithms can learn from a limited amount of
data while retaining high accuracy. To this effect, a special-purpose IoT dataset is
generated and evaluated against six ML techniques. The challenges and limitations
of identifying anomalies in special-purpose networks are identified and discussed.

In an attempt to reduce the need for large training datasets, this thesis investigates
the utilisation of Few-Shot learning paradigm to train IDS using a limited amount of
data. For this purpose, Siamese networks are used and evaluated in three scenarios.
This thesis further investigates the use of autoencoders to detect zero-day attacks.
The zero-day attack detection experiments highlight the problem of discriminating
benign-mimicking attacks. To overcome this challenge, an additional layer of feature
abstraction is proposed; to improve accuracy through the cumulative aggregation of
network traffic.

The results of this research demonstrate the effectiveness of the proposed
approaches for IDS development. Siamese networks demonstrate their ability to
learn from limited data. The proposed autoencoder models exhibit their potential
to detect zero-day attacks. Finally, the significance of flow aggregation features in
discriminating benign-mimicking attacks is demonstrated.

iv

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

ARP Address Resolution Protocol

AUC Area Under the Curve

AUROC Area Under the Receiver Operating Characteristics

CAIDA Centre for Applied Internet Data Analysis

CI Critical Infrastructure

CIC Canadian Institute for Cybersecurity

CM Confusion Matrix

CNN Convolutional Neural Network

CPS Cyber-Physical Systems

CSV Comma-Separated Values

DCS Distributed Control Systems

DDoS Distributed Denial of Service

DL Deep Learning

DNS Domain Name System

DOM Document Object Model

v

DoS Denial of Service

DT Decision Tree

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FSM Finite State Machine

FTP File Transfer Protocol

HIDS Host Intrusion Detection System

IACS Industrial Automation and Control Systems

ICMP Internet Control Message Protocol

IDS Intrusion Detection Systems

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

k-NN k-Nearest Neighbours

LR Logistic Regression

LSTM Long Short-Term Memory

MAC Media Access Control

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MSE Mean Squared Error

vi

NB Naı̈ve Bayes

NIDS Network Intrusion Detection System

NLP Natural Language Processing

OS Operating System

OSI Open Systems Interconnection

PCA Principal Component Analysis

PLC Programmable Logic Controllers

R2L Remote to Local

RBF Radial Basis Function

RF Random Forest

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

ROC Receiver Operating Characteristics

SCADA Supervisory Control and Data Acquisition

SQL Structured Query Language

SSH Secure Shell

SSN Social Security Number

SVM Support Vector Machine

TCP Transmission Control Protocol

TN True Negative

TNR True Negative Rate

TP True Positive

vii

TPR True Positive Rate

U2R User to Root

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VPN Virtual Private Network

XSS Cross Site Scripting

viii

List of Symbols

x Input
y Output
X Input (Feature) Vector/Matrix
Y Output Vector/Matrix
Ci ith Class

p(Ci|x) Conditional Probability
p(x|Ci) Evidence
p(Ci) Prior Probability

µ Mean
σ Standard deviation

||x||1 L1 Norm (Manhattan Distance)
||x||2 L2 Norm (Euclidean Distance)

η Learning Rate
W Weights Vector/Matrix
λ Regularisation Parameter
b Bias
φ Encoding Function
ψ Decoding Function
X ′ Reconstructed Input Vector

ix

List of Publications

[1] H. Hindy, E. Hodo, E. Bayne, A. Seeam, R. Atkinson, and X. Bellekens,

“A taxonomy of malicious traffic for intrusion detection systems,” in 2018

International Conference On Cyber Situational Awareness, Data Analytics And

Assessment (Cyber SA). IEEE, 2018, pp. 1–4. https://doi.org/10.

1109/CyberSA.2018.8551386

[2] H. Hindy, D. Brosset, E. Bayne, A. Seeam, and X. Bellekens, “Improving SIEM

for critical SCADA water infrastructures using machine learning,” in Computer

Security. Springer, 2018, pp. 3–19. https://doi.org/10.1007/978-3-

030-12786-2_1

[3] X. Bellekens, G. Jayasekara, H. Hindy, M. Bures, D. Brosset, C. Tachtatzis, and

R. Atkinson, “From cyber-security deception to manipulation and gratification

through gamification,” in HCI for Cybersecurity, Privacy and Trust, A. Moallem,

Ed. Cham: Springer International Publishing, 2019, pp. 99–114. https:

//doi.org/10.1007/978-3-030-22351-9_7

[4] C. Urquhart, X. Bellekens, C. Tachtatzis, R. Atkinson, H. Hindy, and A. Seeam,

“Cyber-security internals of a Skoda Octavia vRS: A hands on approach,” IEEE

Access, vol. 7, pp. 146 057–146 069, 2019. https://doi.org/10.1109/

ACCESS.2019.2943837

[5] A. Amin, A. Eldessouki, M. T. Magdy, N. Abdeen, H. Hindy, and I. Hegazy,

“Androshield: Automated android applications vulnerability detection, a hybrid

static and dynamic analysis approach,” Information, vol. 10, no. 10, p. 326, Oct

2019. https://doi.org/10.3390/info10100326

[6] M. Nogues, D. Brosset, H. Hindy, X. Bellekens, and Y. Kermarrec, “Labelled

network capture generation for anomaly detection,” in Foundations and Practice

of Security, A. Benzekri, M. Barbeau, G. Gong, R. Laborde, and J. Garcia-Alfaro,

Eds. Cham: Springer International Publishing, 2020, pp. 98–113. https:

x

https://doi.org/10.1109/CyberSA.2018.8551386
https://doi.org/10.1109/CyberSA.2018.8551386
https://doi.org/10.1007/978-3-030-12786-2_1
https://doi.org/10.1007/978-3-030-12786-2_1
https://doi.org/10.1007/978-3-030-22351-9_7
https://doi.org/10.1007/978-3-030-22351-9_7
https://doi.org/10.1109/ACCESS.2019.2943837
https://doi.org/10.1109/ACCESS.2019.2943837
https://doi.org/10.3390/info10100326
https://doi.org/10.1007/978-3-030-45371-8_7
https://doi.org/10.1007/978-3-030-45371-8_7

//doi.org/10.1007/978-3-030-45371-8_7

[7] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson, and

X. Bellekens, “A taxonomy of network threats and the effect of current datasets

on intrusion detection systems,” IEEE Access, 2020. https://doi.org/10.

1109/ACCESS.2020.3000179

[8] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,

“MQTT-IoT-IDS2020: MQTT Internet of Things intrusion detection dataset,”

IEEE Dataport, 2020. https://doi.org/10.21227/bhxy-ep04

[9] J. Talbot, P. Pikula, C. Sweetmore, S. Rowe, H. Hindy, C. Tachtatzis, R. Atkinson,

and X. Bellekens, “A security perspective on unikernels,” in 2020 International

Conference on Cyber Security and Protection of Digital Services (Cyber Security),

2020, pp. 1–7. https://doi.org/10.1109/CyberSecurity49315.

2020.9138883

[10] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and X. Bellekens,

“Utilising deep learning techniques for effective zero-day attack detection,”

Electronics, Special Issue: Advanced Cybersecurity Services Design, vol. 9, no. 10,

p. 1684, Oct 2020. https://doi.org/10.3390/electronics9101684

[11] E. Ukwandu, M. A. B. Farah, H. Hindy, D. Brosset, D. Kavallieros,

R. Atkinson, C. Tachtatzis, M. Bures, I. Andonovic, and X. Bellekens, “A review

of cyber-ranges and test-beds: Current and future trends,” Sensors, vol. 20,

no. 24, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/

20/24/7148. https://doi.org/10.3390/s20247148

[12] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens,

“Machine learning based IoT intrusion detection system: An MQTT case study

(MQTT-IoT-IDS2020 dataset),” in Selected Papers from the 12th International

Networking Conference, B. Ghita and S. Shiaeles, Eds. Cham: Springer

International Publishing, 2021, pp. 73–84. https://doi.org/10.1007/

978-3-030-64758-2_6

[13] H. Hindy, R. Atkinson, C. Tachtatzis, E. Bayne, M. Bures, and X. Bellekens,

“Utilising flow aggregation to classify benign imitating attacks.” Sensors, Special

Issue: Security and Privacy in the Internet of Things (IoT), vol. 21, no. 5, p. 1761,

2021. https://doi.org/10.3390/s21051761

[14] M. Bures, M. Klima, V. Rechtberger, B. S. Ahmed, H. Hindy, and X. Bellekens,

“Review of specific features and challenges in the current Internet of Things

xi

https://doi.org/10.1007/978-3-030-45371-8_7
https://doi.org/10.1007/978-3-030-45371-8_7
https://doi.org/10.1109/ACCESS.2020.3000179
https://doi.org/10.1109/ACCESS.2020.3000179
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.1109/CyberSecurity49315.2020.9138883
https://doi.org/10.1109/CyberSecurity49315.2020.9138883
https://doi.org/10.3390/electronics9101684
https://www.mdpi.com/1424-8220/20/24/7148
https://www.mdpi.com/1424-8220/20/24/7148
https://doi.org/10.3390/s20247148
https://doi.org/10.1007/978-3-030-64758-2_6
https://doi.org/10.1007/978-3-030-64758-2_6
https://doi.org/10.3390/s21051761

systems impacting their security and reliability,” in Trends and Applications in

Information Systems and Technologies. Cham: Springer International Publishing,

2021, pp. 546–556. https://doi.org/10.1007/978-3-030-72660-

7_52

[15] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens, “Developing

a Siamese network for intrusion detection systems,” in The 1st Workshop on

Machine Learning and Systems (EuroMLSys) co-located with EuroSys ’21, 2021.

https://doi.org/10.1145/3437984.3458842.

[16] M. Klima, V. Rechtberger, M. Bures, X. Bellekens, H. Hindy, and B. S. Ahmed,

“Quality and reliability metrics for IoT systems: A consolidated view,” in EAI

Urb-IoT 2020, 5th EAI International Conference on IoT in Urban Space, 2020,

[Accepted].

[17] H. Hindy, C. Tachtatzis, R. Atkinson, D. Brosset, M. Bures, I. Andonovic,

C. Michie, and X. Bellekens, “Leveraging Siamese networks for One-Shot

intrusion detection model,” arXiv preprint arXiv:2006.15343, 2020, [Under

Review].

xii

https://doi.org/10.1007/978-3-030-72660-7_52
https://doi.org/10.1007/978-3-030-72660-7_52
https://doi.org/10.1145/3437984.3458842

Table of Contents

Declaration i

Certificate of Approval i

Acknowledgements iii

Abstract iv

Acronyms v

List of Symbols ix

List of Publications xii

Table of Contents xviii

List of Figures xxi

List of Tables xxix

List of Algorithms xxx

1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives . 3

1.3 Thesis Statement . 4

1.4 Thesis Contributions . 4

1.5 Thesis Organisation . 6

2 Intrusion Detection Systems 9

2.1 IDS Overview . 9

xiii

2.2 Machine Learning Overview . 12

2.3 IDS Conceptualisation . 18

2.3.1 General Attributes . 20

2.3.2 Decision-Making . 21

2.3.3 Evaluation . 22

2.4 IDS Datasets . 24

2.5 Summary . 26

3 IDS in Literature 27

3.1 Analysis of Recent IDS Research . 27

3.2 Threats Taxonomy . 39

3.2.1 Network Threats . 40

3.2.2 Host Threats . 46

3.2.3 Software Threats . 47

3.2.4 Physical Threats . 48

3.2.5 Other Threats . 48

3.3 Attacks Coverage . 49

3.4 Summary . 51

4 Utilising Machine Learning for Special-Purpose IDS 52

4.1 Problem Statement . 52

4.2 Background . 54

4.2.1 Logistic Regression . 55

4.2.2 Naı̈ve Bayes . 56

4.2.3 k-Nearest Neighbour . 57

4.2.4 Support Vector Machine . 58

4.2.5 Decision Tree and Random Forest 59

4.3 SCADA Dataset . 62

4.3.1 SCADA Dataset Architecture 62

xiv

4.3.2 SCADA Operation and Dataset Scenarios 63

4.3.3 SCADA Dataset Preprocessing 66

4.4 SCADA Experiments and Results 68

4.4.1 Experiment 1: Anomaly Detection 68

4.4.2 Experiment 2: Affected Component Classification 70

4.4.3 Experiment 3: Scenarios Classification 73

4.4.3.1 One Scenario Classification 74

4.4.3.2 Two Scenarios Classification 75

4.4.3.3 Scenarios Classification Using Confidence 77

4.5 MQTT IDS Dataset Generation . 78

4.5.1 MQTT-IoT-IDS2020 . 79

4.6 MQTT Experiments and Results . 84

4.7 Summary . 88

5 IDS using Limited-Size Data 91

5.1 Problem Statement . 91

5.2 Background . 93

5.2.1 Learning from Limited-Size Datasets 93

5.2.2 One-Shot Learning . 94

5.2.3 Siamese Network . 95

5.2.4 Artificial Neural Networks 98

5.3 Datasets . 100

5.3.1 KDD Cup’99 . 100

5.3.2 NSL-KDD . 101

5.3.3 CICIDS2017 . 102

5.4 Siamese Network Usage Scenarios Overview 102

5.5 Scenario 1: Classification using Limited Data 104

5.5.1 Methodology . 104

xv

5.5.2 Experiments and Results . 109

5.5.2.1 SCADA Dataset Results 110

5.5.2.2 CICIDS2017 Dataset Results 113

5.5.2.3 KDD Cup’99 and NSL-KDD Datasets Results . . . 114

5.6 Scenario 2: One-Shot Detection . 119

5.6.1 Methodology . 119

5.6.2 Experiments and Results . 122

5.6.2.1 SCADA Dataset Results 122

5.6.2.2 CICIDS2017 Dataset Results 126

5.6.2.3 KDD Cup’99 and NSL-KDD Datasets Results . . . 129

5.7 Scenario 3: Zero-Day Attacks Detection 131

5.7.1 Methodology . 132

5.7.2 Experiments and Results . 134

5.7.2.1 SCADA Dataset Results 134

5.7.2.2 CICIDS2017 Dataset Results 136

5.7.2.3 KDD Cup’99 and NSL-KDD Datasets Results . . . 137

5.8 Summary . 139

6 Outlier-Based Zero-Day Attacks Detection 141

6.1 Problem Statement . 141

6.2 Background . 143

6.2.1 Autoencoders . 143

6.2.2 One-Class SVM . 145

6.2.3 Related Work . 146

6.3 Datasets . 147

6.3.1 CICIDS2017 Dataset Preprocessing 148

6.4 Methodology . 149

6.4.1 Autoencoder-based model 149

xvi

6.4.2 One-Class SVM based Model 151

6.5 Experiments and Results . 152

6.5.1 CICIDS2017 Dataset . 152

6.5.2 KDD Cup’99 and NSL-KDD Dataset 158

6.6 Summary . 162

7 Classifying Benign Imitating Attacks Using Flow Aggregation 164

7.1 Problem Statement . 164

7.2 Background . 165

7.2.1 Related Work . 165

7.3 Methodology . 168

7.4 Experiments Methodology and Results 172

7.4.1 Binary Classification Results 173

7.4.2 Three-Class Classification Results 177

7.4.3 Five-Class Classification Results 180

7.4.4 CICIDS2017 Zero-Day Attack Detection Reassessed 183

7.5 Summary . 186

8 Conclusions and Future Work 187

8.1 Conclusion . 187

8.2 Future Work . 195

8.2.1 Special-Purpose Network IDS 195

8.2.2 Few-Shot Learning . 196

8.2.3 Zero-Day Attack Detection 197

8.2.4 Flow Aggregation . 197

References 199

Appendix A IDS Datasets Remarks 247

Appendix B Attack Tools 250

Appendix C SCADA Dataset Classification Results Tables 252

xvii

Appendix D Siamese One-Shot Learning Results Tables 257

D.1 SCADA Dataset . 258

D.2 CICIDS2017 Dataset . 268

D.3 KDD Cup’99 Dataset . 270

D.4 NSL-KDD Dataset . 273

Appendix E Siamese Zero-Day Detection Results Tables 276

E.1 SCADA Dataset . 277

E.2 CICIDS2017 Dataset . 282

E.3 KDD Cup’99 Dataset . 283

E.4 NSL-KDD Dataset . 285

Appendix F Autoencoder Experiment ROC Plots 287

xviii

List of Figures

1.1 Thesis Chapters Overview . 8

2.1 IDS Types . 10

2.2 Signature-based versus Anomaly-based IDS 11

2.3 ML Pipeline . 12

2.4 Dataset Split Visualisation . 15

2.5 IDS Conceptual Map . 19

3.1 Distribution of Datasets Used for IDS Evaluation from Articles Listed

in Table 3.1 . 36

3.2 Distribution of Algorithms Usage in the IDS from Articles Listed in

Table 3.1 . 38

3.3 Threats Taxonomy . 41

3.4 Distribution of Covered Attacks in IDS from Articles Listed in Table 3.1 50

4.1 LR Sigmoid Function . 55

4.2 k-NN Sample . 58

4.3 SVM Kernel Samples . 59

4.4 Decision Tree Sample . 59

4.5 Random Forest Sample . 59

4.6 SCADA: System Architecture . 62

4.7 SCADA: Network High-Level Architecture 63

4.8 SCADA: Preprocessing Stages . 66

xix

4.9 SCADA: Rate of Change of Register4 67

4.10 SCADA: Anomaly Detection Overall Accuracy (5-fold cross-validation) 69

4.11 SCADA: Affected Component Overall Classification Accuracy (5-fold

cross-validation) . 71

4.12 SCADA: Scenarios Overall Classification Accuracy, Single Scenario

(5-fold cross-validation) . 74

4.13 SCADA: Scenarios Overall Classification Accuracy, Two Probable

Scenarios (5-fold cross-validation) 76

4.14 SCADA: Scenarios Overall Accuracy Classification, One or Two

Scenario(s) Based on 75% and 85% Confidence Intervals (5-fold

cross-validation) . 78

4.15 MQTT-IoT-IDS2020: Network Architecture 80

4.16 MQTT-IoT-IDS2020: Overall Detection Accuracy Trend using

Different ML Techniques . 85

4.17 MQTT-IoT-IDS2020: Benign Class Performance Trends 87

4.18 MQTT-IoT-IDS2020: MQTT BF Class Performance Trends 88

4.19 MQTT-IoT-IDS2020: Weighted Average Trends 88

5.1 Siamese Network Architecture . 96

5.2 ANN Activation Functions . 99

5.3 Siamese Network Usage Scenarios Overview 103

5.4 Siamese Network for Intrusion Detection (Classification) 105

5.5 Siamese Network Loss Curve (Non-converging case) 106

5.6 Siamese Network Loss Curve (Converging case) - 1 107

5.7 Siamese Network Loss Curve (Converging case) - 2 107

5.8 SCADA Dataset k-NN and Siamese Network: Number of Wrong

Associated Classes During Classification 112

5.9 Siamese Network for Intrusion Detection (One-Shot Learning) 120

5.10 Siamese Network for Intrusion Detection (Zero-Day Detection) 132

xx

6.1 Autoencoder Architecture . 144

6.2 One-Class SVM Boundaries Example 146

6.3 Autoencoder Convergence Curve . 150

6.4 CICIDS2017 Autoencoder Detection Results Summary Per Class . . . 154

6.5 CICIDS2017 Autoencoder and One-Class SVM Comparison 157

6.6 KDD Cup’99 Autoencoder and One-Class SVM Comparison 162

6.7 NSL-KDD Autoencoder and One-Class SVM Comparison 162

7.1 Abstraction Levels of Networking Features 169

7.2 Aggregation of Network Traffic Flows 170

7.3 Binary Classification — Impact of Flow Aggregation on Classification

Recall of Attack Classes (Benign-Attack) 176

7.4 Multi-class Classification — Impact of Flow Aggregation on Recall of

the Second Attack Class (Benign-PortScan-Attack) 179

7.5 Multi-class Classification — Impact of Flow Aggregation on the

Classes Recall) . 182

7.6 CICIDS2017: Zero-day Detection using Autoencoder with and without

Flow Aggregation . 185

B.1 Attacking Tools . 251

F.1 Autoencoder Classification ROC Curves 287

xxi

List of Tables

2.1 Feature Selection Approaches . 18

2.2 IDS Prominent Datasets . 25

3.1 Over A Decade of IDS [2008 - 2020] 28

4.1 ML Techniques Summary . 60

4.2 SCADA: PLC Registers Extracted Bits Representation 64

4.3 SCADA: Dataset Scenarios, Operational Scenarios, and Affected

Components . 65

4.4 SCADA Results: Experiment 1 - Anomaly Detection (5-fold

cross-validation) . 69

4.5 SCADA Results: Experiment 2 - Affected Component Classification

(5-fold cross-validation) . 71

4.6 SCADA: Distribution of Probabilistic Classification of Scenarios . . . 75

4.7 SCADA: Co-relation of Scenarios 76

4.8 MQTT-IoT-IDS2020: Feature List and Description 82

4.9 MQTT-IoT-IDS2020: Instances Distribution 83

4.10 MQTT-IoT-IDS2020: Overall Detection Accuracy 84

4.11 MQTT-IoT-IDS2020 Results: LR - k-NN - DT (5-fold cross-validation) 85

4.12 MQTT-IoT-IDS2020 Results: DT - RF - SVM - NB (5-fold

cross-validation) . 86

5.1 KDD Cup’99 Classes and Corresponding Number of Instances 101

xxii

5.2 NSL-KDD Classes and Corresponding Number of Instances 101

5.3 CICIDS Classes and Corresponding Number of Instances 102

5.4 Sample Confusion Matrix . 110

5.5 Siamese Network: SCADA Classification Confusion Matrix 111

5.6 Siamese Network: SCADA Classification Accuracy Using Different j

Votes . 111

5.7 Siamese Network: CICIDS2017 Classification Confusion Matrix . . . 113

5.8 Siamese Network: CICIDS2017 Classification Accuracy Using

Different j Votes . 113

5.9 Siamese Network: KDD Cup’99 Classification Confusion Matrix . . . 114

5.10 Siamese Network: KDD Cup’99 Classification Accuracy Using

Different j Votes . 115

5.11 Siamese Network: NSL-KDD Classification Confusion Matrix 115

5.12 Siamese Network: NSL-KDD Classification Accuracy Using Different

j Votes . 116

5.13 Recent IDS Studies for Multi-Class Classification Performance 118

5.14 Siamese Network: SCADA One-Shot Confusion Matrix (Blocked

Measure 1 excluded from Training) 123

5.15 Siamese Network: SCADA One-Shot Accuracy (Blocked Measure 1

excluded from Training) Using Different j Votes 123

5.16 Siamese Network: SCADA One-Shot Confusion Matrix (DoS

excluded from Training) . 124

5.17 Siamese Network: SCADA One-Shot Accuracy (DoS excluded from

Training) Using Different j Votes . 124

5.18 Siamese Network: SCADA One-Shot Confusion Matrix (Person

Hitting High Intensity excluded from Training) 125

5.19 Siamese Network: SCADA One-Shot Accuracy (Person Hitting High

Intensity excluded from Training) Using Different j Votes 125

5.20 Siamese Network: CICIDS2017 One-Shot Confusion Matrix (SSH

excluded from training) . 127

xxiii

5.21 Siamese Network: CICIDS2017 One-Shot Accuracy (SSH excluded

from Training) Using Different j Votes 127

5.22 Siamese Network: CICIDS2017 One-Shot Confusion Matrix (FTP

excluded from training) . 128

5.23 Siamese Network: CICIDS2017 One-Shot Accuracy (FTP excluded

from Training) Using Different j Votes 128

5.24 Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (DoS

excluded from Training) . 129

5.25 Siamese Network: KDD Cup’99 One-Shot Accuracy (DoS excluded

from Training) Using Different j Votes 130

5.26 Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix

(DoS excluded from Training) . 130

5.27 Siamese Network: NSL-KDD One-Shot Accuracy (DoS excluded

from Training) Using Different j Votes 131

5.28 Siamese Network: SCADA Zero-Day Accuracy (Person Hitting High

Intensity excluded from Training) Using Different j Votes 134

5.29 Siamese Network: SCADA Zero-Day Accuracy (DoS excluded from

Training) Using Different j Votes . 135

5.30 Siamese Network: CICIDS2017 Zero-Day Accuracy (SSH excluded

from Training) Using Different j Votes 136

5.31 Siamese Network: CICIDS2017 Zero-Day Accuracy (DoS (Hulk)

excluded from Training) Using Different j Votes 137

5.32 Siamese Network: KDD Cup’99 Zero-Day Accuracy (R2L excluded

from Training) Using Different j Votes 138

5.33 Siamese Network: NSL-KDD Zero-Day Accuracy (R2L excluded

from Training) Using Different j Votes 138

6.1 CICIDS2017 Attacks . 148

6.2 Zero-Day Detection: CICIDS2017 Autoencoder Results 153

6.3 Zero-Day Detection: CICIDS2017 One-Class SVM Results 156

6.4 Zero-Day Detection: KDD Cup’99 Autoencoder Results 159

xxiv

6.5 Zero-Day Detection: NSL-KDD Autoencoder Results 159

6.6 Zero-Day Detection: NSL-KDD Performance Comparison 160

6.7 Zero-Day Detection: KDD Cup’99 One-Class SVM Results 161

6.8 Zero-Day Detection: NSL-KDD One-Class SVM Results 161

7.1 CICIDS2017 Recent Articles Performance Summary (1) 167

7.2 CICIDS2017 Recent Articles Performance Summary (2) 168

7.3 Binary Classification Flow Aggregation RFE Ranking 173

7.4 Benign-DoS (Slowloris) Classification (5-fold cross-validation) 174

7.5 Benign-DoS (SlowHTTPTest) Classification (5-fold cross-validation) . 175

7.6 Benign-DoS (Hulk) Classification (5-fold cross-validation) 175

7.7 Benign-PortScan Classification (5-fold cross-validation) 176

7.8 Three-Class Classification Flow Aggregation RFE Ranking 177

7.9 Benign-PortScan-DoS (Slowloris) Classification (5-fold cross-validation)178

7.10 Benign-PortScan-DoS (SlowHTTPTest) Classification (5-fold

cross-validation) . 178

7.11 Benign-PortScan-DoS (Hulk) Classification (5-fold cross-validation) . 179

7.12 Five-Classes Classification - 1 (5-fold cross-validation) 181

7.13 Five-Classes Classification - 2 (5-fold cross-validation) 182

7.14 Zero-Day Detection: CICIDS2017 Autoencoder Results With Flow

Aggregation . 184

A.1 IDS Datasets Remarks . 247

C.1 SCADA Results: Scenarios Classification (5-fold cross-validation) - LR 253

C.2 SCADA Results: Scenarios Classification (5-fold cross-validation) - NB 253

C.3 SCADA Results: Scenarios Classification (5-fold cross-validation) -

k-NN . 254

C.4 SCADA Results: Scenarios Classification (5-fold cross-validation) -

SVM . 254

xxv

C.5 SCADA Results: Scenarios Classification (5-fold cross-validation) -

Kernel SVM . 255

C.6 SCADA Results: Scenarios Classification (5-fold cross-validation) - DT 255

C.7 SCADA Results: Scenarios Classification (5-fold cross-validation) - RF 256

D.1 Siamese Network: SCADA One-Shot Confusion Matrix (Wrong

Connection excluded from Training) 258

D.2 Siamese Network: SCADA One-Shot Accuracy (Wrong Connection

excluded from Training) Using Different j Votes 258

D.3 Siamese Network: SCADA One-Shot Confusion Matrix (Spoofing

excluded from Training) . 259

D.4 Siamese Network: SCADA One-Shot Accuracy (Spoofing excluded

from Training) Using Different j Votes 259

D.5 Siamese Network: SCADA One-Shot Confusion Matrix (Sensor

Failure excluded from Training) . 260

D.6 Siamese Network: SCADA One-Shot Accuracy (Sensor Failure

excluded from Training) Using Different j Votes 260

D.7 Siamese Network: SCADA One-Shot Confusion Matrix (Plastic Bag

excluded from Training) . 261

D.8 Siamese Network: SCADA One-Shot Accuracy (Plastic Bag excluded

from Training) Using Different j Votes 261

D.9 Siamese Network: SCADA One-Shot Confusion Matrix (Person

Hitting Low Intensity excluded from Training) 262

D.10 Siamese Network: SCADA One-Shot Accuracy (Person Hitting Low

Intensity excluded from Training) Using Different j Votes 262

D.11 Siamese Network: SCADA One-Shot Confusion Matrix (Person

Hitting Medium Intensity excluded from Training) 263

D.12 Siamese Network: SCADA One-Shot Accuracy (Person Hitting

Medium Intensity excluded from Training) Using Different j Votes . . 263

D.13 Siamese Network: SCADA One-Shot Confusion Matrix (7 Floating

Objects excluded from Training) . 264

xxvi

D.14 Siamese Network: SCADA One-Shot Accuracy (7 Floating Objects

excluded from Training) Using Different j Votes 264

D.15 Siamese Network: SCADA One-Shot Confusion Matrix (2 Floating

Objects excluded from Training) . 265

D.16 Siamese Network: SCADA One-Shot Accuracy (2 Floating Objects

excluded from Training) Using Different j Votes 265

D.17 Siamese Network: SCADA One-Shot Confusion Matrix (Humidity

excluded from Training) . 266

D.18 Siamese Network: SCADA One-Shot Accuracy (Humidity excluded

from Training) Using Different j Votes 266

D.19 Siamese Network: SCADA One-Shot Confusion Matrix (Blocked

Measure 2 excluded from Training) 267

D.20 Siamese Network: SCADA One-Shot Accuracy (Blocked Measure 2

excluded from Training) Using Different j Votes 267

D.21 Siamese Network: CICIDS2017 One-Shot Confusion Matrix (DoS

(Slowloris) excluded from training) 268

D.22 Siamese Network: CICIDS2017 One-Shot Accuracy (DoS (Slowloris)

excluded from Training) Using Different j Votes 268

D.23 Siamese Network: CICIDS2017 One-Shot Confusion Matrix (DoS

(Hulk) excluded from training) . 269

D.24 Siamese Network: CICIDS2017 One-Shot Accuracy (DoS (Hulk)

excluded from Training) Using Different j Votes 269

D.25 Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (U2R

excluded from Training) . 270

D.26 Siamese Network: KDD Cup’99 One-Shot Accuracy (U2R excluded

from Training) Using Different j Votes 270

D.27 Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (R2L

excluded from Training) . 271

D.28 Siamese Network: KDD Cup’99 One-Shot Accuracy (R2L excluded

from Training) Using Different j Votes 271

xxvii

D.29 Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (Probe

excluded from Training) . 272

D.30 Siamese Network: KDD Cup’99 One-Shot Accuracy (Probe excluded

from Training) Using Different j Votes 272

D.31 Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix

(U2R excluded from Training) . 273

D.32 Siamese Network: NSL-KDD One-Shot Accuracy (U2R excluded

from Training) Using Different j Votes 273

D.33 Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix

(R2L excluded from Training) . 274

D.34 Siamese Network: NSL-KDD One-Shot Accuracy (R2L excluded

from Training) Using Different j Votes 274

D.35 Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix

(Probe excluded from Training) . 275

D.36 Siamese Network: NSL-KDD One-Shot Accuracy (Probe excluded

from Training) Using Different j Votes 275

E.1 Siamese Network: SCADA Zero-Day Accuracy (Wrong Connection

excluded from Training) Using Different j Votes 277

E.2 Siamese Network: SCADA Zero-Day Accuracy (Spoofing excluded

from Training) Using Different j Votes 277

E.3 Siamese Network: SCADA Zero-Day Accuracy (Sensor Failure

excluded from Training) Using Different j Votes 278

E.4 Siamese Network: SCADA Zero-Day Accuracy (Plastic Bag excluded

from Training) Using Different j Votes 278

E.5 Siamese Network: SCADA Zero-Day Accuracy (Person Hitting Low

Intensity excluded from Training) Using Different j Votes 279

E.6 Siamese Network: SCADA Zero-Day Accuracy (Person Hitting

Medium Intensity excluded from Training) Using Different j Votes . . 279

E.7 Siamese Network: SCADA Zero-Day Accuracy (7 Floating Object

excluded from Training) Using Different j Votes 280

xxviii

E.8 Siamese Network: SCADA Zero-Day Accuracy (2 Floating Objects

excluded from Training) Using Different j Votes 280

E.9 Siamese Network: SCADA Zero-Day Accuracy (Humidity excluded

from Training) Using Different j Votes 281

E.10 Siamese Network: SCADA Zero-Day Accuracy (Blocked Measure 2

excluded from Training) Using Different j Votes 281

E.11 Siamese Network: SCADA Zero-Day Accuracy (Blocked Measure 1

excluded from Training) Using Different j Votes 282

E.12 Siamese Network: CICIDS2017 Zero-Day Accuracy (FTP excluded

from Training) Using Different j Votes 282

E.13 Siamese Network: CICIDS2017 Zero-Day Accuracy (DoS (Slowloris)

excluded from Training) Using Different j Votes 283

E.14 Siamese Network: KDD Cup’99 Zero-Day Accuracy (U2R excluded

from Training) Using Different j Votes 283

E.15 Siamese Network: KDD Cup’99 Zero-Day Accuracy (Probe excluded

from Training) Using Different j Votes 284

E.16 Siamese Network: KDD Cup’99 Zero-Day Accuracy (DoS excluded

from Training) Using Different j Votes 284

E.17 Siamese Network: NSL-KDD Zero-Day Accuracy (U2R excluded

from Training) Using Different j Votes 285

E.18 Siamese Network: NSL-KDD Zero-Day Accuracy (Probe excluded

from Training) Using Different j Votes 285

E.19 Siamese Network: NSL-KDD Zero-Day Accuracy (DoS excluded

from Training) Using Different j Votes 286

xxix

List of Algorithms

5.1 Siamese Network: Usage Scenario 1 Train and Test Algorithm 106

5.2 Siamese Network: Generate Training Batch 108

5.3 Siamese Network: Evaluate Classification 109

5.4 Siamese Network: Usage Scenario 2 Train and Test Algorithm 121

5.5 Siamese Network: Evaluate One-Shot Model 121

5.6 Siamese Network: Evaluate Zero-Day 133

6.1 Drop Correlated Features . 149

6.2 Autoencoder: Training . 150

6.3 Autoencoder: Evaluation . 151

6.4 One-Class SVM Model . 152

7.1 Flow Aggregation: Calculate Ports Delta Feature 171

xxx

Chapter 1

Introduction

1.1 Motivation

Cybersecurity is defined as the field concerned with “the protection of networks, data,

and systems in the cyberspace” [1]. It is the virtual space “resulting from the interaction

of people, software and services on the Internet by means of technology devices and

networks connected to it” [2]. An essential component of system and network security

is achieved by Intrusion Detection Systems (IDS). IDS monitor networks or systems

for malicious activity or violations, and trigger alerts when a suspicious activity

is detected [3]. IDS development progressed through different stages. These stages

developed side by side with the increasing dependence on devices and automation,

and the significant development of Machine Learning (ML) and Deep Learning (DL)

techniques [4]. DL is defined as a class of neural networks that uses multiple layers

to extract higher-level features allowing the modelling of complex problems [5].

Aldweesh et al. in their research highlight the need for “developing advanced Intrusion

Detection Systems” to cope with the evolution of networks [6].

Based on Cisco’s Annual Internet Report (2018-2023) [7], it is expected that an

individual will have 3.6 networked devices on average in 2023 compared to 2.4 in

1

2018. This will result in a total of 29.3 billion networked devices. The report further

discusses that attacks have grown by 776% between 100 Gbps and 400 Gbps from

2018 to 2019 and will continue to grow over the next years. With this growth of attack

surface and the complexity of new attacks, current IDS however fall short of detecting

new and unknown attacks.

Following the exponential rise in the number of cyber attacks and their increased

complexity [8], different ML techniques were introduced to perform cyber attacks

detection and classification tasks. While detection is concerned with identifying the

occurrence of an attack, once detected, classification attempts to assign a label to

it based on known attack classes (i.e., categorisation) [9]. Furthermore, researchers

benefited from the ML advancement to develop IDS. ML techniques prove their

appropriateness to build IDS, however, most of these techniques require large

datasets for training and fail to flag cyber attacks that mimic benign traffic in an

attempt to bypass detection mechanisms. Moreover, succeeding to the evolution of

special-purpose networks, general-purpose IDS were rendered inadequate to provide

detection for these networks.

Current IDS research suffers from, but not limited to, the following:

• General-purpose network IDS do not provide the security needs for

special-purpose networks due to their different requirements and setup [10].

• IDS models training is timely and requires large up-to-date datasets which are

difficult to obtain [11].

• Cyber attacks emerge at an exponential rate [8], therefore, by the time IDS are

retrained to include new cyber attacks, more attacks may have been introduced.

Based on the limitations of current IDS research, the development of the next

generation IDS is necessary, which can provide better detection capabilities. To this

end, the work presented in this thesis aims to explore the utilisation of ML and DL

techniques to develop the next generation IDS.

2

1.2 Research Objectives

IDS development evolved from signature-base to using ML techniques as cyber

attacks became more complex [12]. Furthermore, the significant advancement of ML

techniques benefits all research domains, which includes cybersecurity [4].

This thesis explores the suitability of using non-conventional ML and DL

techniques to build the next generation of IDS. It is important to mention that, based on

the literature review and the analysis of the past decade IDS [4, 13], non-conventional

techniques are ones that have not been previously used for IDS development. The goal

is to build models that can train using limited size data and are capable of detecting

zero-day cyber attacks which are attacks that have not been previously detected or

documented. Zero-Day attacks differ from unknown attacks, the latter are ones that

occurred but there are not enough samples to classify them. However, zero-day attacks

are ones with no previous occurrence. Zero-Day attacks can be detected by using

anomaly detection (i.e., any instance that differs from normal traffic behaviour), or

instances that differs from both normal traffic and known attack classes. The thesis also

discusses the different challenges that accompany the processes of building IDS for

special-purpose networks (e.g. Internet of Things (IoT) networks). The main objectives

of this thesis can be summarised in the following research questions:

• RQ1: How can Machine Learning be utilised to detect anomalies and attacks in

special-purpose networks (i.e., IoT and Critical Infrastructure (CI))?

• RQ2: In an attempt to reduce the burden of needing to generate/collect large

volumes of data, can IDS models train using limited-sized datasets?

• RQ3: In order to reduce the interim period between identifying a new cyber

attack and detecting it, is there potential to build IDS that can detect new cyber

attacks without retraining?

• RQ4: How can non-conventional DL techniques provide improved robustness

and accuracy for IDS when detecting zero-day attacks?

3

1.3 Thesis Statement

Building IDS is an open research field. Researchers have utilised different ML and

DL techniques to build IDS, requiring large amounts of data and lengthy training

processes. However, the available IDS datasets are limited and do not cover up-to-date

cyber attacks. This thesis investigates the development, analysis, and evaluation of

novel techniques to build IDS models that are capable of training using limit data to

classify known and unknown (zero-day) attacks.

1.4 Thesis Contributions

The work presented in this thesis builds on the existing IDS research and leads towards

building the next-generation IDS. The main thesis contributions are:

• A comprehensive analysis of the past decade IDS related articles. The analysis

covers the most predominant IDS datasets used in the literature, the ML

algorithms used for developing IDS, and cyber attacks that are covered/detected.

The analysis pinpoints the shortcoming of current IDS and highlights the

research gaps. To further analyse the cyber attacks coverage in IDS, an

extendable cyber threat taxonomy is presented. The analysis of past decade IDS

and the network threat taxonomy have been published in [13, 14].

• A model for detecting anomalies in CI networks. Six ML techniques are used,

and their performances are evaluated. The models are evaluated using a real-life

dataset that is collected from a water system controlled by Supervisory Control

and Data Acquisition (SCADA). The experiments have been published in [15].

• The creation of an IoT IDS dataset (MQTT-IoT-IDS2020) to contribute to filling

the current gap in IoT dataset availability. The dataset comprises benign traffic

behaviour, generic cyber attacks, and Message Queuing Telemetry Transport

4

(MQTT)-based attacks. Three levels of features are extracted from the raw PCAP

files; namely, packet, unidirectional flow, and bidirectional flow features. The

impact of using the different feature levels on detecting generic and MQTT-based

attacks is evaluated using six ML techniques. The MQTT-IoT-IDS2020 dataset

is publicly available at [16] and the experiments and results have been published

in [17].

• A novel utilisation of Siamese networks to build IDS. This involves the

development, analysis, and evaluation of an IDS that is capable of learning from

limited-size data to classify cyber attacks. Three usage scenarios are considered

and evaluated. The first scenario aims to classify cyber attacks using a limited

number of instances for training. The second scenario aims to classify new cyber

attacks without retraining based on a few labelled instances of the new cyber

attack, benefiting from One-Shot learning paradigm. Finally, the third scenario

leverages similarity-based learning to detect unknown zero-day attacks. The

Siamese network classification experiments have been published in [18], while

the One-Shot experiments in [19].

• A model to detect zero-day cyber attacks effectively. The model relies on

the encoding-decoding capabilities of autoencoders. The detection accuracy is

compared with the well-established novelty detector; One-Class Support Vector

Machine (SVM). These experiments have been published in [20].

• A new high level of feature abstraction, called Flow aggregation. Flow

aggregation aims to benefit from the collated statistical information of individual

flows. This additional feature level enhances the detection of benign-mimicking

attacks, which are harder to detect because they are developed in a way that

bypasses detection models. The analysis of the proposed features and their

evaluation have been published in [21].

5

1.5 Thesis Organisation

This thesis consists of eight chapters and five appendices, which are organised as

follows;

Chapter 2 presents a detailed overview of IDS. The chapter defines the core concepts

that are required for the understanding of the field and this thesis. This chapter also

summarises key IDS elements and attributes in a conceptual map. The conceptual

map covers several aspects including IDS types, decision making, evaluation metrics.

Finally, a discussion of IDS benchmark datasets is presented, which spans from the

earliest KDD dataset family to the latest CICIDS dataset family.

Chapter 3 provides an analysis of recent IDS in the literature. This analysis focuses

on studying the datasets of choice and the ML techniques that researchers use to build

IDS models. Furthermore, the analysis presents the cyber attacks that are detected in

the analysed IDS. The relation between the datasets of choice and the attack coverage is

discussed. A generic cyber threat taxonomy is outlined in this Chapter. The taxonomy

highlights the limitations of publicly available datasets, hindering the advancement of

IDS.

Chapter 4 explores the different challenges that accompany the process of building

special-purpose networks IDS (RQ1). In this Chapter, six ML techniques are used to

build IDS models for special-purpose networks. To this end, this chapter covers two

case studies, SCADA and IoT networks. Firstly, a SCADA dataset is introduced, and

three experiments are evaluated. The experiments vary based on the level of anomaly

detection (i.e., binary versus multi-class detection). Secondly, a MQTT based dataset

is generated and presented. The six ML techniques are used to assess the detection of

generic cyber attacks and MQTT-based attacks using MQTT-IoT-IDS2020 dataset.

Chapter 5 proposes a novel One-Shot learning IDS model. Considering the problem

of dataset availability and the exponential pace at which cyber attacks are introduced.

6

The work in this Chapter aims to leverage similarity-based learning to build IDS that

can learn from limited-size data (RQ2). Siamese networks are utilised, as one of the

well-known One-Shot learning models, to learn pair similarity. This learning paradigm

is used to not only classify cyber attacks but detect new cyber attacks using a few

labelled instances without retraining (RQ3). Finally, this novel model is used to detect

zero-day attacks.

Following on the zero-day attack detection, Chapter 6 aims to build a zero-day

detection model with high detection rate and low false positive and false negative rates

(RQ4). This Chapter proposes the utilisation of the encoding-decoding capabilities of

autoencoders to detect zero-day attacks. The proposed model performance is compared

with the well-established novelty detector model; One-Class SVM. One-Class SVM is

known to perform well as an outlier, or novelty, detector, specifically with imbalanced

dataset. Furthermore, Fernández et al. [22] demonstrate that one-class classification is

effective when the minority class lacks structure, which applies to the ever-evolving

zero-day attacks. As a result, One-Class SVM is expected to outperform other novelty

detection methods. Therefore, only this algorithm is used as a benchmark for the

algorithm developed in this chapter.

Chapter 7 addresses the problem of detecting cyber attacks that mimic benign

behaviour. Benign-imitating attacks are built in a way that bypasses detection

mechanisms. This Chapter proposes a higher level of feature abstraction that can assist

in detecting these types of attacks.

Chapter 8 concludes the thesis by referring to the research questions in relation to

all proposed models and results. Then, future work and directions are discussed.

Figure 1.1 presents the outline of the thesis chapters. It shows the dependencies and

progression from one chapter to another.

7

Chapter 6: Outlier-Based Zero-Day
Attacks Detection

Chapter 1: Introduction

Chapter 2: Intrusion Detection Systems (IDS)

 Chapter 4: Utilising Machine Learning
for Special-Purpose IDS

Chapter 5: IDS using Limited Data

Siamese Network IDS
(learn using pair similarity)

Classification One-Shot
Learning

Zero-Day
Attack

Detection

Chapter 7: Classify Benign Imitating Attacks Using Flow
Aggregation

Chapter 8: Conclusion and Future Work

ML-Based IDS for SCADA
and IoT Networks

Autoencoder

One-Class SVM

Autoencoder zero-day
attack detection

Benign-imitating attacks are
not detected

Classification

Chapter 3: IDS in Literature

Type

General-Purpose
Networks

Special-Purpose
Networks

IDS Datasets

Limited Large

ML-BasedPattern Matching

IDS

Non-Conventional
Techniques

Conventional
Techniques

One-Class SVM

Autoencoder

Figure 1.1
Thesis Chapters Overview
The yellow rectangles represent the introduction and conclusion, the green ones introduce the
work, whereas the blue rectangles represent the work carried out within this thesis. Finally, the
red bubbles represent associated fields which are not covered within the thesis.

8

Chapter 2

Intrusion Detection Systems

This chapter provides an explanation of the different aspects of IDS. An overview

of IDS technology is presented followed by a conceptual map. The conceptual

map covers the main characteristics of IDS, requirements, types, and evaluation

metrics. Furthermore this section discuss different benchmark datasets, highlighting

the limitations of currently available IDS datasets.

2.1 IDS Overview

IDS are systems built to monitor and analyse network traffic and/or other systems.

The goal of IDS is the detection of anomalies, intrusions, or privacy violations.

Ferrag et al. [23] represent them as the second line of defence after access control,

authentication, and encryption mechanisms. IDS can either be Host Intrusion Detection

System (HIDS) or Network Intrusion Detection System (NIDS). Figure 2.1 shows the

two types as they differ in their monitoring scope. NIDS monitor the communication

between different nodes in a network or sub-networks. They analyse the traffic flow

and inwards and outwards communication. A traffic flow [24] is defined by the packets

involved in the communication between two nodes in a network. A network flow

could be 2-tuple, where the source and destination Internet Protocol (IP) addresses

9

HIDS HIDS HIDS HIDS HIDS

NIDS

Figure 2.1
IDS Types

are used. When the source and destination ports are also used, a flow is considered

to be 4-tuple, then 5-tuple flows additionally include the protocol used. Traffic flows

can be unidirectional or bidirectional. Unlike NIDS, HIDS monitor node or system

internals focusing on Operating System (OS) files, log files, etc., Furthermore, they

can monitor the network communication of the node(s) they are installed on, which

allows the analysis of encrypted traffic [25]. HIDS rely on packets content, rather than

headers and/or payload information.

IDS are categorised into signature-based and anomaly-based. Signature-based IDS,

also known as “Misuse Detection” [26], rely on predefined signatures that represent

known intrusions and attacks. Therefore, signature-based IDS are capable of detecting

attacks by comparing against known signatures. However, their detection capability

is limited by the signatures available in the database used, therefore, attacks with no

signature patterns go undetected; including unknown (zero-day) attacks [27].

On the other hand, anomaly-based IDS, also known as “Behaviour-based

Detection” [28], depend on identifying patterns. This method requires training the

system prior to deploying it. Artificial Intelligence (AI) techniques, specifically ML

and DL, are well-suited for anomaly-based IDS, due to their significant training

capabilities. The advantage of anomaly-based IDS is their ability to classify both

normal and abnormal traffic, thus detecting known and unknown attacks. The

accuracy of anomaly-based IDS against unknown attacks is better when compared

10

 Train

IDS

Known
Intrusions

(Signatures)

IDS

Signature-Based

Abnormal

IDS

Anomaly-Based

Normal

Traffic Data

Figure 2.2
Signature-based versus Anomaly-based IDS

to signature-based IDS. However, the False Positive Rate (FPR) is often high [28].

Specification-based IDS combine the strength of both signature and anomaly-based to

form a hybrid model, which can attempt to detect both known and unknown attacks

using different AI techniques. Figure 2.2 compares signature-based to anomaly-based

IDS. Both signature-based and anomaly-based IDS, can run on either a stateless or a

stateful basis. Stateless IDS rely on packets while stateful ones rely on network flows.

Recent IDS are stateful as they benefit from the “context” flows provide.

It is important to note that IDS are responsible for detecting intrusions, unlike

Intrusion Prevention System (IPS) that can additionally take corrective and preventive

actions [29].

In the late 80’s, researchers started using statistical techniques that rely on

predefined rates, as well as normal traffic that acts as a baseline for their detection.

Following the use of statistical techniques, knowledge-based techniques were used,

including expert systems and Finite State Machine (FSM). Finally, ML techniques

11

dominated the research and development of IDS. Recent surveys emphasise the

focus on utilising ML and DL techniques to build IDS, including the work in

[23, 30, 31, 32, 33]. The following section presents an overview of the ML pipeline

prior to discussing IDS attributes and benchmark datasets.

2.2 Machine Learning Overview

ML techniques have the ability to learn patterns and behaviours and generalise

decisions using a given dataset based on learning and tuning their parameters (i.e.,

without the need to pre-define patterns and rules). To build IDS using ML, similar

to other ML applications, a multistage process is followed. This process involves

preparing the data, choosing the ML model, training, validation, and testing of the

chosen model. Figure 2.3 visualises the ML pipeline.

I. Dataset Collection: Datasets are considered the backbone of developing ML

models. Large datasets are collected or generated to be used during the training

and testing processes. A dataset contains raw data that can be in any format

(i.e., text, audio, video, etc.). For IDS, data can be system and network log files,

Structured
DataPreprocessingRaw Data

Labelling
(if required)

Model Training,
Validation & Testing

Supervised

Unsupervised

Trained
Model

Hyperparameters
optimisation

Feature
Engineering

Standardisation

Normalisation

Encoding

Handle missing
data

Figure 2.3
ML Pipeline

12

system data, and operational behaviour [34] or raw network traffic [23]. The

data is structured as records (instances) and fields (features). Once a dataset is

available, its instances are preprocessed.

II. Preprocessing: Preprocessing deals with raw data and it involves various steps

to ensure that the dataset is ready for ML usage. The data can be categorised

as numerical and categorical [35]. Numerical data represents quantitative values

that can be either discrete (countable) or continuous (uncountable). Categorical

data represents names or labels (i.e., the data that is expressed using natural

language descriptions, rather than numbers). Categorical data can either be

nominal or ordinal. Ordinal data values, unlike nominal one, follow a certain

ranking or scale. These different data types impact decisions during the

preprocessing steps.

Preprocessing steps include:

• Handling missing data: Datasets usually have missing fields/features in

some instances. Instances with missing features can be dropped if they

comprise a small percentage of the dataset. If a feature is missing from

most of the instances, this feature can be dropped. Alternatively, several

techniques can be used to fill the missing features with values, including

zero or random values. In this case, random values are sampled from

the same distribution, if the feature is numerical and follows a certain

distribution, otherwise, values are randomly sampled within the range of

given values of the rest of the instances. Statistical mean or median can

be used with numerical continuous variables. The most frequent value

from other instances can be used to populate missing values when it is

contained in the majority of the instances. Handling missing data depends

on the dataset domain, purpose, and importance of different instances and

features [36, 37].

13

• Encoding: Dataset containing categorical features have to be encoded to be

suitable for ML usage. The two popular encoding techniques are Ordinal

and One-Hot encoding [38]. The first is used when values have ordinal

relationship, otherwise, One-Hot encoding is used.

• Normalisation: When the distribution of a dataset feature is unknown or

does not follow a Gaussian distribution, it is better to normalise/scale the

values with a minimum of 0 and a maximum of 1. Normalisation, also

known as Min-Max scaling [39], aims to map all values to a common scale,

without distorting differences in the ranges of values. This process speeds

the overall training process [40].

• Standardisation (z-score): This step ensures that the feature values have a

mean of 0 and a standard deviation of 1 by computing the z-score [39].

Similar to normalisation, this step ensures that all data belong on the same

scale. However, outliers are not affected by standardisation.

• Feature Engineering: Feature Learning [41] or Feature Engineering [42]

plays a vital role in building ML model since the chosen features highly

affect the model performance. Contraction, extraction, and selection are

the three processes that can be used to obtain features.

• Labelling: When a dataset is collected or generated, domain experts label

the dataset instances. This step can be dropped when using unsupervised

learning as labels are not used for model training.

III. Model Training, Validation, and Testing: ML models can be Supervised,

Unsupervised, Semi-Supervised or Reinforcement learning. In supervised

learning, the dataset instances are labelled (i.e., a class for each instance is

known) where the model learns a function that maps input to output based

on example [31]. If the output is numerical, then it is a regression model,

otherwise, it is classification when the output is categorical. Classification can

14

either be binary (two classes), multi-class, or multi-label (class1 and class2 /

class1 or class2). In unsupervised learning, data is unlabelled and the model

in this case aims to discover previously undetected pattern in the training

data [31]. In clustering techniques, for example, these discovered patterns are

used to group instances. Supervised learning techniques include SVM, k-Nearest

Neighbours (k-NN), and Decision Tree (DT), while clustering, association and

dimensionality reduction are popular techniques of unsupervised learning [43].

Semi-supervised learning falls between supervised and unsupervised learning. It

learns from a small amount of labelled data and a large amount of unlabelled

data. Finally, reinforcement learning aims to maximise the cumulative reward

while learning. This paradigm is well suited for training intelligent agents based

on their actions in a certain environment.

During the training process, an ML model aims to best optimise its parameters

to reach the maximum performance (i.e., accuracy) and the minimum loss (i.e.,

error). The dataset is split into training, validation and testing sets, as shown

in Figure 2.4. The last is used to evaluate the performance of a trained model

which gives an unbiased indication of how well the model is generalised [45],

since evaluating using the training set can be misleading. In some cases in the

literature, validation and testing sets are used interchangeably which leads to

confusion [46]. However, for Artificial Neural Network (ANN), the validation

set is a portion of data reserved from the training set that is later used in

hyper-parameter optimisation. The testing set is only used for evaluation [46].

The randomisation of splitting of a dataset into training and testing sets has its

problem as some classes and/or features can be over or underrepresented. To

overcome this problem, K-fold cross validation is used. The dataset, in this case,

Train Validation Test

Figure 2.4
Dataset Split Visualisation [44]

15

is split into k subsets, k − 1 subsets are used during the training process and

one subset is used for testing. This process is repeated k times and the average

performance is calculated [47]. K-fold cross validation is also used to estimate

the average generalisation error of the model [48].

The training process continues until the model reaches the desired state. The

training stops when the validation loss reaches a minimum to avoid overfitting.

A model overfits when it does not generalise (i.e., its performance is limited to

the training instances). This can be indicated with a low training loss and a high

testing loss.

Different regularisation techniques are used to avoid overfitting and ensure that

ML models generalise [49]. The three common regularisation techniques are:

L1, L2, and Dropout. The difference between L1 and L2 regularisation lies

in the penalty that they apply to the loss function. In L2 regularisation, also

known as ridge regression, a squared magnitude penalty is applied, while in L1

regularisation, also known as lasso regression, L1 norm is applied. In the case

of ANN, the magnitude is calculated based on the weights, either absolute sum

(in case of L1) or sum of squares (in case of L2) [50]. The third regularisation

approach, which can only be applied with ANN, is adding a Dropout layer. For

a fully connected layer, all connections (weights) are trainable each iteration.

Dropout randomly chooses a portion of weights to be excluded/dropped from

training each iteration [51].

Feature Engineering

Features are the building blocks of dataset instances as they represent properties,

variables, or attributes of data. For example, features can be number of packets, flags,

duration, size, etc. Feature values construct the input to any ML or DL model. Features

are obtained using one of three processes: construction, extraction, and selection.

16

While feature construction aims at creating new features by mining existing ones and

finding missing relations within features, extraction works on raw data and/or features

and applies mapping functions to extract new, representable ones. Finally, the selection

aims to select the most significant subset of features. This helps reduce the feature

space and required computational power.

Feature selection is done using one of three approaches [52], shown in Table 2.1;

filter, wrapper, and embedded. A classification of the features used in different IDS

datasets is provided in [32]. Rezaei and Liu [53] categorise features that are used for

building IDS into four main categories of networking features. These categories are

time series, header, payload, and statistical. Ghaffarian and Shahriari [42] consider

features that represent basic network information as naı̈ve while others are rich. Naı̈ve

features only consider attributes from packets, therefore, they do not provide enough

information. However, rich features represent high level information (i.e., flow-based

features) which allows them to be more discriminative.

17

Table 2.1
Feature Selection Approaches

Approach Description Advantages Disadvantages Examples Ref

Filter

Selects the

most

meaningful

features

regardless of

the model

Fast execution

and low risk of

overfitting

May choose

redundant

variables

- Pearson’s

Correlation

- Chi-Square

[54]

Wrapper

Combines

related

variables to

have subsets

Considers

interactions

and

dependencies

Overfitting risk

and high

execution time

- Forward

Selection

- Backward

Elimination

-Recursive

Feature

Elimination

[55]

Embedded

- It is

integrated as

part of the

model

- Combines

wrapper and

filter methods

advantages

Results in an

optimal subset

of variables

and lower risk

of overfitting

Selection is

classifier

dependent

- Lasso and

Ridge

regression

- Decision Tree

[56]

2.3 IDS Conceptualisation

In this section, a broad conceptual map dedicated to the design of IDS is presented,

including the different elements IDS can have. The conceptual map gives a global

overview of IDS.

Figure 2.5 visualises the IDS conceptual map with each branch focusing on a

dimension. Figure 2.5 (Branch 1) includes the general attributes that characterise

IDS; such as its role in the network, the information provided by IDS, the system

requirements, and its usage. Branch 2 describes the attributes related to the decision

18

 Br
an

ch
 1

: G
en

er
al

 A
tt

ri
bu

te
s

 Br
an

ch
 2

: D
ec

is
io

n
an

d
In

fr
as

tr
uc

tu
re

 Br
an

ch
 3

: E
va

lu
at

io
n

M
et

ri
cs

 Br
an

ch
 4

: T
yp

es

 In
tr

us
io

n
D

et
ec

ti
on

 S
ys

te
m

s

 1.
1

Ro
le

 1.
1.

1
Lo

g
re

su
lts

 1.
1.

2
Tr

ig
ge

r
al

er
ts

 1.
2

O
ut

pu
t I

nf
or

m
at

io
n

 1.
2.

1
In

tr
ud

er
 id

en
tifi

ca
tio

n

 1.
2.

2
In

tr
ud

er
 lo

ca
tio

n

 1.
2.

3
In

tr
us

io
n

tim
e

 1.
2.

4
In

tr
us

io
n

la
ye

r

 1.
2.

5
In

tr
us

io
n

ac
tiv

ity

 1.
2.

6
In

tr
us

io
n

ty
pe

 1.
3

Re
qu

ir
em

en
ts

 1.
3.

1
Effi

ci
en

t d
et

ec
tio

n

 1.
3.

2
D

o
no

t a
ff

ec
t w

or
ki

ng
 u

se
rs

 1.
3.

3
Lo

w
 r

es
ou

rc
es

 c
on

su
m

pt
io

n

 1.
3.

4
Th

ro
ug

hp
ut

 1.
3.

5
D

o
no

t i
nt

ro
du

ce
 n

ew
 w

ea
kn

es
se

s

 1.
3.

6
Ea

se
 o

f u
se

 1.
3.

7
In

te
ro

pe
ra

bi
lit

y

 1.
3.

8
Tr

an
sp

ar
en

cy

 1.
3.

9
Co

lla
bo

ra
tio

n

 1.
4

U
sa

ge

 1.
4.

1
Co

nt
in

uo
us

 1.
4.

2
Pe

ri
od

ic
al

 2.
1

D
ec

is
io

n
M

ak
in

g

 2.
1.

1
Co

lla
bo

ra
tiv

e

 2.
1.

2
In

de
pe

nd
en

t

 2.
2

In
fr

as
tr

uc
tu

re

 2.
2.

1
Fl

at

 2.
2.

2
Cl

us
te

re
d

 2.
3

Co
m

pu
ta

tio
n

Lo
ca

tio
n

 2.
3.

1
Ce

nt
ra

liz
ed

 2.
3.

2
St

an
d-

al
on

e

 2.
3.

3
D

is
tr

ib
ut

ed
 a

nd
 C

oo
pe

ra
tiv

e

 2.
3.

4
H

ie
ra

rc
hi

ca
l

 4.
3

Te
ch

ni
qu

es

 4.
3.

1
St

at
is

tic
al

 U
ni

va
ri

at
e

 M
ul

tiv
ar

ia
te

 Ti
m

e
se

ri
es

 Cu
m

ul
at

iv
e

Su
m

 4.
3.

2
Kn

ow
le

dg
e-

ba
se

d

 Fi
ni

te
 S

ta
te

 M
ac

hi
ne

s

 Ru
le

 B
as

ed

 n-
gr

am
s

 Ex
pe

rt
 S

ys
te

m
s

 D
es

cr
ip

tio
n

La
ng

ua
ge

s

 O
nt

ol
og

y

 4.
3.

3
M

ac
hi

ne
 L

ea
rn

in
g

ba
se

d

 Ad
ap

tiv
e

Bo
os

tin
g

 Ar
tifi

ci
al

 Im
m

un
e

Sy
st

em

 An
t C

ol
on

y

 Ar
tifi

ci
al

 N
eu

ra
l N

et
w

or
k

 As
so

ci
at

io
n

Ru
le

s

 Au
to

-E
nc

od
er

s

 Ba
ye

si
an

 Co
nv

ol
ut

io
na

l N
eu

ra
l N

et
w

or
k

 D
at

a
M

in
in

g

 D
ec

is
io

n
Tr

ee

 Fu
zz

y
Lo

gi
c

 G
en

et
ic

 A
lg

or
ith

m
s

 k-
m

ea
ns

 k-
N

ea
re

st
 N

ei
gh

bo
ur

s

 Ke
rn

el
 C

lu
st

er
in

g

 M
ar

ko
v

Ch
ai

ns

 Pa
rt

ic
le

 S
w

ar
m

 O
pt

im
iz

at
io

n

 Pa
rz

en

 Pr
in

ci
pa

l C
om

po
ne

nt
 A

na
ly

si
s

 Ra
nd

om
 F

or
es

t

 Re
cu

rr
en

t N
eu

ra
l N

et
w

or
k

 Re
gr

es
si

on

 Se
lf-

O
rg

an
iz

in
g

M
ap

 Su
pp

or
t V

ec
to

r
M

ac
hi

ne

 4.
2

Tr
ig

ge
re

d
By

 4.
2.

1
Si

gn
at

ur
e-

Ba
se

d
 +v

e:
 H

ig
h

ac
cu

ra
cy

 -v
e:

 F
ai

l t
o

de
te

ct
 n

ew
 a

tt
ac

ks

 4.
2.

2
An

om
al

y-
ba

se
d

 Tr
ai

ni
ng

 is
 a

 p
re

re
qu

is
ite

 +v
e:

 D
et

ec
tio

n
of

 n
ew

 in
tr

us
io

ns

 -v
e:

 H
ig

h
fa

ls
e

po
si

tiv
e

ra
te 4.

2.
3

Sp
ec

ifi
ca

tio
n-

Ba
se

d
(H

yb
ri

d)

 4.
1

Ty
pe

s

 4.
1.

1
H

os
t-

Ba
se

d

 In
te

rn
al

 m
on

ito
ri

ng

 +v
e:

 R
es

po
nd

 to
 lo

ng
 te

rm
 a

tt
ac

ks

 -v
e:

 P
oo

r
re

al
-t

im
e

re
sp

on
se

 4.
1.

2
N

et
w

or
k-

Ba
se

d

 In
go

in
g

an
d

ou
tg

oi
ng

 tr
affi

c
m

on
ito

ri
ng

 +v
e:

 D
et

ec
t m

ul
tip

le
 h

os
t m

al
ic

io
us

 a
ct

iv
iti

es

 +v
e:

 R
es

po
nd

 in
 r

ea
l t

im
e

 -v
e:

 if
 b

us
y

ne
tw

or
k,

 p
ac

ke
t p

ro
ce

ss
in

g
 ra

te
 <

 in
co

m
in

g
da

ta
 r

at
e

 4.
1.

3
H

yb
ri

d

 3.
 E

va
lu

at
io

n
M

et
ri

cs

 3.
1

O
ve

ra
ll

Ac
cu

ra
cy

 3.
2

D
et

ec
tio

n
Ra

te
s

 3.
3

Pr
ec

is
io

n

 3.
4

F1
 s

co
re

Figure 2.5
IDS Conceptual Map

19

types, infrastructure in place, and the computational location. Branch 3 is dedicated

to IDS evaluation metrics. Finally, Branch 4 provides a descriptive analysis of IDS

types including an analysis of the triggers. The different branches in Figure 2.5 are

subsequently described in Sections 2.3.1 through 2.3.3.

2.3.1 General Attributes

As previously discussed, IDS focus on detecting anomalies. With reference to

Figure 2.5 (Branch 1), when an intrusion is detected, IDS are expected to log the

information related to the intrusion (1.1.1). These logs can then be used by network

forensic investigators to further analyse the detected anomaly or enhance the learning

process of IDS themselves. IDS are expected to trigger alerts upon detecting a threat

(1.1.2). The alert should provide information on the detected threat and the affected

system. By raising an alert, authorised users can take corrective actions and mitigate

the attack.

In order to build efficient IDS, the output information provided by IDS to the

end-user is critical for analysis. The recorded information should contain intruder

identification information (1.2.1) and location (1.2.2) for each event. IP addresses

and user credentials are used to identify the intruder. The system design should

be modular to adapt to the environment. Additionally, log information can contain

metadata related to the intrusion, such as timestamp (1.2.3), intrusion layer (i.e., Open

Systems Interconnection (OSI)) (1.2.4), intrusion activity (1.2.5) whether the attack is

active or passive and finally, the type of intrusion (1.2.6) [3]. Active attacks attempt

to alter data or information in a network or system, while passive attacks monitor and

gather information.

Two key aspects for effective IDS are a high detection rate (1.3.1) and a low

false-positive rate. These can be evaluated using different metrics which are discussed

in detail in Section 2.3.3 (Branch 3). Other important IDS factors include the

20

transparency (1.3.8) and safety of the overall system (1.3.2). It is crucial as an

attacker may target the IDS themselves. The overall performance of IDS is also

important, which includes memory requirements, power consumption (1.3.3), and

throughput (1.3.4). This can highly impact IDS that are used in special-purpose

networks with limited resources.

Moreover, it is crucial that IDS themselves do not introduce abnormal behaviour

(1.3.5), hence a testing procedure should be set in place before deployment. The

procedure can include fuzzing to detect anomalies and bugs in IDS. Such anomalies

could be exploited by an attacker to render IDS useless or initiate a Denial of

Service (DoS) attack [3]. Finally, Axelsson [57] adds to IDS requirements; ease of

use (1.3.6), interoperability (1.3.7), transparency (1.3.8) and collaboration (1.3.9). This

is important to ensure that IDS operate with other deployed security platforms.

2.3.2 Decision-Making

Figure 2.5 (Branch 2) covers the decision-making process of IDS. IDS can be

distributed over multiple nodes in the network. In this case, decisions can be

made collaboratively/swarm-like (2.1.1), or independently (2.1.2). In a collaborative

decision-making, multiple nodes share a single decision. This collaboration can use

statistical techniques such as voting and game theory, while in an independent mode,

all decisions are made by individual nodes on the network [3].

Furthermore, in this distributed manner, when all nodes are working with the same

capacity, it is considered a flat (2.2.1) infrastructure. Alternatively, it is a clustered

infrastructure (2.2.2), where the nodes belong to clusters with different capabilities,

each contributing to the decisions in a different manner. The computation location is

another aspect of distributed IDS. The centralised computation location (2.3.1) works

on data collected from the whole network. Unlike the centralised, the stand-alone

computation (2.3.2) works on local data, disregarding decisions from other nodes.

21

A combination of both centralised and stand-alone can also be achieved through

cooperative computation, such that each node can detect an intrusion on its own

but also contributes to the overall decision [58]. Finally, IDS can also operate

in hierarchical computation (2.3.4), where a cluster sends all intrusion detection

information to the root node responsible for decision making [3].

2.3.3 Evaluation

A high detection rate is essential for IDS to be considered effective. However, the

detection rate solely does not give a complete assessment of IDS performance.

The main elements that are used when measuring IDS performance, and hence are

used to derive the different metrics, are as follows:

• True Positive (TP): Number of intrusions correctly detected

• True Negative (TN): Number of non-intrusions correctly detected

• False Positive (FP): Number of non-intrusions incorrectly detected

• False Negative (FN): Number of intrusions incorrectly detected

Hodo et al. [59], Buse et al. [26] and Aminanto et al. [41] discuss main IDS

evaluation metrics in their respective work. These include the overall accuracy,

decision rates, precision, recall, and F1-Score. IDS evaluation metrics are summarised

in Figure 2.5 (Branch 3).

Overall Accuracy: Equation 2.1 provides the overall accuracy. It returns the

probability that an item is correctly classified by IDS.

OverallAccuracy =
TP + TN

TP + TN + FP + FN
(2.1)

22

Detection Rates: Equation 2.2 calculates the Sensitivity, Specificity, Fallout, and

Miss Rate detection rates, respectively. Sensitivity (TPR) calculates the probability of

attack/anomaly instances that are correctly identified, while fallout (FPR) calculates

the probability of incorrectly detected ones. Specificity (TPR) indicates the probability

of normal/benign instances that are correctly identified, while Miss Rate (FNR)

indicates the probability of incorrectly detected ones.

Detection Rates:

Sensitivity (aka Recall, T rue Positive Rate) =
TP

TP + FN

Specificity (aka Selectivity, T rue Negative Rate) =
TN

TN + FP

Fallout (aka False Positive Rate) =
FP

TN + FP

Miss Rate (aka False Negative Rate) =
FN

TP + FN

(2.2)

Stefan Axelsson [57] emphasises the fact that high FPR (false alarm) limits the

performance of IDS due to the “Base-rate fallacy problem”. This problem results in

neglecting alarms because the number of false positives surpasses the number of true

positives.

Precision: Equation 2.3 provides the probability of positively classified incidents

that are truly positive.

Precision =
TP

TP + FP
(2.3)

To visualise the performance of IDS, i.e., the trade-off between sensitivity (True

Positive Rate (TPR)) and fallout (True Negative Rate (TNR)), Area Under the Curve

(AUC) and Receiver Operating Characteristics (ROC), also known as Area Under the

Receiver Operating Characteristics (AUROC) curves are used [31, 60, 61]

F1-Score: Equation 2.4 represents the harmonic mean of precision and recall.

Compared with accuracy, F1-Score does not take true negatives into account, thus it

is well suited when false positive and false negative rates are critical. In addition, it is

23

well suited to represent the performance of IDS when dealing with imbalanced classes,

such as a large number of negative instances, for example.

F1 =
2TP

2TP + FP + FN
(2.4)

2.4 IDS Datasets

Researchers use benchmark datasets to evaluate IDS performance using the metrics

discussed in Section 2.3.3. In this section, prominent IDS datasets are discussed. The

datasets properties and limitations are highlighted.

Table 2.2 lists the prominent available IDS datasets and categorises them based

on the domain they belong to. Moreover, attacks found in each are presented by tick

marks. These datasets cover general-purpose IDS, Virtual Private Network (VPN), Tor

Networks, Botnet, Network Flows and IoT. Details regarding the institutes contributing

to the generation of these datasets and the attack types are summarised in Table A.1.

The ratio between general-purpose and special-purpose IDS datasets is noticed in the

table.

By observing Table 2.2, the dominance of some cyber attack classes in the datasets

is clear. This is due to both their popularity and availability of tools to simulate them,

which facilitates their inclusion in datasets. For example, DoS and Distributed Denial

of Service (DDoS) are included in most of the datasets. The features and characteristics

of these datasets are further analysed in [86]. This evaluation includes DEFCON [87],

CAIDA [88], LBNL [89], CDX [90], Kyoto [91], Twente [92], UMASS [93] and

ADFA [65]. Ring et al. [94] provide a comprehensive overview of IDS datasets,

covering their main features, data format, anonymity, size, availability, recording

environment, balancing, etc.

24

Table 2.2
IDS Prominent Datasets

General-Purpose Networks
Brute-
Force Web

Year Dataset

N
or

m
al

D
oS

D
D

oS

Pr
ob

e

U
2R

R
2L

In
fil

tr
at

in
g/

Sc
an

ni
ng

SS
H

FT
P

H
ea

rt
bl

ee
d

B
ru

te
-F

or
ce

X
SS

SQ
L

In
je

ct
io

n

W
eb

sh
el

l

D
V

W
A

B
ot

ne
t

N
et

w
or

k
&

H
os

tE
ve

nt
s

Po
rt

Sc
an

M
et

er
pr

et
er

2018 CICIDS2018 [62] X X X - - - X X - X X X X - X X - X -

2017 CICIDS2017 [63] X X X - - - X X X X X X X - - X - X -

2017 CIC DoS dataset [64] X X - - - - - - - - - - - - - - - - -

2017
2013

ADFA-IDS [65, 66] X - - - X X - X X - - - - X - - - - X

2017
Unified Network

Dataset [67]
X - - - - - - - - - - - - - - - X - -

2016 DDoSTB [68] X - X - - - - - - - - - - - - - - - -

2015 Booters [69] - - X - - - - - - - - - - - - - - - -

2015

TUIDS Coordinated
Scan [70]

X - - X - - X - - - - - - - - - - - -

TUIDS DDoS [70] X - X - - - - - - - - - - - - - - - -
TUIDS

Intrusion [70]
X X - X - - - - - - - - - - - - - - -

2014 Botnet dataset [71] X - - - - - - - - - - - - - - X - - -

2012 STA2018 [72] X X X - - - X X - - - - - - - - - - -

2011 CTU-13 [73] X - - - - - - - - - - - - - - X - - -

2010 ISCXIDS2012 [74] X X X - - - X X - - - - - - - - - - -

2009 Waikato [75] - - X - - - - - - - - - - - - - - - -

2007 CAIDA DDoS [76] - - X - - - - - - - - - - - - - - - -

1999 NSL-KDD [77] X X - X X X - - - - - - - - - - - - -

1999 KDD’99 [78] X X - X X X - - - - - - - - - - - - -

1998
1999
2000

DARPA [79] X X - X X X - - - - - - - - - - - - -

Special-Purpose Networks
Year Dataset IoT VPN Tor SCADA
2018 Bot-IoT [80] X - - -

2017
Anomalies Water

System [81]
- - - X

2017
IoT devices

captures [82]
X - - -

2016
Tor-nonTor
dataset [83]

- - X -

2016
VPN-nonVPN

dataset [84]
- X - -

2015 4SICS ICS [85] - - - X

IDS datasets can either include real (i.e., recorded from a network set-up) or

synthetic (i.e., simulated or injected) traffic. Synthetic attack injection could be used to

either introduce attacks to an existing dataset or balance the attack classes represented

in a dataset.

25

The three main issues with current IDS datasets are that (i) they lack real-life

characteristics of recent network traffic, which renders current IDS not applicable

for production environments [95], (ii) there is a limited number of datasets for

special-purpose networks (i.e. IoT and CI) which again limits the IDS development,

and (iii) they do not cope with constantly changing networks topology.

Viegas et al. [95] mention that for a dataset to be considered appropriate, it has to

possess various properties; instances should be labelled, the dataset should contain real

network traffic, can be reproducible, and shareable, implying that the dataset should not

contain any confidential data.

The analysis of IDS research articles in the past years is overviewed in the following

chapter. The chapter discusses the datasets of choice and the dominant techniques used

to build IDS. Furthermore, the effect of dataset choice on the advancement of IDS

research is outlined.

2.5 Summary

In this chapter, an introduction and an overview of IDS and ML concepts are provided.

IDS classification, types, and learning paradigms are highlighted. Furthermore, the

discussion is elaborated and extended using the IDS conceptual map. The conceptual

map covers various aspects of building IDS which involves IDS evaluation metrics,

used techniques, and datasets are analysed. Finally, IDS datasets are reviewed

where prominent IDS datasets are outlined. The discussion pinpoints the limitations

of existing datasets; including the lack of special-purpose ones and the dominant

representation of some cyber attacks like DoS. The effect of datasets and a thorough

discussion of recent IDS follows in the following chapter.

26

Chapter 3

IDS in Literature

In this chapter, IDS research articles are discussed and analysed with respect to the

different datasets used and the ML algorithms to train IDS. Following on from the

analysis, an overview of the cyber attacks that are detected by recent IDS is presented.

The cyber attack coverage is conducted not only with respect to the analysed articles,

but also in relation to a generic cyber threat taxonomy. The presented taxonomy

classifies cyber threats based on the OSI layers, active or passive behaviour and threat

source. In active attacks, the attacker attempts to modify the data or impact the network

or system performance, while in passive attacks, the aim is to observe and gather

information for further analysis and usage. The comprehensive taxonomy is built in

an extendable fashion and has been released publicly for future amendments. Finally,

the chapter highlights the overall trends and limitations of IDS research in recent years,

which influence the research presented in the rest of this thesis.

3.1 Analysis of Recent IDS Research

In this section, recent IDS articles are discussed, analysing both research trends and

shortcomings. This analysis highlights the main algorithms used and the datasets of

choice, which concludes the strengths and weaknesses of recent IDS. To this end,

27

IEEE Xplore and Google Scholar queries were made using “Intrusion Detection

System*” OR “IDS*”, further filtering results to include articles published in the

range [2008-2020]. The filtration was made to have a wide coverage of datasets,

ML techniques, and detected attacks. A total of 90 published articles in this period

were analysed. Analysis of older IDS ML techniques and used features for the period

[2004-2007] was previously conducted by Nguyen and Armitage [31]. They discuss

the limitations of port-based and payload-based classification and the emerging use of

ML techniques to classify IP traffic.

Table 3.1 summarises the IDS research selected based on the above criteria. Each

row represents one article, highlighting the dataset(s) and algorithm(s) used within the

research, alongside the attacks that IDS are capable of detecting. The algorithm trends

are discussed later in this section alongside the attacks’ coverage in the datasets used.

It is important to note that Table 3.1 is used to provide insights regarding the analysed

IDS.

Table 3.1
Over A Decade of IDS [2008 - 2020]

Year Dataset Used Algorithms Detected Attacks Ref

2008 KDD-99
- Tree Classifiers

- Bayesian Clustering
Probing, DoS, R2L, U2R [96]

2008 KDD-99
- v-SVC - K-Means

- Parzen Classifier
Probing, DoS, R2L, U2R [97]

2008

- PIERS

- Emergency

Department

Dataset

- KDD-99

- Bayesian Network

Likelihood

- Conditional Anomaly

Detection

- WSARE

APD:

- Illegal activity in imported

containers

- Anthrax

- DoS, R2L

[98]

2008 KDD-99 AdaBoost Probing, DoS, R2L, U2R [99]

2009 KDD-99

- ABC

- Fuzzy Association

Rules

Probing, DoS, R2L, U2R [100]

Continued . . .

28

Year Dataset Used Algorithms Detected Attacks Ref

2009

Collected

transactions

dataset

Fuzzy Association

Rules
Credit Card Fraud [101]

2009 KDD-99 Genetic-based Probing, DoS, R2L, U2R [102]

2009 KDD-99 C4.5 Probing, DoS, R2L, U2R [103]

2009 KDD-99

BSPNN using:

- AdaBoost

- Semi-parametric NN

Probing, DoS, R2L, U2R [104]

2009 1999 DARPA - RBF - Elman NN Probing, DoS, R2L, U2R [105]

2009 1999 DARPA

- SNORT

- Non-Parametric

CUSUM

- EM based Clustering

13 Attack Types [106]

2010 KDD-99

FC-ANN based on:

- ANN

- Fuzzy Clustering

Probing, DoS, R2L, U2R [107]

2010 KDD-99 Logistic Regression Probing, DoS, R2L, U2R [108]

2010 KDD-99
- NN

- FCM Clustering
Probing, DoS, R2L, U2R [109]

2011
Generated

dataset
OCSVM

Scan (Nachi, Netbios,

SSH), TCP flood,

DDoS (TCP, UDP flood),

Stealthy DDoS UDP flood,

Traffic deletion,

Popup spam

[110]

2011 KDD-99 - NB - AdaBoost Probing, DoS, R2L, U2R [111]

2011 KDD-99
- Weighted k-NN

- Genetic Algorithm
DoS / DDoS [112]

2011 KDD-99

Genetic Fuzzy Systems

based on:

- IRL

- Michigan - Pittsburgh

Probing, DoS, R2L, U2R [113]

2011 KDD-99

- DT

- RBF NN - NB

- Ripper Rule - BON

Probing, DoS [114]

2011 KDD-99
- SOM

- K-Means clustering
Probing, DoS, R2L, U2R [115]

Continued . . .

29

Year Dataset Used Algorithms Detected Attacks Ref

2011 KDD-99
- Rule-Based

- ART Network - BON
Probing, DoS, R2L, U2R [116]

2011 KDD-99 SVM Probing, DoS, R2L, U2R [117]

2011 KDD-99
- NB

- K-Means
Probing, DoS, R2L, U2R [118]

2012 KDD-99
- K-Means

- Modified SOM
Probing, DoS, R2L, U2R [119]

2012 1998 DARPA SVM Attack, Non-Attack [120]

2012 1998 DARPA
ELMs:

- Basic - Kernel-Based
Probing, DoS, R2L, U2R [121]

2012 1998 DARPA SVDD U2R [122]

2012 KDD-99 Hidden NB Probing, DoS, R2L, U2R [123]

2012 KDD-99
- DT

- SVM - SA
Probing, DoS, R2L, U2R [124]

2012 KDD-99

Ensemble DTs:

- NB Tree - RF

- Random Tree - C4.5

- Decision Stump

- Representative Tree

model

Probing, DoS, R2L, U2R [125]

2012 KDD-99
- K-Means

- SVM - Ant Colony
Probing, DoS, R2L, U2R [126]

2013 KDD-99

- Fuzzy C means

- Fuzzy NN /

Neurofuzzy

- RBF SVM

Probing, DoS, R2L, U2R [127]

2013 NSL-KDD Fuzzy Clustering NN Probing, DoS, R2L, U2R [128]

2013 KDD-99 - K-Means - NN MLP Probing, DoS, R2L, U2R [129]

2013 KDD-99

- FFNN - ENN

- GRNN - PNN

- RBNN

Probing, DoS, R2L, U2R [130]

2013 DARPA 2000

APAN using:

- Markov Chain

- Kmeans Clustering

DDoS [131]

2013 ISCX 2012

KMC+NBC

- NB Classifier

- K-Means Clustering

Normal, Attack [132]

Continued . . .

30

Year Dataset Used Algorithms Detected Attacks Ref

2013
Bank’s Credit

Card Data
DT Fraud [133]

2013 KDD-99

Two variants of

GMDH:

- Monolithic

- Ensemble-based

Probing, DoS, R2L, U2R [134]

2013
Simulated

dataset

Non-Parametric

CUSUM
Jamming [135]

2014 KDD-99 ELM Probing, DoS, R2L, U2R [136]

2014
- KDD-99

- NSL-KDD

ANN-Bayesian Net-GR

ensemble:

- ANN

- Bayesian Net with GR

feature selection

Probing, DoS, R2L, U2R [137]

2014 NSL-KDD
- C4.5 DT

- One-class SVM
Probing, DoS, R2L, U2R [138]

2014 KDD-99 K-medoids Probing, DoS, R2L, U2R [139]

2014 KDD-99
- SVM

- CSOACN
Probing, DoS, R2L, U2R [140]

2014 NSL-KDD AIS (NSA, CSA, INA) Normal, Abnormal [141]

2015 KDD-99

- DT

- CFA (Feature

Selection)

Probing, DoS, R2L, U2R [142]

2015
gureKddcup6

percent
SVM R2L [143]

2015 KDD-99 - K-Means - k-NN Probing, DoS, R2L, U2R [144]

2015 KDD-99 Weighted ELM Probing, DoS, R2L, U2R [145]

2015 GureKddcup AIS (R-chunk) Normal, Abnormal [146]

2016 KDD-99
- k-NN

- PCA - Fuzzy PCA
Probing, DoS, R2L, U2R [147]

2016 NSL-KDD

- NB

- PCA - MLP

- SVM - C4.5

Probing, DoS, R2L, U2R [148]

2016
Simulated

dataset
ANN DoS/DDoS [149]

Continued . . .

31

Year Dataset Used Algorithms Detected Attacks Ref

2016

Generated

dataset using

httperf

Static and Dynamic

Mapping
SQL Injection, XSS [150]

2016 KDD-99 - SVM - PCA - Normal, Attack [151]

2016 NSL-KDD
- SVM - DT (J48)

- AIS (NSA-GA) - NB
Normal, Abnormal [152]

2017
- Kyoto2006+

- NSL-KDD

- Forked VAE

- Unsupervised Deep

NN

Probing, DoS, R2L, U2R [153]

2017 KDD-99 - Binary PSO - k-NN Probing, DoS, R2L, U2R [154]

2017 KDD-99
- R-tree - k-NN

- K-Means - SVM
Probing, DoS, R2L, U2R [155]

2017
Generated

dataset

- BON

- GPU-based ANN
Normal, Attack [156]

2017 NSL-KDD DL RNN Probing, DoS, R2L, U2R [157]

2017 NSL-KDD
- K-Means - NB

- Information Gain
Probing, DoS, R2L, U2R [158]

2017 UNB-CIC - ANN - SVM nonTor Traffic [159]

2017 KDD-99
Polynomial Feature

Correlation
DoS [160]

2017 KDD-99
- PCA - k-NN

- Softmax Regression
Probing, DoS, R2L, U2R [161]

2017 KDD-99

Optimized

Backpropagation by

Conjugate Gradient

algorithm

- Fletcher Reeves

- Polak Ribiere

- Powell Beale

Probing, DoS, R2L, U2R [162]

2017 NSL-KDD
Denoising

Auto-Encoder
Normal, Anomaly [163]

2018 KDD-99 Kernel Clustering Probing, DoS, R2L, U2R [164]

Continued . . .

32

Year Dataset Used Algorithms Detected Attacks Ref

2018
Simulated

Dataset

- MLP - NB

- SVM - J48

- Logistic

- RF Features

Selection:

- BFS-CFS

- GS-CFS

Individual and

Combination Routing

Attacks:

- Hello Flood, Sinkhole,

Wormhole

[165]

2018 KDD-99 - FLN - PSO Probing, DoS, R2L, U2R [166]

2018
- NSL-KDD

- UNSW-NB15

- ANN

- Deep Auto-Encoder

- Probing, DoS, R2L, U2R

- Fuzzers, Analysis,

Backdoors, DoS, Exploits,

Generic, Reconnaissance,

Shellcode, Worm

[167]

2018
- KDD-99

- NSL-KDD

- DL - NDAE

- Stacked NDAEs
Probing, DoS, R2L, U2R [168]

2018 KDD-99

- SMO - RF

- MFNN - NB

- KFRFS - IBK

- AdaBoost

Probing, DoS, R2L, U2R [169]

2018 NSL-KDD AIS (NSA, CSA) Normal, Abnormal [170]

2018

- KDD-99

- CAIDA’07/08

- Generated

traffic

AIS DoS [171]

2019 NSL-KDD

- NB -ANN

- RF - SVM

- BayesNet

- DT (Enhanced J48,

J48, ADTree,

DecisionStump,

RandomTree,

SimpleCart)

Probing, DoS, R2l, U2R [172]

2019 KDD-99

- DT

- SVM (least square)

Feature Selection:

- FGLCC - CFA

Probing, DoS, R2l, U2R [173]

Continued . . .

33

Year Dataset Used Algorithms Detected Attacks Ref

2019
- UNSW-NB15

- CICIDS2017

- RF

- Deep FFNN

- Gradient Boosting

Tree

- Fuzzers, Analysis,

Backdoors, DoS, Exploits,

Generic, Reconnaissance,

Shell-Code and Worms

- DoS, DDoS, Web-based,

Brute-force, Infiltration,

Heartbleed, Bot and Scan

[174]

2019

- ISCX 2012

- NSL-KDD

- Kyoto2006+

- IG - PCA

- SVM - IBK

- MLP

- Normal, Attack

- Probing, DoS, R2l, U2R
[175]

2019

- KDD-99

- NSL-KDD

- UNSW-NB15

- Kyoto2006+

- WSN-DS

- CICIDS2017

- NB

- DT

- RF

- AB

- k-NN

- SVM

- Deep NN

- Logistic Regression

- Probing, DoS, R2l, U2R

- 4 DoS attacks (Blackhole,

Grayhole, Flooding and

Scheduling)

- Fuzzers, Analysis,

Backdoors, DoS, Exploits,

Generic, Reconnaissance,

Shell-Code and Worms

- DoS, DDoS, Web-based,

Brute-force, Infiltration,

Heartbleed, Bot and Scan

[176]

2019 NSL-KDD

- DT - k-NN

- MLP - SVM

- Kernel ELM

- Genetic Algorithms

Probing, Dos, R2L, U2R [177]

2019 NSL-KDD Auto-Encoder Normal, Anomaly [178]

2019

- KDD-99

- NSL-KDD

- Kyoto

- UNSW-NB15

- WSN-DS

- CICIDS2017

- ADFA-LD

- ADFA-WD

- LR

- NB

- DT

- RF

- k-NN

- SVM

- DNN

- AdaBoost

- Probing, Dos, R2L, U2R

- Fuzzers, Analysis,

Backdoors, DoS, Exploits,

Generic, Reconnaissance,

Shell-Code and Worms

- 4 DoS attacks (Blackhole,

Grayhole, Flooding and

Scheduling)

- DoS, DDoS, Web-based,

Brute-force, Bot and Scan

[176]

2019 CICIDS2017
- SMOTE - EFS

- AdaBoost - PCA
DDoS [179]

Continued . . .

34

Year Dataset Used Algorithms Detected Attacks Ref

2020
Generated

dataset

- RF - J48

- BayesNet - SVM

- AdaBoost - MLP

- Decision Stump - NB

DDoS [180]

2020 NSL-KDD Deep NN Probing, DoS, R2l, U2R [181]

2020 KDD-99
- NB - DT

- Ontology - RF
Probing, Dos, R2L, U2R [182]

2020
Generated

dataset

- Isolation Forest

- Local Outlier Factor

Port Scanning, HTTP and

SSH Brute-Force, SYN

Flood

[183]

2020 CICIDS2017

- DT

- NB - MLP

- RF - J48

- LSTM - k-NN

SSH and FTP Brute-force ,

Web Attacks (Brute-force,

XSS and SQL Injection)

[184]

Where:
- ABC: Association-Based Classification - AdaBoost : Adaptive Boosting
- AIS: Artificial Immune System - ANN: Artificial Neural Network
- APAN: Advanced Probabilistic Approach for Network-based IDS
- APD: Anomaly Pattern Detection - ART: Adaptive Resonance Theory
- BFS-CFS: Best First Search with Correlation Features Selection
- BON: Back-Propagation Network - BSPNN: Boosted Subspace Probabilistic NN
- CFA: CuttleFish Algorithm - CSA: Clonal Selection Algorithm
- CSOACN: Clustering based on Self-Organized Ant Colony Network
- CUSUM: CUmulative SUM - DL: Deep Learning
- DoS: Denial of Service - DT: Decision Tree
- EFS: Ensemble Feature Selection - ELM: Extreme Learning Machine
- ENN: Elman NN - FCM: Fuzzy C-Mean
- FFNN: Feed Forward NN
- FGLCC: Feature Grouping based on Linear Correlation Coefficient
- FLN: Fast Learning Network - GA: Genetic Algorithm
- GMDH: Group Method for Data Handling - GR: Gain Ratio
- GRNN: Generalised Regression NN
- GS-CFS: Greedy Step-wise with Correlation Features Selection
- IG: Information Gain - INA: Immune Network Algorithms
- IRL: Iterative Rule Learning - KFRFS: Kernel-based Fuzzy-Rough Feature Selection
- k-NN: k-Nearest Neighbours - MFNN: Multi-Functional Nearest-Neighbour
- MLP: Multi-Layer Perceptron - NB: Naı̈ve Bayes
- NDAE: Non-Symmetric Deep Auto-Encoder - NN: Neural Network
- NSA: Negative Selection Algorithm - OCSVM: One-Class Support Vector Machine
- PCA: Principal Component Analysis - PNN: Probabilistic NN
- PSO: Particle Swarm Optimisation - R2L: Remote to Local
- RBF: Radial Basis Function - RBNN: Radial Basis NN
- RF: Random Forest - RNN: Recurrent Neural Networks
- SA: Simulated Annealing - SOM: Self-Organising Map
- SMO: Sequential Minimal Optimisation - SMOTE: Synthetic Minority Oversampling Technique
- SVDD: Support Vector Data Description - SVM: Support Vector Machine
- U2R: User to Root - VAE: Variational Auto-Encoder
- WSARE: What’s Strange About Recent Events - XSS: Cross Site Scripting

35

Figure 3.1 shows the IDS datasets distribution based on the usage in the past

decade, highlighting the percentage of each. Only 10% of the IDS use simulated and

unpublished datasets. This results in IDS that neither cover real-life situations nor suit

constantly changing networks and special-purpose networks. This signifies that the

developed IDS are not deployable, and only limited for research purposes.

The figure also highlights a noticeable preference of the KDD dataset family as

nearly 47% of the selected publications use the KDD Cup’99 dataset and 18% use the

NSL-KDD dataset. Excluding the unpublished and simulated datasets, the second most

used dataset is the DARPA. This inclination is owed to the datasets availability and

popularity. Moreover, they are the oldest benchmark datasets, hence, researchers tend

to use them for evaluation and comparisons [23]. Another reason for this inclination is

the datasets’ practicality; the KDD dataset family contains normal instances and four

attacks; namely, DoS, User to Root (U2R), Remote to Local (R2L), and probing, with

multiple categories of each attack and the features are already processed, extracted,

and presented in a ML-ready format.

Figure 3.1
Distribution of Datasets Used for IDS Evaluation from Articles Listed in Table 3.1

36

Despite their popularity, researchers acknowledge these datasets’ shortcomings.

The datasets fail to accurately represent current attacks because they were generated

in the late 90s. Moreover, their use leads to an endemic situation; numerous results

reported in the literature claim detection results which are not applicable in real-world

scenarios. Al Tobi and Duncan [185] provide a comprehensive analysis of the

drawbacks of the KDD Cup’99 dataset. The shortcomings of the DARPA dataset are

analysed by Mahoney and Chan [186] and McHugh [187]. Alongside the limitations

of each dataset, they are also deprecated, hence, confirming the inability of most of the

IDS presented in Table 3.1 to cope with recent attacks and threats.

To further analyse the last decade’s research on IDS, the detection algorithms in the

selected articles are considered. Anomaly-based and specification-based IDS are based

on identifying patterns that discriminate normal from abnormal traffic and distinguish

different attack classes. These IDS can be subcategorised based on the training method

used as previously visualised in Figure 2.5. The two charts in Figure 3.2 are constructed

to investigate how well the current literature covers the range of technique categories

collated in the conceptual map in Figure 2.5.

From the centre moving outwards, Figure 3.2a shows the three main categories of

algorithms and their corresponding subcategories in line with the conceptual map. The

outer circle shows the percentage of IDS from Table 3.1 that use these algorithms.

The chart highlights the dominance of ML algorithms employed when building IDS.

As shown, both statistical and knowledge-based algorithms are less represented. This

dominance is due to (i) the sophistication of new cyber attacks which poses the need

for more complex detection techniques [12] and (ii) the significant advancement of ML

techniques in various research domains that involve cybersecurity [4].

Figure 3.2b on the other hand, plots the distribution of those algorithms that are

actually used in the literature according to Table 3.1. The plot shows the dominance

of ANN, SVM, and k-means as the most used algorithms. This is reasoned by their

37

(a) Occurrence of all algorithms categories based on Figure 2.5

(b) Distribution of used algorithms discussed in Table 3.1

Figure 3.2
Distribution of Algorithms Usage in the IDS from Articles Listed in Table 3.1

38

ability to discriminate between benign and attack classes given a feature set. However,

leveraging new/emerging ML techniques and adapting ones from other domains will

advance the development of the next generation IDS; in a matter of benefiting from the

advancement and knowledge of ML in these domains.

3.2 Threats Taxonomy

One of the first attacks classifications was proposed by Kendall [188]. They classified

intrusions into four categories, namely: DoS, R2L, U2R and Probing. This aligns with

the KDD dataset family and can be noticed by observing the dataset family timeline

provided by Siddique et al. [189].

Following this, multiple other classifications were suggested in the literature.

These classifications focus on specific aspects of attacks or an explicit target

domain. For example, Welch and Lathrop [190] classifies threats in wireless networks

based on attack techniques, resulting in seven different categories. These are:

Traffic Analysis, Passive Eavesdropping, Active Eavesdropping, Unauthorised Access,

Man-in-the-middle, Session Hijacking and Replay. IoT security requirements were

the motivation for the threats classification by Sachin Babar et al. [191]. These

requirements are: identification, communication, physical threat, embedded security,

and storage management.

Despite the availability of traditional threat taxonomies, the need for a recent and

extendable one arose from the prevalence of common attacks found in current IDS

datasets, as illustrated in Section 2.4. The absence of a modern cyber threat taxonomy

additionally presents a further challenge for researchers in ascertaining the threat

coverage of existing datasets. Building a generic and modular taxonomy for security

threats can assist researchers and cybersecurity practitioners build tools that are more

capable of identifying a more comprehensive subset of attacks, including known,

advanced, and new zero-day attacks.

39

In this thesis, a new, extendable taxonomy is proposed to categorise network threats

based on (i) source of the threat, (ii) the affected OSI model layers, and (iii) active or

passive threat. The taxonomy is depicted in Figure 3.3, and although it places attacks

under a single target layer of the OSI model, it is important to highlight that other

layers may also be affected. The focus here is on the main target layer of attack.

An attack is interpreted to be active if it alters or changes any aspect of a network

or a system. For example, it can disturb the performance or affect information. During

passive attacks, the network resources are left intact and the attacker is concerned with

either gathering information or monitoring the network. Active threats are shown in

Figure 3.3 as rectangles while passive ones are represented by ovals. Examples of

active attacks include DoS and DDoS (Figure 3.3 - 1.1) and Impersonation (Figure 3.3

- 1.5). Examples of passive attacks comprise Scanning (Figure 3.3 - 1.6) and

probing (Figure 3.3 - 1.9). Some attacks cannot be identified as either active or passive

until their impact is known. Code injections (Figure 3.3 - 3.1), for example, are

considered passive attacks when the code is used to query data or gather information,

and active if the code changes data or alters a database schema by dropping tables or

relations.

The following subsections elaborate on the five threat sources included in the

taxonomy, and the different attacks branching under each.

3.2.1 Network Threats

Network threats are initiated based on a flow of packets sent over a network. The

most popular network threats are DoS and DDoS (Figure 3.3 - 1.1). In a DoS attack,

an attacker prevents legitimate users from accessing a certain service by flooding the

network with requests. As a result, the service/server under attack looks unresponsive.

In DoS, a single machine is used to perform the attack, however, multiple machines

are used to initiate a DDoS attack. DDoS attacks are usually confused with a common

anomaly called “Flash Crowds” [192]. Flash crowds occur when a high flow of traffic

40

O
S

I
M

o
d

e
l

A
p

p
li

c
a
ti

o
n

P
re

se
n
ta

ti
o
n

S
e
ss

io
n

T
ra

n
sp

o
rt

N
e
tw

o
rk

D
a
ta

L
in

k
P

h
y
si

c
a
l

T
C

P
/
IP

M
o
d

e
l

A
p

p
li

c
a
ti

o
n

T
ra

n
sp

o
rt

In
te

rn
e
t

N
e
tw

o
rk

A
c
c
e
ss

1
.N

e
tw

o
rk

in
g

1
.1

D
o
S

/
D

D
o
S

1
.1

.1
F

lo
o
d

1
.1

.1
.1

S
m

u
rf

1
.1

.1
.2

IC
M

P
F

lo
o
d

1
.1

.1
.3

U
D

P
F

lo
o
d

1
.1

.1
.4

S
Y

N
F

lo
o
d

1
.1

.1
.5

H
T

T
P

/
F

lo
o
d

1
.1

.1
.6

S
S

L

1
.1

.2
A

m
p

li
fi

c
a
ti

o
n

1
.1

.3
P

ro
to

c
o
l

E
x
p

lo
it

1
.1

.3
.1

T
e
a
rd

ro
p

1
.1

.4
M

a
lf

o
rm

e
d

P
a
ck

e
ts

1
.1

.4
.1

P
in

g
o
f

D
e
a
th

1
.1

.5
B

u
ff

e
r

O
v
e
rfl

o
w

1
.2

P
a
ck

e
t

F
o
rg

in
g

1
.3

M
a
n

-i
n

-t
h

e
-M

id
d

le
1
.3

.1
M

o
n

it
o
r

1
.3

.2
R

e
p

la
y

1
.4

M
a
n

-i
n

-t
h

e
-b

ro
w

se
r

1
.5

Im
p

e
rs

o
n

a
te

1
.5

.1
U

n
a
u

th
o
ri

z
e
d

A
c
c
e
ss

1
.5

.2
C

lo
n

in
g

1
.5

.3
R

o
g
u

e
A

c
c
e
ss

P
o
in

t

1
.5

.4
S

p
o
o
fi

n
g

1
.5

.4
.1

IP
S

p
o
o
fi

n
g

1
.5

.4
.2

D
N

S
S

p
o
o
fi

n
g

1
.5

.4
.3

A
R

P
S

p
o
o
fi

n
g

1
.6

S
c
a
n

n
in

g
/

E
n
u

m
e
ra

ti
o
n

1
.6

.1
T

C
P

1
.6

.1
.1

C
o
n

n
e
c
t

1
.6

.1
.2

S
Y

N

1
.6

.1
.3

F
IN

1
.6

.1
.4

X
m

a
s

T
re

e

1
.6

.1
.5

N
u
ll

1
.6

.1
.6

A
C

K

1
.6

.1
.7

W
in

d
o
w

s

1
.6

.1
.8

R
P

C

1
.6

.2
U

D
P

1
.7

M
A

C
F

lo
o
d

in
g

1
.8

V
L

A
N

H
o
o
p

in
g

1
.8

.1
S

w
it

ch
S

p
o
o
fi

n
g

1
.8

.2
D

o
u

b
le

T
a
g
g
in

g

1
.9

P
ro

b
in

g
1
.1

0
n

o
n

T
o
r

T
ra

ffi
c

1
.1

1
H

e
a
rt

b
le

e
d

1

Figure 3.3
Threats Taxonomy (1 of 3)

41

O
S

I
M

o
d

e
l

A
p

p
li

c
a
ti

o
n

P
re

se
n
ta

ti
o
n

S
e
ss

io
n

T
ra

n
sp

o
rt

N
e
tw

o
rk

D
a
ta

L
in

k
P

h
y
si

c
a
l

T
C

P
/
IP

M
o
d

e
l

A
p

p
li

c
a
ti

o
n

T
ra

n
sp

o
rt

In
te

rn
e
t

N
e
tw

o
rk

A
c
c
e
ss

2
.

H
o
st

2
.1

M
a
lw

a
re

2
.1

.1
T

ro
ja

n
s

2
.1

.1
.1

R
e
m

o
te

A
c
c
e
ss

2
.1

.1
.2

S
e
n

d
in

g

2
.1

.1
.3

D
e
st

ru
c
ti

v
e

2
.1

.1
.4

P
ro

x
y

2
.1

.1
.5

F
T

P

2
.1

.1
.6

S
e
c
u

ri
ty

S
o
ft

w
a
re

D
is

a
b

le

2
.1

.1
.7

D
o
S

2
.1

.2
W

o
rm

2
.1

.3
V

ir
u

s

2
.1

.4
A

d
w

a
re

2
.1

.5
S

p
y
w

a
re

2
.1

.6
R

a
n

so
m

w
a
re

2
.1

.7
C

a
m

o
u

fl
a
g
e

2
.1

.7
.1

S
e
lf

-m
u

ta
ti

n
g

2
.2

F
u

z
z
e
rs

3
.

S
o
ft

w
a
re

3
.1

C
o
d

e
-I

n
je

c
ti

o
n

3
.1

.1
S

Q
L

-I
n

je
c
ti

o
n

3
.1

.2
C

ro
ss

S
it

e
S

c
ri

p
ti

n
g

3
.1

.2
.1

P
e
rs

is
te

n
t

3
.1

.2
.2

R
e
fl

e
c
te

d

3
.1

.2
.3

D
O

M
-

B
a
se

d

3
.1

.3
S

h
e
ll

c
o
d

e

2

Figure 3.3
Threats Taxonomy (2 of 3)

42

O
S

I
M

o
d

e
l

A
p

p
li

c
a
ti

o
n

P
re

se
n
ta

ti
o
n

S
e
ss

io
n

T
ra

n
sp

o
rt

N
e
tw

o
rk

D
a
ta

L
in

k
P

h
y
si

c
a
l

T
C

P
/
IP

M
o
d

e
l

A
p

p
li

c
a
ti

o
n

T
ra

n
sp

o
rt

In
te

rn
e
t

N
e
tw

o
rk

A
c
c
e
ss

3
.2

F
in

g
e
rp

ri
n
ti

n
g

3
.3

M
is

c
o
n

fi
g
u

ra
ti

o
n

3
.4

F
a
k
e

C
e
rt

ifi
c
a
te

s

3
.5

D
ri

v
e
-b

y
D

o
w

n
lo

a
d

4
.

P
h
y
si

c
a
l

4
.1

B
a
ck

d
o
o
r

4
.2

M
is

-
c
o
n

fi
g
u

ra
ti

o
n

4
.3

P
h
y
si

c
a
l

D
a
m

a
g
e

5
.

O
th

e
rs

5
.1

M
a
sq

u
e
ra

d
e

5
.2

P
h

is
h

in
g

5
.2

.1
S

p
e
a
r

P
h

is
h

in
g

5
.3

U
2
R

5
.4

R
2
L

5
.5

R
e
p

u
d

ia
ti

o
n

5
.6

S
e
ss

io
n

H
ij

a
ck

in
g

5
.7

F
ra

u
d

5
.8

B
ru

te
-f

o
rc

e
5
.8

.1
S

S
H

5
.8

.2
F

T
P

3

Figure 3.3
Threats Taxonomy (3 of 3)

43

for a certain service or website occurs. This arises immediately upon the occurrence of

a significant event, such as breaking news, sales events, etc.

DoS and DDoS are divided into four categories; flood attacks (Figure 3.3 - 1.1.1),

amplification attacks (Figure 3.3 - 1.1.2), protocol exploit (Figure 3.3 - 1.1.3), and

malformed packets (Figure 3.3 - 1.1.4). These are defined respectively through attack

examples. Smurf attack (Figure 3.3 - 1.1.1.1) generates a large number of ping requests

and aims to exploit network characteristics. Internet Control Message Protocol (ICMP)

Flood (Figure 3.3 - 1.1.1.2) is similar to Smurf attack since it floods the network with

ICMP echo requests (ping requests). In a similar manner, User Datagram Protocol

(UDP) flood (Figure 3.3 - 1.1.1.3), SYN flood (Figure 3.3 - 1.1.1.4) and HTTP

flood (Figure 3.3 - 1.1.1.5) initiate a DoS attack by overwhelming the network with

UDP packets targeting random ports, a huge number of TCP SYN requests and HTTP

GET and POST requests, respectively. Finally, SSL attack exhausts the network by

sending useless SSL data or abusing SSL handshake. Based on Neustar’s Security

Operations Centre report, DDoS attacks increased by 151% in the first quarter of 2020

compared with 2019 [193].

The Teardrop (Figure 3.3 - 1.1.3.1) attack takes place when an incorrect offset is set

by the attacker. The ping of Death (Figure 3.3 - 1.1.4.1) attack occurs when packets

are too large for routers and splitting is required. Buffer Overflow (Figure 3.3 - 1.1.5)

occurs when a program writes more bytes than allowed. This occurs when an attacker

sends packets larger than 65536 bytes (allowed in the IP protocol) and the stack does

not have an appropriate input sanitation in place.

Packet forging (Figure 3.3 - 1.2) is the second networking attack in the presented

taxonomy. Packet forging or injection occurs when an attacker generates packets

that mimic normal network traffic. These generated packets can be used to perform

unauthorised actions and steal sensitive data like login credentials, personal data, credit

card details, Social Security Number (SSN), etc.

44

During a Man in the Middle attack (Figure 3.3 - 1.3), an attacker monitors or

intercepts the communication between two or more nodes on the network. The attack

can be passive or active when controlling the communication. On the other hand, a

Man in The Browser attack (Figure 3.3 - 1.4) intercepts the browser to alter or add

fields to a web page. The added fields intend to plunder confidential data, for example,

by asking the user to enter sensitive information.

Impersonation (Figure 3.3 - 1.5), or pretending to be another user, takes different

forms. An attacker can impersonate a user to gain higher security level and acquire

access to unauthorized data (Figure 3.3 - 1.5.1) or perform cloning (Figure 3.3 -

1.5.2). Cloning is a common attack in social networks to impersonate an individual

to leverage information. One type of impersonation in wireless networks is Rogue

access points (Figure 3.3 - 1.5.3). During an IP spoofing attack (Figure 3.3 - 1.5.4.1),

an attacker spoofs an IP address and sends packets impersonating a legitimate

host. Domain Name System (DNS) spoofing, also known as DNS cache poisoning,

(Figure 3.3 - 1.5.4.2) is another type of spoofing attack. An attacker, in this case,

attempts to redirect packets by poisoning the DNS. Finally, Address Resolution

Protocol (ARP) spoofing (Figure 3.3 - 1.5.4.3) is used to perform attacks like Man

in the Middle, in order to dissociate legitimate IP and Media Access Control (MAC)

addresses in the victims’ ARP tables.

Scanning/enumeration is an essential step for initiating different attacks. To perform

a scanning attack (Figure 3.3 - 1.6), an attacker starts to search the network for useful

information such as active nodes, running OS, software versions, etc. As defined

in [194], scanning has many forms, using different protocols such as Transmission

Control Protocol (TCP) (Figure 3.3 - 1.6.1) or UDP (Figure 3.3 - 1.6.2). Scanning and

enumeration fall under “Information Gathering”.

MAC address flooding (Figure 3.3 - 1.7), and Virtual Local Area Network (VLAN)

hopping (Figure 3.3 - 1.8) are also networking attacks. In MAC flooding (Figure 3.3

45

- 1.7), the attacker targets the network switches and as a result, packets are redirected

to the wrong physical ports, while the VLAN hopping attack has two forms of either

switch spoofing (Figure 3.3 - 1.8.1) or double tagging (Figure 3.3 - 1.8.2).

The last three networking attacks, in the presented taxonomy, are

Probing (Figure 3.3 - 1.9), nonTor Traffic (Figure 3.3 - 1.10), and

Heartbleed (Figure 3.3 - 1.11). During a probing attack, an attacker is actively

footprinting a system for vulnerabilities. In Tor networks, nonTor traffic is considered

anomaly. Finally, Heartbleed is an attack based on a bug in the OpenSSL library.

3.2.2 Host Threats

Host attacks, unlike networking attacks, target a specific host or system. The attack

is conducted by running malicious software which aims to compromise or corrupt

system functionalities. Host attacks are categorised under the malware (Figure 3.3 -

2.1) category which includes Trojans (Figure 3.3 - 2.1.1), worms (Figure 3.3 - 2.1.2),

virus (Figure 3.3 - 2.1.3), adware (Figure 3.3 - 2.1.4), spyware (Figure 3.3 - 2.1.5),

ransomware (Figure 3.3 - 2.1.6) and camouflage attacks (Figure 3.3 - 2.1.7).

Trojans contribute to 51.45% of all malware [195] and they often look like

trusted applications but allow an attacker to control a device. Viruses affect programs

and files when shared with other users over the network, whilst worms are

known to self-replicate and affect multiple systems. Adware is known for showing

advertisements to users when surfing the Internet or installing software. Although

adware is less likely to run malicious code, it can compromise the performance of

a system. Spyware monitors and tracks user actions or gathers information such as

documents, user cookies, browsing history, emails, etc.

46

Ransomware is a relatively new type of malware, which rose 350% in 2018 [195],

where the system is kept under the control of an attacker - or a third entity. This is

done through encrypting files until the user or the organisation pays a ransom. The

encryption key is then released and the files are recovered [196]. Finally, camouflage

malware evolved over time reaching polymorphic and metamorphic techniques in

1990 and 1998, respectively [197, 198]. For example, self-mutating malware could

use numerous techniques, such as instruction substitution or permutation, garbage

insertion, variable substitutions, and control-flow alteration [199].

3.2.3 Software Threats

Software threats are grouped in the Code injection (Figure 3.3 - 3.1) category in which

an attacker “injects” malicious code that affects the execution path of a certain program

or system. This category includes Structured Query Language (SQL) Injection, during

which an attacker attempts to inject a query to a target database. This query could

result in obtaining confidential data or deleting data by dropping columns, rows, or

tables. Cross Site Scripting (XSS), as another type of code injection attacks is used to

run malicious code in a web application to steal cookies or credentials. XSS has three

main categories. In persistent/stored XSS (Figure 3.3 - 3.1.2.1), a script is saved to a

database and is executed every time a page is loaded. In Reflected XSS (Figure 3.3

- 3.1.2.2), the script is part of an HTTP request sent to the server. Document Object

Model (DOM)-based XSS (Figure 3.3 - 3.1.2.3) is considered an advanced type of

XSS where the attacker changes values in the DOM e.g., document location, document

Uniform Resource Locator (URL), etc. DOM-based XSS is difficult to detect as the

script is never transferred to the server.

Fingerprinting (Figure 3.3 - 3.2) and misconfiguration are also forms of software

threats. Fake server certificates (Figure 3.3 - 3.4) are considered alarming and should

be considered while analysing communications as they could deceive the browser/user

47

thinking that the connection is secure. This could result in phishing websites looking

legitimate. Moreover, they could be used as a seed to perform other attacks like

Man-in-the-Middle.

Finally, Drive-by or download (Figure 3.3-3.5) is another software threat that

requires no action from the user, however, the malicious code is automatically

downloaded. In 2017, it contributed to 48% of all web-based attacks [200, 201] and

is considered one of the main threats in 2019 [202].

3.2.4 Physical Threats

Physical attacks are a result of a tampering attempt on the network hardware

(edge, or other devices) or its configuration. This can include changing

configurations (Figure 3.3 - 4.2) and introducing backdoors (i.e., The Evil Maid). CI

and IoT networks are usually exposed to physical threats. It is important to note that

physical threats can also include physical damage (Figure 3.3 - 4.3).

3.2.5 Other Threats

The last category of threats contains miscellaneous threats. Most of these threats are

influenced by the attacker actions. This category includes user masquerade (Figure 3.3

- 5.1) in which the attacker uses a fake identity. Phishing is another form of attacks

that relies on social engineering. In a phishing attack, an attacker uses emails or

other electronic messaging services to obtain credentials or confidential data. Spear

phishing, unlike phishing, targets a specific user or organisation. The attacker, in this

case, pretends to own and/or know specific details and personal data.

When the attacker attempts to gain authorised access or higher privileges to the

target system, either by promoting to a root user or gaining local access, these

attacks are called U2R (Figure 3.3 - 5.3) and R2L (Figure 3.3 - 5.4), respectively.

48

Additionally, a user can be denied an action such as repudiation attack (Figure 3.3 -

5.5). Human attacks can also include session hijacking (Figure 3.3 - 5.6) or sniffing.

These attacks are based on the attacker gaining access over an active session to access

cookies and tokens. Finally, brute-force attacks (Figure 3.3 - 5.8), either Secure Shell

(SSH) (Figure 3.3 - 5.8.1) or File Transfer Protocol (FTP) (Figure 3.3 - 5.8.2), are

another form of human threats. Attackers in this case attempt to authenticate by trying

various passwords or passphrases.

3.3 Attacks Coverage

Based on the taxonomy discussed in Section 3.2 and the recent IDS articles outlined in

Table 3.1, it can be observed that some attacks are in the focal point of research while

a lot are not considered by recent IDS. This is due to the underrepresentation of these

attacks in recent datasets and the difficulties associated with generating datasets.

Figure 3.4a visualises all the threats presented in the taxonomy. The percentages in

the outer circle represent attacks covered by the IDS discussed in Table 3.1. As shown,

a large number of attacks (63.6%) are uncovered (i.e., not represented in the recent

datasets, thus not detected by IDS).

Figure 3.4b visualises the attacks detected by the different IDS presented in

Table 3.1. It is shown that the four attacks available in the KDD Cup’99 dataset are

the most used by IDS research, namely; DoS/DDoS, Probing, R2L and U2R. It is also

noted that these same four attacks are the ones available in the NSL-KDD dataset and

the DARPA datasets. The popularity of the KDD dataset family and their readiness for

ML development contributes to this skewness in the attacks detected by recent IDS.

Only 12 attack categories from the presented taxonomy are listed in Figure 3.4b

which highlights potential limitations of these IDS to cope with the broad range of

attacks and zero-day attacks. To tackle the detection of zero-day attacks, there is a

49

(a) Occurrence of all attacks categories based on the presented taxonomy

(b) Distribution of Attacks discussed in Table 3.1

Figure 3.4
Distribution of Covered Attacks in IDS from Articles Listed in Table 3.1

50

need to build extendable datasets that could be used to train different ML models used

for detection. By employing extendable datasets and a standardised method for dataset

generation, alongside advancements in ML [203, 204], new attacks can be integrated

into anomaly-based datasets and consequently, utilised by IDS.

3.4 Summary

In this chapter, recent IDS articles are analysed and discussed. The analysis shows the

wide range of algorithms used to build IDS. Table 3.1 lists the datasets and algorithms

used by each of the articles, while Figure 3.2 plots the commonly used algorithms and

their frequency of use. The discussion highlights (i) the absence of the representation

of new attacks in IDS datasets. (ii) The lack of datasets for intrusion detection on

special-purpose networks, like IoT, limiting the availability of suitable deployable

IDS, and (iii) the dominance of ML usage to build anomaly-based IDS. Due to the

pace at which new cyber attacks are rising, new non-traditional ML techniques are

needed to build appropriate IDS that can learn from limited data and are capable of

detecting zero-day attacks. To further demonstrate the gap, a cyber threats taxonomy

is presented. The taxonomy classifies cyber threats based on the OSI layer, active or

passive behaviour and threat source. Although comprehensive, the presented taxonomy

is built in an extendable fashion and is publicly available for future amendments. The

presented taxonomy confirms the cyber attack representation gap.

Based on the analysis covered in this chapter, the next chapter addresses the

highlighted gap in special-purpose network datasets and IDS. This is done by

investigating the classification of anomalies and cyber attacks in two case studies of

special-purpose networks; SCADA and IoT using six ML techniques.

51

Chapter 4

Utilising Machine Learning for

Special-Purpose IDS

4.1 Problem Statement

The lack of datasets for special-purpose networks (i.e., SCADA, Industrial Automation

and Control Systems (IACS), Distributed Control Systems (DCS), and IoT networks

was highlighted in Chapter 3. This dataset shortage directly affects the advancement

of IDS in this regard. This is due to the reliance of research on dataset availability for

analysis and training up-to-date IDS. Furthermore, with the increased dependence on

automation and advancement in deployed solutions, current CI and IoT systems are

vulnerable to faulty operations and cyber attacks [205].

Robert Mitchell and Ing-Ray Chen [206] survey recent IDS for Cyber-Physical

Systems (CPS) and CI usage. The authors classify IDS based on detection techniques

into knowledge-based and behaviour-based, and based on audit into host-based and

network-based, which aligns with the IDS classification previously discussed. The

authors analyse aerospace, automotive, medical, and SCADA IDS. Their analysis

shows that, out of the 32 IDS papers they considered, 22 (68.75%) do not release their

52

dataset, 4 (12.5%) do not report the dataset used and 4 (12.5%) use public datasets.

Two of the four public datasets are KDD Cup’99 dataset, NSL-KDD dataset, which are

general-purpose IDS datasets. The other two datasets cover replay and unauthorisation

attacks.

Amin et al. [207, 208] overview the various security threats of CI networks which

include threats targeting different layers (physical, regulatory control and supervisory).

This emphasises the different elements and requirements of CI networks. Furthermore,

Cheng et al. [209] highlight the lack of available mechanisms for CI IDS and

Mathur [210] discusses the challenges facing the detection of anomalies and incidents

in CI. These challenges include failing to detect coordinated cyber attacks and high

FPR that, based on the author’s investigation, are beyond the acceptable range.

Current general-purpose IDS fall short in delivering the security needs for

special-purpose networks. This is reasoned by multiple factors that include, but

not limited to, the specific requirements and architectures of these systems, the

heterogeneity of legacy protocols, their scale, computational power, and uniqueness of

the usage scenarios [10]. Therefore, building IDS that can cope with these requirements

is a pressing need. However, the limited availability of public IoT and CI datasets often

form a barrier against this advancement.

To tackle this problem, this chapter focuses on building special-purpose IDS while

exploring the different challenges that accompany this process. Six ML algorithms

and two real-world datasets are used for evaluation. These algorithms are the most

commonly used in the literature [211]. The first dataset is generated by the French

Naval Academy that simulates a CI that controls a water SCADA system [81].

The dataset comprises real-world scenarios that cover hardware failures, sabotage,

and cyber attacks. The second dataset is generated and collected using a simulated

IoT network that is based on MQTT protocol [212]. The dataset comprises normal

operations and four cyber attack scenarios.

53

Firstly, this chapter provides an overview of the six different ML techniques that

are used to build the IDS models. Secondly, the first dataset is outlined (SCADA

dataset) where the dataset properties, scenarios description, and dataset preprocessing

are presented. Later, the SCADA IDS models are explained and the experimental

results are discussed. Thirdly, an MQTT simulated network is used to generate a novel

MQTT-IDS dataset (MQTT-IoT-IDS2020 dataset). The dataset covers benign traffic,

general brute-force cyber attacks, and MQTT-based attacks. The dataset collection and

processing are described. Three levels of feature abstraction are established; namely,

packet-based, unidirectional flow, and bidirectional flow. The generated dataset is then

used to train and evaluate ML-based IDS. Finally, the chapter is summarised to show

the IDS performance and limitations.

4.2 Background

The following subsections introduce the six ML techniques that are used in this chapter

to build IDS for CI and IoT networks. These techniques are Logistic Regression (LR),

Naı̈ve Bayes (NB), k-NN, SVM, DT, and Random Forest (RF) [213, 214]. These

are amongst the commonly used techniques in the literature for evaluating IDS as

outlined in [43, 215, 211]. Furthermore, the analysis of recent IDS articles presented in

Chapter 3 demonstrates that these six are the most used succeeding ANN with 16.4%,

as follows: SVM (13.23%), DT (11.11%), NB (10.05%), k-NN (5.82%), RF (4.76%),

and LR (3.17%). The use of different techniques allows a comparison and analysis of

their varying performance. Finally, given that special-purpose networks datasets have

a small number of features and instances, the chosen techniques are suitable for the

required analysis.

54

4.2.1 Logistic Regression

LR is a well-established statistical technique for classification [216]. The model is

based on the logistic, or sigmoid function (Equation 4.1), and the training goal is to

fit the function to best split the training data. In a 2D space, the resulting curve can be

visualised as S-shape as shown in Figure 4.1.

f(x) =
1

1 + e−x
(4.1)

LR can be (i) binary, where the dependant variable (i.e. the output) is a class of two

possible options (e.g., benign and anomaly), (ii) multinomial, where the dependant

variable can be drawn out of many classes (e.g. benign, attack 1, and attack 2) or

(iii) ordinal, which is multinomial except that the classes have an ordinal relation (e.g.,

attack severity) [217].

The output of LR is determined based on a decision boundary and a threshold. In

the binary case, for example, if the output is ≥ 0.5, it belongs to class A, otherwise, it

belongs to class B, as shown in Equation 4.2.

Y =


A, if(f(x) ≥ 0.5)

B, otherwise

(4.2)

−10 −5 0 5 10

0.5

1

x

f
(x

)

Figure 4.1
LR Sigmoid Function

55

4.2.2 Naı̈ve Bayes

NB classifier relies on Bayes theory [218] which depends on the conditional

probability defined as “The likelihood of an event or outcome occurring, based on the

occurrence of a previous event or outcome” [219]. Conditional probability p(Ci|x),

where x represents the input and Ci is the ith class, determines how likely an

instance belongs to class i. Based on Bayes theory; p(Ci|x) is expanded as shown in

Equation 4.3, which resembles the prior probability (class) multiplied by the likelihood

divided by the evidence. This technique is “naı̈ve” as it assumes that all features (x 1,

x 2...x n) are mutually independent of each other.

p(Ci|x) =
p(Ci)× p(x|Ci)

p(x)
(4.3)

Given n features that represent x, the likelihood (p(x|Ci) of each feature is calculated

based on its occurrence in the training data, and is determined by Equation 4.4.

p(x|Ci) = p(x1|Ci)× p(x2|Ci)× p(x3|Ci)×× p(xn|Ci) (4.4)

After training, the class label of x is determined based on the maximum probability

max(p(Ci|x)). It is important to note that p(x) is used in Bayes theory as a

normalisation term in order to calculate the probability. Without p(x), the output of

p(Ci|x) does not represent a probability, however, since the NB technique aims to

decide which class label to assign to an unknown instance, the probabilistic numeric

value is insignificant, therefore p(x) can be dropped to reduce computations and only

p(Ci)× p(x|Ci) is used.

If the features of x are continuous, it is assumed that they follow a normal

distribution (Gaussian distribution). Thus, the probabilities are calculated based on the

mean (µ) and the standard deviation (σ) of the training data occurrences as shown in

Equation 4.5.

56

p(xj|Ci) =
1√

2× π × (σxj ,Ci
)2
× exp(−

(xj − µxj ,Ci
)2

2× (σxj ,Ci
)2

) (4.5)

4.2.3 k-Nearest Neighbour

k-NN is known as one of the most popular classifiers due to its effectiveness and

simplicity [220]. k-NN is based on distance measurement. Using the training instances,

a new instance is classified based on its similarity to the training instances. Specifically,

the closest k instances to the new one are the ones that determine the classifier’s

decision [214].

The distance between two instances x and y can be calculated using various

formulas. For example, Equation 4.6 is used to calculate the L2 norm (Euclidean

distance), while Equation 4.7 for the L1 norm (Manhattan distance).

||x||2 =

√√√√ n∑
i=1

(xi − yi)2 (4.6)

||x||1 =
n∑

i=1

(|xi − yi|) (4.7)

The distances between a new instance and all instances in the training data are

calculated and sorted. The least k distances are used to decide to which label the new

instance belongs, using majority voting. It is important to mention that if k is too small

(1 for example), the model will be sensitive to noisy inputs and will not be able to

generalise [221]. Figure 4.2 show sample k-NN boundaries, where two classes are

plotted with red and blue circles, and an unknown instance is plotted in yellow. Based

on the instances in Figure 4.2, the label of the unknown instance is decided as follows;

with k = 1 and k = 2, the instance is labelled as Class B (Blue), while it is labelled as

Class A (Red), with k = 5.

57

k = 1

k = 3

k = 5

Figure 4.2
k-NN Sample [222]
Class A (Red), Class B (Blue), and Unknown Instance (Yellow)

4.2.4 Support Vector Machine

SVM is one of the well-established supervised ML techniques [223]. Given the

training samples, SVM training goal is to construct a hyperplane in a high-dimensional

space that best separates the given classes [224]. Formally, given two classes, the

minimisation problem of SVM is represented as follows [225].

min
w∈Rd
‖w‖2 + C

N∑
i

max(0, 1− yif(xi))︸ ︷︷ ︸
Loss

f(xi) = (wTxi + b)

Where C is a regularisation parameter to represent the trade-off between ensuring

that xi is on the expected side of the plane and increasing the margin. If an SVM is

working in a two-dimensional space, then the hyperplane is visualised as a line. In a

three-dimensional space, it is a plane, and an n-dimensional plane when working in

higher dimensions.

A data point falls in one of three places in relation to the hyperplane based on

yif(xi). If yif(xi) is greater than 1, then the point is outside the margin and does not

contribute to the loss. If yif(xi) equals 1, then the point is on the margin. Finally,

if yif(xi) is less than 1, then the point contributes to the loss as it is on the wrong

side [226].

58

Data Linear SVM RBF SVM Poly SVM Sigmoid SVM

Figure 4.3
SVM Samples (Linear, RBF, Polynomial (3rd degree), and Sigmoid) [227]

When the data is not linearly separable, SVM use a kernel to map the data (input

features) to a nonlinear higher dimensional space in which a hyperplane best separates

the classes. SVM kernels include linear, Radial Basis Function (RBF), polynomial, and

sigmoid [211]. SVM kernels and decision boundaries are visualised in Figure 4.3.

4.2.5 Decision Tree and Random Forest

DT are composed of a group of branches that represents feature-based tests [213, 228].

Given a decision tree root, the tree starts branching based on the feature values until

reaching a leaf where the decision is made (i.e., the class is determined), as shown in

Figure 4.4.

During the training process, the training data is recursively split until a decision tree

is built. To reduce the complexity of DT and avoid overfitting, pruning process takes

place. Pruning removes redundant and noncritical branches, which leaves the tree more

sparse.

Root Node

Decision Node

Terminal Node Decision Node

Terminal Node Terminal Node

Splitting

Decision Node

Terminal Node Terminal Node

Sub-tree

Figure 4.4
Decision Tree Sample [211]

Tree 1
Decision
(Class x)

Voting

Tree 2
Decision
(Class y)

Tree 1
Decision
(Class z)

Class Label

Figure 4.5
Random Forest Sample [211]

59

RF, on the other hand, are a group of DT, as shown in Figure 4.5. The output

of the DT is combined to reach a classification decision in an ensemble fashion.

Bootstrapping, also known as Bagging [228], is a statistical technique used to split

the data and features among different DT.

Table 4.1 provides a short summary of the advantages and disadvantages of each

of the ML algorithms discussed in this section. Liu and Lang [43], Xie et al. [229],

and Mishra et al. [211] survey different ML techniques, their characteristics, pros, and

cons when they are applied to IDS. The authors highlight that these techniques are the

most used, which aligns with the analysis presented in Chapter 3.

Table 4.1
ML Techniques Summary

Algorithm Advantages Disadvantages

LR
- Simple to understand and
implement
- Fast training

- Low performance with large
feature space
- Classes separability assumption

NB

- Simple to understand
- Fast to classify
- Scalable and can learn from small
dataset

- Poor performance when training
data is not representable
- Assumes feature independence
- Hard to operate with continuous
data

k-NN

- Simple to implement
- Easy to understand
- No training required
- Flexible in terms of choosing the
function that represents distance

- Slow (curse of dimensionality)
- High time/memory complexity
- Does not perform well with
imbalanced datasets
- Sensitive to the choice of K

SVM

- Well-suited for high-dimensional
data
- Can work with non-linear features
- Can learn from small data

- Not suited when classes overlap
- Relatively slow
- Computationally intensive
- Choosing the kernel can be
challenging

DT

- Easy to explain predictions
- Features interactions are taken
into account
- Can train using continuous and
discrete features

- Sensitive to data
- Prone to overfitting

RF

- Less sensitive to data compared to
DT
- Performs well on large datasets
- Mitigates the DT overfitting
problem

- Predictions are not easy to explain
- Slow training

60

Python v3.6.4 [230] and scikit-learn v0.21.3 [227] are used to implement the six

ML techniques with the parameters as follows:

• random state: 0

• Algorithm-specific parameters:

– LR

∗ penalty: l2
∗ fit intercept (bias): True
∗ solver: lbfgs
∗ max iter: 100

– NB

∗ var smoothing: 1e-9

– k-NN

∗ n neighbors: 5
∗ weights: uniform
∗ algorithm: auto
∗ leaf size: 30

– SVM

∗ kernel: linear and rbf
∗ degree: 3
∗ gamma: scale
∗ tol (tolerance): 1e-3
∗ shrinking: True

– DT and RF

∗ criterion: entropy
∗ splitter: best
∗ max depth: none
∗ min samples split: 2
∗ min samples leaf: 1
∗ max features: Square root of number of features

– RF

∗ n estimators: 10

61

4.3 SCADA Dataset

Having discussed the problem this chapter is addressing and the ML techniques used,

this section aims to overview the first dataset, which is generated from a CI water

system controlled by SCADA.

4.3.1 SCADA Dataset Architecture

The CI is composed of a 9 litre main tank and a 7 litre secondary one. Each tank

can either store or distribute liquid (water in this case). The main tank is equipped

with four sensors connected to the Programmable Logic Controllers (PLC). Figure 4.6

shows the physical architecture of the control system, while a high-level diagrammatic

representation is depicted in Figure 4.7.

The four sensors are used to measure the liquid level in the main tank. “Discrete

sensor 0” indicates a low level in the tank (1.25L). “Discrete sensor 1” indicates a

measure of less than 3.35L. “Discrete sensor 2”, indicates a level of 8L while “Discrete

Figure 4.6
SCADA System Architecture [81]

62

Figure 4.7
SCADA Network High-Level Architecture [81]

sensor 3” indicates a full tank measure (9L) [81]. The sensors inputs (A, B, C, and D)

are concatenated as one register (0000ABCD) as shown in Figure 4.7.

There are two pumps, Pump1 and Pump2, that control the flow between the main

and secondary tanks. The liquid volume in the secondary tank is monitored by an

ultrasound sensor installed at the top of the tank. It measures the volume using the

distance from the liquid surface to the top of the tank. It is also used to detect the

existence of liquid in the tank. All sensors use the Modbus protocol to transfer the

collated data to the control and monitor network.

4.3.2 SCADA Operation and Dataset Scenarios

During the dataset generation, the primary tank is filled from a recovery tank

simulating a liquid source, which, in real life, can be a fuel line or a river. When

the primary tank is filled (using Pump2), the PLC activates Pump1 to transfer the

liquid from the primary tank to the secondary tank to avoid spillage. Constant liquid

consumption is simulated using the valves at the bottom of the tanks.

The full operation is monitored by the PLC using sensory data readings recorded

on interval of 0.1 seconds [81]. If the liquid volume in the primary tank goes below

1.25L, the PLC turns on Pump2 automatically to allow refilling from the recovery tank.

63

Table 4.2
SCADA: PLC Registers Extracted Bits Representation

Reg. No. Bit No. Value

2

4 Discrete Sensor 3
5 Discrete Sensor 2
6 Discrete Sensor 1
7 Discrete Sensor 0

3

0 Pump2
1 Pump1
5 Pump2 Valve
4 Pump1 Valve

4 16-bits Depth Sensor

In a similar fashion, Pump2 will be turned off when a total of 9L is reached. Pump1

is automatically activated when the ultrasound sensor detects a liquid level below 2.1L

and automatically deactivates when the liquid reaches 6.3L.

The dataset consists of Comma-Separated Values (CSV) format files that contain

the sensor readings, captured from the PLC registers (2, 3, and 4) to describe the

state of the system. Table 4.2 provides an overview of the different registers and their

corresponding usage. Register2 bits provide the binary state of each discrete sensor. To

retrieve each separate sensor value, bitwise masks and operations are used. Register3

indicates the state of the two pumps and valves showing whether each is activated or

deactivated. Register4 contains the depth sensor reading represented as a step value

from 0 to 10,000 for the ultrasound sensors (e.g., step 3,000 represents 2.1L of liquid

in the tank).

The dataset comprises 14 different scenarios besides normal behaviour. These are

listed in Table 4.3, with each scenario covering one of five operational scenarios

representing potential threats (i.e., sabotage, accident, breakdown, or cyber attack) as

well as six affected components. The affected components are system components that

are instantly affected by the anomaly. The dataset is provided in 15 CSV files; one for

each scenario.

64

Table 4.3
SCADA: Dataset Scenarios, Operational Scenarios, and Affected Components

Scenario
Affected

Component
Operational

Scenario
No. of

instances
1 Normal None Normal 5519

2 Plastic bag

Ultrasound
Sensor

Accident/
Sabotage

10549

3 Blocked measure 1 Breakdown/
Sabotage

226
4 Blocked measure 2 144

5
Floating objects in

main tank (2
objects)

Accident/
Sabotage

854

6
Floating objects in

main tank (7
objects)

733

7 Humidity
Breakdown

157

8
Discrete sensor

failure
Discrete sensor 1 1920

9
Discrete sensor

failure
Discrete sensor 2 5701

10 DoS
Network

Cyber attack
307

11 Spoofing 10130

12 Wrong connection
Breakdown/

Sabotage
6228

13
Person hitting the

tanks (low intensity)
Whole subsystem Sabotage

347

14
Person hitting the

tanks (medium
intensity)

281

15
Person hitting the

tanks (high
intensity)

292

65

4.3.3 SCADA Dataset Preprocessing

Figure 4.8 summarises the preprocessing steps applied to the SCADA dataset. As

demonstrated, the preprocessing is composed of six stages.

1. Extracting Instances

The dataset is provided in raw CSV log files, where the raw readings are recorded

line by line. Each instance is represented in 10 rows, each row containing date,

time, register number, and register reading/value of the PLC. At this stage, each

scenario instances are extracted from the corresponding log file. An instance is

represented by the PLC recording of the register values at a specific time.

2. Calculating the rate of change of Register4

Register4 monitors the liquid level in the secondary tank and its value is crucial

for each instance. Register4 value is demonstrated as the most significant,

however, its significance does not lie in the reading value itself, but in the drift

of values over time (i.e. the change trend/rate). Figure 4.9 visualises Register4

rate of change for each of the scenarios.

Start
1. Extract
Instances

2. Calculate rate of change
of Register4 (Depth Sensor)

3. Apply
Threshold

4. Normalisation
(Scaling)

5. Cross-Validation Split
(5-folds)

End

15 Log Files

Figure 4.8
SCADA: Preprocessing Stages

66

0 50 100 150 200 250 300 350 400
Time (in frames)

0

2000

4000

6000

8000

10000

Re
gi

st
er

 4
 V

al
ue

Person hitting low
Person hitting med
Person hitting high
Blocked measure 1
Blocked measure 2
2 Floating objects
7 Floating objects
Discrete Sensor 1
Discrete Sensor 2
Wrong connection
DoS
Spoofing
Plastic bag
Humidity

Figure 4.9
SCADA: The trends of the Rate of Change of Register4 readings for different scenarios

For each instance, the rate of change is calculated over 10 time frames as

expressed in Equation 4.8.

Rate of changei =
reg4i − reg4i−10

timei − timei−10
(4.8)

3. Applying Threshold

Table 4.3 demonstrates the variance in the number of instances over the different

scenarios. The instances are not evenly distributed over the scenarios. Therefore,

the scenario(s) with the most instances will bias the model training, thus

affecting the classification output. A threshold is applied to take only the first

N instances of each file. N should satisfy two conditions: (i) reduce the gap

between instances count across scenarios and (ii) maintain the variation of

instances per scenario.

4. Normalisation

Normalisation is an essential step to ensure the features are in the same scale and

ready for ML usage. Min-Max normalisation is used [39].

67

5. Cross-Validation

Finally, the data is split into training and testing sets. A split of 80% for training

and 20% for testing [231] is used over 5-fold cross-validation.

4.4 SCADA Experiments and Results

In this section, three different experiments are outlined and evaluated showing how

accurately anomalies are detected. The aim of the different experiments is to provide

different levels of information regarding the occurrence of an anomaly. This varies

from merely reporting the occurrence of an anomaly, to identifying the affected

component and the anomalous scenario.

4.4.1 Experiment 1: Anomaly Detection

In real situations, IDS should fire an alert when an anomaly occurs. The first

experiment evaluates the ability of the six ML algorithms discussed earlier to flag

anomalies in the SCADA dataset. The models are utilised as binary classifiers to

distinguish anomalies from benign behaviour, hence this experiment does not specify

the anomaly type or associated affected component as the case in the following ones.

Figure 4.10 shows the classification accuracies of the different ML algorithms used.

As demonstrated, the highest accuracies reached are 94.12%, 93.67%, 93.30%, and

91.99% when using k-NN, RF, DT, and SVM with RBF kernel respectively.

68

87.73%

34.82%

94.12% 87.75% 91.99% 93.30% 93.67%

LR Gaussian
NB

k-NN SVM Kernel
SVM

DT RF
C

la
ss

if
ic

at
io

n
A

cc
ur

ac
y

ML Algorithm

Figure 4.10
SCADA: Anomaly Detection Overall Accuracy (5-fold cross-validation)

The recall, precision, and F1-Score of the first experiment are detailed in Table 4.4.

The three techniques with top overall accuracies (k-NN, DT, and RF) are able to

classify both benign behaviour and anomalies efficiently. The recall of the benign

class is 74.01%, 74.01%, and 75.66% and the anomaly class is 97.15%, 96.22%,

and 96.38% when using k-NN, DT, and RF, respectively. The reason these three

algorithms outperform the rest is due to the fact that they can map complex relations

and non-linearity compared to the others that aim to fit a hyperplane or a probabilistic

relation. It is important to note that in a CI setup, normal operations and anomalies can

overlap [232], thus complicating the classes separability task.

Table 4.4
SCADA Results: Experiment 1 - Anomaly Detection (5-fold cross-validation)

Classification
(Is Anomaly)

Recall Precision F1-Score

LR
Benign 7.15% 90.34% 13.22%

Anomaly 99.89% 87.7% 93.4%

Weighted Average 87.73% 88.05% 88.05%

NB
Benign 99.95% 16.74% 28.67%

Anomaly 24.99% 99.97% 39.98%

Weighted Average 34.82% 89.06% 89.06%

k-NN
Benign 74.01% 79.7% 76.74%

69

Anomaly 97.15% 96.12% 96.63%

Weighted Average 94.12% 93.97% 93.97%

SVM
Benign 7.15% 92.24% 13.23%

Anomaly 99.91% 87.7% 93.41%

Weighted Average 87.75% 88.3% 88.3%

Kernel SVM
Benign 39.53% 98.52% 56.4%

Anomaly 99.91% 91.63% 95.59%

Weighted Average 91.99% 92.54% 92.54%

DT
Benign 74.01% 74.72% 74.35%

Anomaly 96.22% 96.09% 96.15%

Weighted Average 93.3% 93.28% 93.28%

RF
Benign 75.66% 75.99% 75.78%

Anomaly 96.38% 96.33% 96.36%

Weighted Average 93.67% 93.67% 93.67%

Firing an alert when an anomaly occurs is important, however, since the alert here

is provided in a binary fashion, it is not straightforward – in this case – to identify the

problem at first sight. Therefore, taking a corrective action is delayed. To this end, a

second experiment is established with the aim of providing more information.

4.4.2 Experiment 2: Affected Component Classification

Instead of just firing an alert, the second experiment aims to report the affected

component when an anomaly occurs using multi-class classifiers. Compared to the first

experiment, this additional piece of information provides more details which assists in

taking accelerated corrective actions.

Figure 4.11 shows the classification results of the different ML algorithms.

The highest accuracies are 82.69%, 82.71%, and 81.79 using k-NN, RF and DT,

respectively. The result shows a trade-off between the overall accuracy and the details

70

52.85%

28.02%

82.69%

60.97%
73.55%

81.79% 82.71%

LR Gaussian
NB

k-NN SVM Kernel
SVM

DT RF
C

la
ss

if
ic

at
io

n
A

cc
ur

ac
y

ML Algorithm

Figure 4.11
SCADA: Affected Component Overall Classification Accuracy (5-fold cross-validation)

of the fired alert compared to the binary classification explained in Section 4.4.1. Due

to the fact that more classes are involved, the accuracy of the model accounts for a large

number of false positives. This trade-off is further noted in Table 4.5 where the recall,

precision, and F1-Score are listed for the different algorithms. LR and SVM experience

the least recall of 39.83% and 59.82%. This is due to the non-linearity of the affected

components classes. Therefore, the inability of these techniques to fit, whereas k-NN

has a recall of 79.76%, DT has a recall of 74.31%, and NB has a recall of 79.76%, for

the benign class.

Table 4.5
SCADA Results: Experiment 2 - Affected Component Classification (5-fold cross-validation)

Classification
(Affected

Component)
Recall Precision F1-Score

LR
None 39.83% 31.38% 35.08%

Discrete Sensor 1 59.53% 37.16% 45.75%

Discrete Sensor 2 23.79% 60.17% 34.05%

Network 56.57% 53.66% 55.06%

Ultrasound Sensor 62.55% 70.09% 66.09%

Whole 69.57% 100% 81.98%

Weighted Average 52.85% 56.74% 56.74%

NB
None 79.76% 38.48% 51.9%

71

Discrete Sensor 1 50.57% 35.71% 41.82%

Discrete Sensor 2 0% 0% 0%

Network 16.71% 21% 18.61%

Ultrasound Sensor 1.73% 98.89% 3.39%

Whole 100% 18.82% 31.67%

Weighted Average 28.02% 43.26% 43.26%

k-NN
None 74.46% 78.39% 76.33%

Discrete Sensor 1 76.82% 74.17% 75.43%

Discrete Sensor 2 68.47% 63.09% 65.66%

Network 84.73% 87.45% 86.05%

Ultrasound Sensor 90.55% 90.59% 90.57%

Whole 99.13% 100% 99.56%

Weighted Average 82.69% 83% 83%

SVM
None 59.82% 42.95% 50%

Discrete Sensor 1 84.69% 58.63% 69.25%

Discrete Sensor 2 23.79% 57.98% 33.69%

Network 54.27% 55.87% 55.05%

Ultrasound Sensor 66.83% 72.89% 69.72%

Whole 100% 100% 100%

Weighted Average 60.97% 62.05% 62.05%

Kernel SVM
None 62.82% 67.27% 64.96%

Discrete Sensor 1 82.24% 61.62% 70.43%

Discrete Sensor 2 61.62% 51.93% 56.36%

Network 70.54% 79.86% 74.9%

Ultrasound Sensor 77.84% 85.76% 81.59%

Whole 99.57% 100% 99.78%

Weighted Average 73.55% 75.06% 75.06%

DT
None 74.31% 75% 74.63%

Discrete Sensor 1 73.7% 74.46% 74.06%

Discrete Sensor 2 64.72% 64.11% 64.39%

Network 84.8% 85.29% 85.04%

Ultrasound Sensor 90.3% 89.4% 89.85%

Whole 99.89% 100% 99.95%

Weighted Average 81.79% 81.8% 81.8%

72

RF
None 74.16% 78.24% 76.11%

Discrete Sensor 1 77.19% 73.68% 75.38%

Discrete Sensor 2 68.32% 64.32% 66.22%

Network 85.12% 86.43% 85.77%

Ultrasound Sensor 90.06% 91.18% 90.61%

Whole 99.89% 100% 99.95%

Weighted Average 82.71% 82.95% 82.95%

The results of this experiment confirm the diversity of scenarios that affect different

components, yet the overlap between classes causes some to be harder to detect than

others. For example, the detection of the “Discrete Sensor 2” class experiences a low

recall of 23.79%, 0%, 68.47%, 23.79%, 61.62%, 64.72%, and 68.32% when using LR,

NB, k-NN, SVM, Gaussian SVM, DT, and RF, respectively. On the other hand, the

recall of the “Whole” class is high. The recall, in this case, is 69.57%, 100%, 99.13%,

100%, 99.57%, 99.89%, and 99.89% using LR, NB, k-NN, SVM, Gaussian SVM, DT,

and RF, respectively.

Pointing out the affected component extends the reporting capability of the model.

It allows a better identification of the problem, thus a quicker response. However, the

optimal case would be to report the exact scenario. This will reduce the time spent

to identify the problem and speed up the mitigation process. To this end, a third

experiment is established.

4.4.3 Experiment 3: Scenarios Classification

In the third experiment, the goal is to further extend the system’s ability to flag

anomalies by identifying the specific scenarios that are considered suspicious. To

perform this experiment, three operational trials are conducted. The experiments use

multi-class classifiers and leverage their output probabilities to report the suspicious

scenario.

73

4.4.3.1 One Scenario Classification

In the first trial, ML models are trained to classify different scenarios based on the

multi-class classifier highest probability. Figure 4.12 shows the results of the different

ML techniques. The highest accuracy reaches only 81.19%. For completeness and

reproducibility, the full results tables (recall, precision, and F1-Score) are reported in

Appendix C.

The results demonstrate either a high or a low recall for different classes. To analyse

this, the scenarios are reviewed and the following conclusions are drawn:

(i) The scenarios in the dataset are co-related, meaning that they can overlap. This

is a known problem in CI setup [232].

(ii) The models report multiple probable scenarios for each instance with a

maximum of 4 probable ones.

Elaborating on the second conclusion, since the ML models can output the

probability of the classification result, it is observed that each instance results in a

maximum of 4 non-zero scenario probabilities. This means that each instance can

belong to at most 4 scenarios. This is demonstrated in Table 4.6 where it lists the

number, and percentage, of instances with multiple possible scenarios. Since the

60.95%

41.12%

81.19%
69.66% 74.63%

80.38% 81.19%

LR Gaussian
NB

k-NN SVM Kernel
SVM

DT RF

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

ML Algorithm

Figure 4.12
SCADA: Scenarios Overall Classification Accuracy, Single Scenario (5-fold cross-validation)

74

Table 4.6
SCADA: Distribution of Probabilistic Classification of Scenarios

Algorithm

Maximum

number of

probable

scenarios

per instance

Number of

instance

with 1
probable

scenario

Number of

instance

with 2
probable

scenarios

Number of

instance

with 3
probable

scenarios

Number of

instance

with 4
probable

scenarios

DT 1
3817 - - -

100% - - -

k-NN 3
2336 1221 260 -

61.20% 31.99% 6.81% -

RF 4
2144 1315 355 3

56.17% 34.45% 9.3% 0.08%

maximum is 4 probable scenarios, the table shows the count of instances having 1,

2, 3, or 4 probable scenarios. For example, the second row shows that 61.2% of

the instances are classified with only 1 probable class, 31.99% of the instances are

classified with 2 probable scenarios and 6.81% with 3 probable scenarios. As a result,

the following experiments leverage this to report two probable scenarios which reduces

the uncertainty of this approach.

4.4.3.2 Two Scenarios Classification

In the second trial, the model reports two scenarios when an anomaly occurs instead

of one, compared to the previous experiment. The two scenarios are the ones with

the highest probabilities provided by the different classifiers. Based on the fact that

the scenarios overlap and anomalies in CI are not mutually exclusive, an instance is

correctly classified if it belongs to one of the two reported scenarios. In this case,

multi-label classification would improve the detection accuracy. Figure 4.13 shows

that this modification increases the overall detection accuracy to 95.60% and 95.49%

when using RF and k-NN, receptively. A model with higher detection accuracy allows

for a better action according to the reported scenarios. This alleviates the attack and

reduces the overall response time needed.

75

78.09%

49.53%

95.49% 90.68% 93.55%
80.38%

95.60%

LR Gaussian
NB

k-NN SVM Kernel
SVM

DT RF

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

ML Algorithm

Figure 4.13
SCADA: Scenarios Overall Classification Accuracy, Two Probable Scenarios (5-fold
cross-validation)

Table 4.7 provides a demonstration of instances that are correctly classified when

one probable scenario versus two probable scenarios are reported. The provided

demonstration is calculated in regard to the k-NN classification model. In the first

row, “2 Floating Objects” scenario, 67 are misclassified as “Plastic Bag” sabotage.

However, 60 of them can be correctly reported by considering the second probable

Table 4.7
SCADA: Co-relation of scenarios that are misclassified based on one probable scenario and
correctly reported with the second probable one (Calculated based on k-NN experiment)

Instances count Scenario (Y) The count of instances classified
where X as Y while the correct is X

Scenario
(X)

Is Not
1st

Probable
Scenario

Is 2nd

Probable
Scenario

2
Floating
Objects

7
Floating
Objects

Normal
Plastic

Bag
Sensor
Failure

Spoofing
Wrong
Con.

2
Floating
Objects

67 60 - - - 67 - - -

7
Floating
Objects

5 5 - - - - - - 5

Normal 113 78 - - - 1 96 - 16

Plastic
Bag

107 91 49 - 3 - 35 20 -

Sensor
Failure

242 184 - - 99 73 - 9 61

Spoofing 54 32 - - - 44 10 - -

Wrong
Con.

134 96 - 7 31 8 88 - -

76

scenario. Similarly, in Table 4.7 row 4, 107 instances of the “Plastic Bag” scenario

are misclassified to be “2 Floating Objects” (49 instances), “Sensor Failure” (35),

“Spoofing” (20 instances) and “Normal” (3 instances). 91 of these instances can be

correctly reported with the consideration of the second probable scenario.

In this experiment, two probable scenarios are reported. This can be misleading

when the first scenario is sufficient. This happens when an anomaly does not match

multiple scenarios. In this case, reporting a second scenario adds unneeded complexity.

Therefore, the third trial provides a confidence measure that allows better reporting,

thus improving the situational handling response.

4.4.3.3 Scenarios Classification Using Confidence

In the third trial, a single scenario is solely reported unless its classification probability

is less than a defined threshold. This threshold serves as the model confidence interval.

Therefore, when the model classification probability falls below this threshold, two

scenarios are reported. Two threshold values are used for this experiment; 75% and

85% and the results are shown in Figure 4.14.

When a 75% confidence interval is used, a single scenario is reported as long as its

classification probability is greater than or equal to 0.75, otherwise, two scenarios are

reported. The overall detection accuracy reaches 91.57%. The overall classification

accuracy rises when using an 85% confidence interval. This is demonstrated in

Figure 4.14. The overall detection accuracy reaches a maximum of 95.49% using

k-NN.

Some conclusions can be drawn from Figure 4.13 and Figure 4.14. DT accuracy

remains the same in all experiments due to the DT output which reports a single

scenario for all the instances based on how the decision branches are formed. Table 4.6

shows that the DT model outputs a single scenario for 100% of the instances.

Therefore, it is not possible to report two probable scenarios. The accuracy reaches

95.39%, hence reducing the uncertainty and allowing a fast alleviation of the attack.

77

77
.5

2%

41
.1

3%

91
.0

8%

89
.5

4%

91
.3

4%

80
.3

8%

91
.5

7%

78
.0

9%

41
.1

6%

95
.4

9%

89
.7

7%

92
.5

1%

80
.3

8%

93
.7

3%

LR Gaussian
NB

k-NN SVM Kernel
SVM

DT RF

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

ML Algorithm

75% Confidence Interval 85% Confidence Interval

Figure 4.14
SCADA: Scenarios Overall Accuracy Classification, One or Two Scenario(s) Based on 75%
and 85% Confidence Intervals (5-fold cross-validation)

In the next section, the same ML techniques are used to evaluate and analyse the

performance of detecting anomalies in IoT networks. A novel MQTT-based dataset is

generated and used for evaluation.

4.5 MQTT IDS Dataset Generation

IoT devices have been used extensively in the past decade and is estimated to reach 25.1

billion devices in 2025 [233]. IoT networks are utilised for different purposes [149] that

include, but are not limited to, smart cities [234], farming [235], supply chain [236],

and healthcare [237]. One of the distinguishable protocols for machine-to-machine IoT

communication is MQTT [238, 212].

Harsha et al. [239] survey the protocols used in IoT networks with a focus on

MQTT protocol. The authors’ work identifies the various MQTT associated security

risks, which highlights the need for special-purpose IDS. Their work shows that there

are 53396 publicly available and accessible MQTT devices [239]. Dinculeană and

Cheng [240] further analyse the MQTT security vulnerabilities. Their work concludes

that there is a need for robust detection techniques for MQTT attacks.

78

Due to the lack of datasets that comprise IoT traffic, there is a pressing need to

generate up-to-date IoT datasets for IDS usage. Based on the analysis and to the best

of the author’s knowledge, there are no available IDS datasets that contain MQTT

traffic (benign or malicious).

Furthermore, with the increased dependence on IoT and the inadequacy of

general-purpose IDS to fit IoT needs - there is a need to build IoT IDS. Nonetheless,

this requires the availability of datasets to process, train, and evaluate classification

models. In this section, a generated MQTT-based IDS dataset is presented. This is the

first dataset to simulate an MQTT-based network comprising benign and malicious

traffic (representing generic and MQTT-specific cyber attacks).

4.5.1 MQTT-IoT-IDS2020

The “MQTT-IoT-IDS2020” dataset is generated using a simulated MQTT network

architecture to reflect IoT network communication. The network comprises twelve

sensors, a broker, a simulated camera, and an attacker. Five scenarios are recorded

which cover normal operation and four attack scenarios. The attacker performs the

four attacks and each is recorded independently.

The attack scenarios aim to cover both MQTT-based attacks and generic attacks

that are known to target IoT networks. According to Dietz et al., the life cycle of an

IoT network attack is composed of 7 stages. The first stage is “Scan”, followed by

“Brute-force” [241]. Network scanning is the first tier in the five-tier IoT threat model

that is outlined by Hafeez et al. [242]. Therefore, the attack scenarios are:

• Aggressive scan (Scan A)

• UDP scan (Scan sU)

• Sparta SSH brute-force (Sparta)

• MQTT brute-force attack (MQTT BF)

79

Hacker

NetEm

0.2%	Loss

Sensor_1_1 Sensor_1_2 Sensor_1_3 Sensor_1_4

NetEm

1%	Loss

Sensor_2_1 Sensor_2_2 Sensor_2_3 Sensor_2_4

NetEm

0.13	%	Loss

Sensor_3_1 Sensor_3_2 Sensor_3_3 Sensor_3_4

Broker

Camera

Camera	Feed	
Server

192.168.2.5

192.168.1.7 192.168.2.7

10.0.0.2310.0.0.5 10.0.0.6 10.0.0.7 10.0.0.8 10.0.0.10 10.0.0.11 10.0.0.12 10.0.0.13 10.0.0.14 10.0.0.15 10.0.0.16 10.0.0.17

Figure 4.15
MQTT-IoT-IDS2020: Network Architecture

Figure 4.15 shows the network components. The broker is responsible for delivering

the messages as it receives them from all subscribers and routing them to their

destinations. The 12 sensors are divided into three subnetowrks to simulate three

different components. During normal operation, all 12 sensors send randomised

messages using the “Publish” MQTT command. The length of the messages varies

between sensors to simulate different usage scenarios and the content is randomly

generated. In order to simulate a camera feed, VLC media player is used to send a

continuous UDP stream to the camera feed server. The network traffic is captured using

the router’s Ethernet ports. Furthermore, the network drops packets to simulate real-life

situations. The dropping rates are 0.2%, 1%, and 0.13%, which are based on the

average acceptable loss rates [243]. The benign traffic (normal traffic) is first recorded.

Then the operation continues as background traffic during the process of recording

different attacks. As shown in Figure 4.15, the attacker IP address is “192.168.2.5”,

which is used later in labelling the dataset instances.

80

Tcpdump is used to capture the network traffic. The following tools are used as

follows:

• Virtual machines are used to simulate the network devices.

• Nmap is used for the scanning attacks.

• MQTT-PWN [244] is used for the MQTT brute-force attack.

The OS specification is as follows:

• Sensors: Tiny Core Linux

• Camera and camera feed server: Ubuntu

• Hacker: Kali Linux

For each scenario, a raw PCAP file is saved. The five files, namely; normal.pcap,

sparta.pcap, scan A.pcap, mqtt bruteforce.pcap and scan sU.pcap, are processed to

extract three abstraction levels of features. The feature levels are: (i) Packet features,

(ii) Unidirectional flow features, and (iii) Bidirectional flow features [245]. Flow based

features represent the communication between two nodes in the network (for example,

the average time between packets and the number of packets in a flow). The features are

saved in CSV files that are suited for ML usage. The raw PCAP files are made available

with open-access privileges [16] for further analysis of MQTT network communication

and the associated attacks. It is important to note that the three feature abstraction levels

are used exclusively as discussed in Section 4.6.

Table 4.8 summarises the features extracted from the raw PCAP files. The fourth

column shows the packet-based features. Column five shows unidirectional flow

features, and finally, column six shows bidirectional flow features. For the bidirectional

flows, some features (pointed as *) have two values— one for the forward flow and

one for the backward flow. The two features are recorded and distinguished by a prefix

“fwd ” for forward and “bwd ” for backward. The distribution of instances is listed in

Table 4.9.

81

Table 4.8
MQTT-IoT-IDS2020: Feature List and Description

Feature Variable
Data
Type

Packet
Uni-
flow

Bi-
flow

Source IP Address ip src Text X X X

Destination IP Address ip dest Text X X X

Last layer protocol protocol Text X

Time to live ttl Integer X

Packet Length ip len Integer X

Don’t fragment IP flag ip flag df Binary X

More fragments IP flag ip flag mf Binary X

Reserved IP flag ip flag rb Binary X

Source Port prt src Integer X X X

Destination Port prt dst Integer X X X

Transport Layer protocol

(TCP/UDP)
proto Integer X X

Reserved TCP flag tcp flag res Binary X

Nonce sum TCP flag tcp flag ns Binary X

Congestion Window

Reduced TCP flag
tcp flag cwr Binary X

ECN Echo TCP flag tcp flag ecn Binary X

Urgent TCP flag tcp flag urg Binary X

Acknowledgement TCP

flag
tcp flag ack Binary X

Push TCP flag tcp flag push Binary X

Reset TCP flag tcp flag reset Binary X

Synchronization TCP flag tcp flag syn Binary X

Finish TCP flag tcp flag fin Binary X

Number of Packets in the

flow
num pkts Integer X *

Average inter arrival time mean iat Decimal X *

Standard deviation of inter

arrival time
std iat Decimal X *

Minimum inter arrival time min iat Decimal X *

Maximum inter arrival time max iat Decimal X *

Number of bytes num bytes Integer X *

Number of push flag num psh flags Integer X *

Number of reset flag num rst flags Integer X *

Number of urgent flag num urg flags Integer X *

82

Table 4.8 continued

Feature Variable
Data
Type

Packet
Uni-
flow

Bi-
flow

Average packet length mean pkt len Decimal X *

Standard deviation packet

length
std pkt len Decimal X *

Minimum packet length min pkt len Decimal X *

Maximum packet length max pkt len Decimal X *

MQTT message type mqtt messagetype Integer X

mqtt messagelength

MQTT message length
Binary X

User Name MQTT Flag mqtt flag uname Binary X

Password MQTT flag mqtt flag passwd Binary X

Will retain MQTT flag mqtt flag retain Binary X

Will QoS MQTT flag mqtt flag qos Integer X

Will flag MQTT flag mqtt flag willflag Binary X

Clean MQTT flag mqtt flag clean Binary X

Reserved MQTT flag mqtt flag reserved Binary X

Is Attack is attack

Binary

(1 if the

instance is

attack, 0

otherwise)

X X X

* represented as two features in the biflow features file

Table 4.9
MQTT-IoT-IDS2020: Instances Distribution

File Name
PCAP
file size

Number of Packets
Number of Uni-flow

Instances
Number of Uni-flow

Instances
Benign Attack Benign Attack Benign Attack

normal
192.5
MB

1056230
(3.42%)

0
171836
(59.01%)

0
86008

(54.78%)
0

scan A
(aggressive)

16.2
MB

70768
40624
(0.13%)

11560
39797

(13.67%)
5786

19907
(12.68%)

scan sU
(UDP)

41.3
MB

210819
22436
(0.07%)

34409
22436
(7.71%)

17230
22434

(14.29%)

sparta 3.4 GB 947177
19728943
(63.93%)

154175
28232
(9.7%)

77202
14116
(8.99%)

mqtt bf 9.6 MB 32164
10013142
(32.45%)

4205
28874
(9.92%)

2152
14544
(9.26%)

83

4.6 MQTT Experiments and Results

In order to assess the effectiveness of different ML techniques on the

MQTT-IoT-IDS2020 dataset, the six ML algorithms discussed earlier are utilised;

LR, Gaussian NB, k-NN, SVM, DT and RF. The following features are excluded to

ensure there is no influence of identifiable data: source and destination IP addresses,

protocol, and MQTT flags. The data is split into 80% and 20% for training and testing,

respectively, and five-fold cross-validation [231] is used to evaluate each experiment.

The overall accuracy is used for evaluation in addition to the precision, recall, and

F1-Score of each class. Finally, the weighted average (W. AVG.) of precision, recall,

and F1 score is calculated to further analyse the IDS performance.

Table 4.10 presents the overall accuracy of each of the ML techniques with each of

the feature levels; packet, unidirectional and bidirectional. By observing Table 4.10,

the overall accuracy increases when flow-based features are used for all algorithms

except NB. This rise in accuracy can be seen in Figure 4.16 and is reasoned by the fact

that flow-based features better discriminate benign and MQTT-based attacks.

Table 4.10
MQTT-IoT-IDS2020: Overall Detection Accuracy

Features
Packet Unidirectional Bidirectional

LR 78.87% 98.23% 99.44%

k-NN 69.13% 99.68% 99.9%

DT 88.55% 99.96% 99.95%

RF 65.39% 99.98% 99.97%

SVM (RBF Kernel) 77.4% 97.96% 96.61%

NB 81.15% 78% 97.55%

SVM (Linear Kernel) 66.69% 82.6% 98.5%

84

A
cc

ur
ac

y
60.00%

70.00%

80.00%

90.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

Figure 4.16
MQTT-IoT-IDS2020: Overall Detection Accuracy Trend using Different ML Techniques

Furthermore, RF in Table 4.10 demonstrate the highest overall accuracy when using

flow-based features. The accuracy reached 99.96% when using unidirectional flow

features and 99.97% when using bidirectional ones. This 0.01% difference between uni

and bidirectional flow features is insignificant due to the fact that these results are the

average of 5-fold cross validation. However, the results demonstrate the effectiveness

of RF in this case, which is reasoned by the techniques ability to handle multiple

features without overfitting, and its appropriateness for multiclass problems. This is

further observed in Table 4.12 where the recall, precision, and F1-Score of all the five

classes reach over 99.9%.

Table 4.11
MQTT-IoT-IDS2020 Results: LR - k-NN - DT (5-fold cross-validation)

LR
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 0% 100% 99.02% 0% 93.33% 98.95% 0% 96.55% 98.99%

Scan A 86.45% 70.87% 97.25% 98.39% 98.39% 97.21% 92.03% 82.39% 97.2%

Scan sU 98.21% 98.03% 98.48% 99.34% 95.76% 100% 98.77% 96.88% 99.23%

Sparta 100% 100% 100% 98.22% 100% 100% 99.1% 100% 100%

MQTT BF 100% 99.25% 99.58% 51.75% 99.82% 99.41% 68.2% 99.53% 99.5%

W. AVG. 78.87% 98.23% 99.44% 70.4% 98.32% 99.44% 72.97% 98.14% 99.44%

k-NN
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 17.43% 99.69% 99.95% 17.42% 98.85% 99.59% 17.43% 99.27% 99.77%

Scan A 99.99% 99.97% 100% 99.99% 99.85% 99.9% 99.99% 99.91% 99.95%

Scan sU 99.99% 99.96% 100% 99.99% 99.96% 100% 99.99% 99.96% 100%

Sparta 100% 100% 100% 100% 100% 100% 100% 100% 100%

MQTT BF 25.84% 99.3% 99.75% 25.85% 99.82% 99.97% 25.84% 99.56% 99.86%

W. AVG. 69.13% 99.68% 99.9% 69.13% 99.68% 99.9% 69.13% 99.68% 99.9%

85

Table 4.12
MQTT-IoT-IDS2020 Results: DT - RF - SVM - NB (5-fold cross-validation)

DT
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 69.29% 99.92% 99.88% 69.39% 99.92% 99.91% 69.34% 99.92% 99.9%

Scan A 100% 100% 100% 99.98% 99.95% 99.9% 99.99% 99.97% 99.95%

Scan sU 99.98% 99.91% 100% 100% 100% 100% 99.99% 99.96% 100%

Sparta 100% 100% 100% 100% 100% 100% 100% 100% 100%

MQTT BF 72.56% 99.95% 99.93% 72.47% 99.95% 99.93% 72.51% 99.95% 99.93%

W. AVG. 88.55% 99.96% 99.95% 88.55% 99.96% 99.95% 88.54% 99.96% 99.95%

RF
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 9.34% 99.96% 99.93% 8.99% 99.94% 99.95% 9.16% 99.95% 99.94%

Scan A 100% 100% 100% 99.98% 99.95% 99.95% 99.99% 99.97% 99.98%

Scan sU 99.98% 99.91% 99.96% 99.99% 100% 100% 99.99% 99.96% 99.98%

Sparta 100% 100% 100% 100% 100% 100% 100% 100% 100%

MQTT BF 15.15% 99.96% 99.97% 15.69% 99.98% 99.96% 15.42% 99.97% 99.97%

W. AVG. 65.39% 99.98% 99.97% 65.44% 99.98% 99.97% 65.41% 99.98% 99.97%

SVM (RBF Kernel)
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 30.23% 100% 100% 28.13% 92.67% 87.13% 28.8% 96.19% 93.12%

Scan A 83.8% 70.16% 42.13% 99.99% 96.18% 99.88% 91.18% 81.13% 59.22%

Scan sU 92.33% 99.96% 100% 99.74% 93.01% 94.34% 95.89% 96.36% 97.09%

Sparta 100% 100% 100% 91.17% 100% 100% 95.38% 100% 100%

MQTT BF 72.42% 98.44% 98.3% 53.56% 100% 100% 59.53% 99.22% 99.14%

W. AVG. 77.4% 97.96% 96.61% 74.35% 98.05% 97.02% 74.89% 97.87% 96.15%

SVM (Linear Kernel)
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 57.34% 99.84% 99.26% 27.8% 58.95% 97.45% 37.38% 73.82% 98.32%

Scan A 83.28% 68.23% 84.1% 70.42% 70.35% 93.44% 69.7% 67.5% 87.01%

Scan sU 78.13% 60.31% 97.76% 75.8% 70.71% 93.77% 76.92% 61.91% 95.27%

Sparta 87.64% 60.37% 99.99% 97.62% 99.94% 100% 89.89% 74.61% 99.99%

MQTT BF 24.89% 97.79% 98.71% 43.3% 99.89% 99.55% 20.84% 98.83% 99.13%

W. AVG. 66.69% 82.6% 98.5% 65.42% 88.9% 98.66% 60.4% 82.42% 98.46%

NB
Recall Precision F1-Score

Packet Uni Bi Packet Uni Bi Packet Uni Bi
Benign 10.62% 1.13% 99.96% 9.9% 97.68% 93.56% 10.25% 2.24% 96.65%

Scan A 100% 99.25% 66.41% 99.23% 18.28% 100% 99.61% 30.88% 79.81%

Scan sU 99.52% 97.76% 100% 100% 98.79% 98.52% 99.76% 98.27% 99.25%

Sparta 99.84% 100% 100% 100% 100% 100% 99.92% 100% 100%

MQTT BF 90.27% 97.78% 100% 53.15% 100% 97.05% 65.84% 98.88% 98.5%

W. AVG. 81.15% 78% 97.55% 73.29% 95.43% 98.37% 75.99% 75.26% 97.77%

86

The importance of flow-based features is analysed by observing the separate classes

metrics for each of the algorithms in Table 4.11 and Table 4.12 which outline the

precision, recall, and F1-Score for each of the classifiers. In agreement with Table 4.10,

the flow-based features usage improves the performance.

The two classes, for which performance significantly improves using flow-based

features, are the benign class and the MQTT-BF attack class. In IoT networks, benign

operation traffic is uncomplicated compared to general-purpose networks. This is

based on the IoT network usage and requirements. Therefore, when an attacker initiates

a general-purpose network-based attack, like scanning for example, it is distinctive.

However, the challenge lies in MQTT-based attacks as they rely on the known MQTT

communication commands (i.e., publish, subscribe, etc). Thus, packet-based features

fail to discriminate benign from MQTT BF attack across all the ML techniques used.

It is observed that the NB classifier experiences a distinguishably low performance

with the benign class recall. This is because both packet-based features and

unidirectional flow features are non-discriminative for benign traffic when using

the conditional probabilistic approach that this classifier relies on. Therefore, the

conditional probability of normal operation and MQTT BF attack, given these features

are not distinguishable. This behaviour is observed in the performance trend charts.

Figure 4.17 shows the rise in the recall and precision of benign traffic, Similarly,

Figure 4.18 plots the recall and precision of the MQTT BF attack and finally, this

rise is reflected in the overall weighted average recall and precision in Figure 4.19.

R
ec

al
l

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(a) Recall

P
re

ci
si

on

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(b) Precision

Figure 4.17
MQTT-IoT-IDS2020: Benign Class Performance Trends

87

R
ec

al
l

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(a) Recall

P
re

ci
si

on

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(b) Precision

Figure 4.18
MQTT-IoT-IDS2020: MQTT BF Class Performance Trends

R
ec

al
l

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(a) Recall
P

re
ci

si
on

0.00%

25.00%

50.00%

75.00%

100.00%

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

(b) Precision

Figure 4.19
MQTT-IoT-IDS2020: Weighted Average Trends

4.7 Summary

This chapter addresses the lack of special-purpose IDS and proposes solutions

to some of the different challenges of building IDS for IoT and CI networks.

Using the SCADA dataset, an anomaly detection IDS is built. The dataset

covers 14 different real-world scenarios that include normal system behaviour,

hardware failure, sabotage, and cyber attacks. Six ML techniques are used for

evaluation and three experiments are conducted. The experiments vary based on

the level of information reported to the operator. The first experiment performs

a binary classification (benign/anomaly). While instances are being detected as

either anomaly or not, the type of anomaly is unknown, thus delaying any

corrective actions. The second experiment reports the affected component of the

occurring anomaly, improving the reporting capability of the model. Finally, the third

experiment, which is the most reliable, reports the scenario. This helps in taking

the required corrective actions and speed up the mitigation process. The code is

88

available on GitHub at https://github.com/AbertayMachineLearningGroup/machine-

learning-SIEM-water-infrastructure.

The overall evaluation shows that k-NN, DT, and RF outperform NB, SVM, and

LR. Moreover, k-NN results demonstrated the highest accuracy amongst all algorithms

in the three experiments. The accuracy reached 94.12% for the binary classification

and 95.49% for the scenarios classification. Since the scenarios overlap (i.e., are

co-related), a confidence level is used to provide the operator with the most probable

scenario and two probable scenarios when the confidence is low.

Using MQTT as an IoT case study, an IoT network is simulated and a novel

dataset is generated. The dataset covers normal operation, general networking attacks,

and MQTT-based attacks. The dataset is initially saved as raw PCAP files, then

features are extracted. Three levels of features are used, packet, unidirectional, and

bidirectional features. Each feature level is used independently and six different

ML techniques are used for attack classification. The dataset is available at

https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion

-detection-dataset .

The experiments demonstrate that networking attacks are efficiently discriminated

from normal operation. This is because, in IoT setup, the normal operation patterns

are simple and the generic networking attacks patterns are distinctive. However,

protocol-specific attacks (MQTT-attacks) are harder and more complicated to classify

due to their overlap with normal operation.

To overcome this, flow-based features are used and the experiments show that

they are better suited to discriminate between normal and MQTT-based attacks due

to their similar characteristics. Using the MQTT-IoT-IDS2020 dataset, the weighted

average recall rose from∼75.31% for packet-based features to∼93.77% and∼98.85%

for unidirectional and bidirectional flow features, respectively. The weighted average

precision rose from ∼72.37% for packet-based features to ∼97.19% and ∼99.04%

89

https://github.com/AbertayMachineLearningGroup/machine-learning-SIEM-water-infrastructure
https://github.com/AbertayMachineLearningGroup/machine-learning-SIEM-water-infrastructure
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset

for unidirectional and bidirectional flow features. The experiments emphasise the

special challenges faced by IoT IDS, based on their custom communication

patterns. The challenges are demonstrated through the difficulty to differentiate

MQTT-based attacks from normal operations. The code is available on GitHub at

https://github.com/AbertayMachineLearningGroup/MQTT ML.

90

https://github.com/AbertayMachineLearningGroup/MQTT_ML

Chapter 5

IDS using Limited-Size Data

5.1 Problem Statement

Special-purpose IDS, as well as general-purpose ones, need large datasets to train IDS

models [23]. Datasets are often depicted as the bottleneck for developing robust ML

models, including ML-based IDS, due to the following reasons [246]: (i) Gathering

large realistic datasets is a complex task that requires a lot of processing time.

(ii) Training with small datasets exposes the ML model to overfitting problems.

Acquiring large volumes of training data poses a particular problem with IDS that

defers their advancement for two main reasons. (i) The need for continuous generation

of datasets to cope with zero-day and emerging attacks. This is impractical in real-time.

and (ii) the long interim time between a new cyber attack being detected and building a

corresponding dataset that contains representative instances of this new attack. By the

time a large dataset is generated to mimic a new cyber attack and the retraining process

takes place, newer cyber attacks are detected and more data is needed as cyber attacks

emerge at an exponential rate [8].

This dataset dependency problem can be defined as resolving the directly

proportional relation between the complexity of a problem, the size of a required

91

model, and the amount of data needed as shown in the following expression:

“Size(Model) ∝ Size(Data) ∝ Complexity(Problem)” [247]. This chapter focuses

on resolving this relation in regard to the size of the data, which requires a shift in the

development process of ML models.

Formally, this chapter proposes a new approach for building IDS. The approach

relies on One-Shot learning paradigm which enables training using limited size

datasets, thus, alleviating the need to gather large datasets. To this end, a Siamese

network model is proposed and trained to differentiate between classes based on pair

similarities rather than specific class features. Learning from similarities requires less

data for training and provides the ability to introduce new cyber attacks post-training

(i.e. zero-day attacks).

The proposed Siamese network is evaluated for three usage scenarios. The first

scenario evaluates the validity of similarity-based learning for IDS usage. This is

performed by assessing the classification accuracy using limited data for training.

The second usage scenario evaluates the ability of the Siamese network model as a

One-Shot learning model by introducing new attack classes that are not used during

training. Finally, the third scenario evaluates the effectiveness of similarity-based

learning to detect unknown zero-day attacks.

Four datasets are used. The first dataset is the SCADA dataset, which represents

CI setup where dataset availability is limited and hard to gather. Then, the model is

generalised for general-purpose IDS datasets. The recent CICIDS2017 dataset is used

alongside the most used datasets for IDS evaluation; KDD Cup’99, and NSL-KDD.

92

5.2 Background

5.2.1 Learning from Limited-Size Datasets

Li et. al [11] discuss the large dataset requirements and the difficulty of obtaining such

datasets. Besides the size of the dataset, current ML approaches require an extensive

amount of time to train a single model. Therefore, researchers propose approaches to

handle this time and dataset size limitations.

Online learning focuses on reducing the computation time needed to train a model.

This is done by continuously updating the model weights (i.e. tuning) as data becomes

available. This learning paradigm assumes that data becomes available over time and

does not require the dataset to be fully available prior to training. [248]. However,

caution must be taken when utilising online learning because models can shift to

undesirable states over time as training continues [249]. Moreover, online learning

is not suitable to learn from small datasets, nor detect unknown attacks.

Prior research suggested “Transfer Learning” to overcome the need for large

datasets [250, 251]. The premise of transfer learning to solve a target problem T

(where data availability is limited), is to create a model M for a similar problem T ′,

where large amount of data is available. The model M is then transferred to the initial

problem T and retrained on the limited dataset. The rationale for transfer learning is

that the initial training on T ′, yields training weights that discover useful features for

the problem domain and hence suitable for problem T . Therefore, after retraining, the

model learns and generalises faster on small datasets [252]. This is a common approach

in the image processing domain where, for example, models are trained using standard

large datasets, such as, MNIST and ImageNet [253, 254, 255].

Despite the fact that transfer learning proposes a viable solution, it does not

eliminate the need for an original large dataset and raises a number of additional

challenges; (i) Finding a suitable pretrained model “What to transfer?” [250],

93

(ii) Deciding the appropriate tuning of the pretrained model to fit in the new

domain “How and when to transfer?” [250] and (iii) Transfer could reduce the learning

performance of the target domain, known as “Negative Transfer” [250, 256].

To overcome the need to build new datasets for detecting unknown attacks, X. Sun et

al. [257] proposed a Bayesian probabilistic model to detect zero-day attack paths.

The authors visualised attacks in a graph-like structure and introduced a prototype to

identify them. Their results show the applicability of the proposed approach, however,

the model is limited to the duration contained in the analyses period and restricted by

the interaction with system calls.

Unlike the formerly discussed approaches and traditional ML techniques, One-Shot

learning requires one or a few samples from each class to use during training, therefore,

overcoming the need for large datasets. It also provides the ability of classifying

classes that are not included in the training process. Chopra et al. explain this by

mentioning that “traditional techniques are intrinsically limited to a small number of

categories” [258].

In this chapter, the model proposed is designed based on the One-Shot learning

paradigm using “Siamese Network”. Siamese networks are trained to learn pair

similarities rather than features to discriminate each class. Accordingly, given a small

dataset, generating pairs of similar and dissimilar samples will instantly increase the

size of the dataset, resulting in an average size dataset suitable for training. Moreover,

since the network is trained to detect similarities, adding new cyber attack classes will

be possible in real-time without the need for retraining.

5.2.2 One-Shot Learning

Fei-Fei et al. [259] were the first to introduce One-Shot learning. One-Shot learning

is inspired by human being learning and generalisation capability, and focuses on

learning new classes using only one - or a few - samples. One-Shot learning has

94

been used in various domains with the most prominent one being image and video

processing [260, 261, 262]. It has also been introduced in other domains, such as,

robotics [263], language processing [264, 265] and drug discovery [266].

5.2.3 Siamese Network

Siamese networks are widely used in the literature for One-Shot learning. Siamese

networks were first introduced by Bromley et al. [267] in the 90’s and were initially

used to solve the problem of hand-written signature matching. Subsequently, Siamese

networks were adapted by other domains. Popular implementations of Siamese

networks exist for image and video processing. Koch et al. [268, 269] present one

of the principle implementations of Siamese networks which is employed by many

researchers. Other widely used implementations include: Yao et al. [270] and Varior et

al. [271].

Figure 5.1 represents the Siamese network architecture which is composed of two

identical subnetworks that share weights. The two networks are referred to as “Twin

networks” and share a common architecture, i.e., two identical networks. The weights

of the twin networks are initialised with random weights and the twin networks outputs

are passed to a similarity component, which is responsible for calculating the distance

defining “how alike” the two inputs are. The output of the latter is a comparison based

similarity value. The loss is then calculated and the weights are updated based on

gradients to minimise the loss function. Gradient descent is an optimisation algorithm

that searches for the local (or global) minimum of a function [272]. During ANN

training process, weights are updated by repeatedly taking steps in the opposite

direction of the gradient until reaching a local minimum. The steps are determined

based on the value of the learning rate [272].

95

Network
X

x1

Pair	(x1,	x2)	
Similar	(0,	1)

x2

Similar	and
Dissimilar	Pairs

Network
YShare	Weights

Output
Similar	/	Not	Similar

Similarity	Check/
Euclidean	Distance	

*	X	and	Y	are	Twin	Networks

Calculate	Constructive	Loss

Update	Weights

Figure 5.1
Siamese Network Architecture

Formally [268, 273], given a pair of inputs (x1, x2) and twin networks (X, Y), such

that x1 is the input of X and x2 is the input of Y , the similarity between f1(x1) and

f2(x2) can be computed using L2 norm (Euclidean distance) (Equation 5.1):

||d||2 =

√√√√ n∑
i=1

(xi − yi)2

||d||2 =

√√√√ n∑
i=1

(f1(x1)i − f2(x2)i)2

(5.1)

such that f1 and f2 are the outputs of Networks X and Y respectively, and f1 ≡ f2

since X and Y are twin networks. Ultimately, the training goal is to minimise the

overall loss l as defined in Equation 5.2; for each given batch i of input pairs (x1, x2)i

and label vector yi, where yi(x1, x2)i = 1 if x1 and x2 belong to the same class and 0

otherwise. λ represents l2 regularisation parameter.

96

l(x1, x2)i =

y(x1, x2)i log di + (1− y(x1, x2)i) log(1− di) + λw2

(5.2)

This loss function is sensitive to outliers (i.e., dissimilar pairs with large distances),

which disproportionately affect the gradient estimation. An alternative loss function is

the constructive loss, proposed by Chopra, Hadsell and LeCun [258]. This is shown in

Equation 5.3, where m > 0 is a margin. The constructive loss caps the contribution of

dissimilar pairs if the distance is within a specified margin m [274], hence limiting the

effect of large distances. In this work, the margin is set to m = 1 [274].

l(x1, x2)i = y(x1, x2)i × (di)
2

+ (1− y(x1, x2)i)× (max(m− di, 0))2
(5.3)

Batches of similar and dissimilar pairs are used to train the network. It is essential

to note that an equal number of similar and dissimilar pairs are used in the training

batches to avoid biases. After training, given any two pairs, the network is capable of

calculating their degree of similarity, di ∈ [0, 1]; the lower the di, the closer the pair.

The choice of the twin networks architecture is domain specific and based on

the application context. ANN, Convolutional Neural Network (CNN), and Long

Short-Term Memory (LSTM) are commonly used architectures for establishing twin

networks. CNN are well-suited for image processing whilst LSTM are routinely used

with temporal data.

In this Chapter and for the purpose of the experiments, feedforward ANN are used

as the building block of the twin networks as their structure is aligned with the structure

and format of the data used in this Chapter for IDS purposes.

97

Similar to a single ANN, the Siamese network twin networks are trained in a

back-propagation fashion. The twin networks are initialised with identical weights

and during training, batches of similar and dissimilar pairs are used to calculate

the loss, using the function given in Equation 5.3. The weights are then updated

based on the learning rate, gradient descent, and optimisation function as explained

in Section 5.2.4. Hyperparameter optimisation is performed to determine the model’s

set of optimal parameters. Hyperparameters were chosen based on consideration of:

(a) random search [275], (b) recommendations by Lake et al. [276], who published

their progress and findings on a 3-year project where Siamese networks were used for

one-shot learning, Pang et al. [277], who published their Siamese network model that

outperforms state-of-the-art in image processing domain, and (c) empirical analysis of

ANN architecture. The details of the optimised architecture (i.e., the number of layers,

neurons, etc.) are provided later in the Chapter.

5.2.4 Artificial Neural Networks

ANN are used as the building block of the Siamese network model in this chapter

and the classification models the following chapters. ANN are inspired by how the

biological brain works. The first ANN were proposed by McCulloch and Pitts [278] in

1943. Later in 1986, the back propagation paradigm was introduced by Rumelhart and

McClelland [279].

ANN are composed of an input layer, zero or more hidden layers, and an output

layer. Each layer is composed of one or more neurons. Each neuron has one or more

input, and its computed output is passed onto the neurons in the following layer.

Neurons in layer i are connected to the ones in layer j, j = i + 1. This connection

between neurons is called weight and is represented aswij . During the training process,

the input values are propagated forward, the error is calculated (based on the difference

of the actual output and the expected one), then the error is propagated, and the

98

weights are updated accordingly. The value of a connection (i.e. weight) implies the

significance of the input.

Formally, the output of a single neuron is calculated as shown in equation 5.4.

yi = f((
n∑

i=0

xi.wi) + b) (5.4)

Where n represents the number of inputs to this node, xi is the ith input value, wi is the

weight value, b is a bias value. Finally, f is the activation function, which squashes the

output. This output can be the input to the next layer, or the final output of the network.

Activation functions’ main role, in the hidden layers, is to add non-linearity into the

model [280]. In the final (output) layer, an activation function can be used to squash

the output to the corresponding class labels, which is used to represent probabilities of

the classification. Activation function can be, but not limited to, Linear, Tanh, Sigmoid,

and Rectified Linear Unit (RELU) [280], shown in Figure 5.2.

The errorE is calculated at the final layer using the difference between the expected

output and the predicted output (which is, as mentioned, a result of propagating the

input signal). Finally, the weights are updated based on Equation 5.5.

Wt+1 = Wt − η
dE

dWt

(5.5)

Where Wt is the old weight and Wt+1 is the new weight. η is the learning rate to

control the gradient decent steps.

−10 −5 5 10

−10

−5

5

10

x

y

(a) Linear

−10 −5 5 10

−1

−0.5

0.5

1

x

y

(b) Tanh

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

(c) Sigmoid

−10 −5 5 10

1

2

3

4

5

x

y

(d) ReLU

Figure 5.2
ANN Activation Functions

99

The base of all optimisers is the gradient descent, as explained above. However,

gradient decent encounters the problem of making big changes and could miss the

minimum. As a result, stochastic gradient descent was introduced, where smaller

subsets (random or batches) are used to calculate the gradient and more frequent

updates are applied, then, momentum and acceleration were added [281]. One of

the widely used optimisers is Adam (adaptive moment estimation) [282], where

momentum is utilised by adding fractions of previous gradients.

The weight of a neuron is directly proportional to the significance of the node’s

input, which indicates the strength of the connection [283]. This is because the output

of any neuron is calculated by multiplying the weights by the input values [284].

5.3 Datasets

Four datasets are used for the evaluation of the Siamese network model. The datasets

cover the CI dataset introduced in Chapter 4 and three prominent general-purpose

IDS datasets. The latter covers two benchmark IDS datasets, specifically, CICIDS2017

and NSL-KDD. Moreover, KDD Cup’99 is used in comparison to the NSL-KDD to

demonstrate the effectiveness of having clean data when generating training pairs and

also, when introducing new attacks to the trained model.

The four datasets are used to mimic the situations in which limited data is provided

due to privacy and/or ethical concerns. The first dataset is discussed in detail in

Section 4.3.

5.3.1 KDD Cup’99

The KDD Cup’99 [78] is considered the oldest benchmark dataset used in evaluating

IDS. As outlined in Chapter 3, more than 60% of the research in the past years (2008

- 2020) was evaluated using this dataset. KDD Cup’99 comprises normal activity and

4 cyber attack classes.

100

The KDD Cup’99 dataset is relatively large, however, the dataset provider publishes

a reduced subset of ∼10%. For the purposes of this experiment, only the smaller KDD

Cup’99 10%, which covers all classes [285] is used to ensure the applicability of the

proposed Siamese network to limited datasets. Table 5.1 shows the number of instances

per class for the KDD Cup’99 dataset.

Table 5.1
KDD Cup’99 Classes and Corresponding Number of Instances

Class # of Instances
1 Normal 97278 (19.70%)

2 DoS 391458 (79.24%)

3 Probe 4107 (0.82%)

4 U2R 1128 (0.23%)

5 R2L 52 (0.01%)

5.3.2 NSL-KDD

The NSL-KDD [77] dataset is proposed by the Canadian Institute for Cybersecurity

(CIC) to overcome the problems of the KDD Cup’99 dataset discussed by Tavallaee et

al. [286]. Similar to KDD Cup’99, NSL-KDD covers 4 cyber attack classes and normal

activity. The NSL-KDD is used for evaluation to observe the effect of enhancing and

filtering a dataset on the similarity learning and performance. Table 5.2 shows the

number of instances per class for the NSL-KDD dataset.

Table 5.2
NSL-KDD Classes and Corresponding Number of Instances

Class # of Instances
1 Normal 67343 (53.46%)

2 DoS 45927 (36.47%)

3 Probe 11656 (9.25%)

4 U2R 995 (0.78%)

5 R2L 52 (0.04%)

101

5.3.3 CICIDS2017

The CICIDS2017 dataset [62] is a recent dataset generated by the CIC. The dataset

contains up-to-date real-life benign, insider and outsider attacks. Using the provided

PCAP files, the bidirectional traffic flows are generated and labelled. Table 5.3 lists

the attacks used in the experiments and the number of instances/flows for each. The

dataset contains DoS attacks using different tools to initiate the attack, for example,

HTTP Unbearable Load King (Hulk) and Slowloris [63].

Table 5.3
CICIDS Classes and Corresponding Number of Instances

Class # of Instances
1 Normal 248607 (90.50%)

2 DoS (Hulk) 14427 (5.25%)

3 DoS (Slowloris) 2840 (1.03%)

4 FTP Brute-force 5228 (1.9%)

5 SSH Brute-force 3627 (1.32%)

The NSL-KDD and KDD Cup’99 are provided in feature-like format, thus, they were

preprocessed before being published. They have 42 features that are transformed to

a total of 118 features after encoding the categorical features [287] . Finally, for the

CICIDS2017, 31 bidirectional flow features are extracted.

It is essential to note that no feature engineering or selection is performed to ensure

that the class excluded from training does not indirectly influence the feature sets in

any way.

5.4 Siamese Network Usage Scenarios Overview

This section overviews the three different usage scenarios for Siamese networks. A

conceptualisation of these scenarios is provided in Figure 5.3.

The first scenario is aimed to evaluate the suitability of similarity learning for cyber

attack classification. In this scenario, the model is trained using a limited sample of

102

instances from K classes. A multi-class classification is performed, such that a new

instance P is classified as one of the K classes.

The second scenario is the one based on One-Shot learning. The IDS is trained

using instances from K classes. After training, labelled instances from a new class e

are added. During the evaluation, a new instance P is classified as one ofK+1 classes

(i.e., the K classes that are used during training and an additional class e). The model

is evaluated based on its efficiency to classify (i) a new attack class, and (ii) attack

classes that are used during training.

Finally, the similarity-based training is used to detect zero-day attacks (i.e., cyber

attacks that were never seen before by the model and no few labelled instances are

available to fit in the second usage scenario). After training, the similarity measure is

used to decide if a new instance belongs to one of the K known classes or an unknown

class (i.e. zero-day attack).

ANN

ANN Si
m
ila
rit
yNew	Instance	P

K	Classes

SN	trained	on	K
Classes

P	classified	as	one	of	the	
K	classes

Classification(a)

ANN

ANN Si
m
ila
rit
yNew	Instance	P

K	Classes
and	1	Class	not	in	training	

SN	trained	on	K
Classes

P	classified	as	one	of	the	
K+1	classes

One-Shot	Learning(b)

ANN

ANN Si
m
ila
rit
yNew	Instance	P

K	Classes

SN	trained	on	K
Classes

P	classified	as	one	of	the	
K	classes		or	a	new	class
previously	unseen

Zero-Day	Detection(c)

Figure 5.3
Siamese Network Usage Scenarios Overview

103

5.5 Scenario 1: Classification using Limited Data

In this section, the Siamese network model is utilised to classify instances from a group

of known attack classes. The network is trained using pairs that can be obtained from a

few samples of each class. This reduces the demand of collecting and annotating large

datasets, and will validate the similarity-based learning paradigm for IDS development.

5.5.1 Methodology

Figure 5.4 visualises the process of building the classification intrusion detection

model. The dataset is split into two halves, as shown in Figure 5.4-1. Collectively,

the first half is used as the training pool of instances to generate similar and dissimilar

pairs for training and validation sets (Figure 5.4-2). The second half is used as the

evaluation pool of instances used to generate the testing pairs (Figure 5.4-3).

Since the Siamese network model relies on random pair generation, pairs are

drawn out randomly from the pools of instances. The rationale for having pools of

instances and randomly drawing out pairs, is to hinder any selection bias either during

training (i.e., selecting similar and dissimilar pairs) or during evaluation of the new

class (i.e. selecting the labelled instances that best represent this class). Furthermore,

the uniqueness of the pairs - no duplicates - is ensured. It is important to note that

the construction of similar and dissimilar pairs is an open research question in the

literature [288].

For testing, each instance i is paired with one random instance from each class

which is picked from the testing pool of instances producing N pairs. After the pairs

are selected, the similarity is calculated for all pairs and the label (class) of instance i

is decided based on the pair with the highest similarity (i.e., least distance).

In order to evaluate the trade-off between the number of labelled instances needed

to represent each class and the classification accuracy, the pairing process is repeated

104

Dataset
N classes

1- Split each class into
50% training
50% testing

4- Train Siamese Network using B

2- Generate Training Batch B with
 * M Similar Pairs
 equal number of pairs for each class
 * M Dissimilar Pairs
 equal number of pairs for all classes combinations

Yes No

Correct Class has
Highest Vote?

Correct
Classification False

For each testing instance ti

3- Generate Testing Batch T with t instances for each
class
 ti contains N*j pairs (j pairs with each class)

5- Evaluation

Calculate similarity with class pairs

Voting (pair with highest similarity)

Figure 5.4
Siamese Network for Intrusion Detection (Classification)

j times for each instance i. A majority voting is used to deduce instance i label, where

the class with the highest votes is selected as instance i label (Figure 5.4-5).

Algorithm 5.1 summarises the overall process of generating pairs, training, and

testing the Siamese network model. Siamese twin networks architecture is determined

by the number of input neurons being the number of features and one neuron as the

output layer. The number of hidden layers and number of neurons in each layer is then

determined; each hidden layer has a number of neurons that is reduced by a fraction

105

Algorithm 5.1 Siamese Network: Usage Scenario 1 Train and Test Algorithm
Input: Attacks Dataset
Output: Trained Siamese Network Evaluation

Ensure: dataset = {c1, c2, . . . , cn : n ≥ 3}
1: train batch size, test batch size← 30, 000
2: n epochs← 2000
3: training = 50% ci ∀ci ∈ dataset
4: testing = dataset− training
5: batch← GETTRAININGBATCH(train batch size)
6: Build Siamese Network with Random Weights
7: for i = 0 to n iterations do
8: Update Siamese Network Weights based on batch
9: end for

10: EVALUATECLASSIFICATION(test batch size)

from the previous layer [289]. The tuning of the architecture is performed using ANN

parameter optimisation. During the training phase, both training and validation loss

curves are monitored to ensure that the network converges, while avoiding overfitting,

using Dropout layers. The parameters (the number of hidden layers, number of neurons

in each layer, η - learning rate -, number of epochs, etc) are chosen based on the optimal

state of the model.

The Siamese network regularisation can be monitored using the loss behaviour.

Regularisation is carried out on the onset of unstable behaviour during training.

Figure 5.5 shows an unstable network performance state.

Figure 5.5
Siamese Network Loss Curve (Non-converging case)

106

Figure 5.6
Siamese Network Loss Curve
(Converging case) - 1

Figure 5.7
Siamese Network Loss Curve
(Converging case) - 2

As a result, the regularisation parameters of the network are reconsidered and

dropout layers and kernel regularisation are added to obviate overfitting and ensure

network convergence. This is distinctly observed in Figure 5.6 and Figure 5.7. The full

models’ architectures are listed in the evaluation section and they follow this validation

of loss curves and parameters optimisation.

The model is trained for the optimal number of iterations with the generated batch

of pairs as described in Algorithm 5.2. The number of iterations (2000, in this case)

is decided by monitoring the loss curves after performing parameter optimisation. The

batch size = 30, 000 is based on the literature recommendation for the advisable

Siamese network training batch size [277, 268]. It is important to note that the

classes are equally represented in both the training and testing batches and that pair

uniqueness is guaranteed. A “set” data structure is used so that a pair is added to the

batch of pairs unless that pair is already contained within the set, as demonstrated in

Algorithm 5.2. As outlined in the algorithm, the dataset should have at least 3 classes,

otherwise, the Siamese network model converges to a 50% similarity output and fails

to train adequately. This is because when there are only two classes, A and B for

example, the instances have a 0.5 probability of being similar [(A,A) or (B,B)] or

dissimilar [(A,B), (B,A)]. Since the dissimilar pairs resemble the same combination,

the similarity learning will converge to a 50% output (0.5 probability).

107

Algorithm 5.2 Siamese Network: Generate Training Batch
Input: Dataset of N classes, Batch Size
Output: Batch of similar and dissimilar pairs
and associated labels (0: dissimilar, 1: similar)

1: function GETTRAININGBATCH(batch size)
2: num similar pairs = batch size/2
3: num dissimilar pairs = batch size/2
4: num similar pairs per class = num similar pairs/N
5: all combinations = combinations(N)
6: num dissimilar pairs per combination

= num dissimilar pairs/len(all combinations)
7: pairs set← {}
8: for c in N do
9: for i = 0 to num similar pairs per class do

10: (ins1, ins2)← 2 random instances ∈ c training
11: if (ins1, ins2) ∈ pairs set then
12: go to 10
13: end if
14: pairs[i]← {ins1, ins2}
15: pairs set.add({ins1, ins2})
16: end for
17: end for
18: for c1, c2 in all combinations do
19: for i = 0 to num dissimilar pairs per combination do
20: ins1 ← random instance ∈ c1 training
21: ins2 ← random instance ∈ c2 training
22: if (ins1, ins2) ∈ pairs set then
23: go to 20
24: end if
25: pairs[i]← {ins1, ins2}
26: pairs set.add({ins1, ins2})
27: end for
28: end for
29: targets[0..batch size/2]← 1 . Similar
30: targets[batch size/2..batch size]← 0 . Dissimilar
31: return pairs, targets
32: end function

For the evaluation (Algorithm 5.3), an equal number of instances are used from each

class. For each new instance, a pair is selected for each class using the new instance

and a random instance from that class. The similarity is calculated for each pair and the

pair with the closest similarity contributes to the classification result. This process is

performed j times and voting is used to collate the results (j ∈ 1, 5, 10, 15, 20, 25, 30).

108

Algorithm 5.3 Siamese Network: Evaluate Classification
Input: Trained Siamese Network, Batch Size
Output: Classification Accuracy

1: function EVALCLASSIFICATION(batch size)
2: n correct← 0
3: num per class← batch size/N
4: for c in N do
5: for i = 0 to num per class do
6: ins1 ← random instance ∈ c testing
7: for j = 0 to 5 do
8: pairs← (ins1, random instance x∀x ∈ N)
9: similarities← model.predict(pairs)

10: votes[argmin(similarities)]+ = 1
11: end for
12: if argmax(votes) == c then
13: n correct+ = n correct+ 1
14: confusion matrix[c, argmax(votes)]+ = 1
15: end if
16: end for
17: end for
18: accuracy = n correct ∗ 100/batch size
19: return accuracy, confusion matrix
20: end function

5.5.2 Experiments and Results

The evaluation specifies how accurately the network can classify based on learning

similarities using a few samples from each class. The optimal hyperparameters of the

twin networks; ANN architecture (number of hidden layers and neurons), learning rate,

etc. are as follows (bold: input, italic: output of Siamese network before similarity

calculation, Dr: Dropout layer):

• Twin Networks Architecture:

– SCADA: In(10) : 8

– CICIDS2017: In(31) : 25 : Dr(0.1) : 20 : Dr(0.05) : 15

– NSL-KDD - KDD Cup’99:

In(118) : 98 : Dr(0.1) : 79 : Dr(0.1) : 59 : Dr(0.1) : 39 : Dr(0.1) : 20

• Activation: Relu

109

• L2 regularisation: 0.001

• Optimiser: Adam

• Number of epochs: 2000

• Loss: Constructive loss [258]

5.5.2.1 SCADA Dataset Results

The SCADA dataset classification Confusion Matrix (CM) is presented in Table 5.5.

A sample CM is presented in Table 5.4. Each row of the CM represents an actual

class and each column represents a predicted class, or vice versa. For the normal class

row, True Negative (TN) and False Positive (FP) are recorded, while for attack classes,

True Positive (TP) and False Negative (FN) are recorded. An ideal CM would have a

diagonal of 100%, where all classes’ instances are correctly classified/labelled.

Table 5.4
Sample Confusion Matrix

Predicted Class

Correct Normal Attack1 Attack2 Attack3 Attack4

Normal TN FP1 FP2 FP3 FP4

Attack1 FN1 TP11 TP12 TP13 TP14

Attack2 FN2 TP21 TP22 TP23 TP24

Attack3 FN3 TP31 TP32 TP33 TP34

Attack4 FN4 TP41 TP42 TP43 TP44

As shown in Table 5.5, the overall accuracy is 76.06% with j = 5. However, it

is seen that the classes either have high classification accuracy (reaching 100%) or a

low accuracy (less than 50%). The model accuracy using different j pairs for voting is

outlined in Table 5.6. It is important to highlight that a ZeroR [290] (baseline majority

classifier) will result in a classification accuracy of 7.14%, by classifying all instances

as the majority class. It should be noted as well that the classes in the raw input space,

are highly overlapping and that the dataset only contains the registers readings from

the PLC.

110

Table 5.5
Siamese Network: SCADA Classification Confusion Matrix (j = 5)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
969

(48.45%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

4
(0.2%)

110
(5.5%)

294
(14.7%)

0
(0%)

0
(0%)

376
(18.8%)

172
(8.6%)

0
(0%)

75
(3.75%)

76.06%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2
(0.1%)

1416
(70.8%)

6
(0.3%)

152
(7.6%)

0
(0%)

0
(0%)

111
(5.55%)

1
(0.05%)

312
(15.6%)

0
(0%)

S7
91

(4.55%)

469
(23.45%)

477
(23.85%)

0
(0%)

0
(0%)

5
(0.25%)

628
(31.4%)

0
(0%)

0
(0%)

0
(0%)

287
(14.35%)

24
(1.2%)

1
(0.05%)

18
(0.9%)

S8
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
312

(15.6%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

96
(4.8%)

122
(6.1%)

43
(2.15%)

0
(0%)

0
(0%)

1279
(63.95%)

122
(6.1%)

20
(1%)

3
(0.15%)

S12
306

(15.3%)

0
(0%)

0
(0%)

31
(1.55%)

0
(0%)

149
(7.45%)

60
(3%)

486
(24.3%)

0
(0%)

0
(0%)

423
(21.15%)

337
(16.85%)

201
(10.05%)

7
(0.35%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

83
(4.15%)

447
(22.35%)

0
(0%)

9
(0.45%)

0
(0%)

0
(0%)

26
(1.3%)

29
(1.45%)

1406
(70.3%)

0
(0%)

S14
115

(5.75%)

197
(9.85%)

0
(0%)

0
(0%)

1
(0.05%)

0
(0%)

29
(1.45%)

0
(0%)

328
(16.4%)

0
(0%)

55
(2.75%)

12
(0.6%)

0
(0%)

1263
(63.15%)

Table 5.6
Siamese Network: SCADA Classification Accuracy Using Different j Votes

No Votes Overall Normal

(j) Accuracy TNR FPR

1 72.23% 34.3% 65.7%

5 76.06% 48.45% 51.55%

10 77.77% 45.35% 54.65%

15 78.6% 46.65% 53.35%

20 79.18% 47.3% 52.7%

25 79.06% 46.75% 53.25%

30 79.21% 45.7% 54.3%

This overlap was evident in Section 4.4 through the variant classification accuracies,

which led to the use of classification confidence to reach a higher scenario classification

accuracy. This classes overlap is demonstrated further here by fitting a k-NN model

(with k=30, to compare with Siamese network when 30 pairs are used for majority

voting) to the data at the input space. It is noted that the k-NN model calculates the

111

distance between instances in their input space, while the Siamese network similarity

calculates the distance between the outputs of the twin networks. Figure 5.8 shows for

each class c, the number of wrongly labelled classes for instances of c (for example,

instances of “S6: 2 Floating Objects” are misclassified as 7 other classes for the k-NN

and 3 for the Siamese network). From Figure 5.8 it can be observed that the Siamese

network model has learned a transformation that reduces the overlap between classes,

justifying the performance improvements for classes S5: Humidity and S8-S10: Person

Hitting.

Furthermore, it can be seen that the classes which do not overlap (for example, S2,

S3: Blocked Measures and S4: DoS), have high classification accuracy. Finally, for

classes overlapping with more than 7 other classes, the Siamese network is able to

reduce the number of misclassified classes resulting from the overlap. However, “pair

similarity”, solely, did not achieve high classification accuracy for these classes.

Classes

C
ou

nt

0

2

4

6

8

10

12

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

S
14

k-NN SN

Figure 5.8
SCADA Dataset k-NN (k=30) and Siamese Network (SN) (30 pairs): Number of Wrong
Associated Classes During Classification

112

5.5.2.2 CICIDS2017 Dataset Results

The CM of the classification for the CICIDS2017 is presented in Table 5.7. As

presented, based only on pairs similarity, the overall accuracy is 83.74% with j = 5.

The different attack classes accuracies are 96.08%, 75.17%, 80.05%, and 76.55%,

respectively. Moreover, the low false negatives are presented in the first column. Also,

a small FPR for Normal (0.05%, 2.6%, 1.87%, and 4.62%) for the attack classes

respectively.

Table 5.7
Siamese Network: CICIDS2017 Classification Confusion Matrix (j = 5)

Predicted Class

Correct Normal
DoS

(Hulk)
DoS

(Slowloris)
FTP SSH Overall

Normal
5452

(90.87%)
3

(0.05%)

156
(2.6%)

112
(1.87%)

277
(4.62%)

83.74%
DoS

(Hulk)
139

(2.32%)

5765
(96.08%)

24
(0.4%)

13
(0.22%)

59
(0.98%)

DoS
(Slowloris)

914
(15.23%)

1
(0.02%)

4510
(75.17%)

71
(1.18%)

504
(8.4%)

FTP
790

(13.17%)

2
(0.03%)

95
(1.58%)

4803
(80.05%)

310
(5.17%)

SSH
973

(16.22%)

0
(0%)

227
(3.78%)

207
(3.45%)

4593
(76.55%)

Table 5.8
Siamese Network: CICIDS2017 Classification Accuracy Using Different j Votes

No Votes Overall Normal

(j) Accuracy TNR FPR

1 74.55% 70.43% 29.57%

5 83.74% 90.87% 9.13%

10 84.54% 92.58% 7.42%

15 84.63% 93.07% 6.93%

20 84.69% 93.55% 6.45%

25 84.69% 93.73% 6.27%

30 84.71% 93.85% 6.15%

113

Table 5.8 lists the overall accuracy, TNR, and FPR when using different j pairs

for voting. It is observed that using 5 pairs results in a distinctive rise in both the

overall accuracy (from 74.55% to 83.74%) and the TNR (from 70.43% to 90.87%)

than using 1 pair. The reason 1 pair performance is poor owes to the instance selection

randomness. The probability of selecting a representable pair increases as j increases,

therefore, increasing the likelihood of correct classification based on similarity. This

random selection process is also affected by the instances variance and outliers.

5.5.2.3 KDD Cup’99 and NSL-KDD Datasets Results

The CM of the classification for the KDD Cup’99 dataset is presented in Table 5.9.

As shown, the overall accuracy when j = 5 is 87.99% with a small portion of attack

classes misclassified as normal (0.1%, 0.97%, 0.27%, and 8% for the attack classes

respectively). Similar to the CICIDS2017 dataset, using 5 pairs results in a rise in the

accuracy and TNR as outlined in Table 5.10.

Table 5.9
Siamese Network: KDD Cup’99 Classification Confusion Matrix (j = 5)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4423

(73.72%)
9

(0.15%)

492
(8.2%)

979
(16.32%)

97
(1.62%)

87.99%DoS
6

(0.1%)

5920
(98.67%)

64
(1.07%)

10
(0.17%)

0
(0%)

Probe
58

(0.97%)

254
(4.23%)

5453
(90.88%)

222
(3.7%)

13
(0.22%)

R2L
16

(0.27%)

0
(0%)

39
(0.65%)

5786
(96.43%)

159
(2.65%)

U2R
480
(8%)

0
(0%)

685
(11.42%)

21
(0.35%)

4814
(80.23%)

114

Table 5.10
Siamese Network: KDD Cup’99 Classification Accuracy Using Different j Votes

No Votes Overall Normal

(j) Accuracy TNR FPR

1 82.03% 69.27% 30.73%

5 87.99% 73.72% 26.28%

10 88.26% 73.67% 26.33%

15 88.29% 73.63% 26.37%

20 88.26% 73.65% 26.35%

25 88.23% 73.6% 26.4%

30 88.24% 73.6% 26.4%

Training the Siamese network model on the NSL-KDD dataset, which is an

improved dataset based on the KDD Cup’99 (filtered where duplicates are removed),

did show a minor rise in the classification results. The CM of the NSL-KDD dataset

is presented in Table 5.11 and the different j votes performance is in Table 5.12.

The overall accuracy increased to 91.01% compared to 87.99% for the KDD Cup’99

dataset.

Table 5.11
Siamese Network: NSL-KDD Classification Confusion Matrix (j = 5)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
5187

(86.45%)
47

(0.78%)

300
(5%)

315
(5.25%)

151
(2.52%)

91.01%DoS
144
(2.4%)

5621
(93.68%)

217
(3.62%)

16
(0.27%)

2
(0.03%)

Probe
159

(2.65%)

643
(10.72%)

5133
(85.55%)

44
(0.73%)

21
(0.35%)

R2L
227

(3.78%)

0
(0%)

31
(0.52%)

5669
(94.48%)

73
(1.22%)

U2R
214

(3.57%)

0
(0%)

92
(1.53%)

2
(0.03%)

5692
(94.87%)

115

Table 5.12
Siamese Network: NSL-KDD Classification Accuracy Using Different j Votes

No Votes Overall Normal

(j) Accuracy TNR FPR

1 86.61% 80.47% 19.53%

5 91.01% 86.45% 13.55%

10 91.1% 86.45% 13.55%

15 91.17% 86.4% 13.6%

20 91.24% 86.47% 13.53%

25 91.26% 86.42% 13.58%

30 91.3% 86.53% 13.47%

By comparing the KDD Cup’99 dataset results to the NSL-KDD ones, the minor

improvement can explained by the learning approach of the Siamese network. Since

the Siamese network learns from similarities, rather than specific class features, it can

overcome the balancing or duplicate issues. The randomisation of choosing the training

batch pairs and ensuring the balanced representation of class pairs resolve this as well.

To the best of the author’s knowledge, there are no manuscripts that use Siamese

networks or leverage similarity-based One-Shot learning for IDS. However, the

performance of recent articles that use the aforementioned datasets is outlined below.

Comparing the performance of the models presented here with recent IDS models is

not straightforward, yet, their performance aid in the interpretation of the different

classes performance results.

Recent IDS articles evaluation is outlined in Table 5.13. These studies focus on

multi-class attack classification and report explicit class metrics, not only the overall

accuracy. It is important to note that by observing Table 5.13, it is evident that the

overall classification accuracy is higher than each class performance. This is due to

class imbalance problem. For example in [176], the TPR for the SSH and FTP attack

classes in the CICIDS2017 dataset are 0% and 3.1%, respectively, while the overall

accuracy is 96%. Similarly, the TPR for the R2L and U2R in the KDD Cup’99 dataset

116

is 24.3% and 15.5%, respectively, with an overall accuracy of 92.6%. Class imbalance

problem is a common problem with datasets and is considered relative to the degree of

imbalance, the overall dataset size, and the complexity of the data [291, 292]. Common

approaches to overcome class imbalance are upsizing, downsizing, and altering the

contribution of misclassifying under-sampled and over-sampled classes to the overall

accuracy [291, 292]. None of these methods have been used in the papers discussed

in Table 5.13, which resulted in both a gap between classes detection accuracy and

overall accuracy, and the misleading overall accuracy results. It is important to note

that the class imbalance problem did not pose a problem for the evaluation presented

in this Chapter. This is due to the fact that equal number of pairs are randomly selected

from a pool of instances, which ensures balance in training and testing.

With regards to the results presented in this section and those in Table 5.13, KDD

Cup’99 overall accuracy using the Siamese network model reaches 88% compared to

92.6% in [176] and 99.8% in [182]. However, by analysing the TPR of the different

classes, it is observed that the Siamese network experience higher TPR for the attack

classes. For example, the Siamese network model TPR of DoS, Probe, R2L and U2R

are 98.67%, 90.88%, 96.43%, and 80.23% compared to 99.9%, 98.9%, 96.9%, and

75% in [182], and 93.9%, 73.2%, 24.3% , and 15.5% in [176], respectively. Similarly,

the overall accuracy of the NSL-KDD reaches 91% for the Siamese network model

compared with 77.8% in [176] and 83.83% [293]. The TPR of DoS, Probe, R2L,

and U2R when using Siamese Network are 93.68%, 85.55%, 94.48%, and 94.87%

compared with 97.42%, 96.51%, 68.53%, and 95.14% in [177] and 86.63%, 83.73%,

35.15%, and 23.5% in [294]. Finally, the CICIDS2017 overall accuracy reaches 84%

using the Siamese network model, compared with 96% in [184]. The TPR of FTP and

SSH classes using the Siamese network model is 80.05% and 76.55% compared with

98% and 77% in [184] and 0% and 3.1% in [176].

117

Table 5.13
Recent IDS Studies for Multi-Class Classification Performance

Year/ Reference ML Technique Metric Result
CICIDS2017

2019 / [176]
Deep Neural

Network with 1
Layer

Accuracy Overall: 96%

TPR

Normal: 64.6%
SSH: 0%
FTP:3.1%

DDoS: 9.5%

2020 / [184]
Multi-layer
Perceptron

Recall SSH: 98%
FTP: 77%

KDD Cup’99

2019 / [176]
Deep Neural

Network with 1
Layer

Accuracy Overall: 92.6%

TPR

Normal: 99.4%
DoS: 93.9%

Probe: 73.2%
R2L: 24.3%
U2R: 15.5%

2020 / [182]
Ensemble

Model

Accuracy Overall: 99.8%

TPR

Normal: 99.99%
DoS: 99.99%
Probe: 98.9%
R2L: 96.9%
U2R: 75%

NSL-KDD

2019 / [177]
Multi-layer
Perceptron

Accuracy

Normal: 87.31%
DoS: 97.42%

Probe: 96.51%
R2L: 68.53%
U2R: 95.14%

2019 / [293] Ensemble model Overall KDDTest+: 83.83%
KDDTest-21: 78.33%

2019 / [176]
Deep Neural

Network with 1
Layer

Accuracy Overall: 77.8%

TPR

Normal: 97.3%
DoS: 77.7%
Probe: 61%
R2L: 43.3%
U2R: 24.1%

2020 / [294] Multi-CNN Recall

KDDTest+:
Normal: 91.19%

DoS: 86.63%
Probe: 83.73%
R2L: 35.15%
U2R: 23.50%
KDDTest-21:

Normal: 62.08%
DoS: 77.04%

Probe: 82.60%
R2L: 35.15%
U2R: 23.50%

118

5.6 Scenario 2: One-Shot Detection

In this section, the Siamese network is used as a One-Shot learning architecture. The

experiment evaluates the Siamese network performance on classifying a new cyber

attack class without the need for retraining. This new class is represented with a few

labelled samples. The experiment evaluates how accurate the similarity measure is,

showing the capability of the Siamese network to find similarity between pairs of

classes that were not used during the training process.

5.6.1 Methodology

Figure 5.9 shows the process of building the intrusion detection model and then

evaluating it with an additional class that is not used during training. The process is

similar to the one presented in Figure 5.4. However, the difference between both is

that a class e is excluded from the training classes as shown in Figure 5.9-1. Class

e is used to mimic a real-life situation in which a new attack is detected and only a

few samples of it are available. In situations where a few instances are not enough

to retrain a traditional IDS, there is still need to classify this new attack until enough

samples become available for retraining.

119

Yes No

Correct Class has
Highest Vote?

Correct
Classification False

For each testing instance ti

7- Evaluation

Calculate similarity with class pairs

Voting (pair with highest similarity)

Dataset
N classes

2- Split each class (except e) into
50% training
50% testing

6- Train Siamese Network using B

4- Generate Training Batch B with
 * M Similar Pairs
 equal number of pairs for each class
 * M Dissimilar Pairs
 equal number of pairs for all classes combinations

5- Generate Testing Batch T with t instances for each
class
 ti contains N*j pairs (j pairs with each class)

1- Choose class e to be
excluded from training

3- Split e into
50% testing (labelled)

50% testing (unknown)

 Mock new
attack with
few labelled
instances

Figure 5.9
Siamese Network for Intrusion Detection (One-Shot Learning)

Moreover, Algorithm 5.4 summarises the overall process of training and testing the

Siamese network model. The difference is in the evaluation process which is outlined

in Algorithm 5.5.

The instances of class e are split such that 50% represents the labelled samples (i.e.,

mock adding them to the pool of instances for Siamese network to pair with during

testing) and the other 50% are used as new instances to evaluate the accuracy.

120

Algorithm 5.4 Siamese Network: Usage Scenario 2 Train and Test Algorithm
Input: Attacks Dataset
Output: Trained Siamese Network Evaluation

Ensure: dataset = {c1, c2, . . . , cn : n ≥ 3}
1: train batch size, test batch size← 30, 000
2: n epochs← 2000
3: excluded class = random class e s.th. e ∈ dataset
4: training classes = dataset− e
5: training = 50% ci ∀ci ∈ training classes
6: testing = dataset ∩ training
7: batch← GETTRAININGBATCH(train batch size)
8: Build Siamese Network with Random Weights
9: for i = 0 to n iterations do

10: Update Siamese Network Weights based on batch
11: end for
12: EVALUATEONESHOT(test batch size)

Algorithm 5.5 Siamese Network: Evaluate One-Shot Model
Input: Trained Siamese Network, Batch Size, Excluded Class (e)
Output: Accuracy

1: function EVALUATEONESHOT(batch size)
2: n correct← 0
3: num per class← batch size/N
4: K ← N − e
5: for c in N do
6: for i = 0 to num per class do
7: if c == e then
8: ins1 ← random instance ∈ e unlabelled
9: else

10: ins1 ← random instance ∈ c testing
11: end if
12: for j = 0 to 5 do
13: pairs← (ins1, random instance x∀x ∈ K)
14: pairs.append(ins1, random instance ∈ e labelled
15: similarities← model.predict(pairs)
16: votes[argmin(similarities)]+ = 1
17: end for
18: if argmax(votes) == c then
19: n correct+ = n correct+ 1
20: end if
21: confusion matrix[c, argmax(votes)]+ = 1
22: end for
23: end for
24: accuracy = n correct ∗ 100/batch size
25: return accuracy, confusion matrix
26: end function

121

5.6.2 Experiments and Results

The evaluation specifies how accurately the Siamese network can utilise similarity

learning to classify: (i) the classes that are used in training and (ii) a new class that is

not used during training using few instances.

For the One-Shot evaluation, multiple experiments, specifically N − 1 where N

is the number of classes, are conducted to evaluate the performance of the Siamese

network when using a different set of attack classes for training and evaluation. In

each experiment, a different class of the dataset is excluded, one at a time.

5.6.2.1 SCADA Dataset Results

The SCADA One-Shot experimental results follow the same behaviour as discussed

in Section 5.5.2.1 where classes overlapping with less than seven other classes have

a high classification accuracy. The classes that are not overlapping with others, (for

example, DoS and Blocked Measures) show high TPR when introduced after training

(acting as the new class). Table 5.14 and Table 5.15 list the CM and the different pairs

performance for the first Blocked Measure class, while Table 5.16 and Table 5.17 list

for the DoS attack class. The detection rate of Blocked Measure 1 when 1 pair is used

is 100%, as shown in Table 5.15. Similarly, the detection rate of DoS is 100% as shown

in Table 5.17. Both the CM of One-Shot learning when excluding different classes, and

the CM of classification, demonstrate the disparity of detection rates between classes,

showing the high rates for classes that do not overlap or overlap with less than seven

classes, and low rates otherwise.

122

Table 5.14
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Blocked Measure 1 excluded
from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
1181

(59.05%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

393
(19.65%)

0
(0%)

0
(0%)

225
(11.25%)

201
(10.05%)

0
(0%)

0
(0%)

78.86%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1980
(99%)

20
(1%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S7
0
(0%)

0
(0%)

565
(28.25%)

0
(0%)

0
(0%)

82
(4.1%)

590
(29.5%)

0
(0%)

0
(0%)

0
(0%)

11
(0.55%)

6
(0.3%)

742
(37.1%)

4
(0.2%)

S8
8

(0.4%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1987
(99.35%)

0
(0%)

0
(0%)

5
(0.25%)

0
(0%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
489

(24.45%)

37
(1.85%)

0
(0%)

0
(0%)

0
(0%)

19
(0.95%)

4
(0.2%)

357
(17.85%)

0
(0%)

0
(0%)

764
(38.2%)

92
(4.6%)

238
(11.9%)

0
(0%)

S12
476

(23.8%)

0
(0%)

0
(0%)

0
(0%)

120
(6%)

0
(0%)

7
(0.35%)

384
(19.2%)

0
(0%)

0
(0%)

217
(10.85%)

290
(14.5%)

222
(11.1%)

284
(14.2%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

25
(1.25%)

0
(0%)

0
(0%)

0
(0%)

6
(0.3%)

1
(0.05%)

1966
(98.3%)

2
(0.1%)

S14
0
(0%)

323
(16.15%)

0
(0%)

0
(0%)

51
(2.55%)

0
(0%)

11
(0.55%)

31
(1.55%)

0
(0%)

0
(0%)

0
(0%)

71
(3.55%)

189
(9.45%)

1324
(66.2%)

Table 5.15
Siamese Network: SCADA One-Shot Accuracy (Blocked Measure 1 excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(S2)
Normal

(j) Accuracy TPR FNR TNR FPR

1 76.65% 100% 0% 40.65% 59.35%

5 78.86% 100% 0% 59.05% 40.95%

10 79.62% 100% 0% 63.5% 36.5%

15 80.13% 100% 0% 66.5% 33.5%

20 80.2% 100% 0% 67.85% 32.15%

25 80.21% 100% 0% 67.7% 32.3%

30 80.28% 100% 0% 69.05% 30.95%

123

Table 5.16
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (DoS excluded from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
1297

(64.85%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

19
(0.95%)

78
(3.9%)

95
(4.75%)

0
(0%)

0
(0%)

326
(16.3%)

162
(8.1%)

12
(0.6%)

11
(0.55%)

80.09%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1971
(98.55%)

17
(0.85%)

0
(0%)

0
(0%)

0
(0%)

12
(0.6%)

0
(0%)

0
(0%)

0
(0%)

S7
273

(13.65%)

0
(0%)

454
(22.7%)

0
(0%)

0
(0%)

87
(4.35%)

697
(34.85%)

0
(0%)

0
(0%)

0
(0%)

332
(16.6%)

16
(0.8%)

135
(6.75%)

6
(0.3%)

S8
1

(0.05%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1999
(99.95%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
535

(26.75%)

49
(2.45%)

0
(0%)

0
(0%)

0
(0%)

158
(7.9%)

164
(8.2%)

39
(1.95%)

0
(0%)

0
(0%)

726
(36.3%)

87
(4.35%)

229
(11.45%)

13
(0.65%)

S12
674

(33.7%)

0
(0%)

0
(0%)

0
(0%)

410
(20.5%)

28
(1.4%)

25
(1.25%)

64
(3.2%)

0
(0%)

0
(0%)

253
(12.65%)

317
(15.85%)

227
(11.35%)

2
(0.1%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2
(0.1%)

2
(0.1%)

1996
(99.8%)

0
(0%)

S14
32

(1.6%)

319
(15.95%)

0
(0%)

0
(0%)

26
(1.3%)

15
(0.75%)

24
(1.2%)

27
(1.35%)

0
(0%)

0
(0%)

130
(6.5%)

5
(0.25%)

0
(0%)

1422
(71.1%)

Table 5.17
Siamese Network: SCADA One-Shot Accuracy (DoS excluded from Training) Using Different
j Votes

No Votes Overall
New Class

(S4)
Normal

(j) Accuracy TPR FNR TNR FPR

1 77.58% 100% 0% 40.15% 59.85%

5 80.09% 100% 0% 64.85% 35.15%

10 81.25% 100% 0% 70.9% 29.1%

15 82.13% 100% 0% 75.9% 24.1%

20 82.34% 100% 0% 76.85% 23.15%

25 82.78% 100% 0% 80.15% 19.85%

30 82.88% 100% 0% 81.4% 18.6%

Classes where the overlapping covers less than half of the other classes (humidity

and different hitting intensities, for example) show high accuracy TPR when

introduced after training. This is shown in Table 5.18 and Table 5.19 for person hitting

with high intensity class. The detection rate rises from 55.05% when using one pair

to 71.95% when using 5 pairs and reaches its highest of 87% when using 30 pairs.

124

Finally, classes with high overlap encounter low TPR, similar to their classification

accuracy whether they are introduced during training or post training. For example,

Wrong Connection is not detected when introduced after training, and all its instances

are misclassified as other anomaly scenarios. For completeness, the full CM tables are

listed in Appendix D.1.

Table 5.18
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Person Hitting High Intensity
excluded from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
539

(26.95%)
0
(0%)

0
(0%)

0
(0%)

103
(5.15%)

416
(20.8%)

33
(1.65%)

623
(31.15%)

0
(0%)

0
(0%)

183
(9.15%)

66
(3.3%)

29
(1.45%)

8
(0.4%)

66.69%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

1998
(99.9%)

2
(0.1%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

393
(19.65%)

1607
(80.35%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
182
(9.1%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1495
(74.75%)

5
(0.25%)

19
(0.95%)

0
(0%)

0
(0%)

45
(2.25%)

55
(2.75%)

199
(9.95%)

0
(0%)

S7
58

(2.9%)

28
(1.4%)

533
(26.65%)

153
(7.65%)

325
(16.25%)

23
(1.15%)

411
(20.55%)

60
(3%)

3
(0.15%)

148
(7.4%)

105
(5.25%)

30
(1.5%)

104
(5.2%)

19
(0.95%)

S8
295

(14.75%)

2
(0.1%)

0
(0%)

0
(0%)

0
(0%)

116
(5.8%)

1
(0.05%)

1439
(71.95%)

0
(0%)

33
(1.65%)

28
(1.4%)

71
(3.55%)

6
(0.3%)

9
(0.45%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
293

(14.65%)

0
(0%)

0
(0%)

10
(0.5%)

5
(0.25%)

132
(6.6%)

32
(1.6%)

212
(10.6%)

0
(0%)

0
(0%)

574
(28.7%)

54
(2.7%)

630
(31.5%)

58
(2.9%)

S12
318

(15.9%)

0
(0%)

0
(0%)

0
(0%)

80
(4%)

200
(10%)

20
(1%)

642
(32.1%)

0
(0%)

0
(0%)

175
(8.75%)

206
(10.3%)

357
(17.85%)

2
(0.1%)

S13
14

(0.7%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

200
(10%)

29
(1.45%)

0
(0%)

0
(0%)

0
(0%)

544
(27.2%)

122
(6.1%)

1089
(54.45%)

2
(0.1%)

S14
74

(3.7%)

363
(18.15%)

0
(0%)

100
(5%)

16
(0.8%)

29
(1.45%)

11
(0.55%)

0
(0%)

0
(0%)

0
(0%)

60
(3%)

13
(0.65%)

18
(0.9%)

1316
(65.8%)

Table 5.19
Siamese Network: SCADA One-Shot Accuracy (Person Hitting High Intensity excluded from
Training) Using Different j Votes

No Votes Overall
New Class

(S8)
Normal

(j) Accuracy TPR FNR TNR FPR

1 63.63% 55.05% 17.65% 21.65% 78.35%

5 66.69% 71.95% 14.75% 26.95% 73.05%

10 67.85% 79.9% 7.65% 24.05% 75.95%

15 68.22% 83.45% 5.15% 22.1% 77.9%

20 68.34% 85.6% 3.2% 21.45% 78.55%

25 68.43% 86.6% 2.95% 21% 79%

30 68.47% 87% 2.8% 20.5% 79.5%

125

5.6.2.2 CICIDS2017 Dataset Results

The CM of the CICIDS2017 dataset when excluding SSH class is presented in

Table 5.20 and excluding FTP in Table 5.22. The overall accuracy is 81.28% and

82.5%, respectively. The overall accuracy demonstrates that the network performance

was not disturbed by the attack class addition post training when compared to 83.74%

classification accuracy when all classes are used in training and testing (Table 5.7). It

is important to note that the new attack class performance is 73.03% and 70.03% for

SSH and FTP, respectively when using 5 pairs. Moreover, the added class demonstrates

low False Negative Rate (FNR), specifically 8.63% and 15.4% for FTP and SSH,

respectively. .

Table 5.21 and Table 5.23 present the evaluation results, showing the performance

impact the number of labelled samples (j) of the new attack class e has. This is shown

in terms of overall accuracy, new attack TPR, FNR, Normal TNR and FPR, using j

instances for majority voting, where j ∈ 1, 5, 10, 15, 20, 25, 30.

Using five labelled instances of the new attack class results in an increase in the

overall accuracy and the TPR accompanied with a drop in the FNR. Using only 1

labelled instance demonstrates a comparably poorer performance owing to the instance

selection randomness, which could result in either a good or a bad class representative.

However, using five random labelled instances boosts performance, reinforcing the

importance of having distinctive class representatives. This is further demonstrated

in the steady rise of the TPR when more pairs are used. For example, the SSH

TPR rises as follows; 64.10%, 73.03%, 77.82%, 78.33%, 78.30%, and 78.45% for

j ∈ (1, 5, 10, 15, 20, 25, 30), respectively. In a similar fashion, the TPR of the FTP

class rises from 56.65% when using one pair to 78.48% when using 30 pairs.

126

Table 5.20
Siamese Network: CICIDS2017 One-Shot Confusion Matrix (j = 5) (SSH excluded from
training)

Predicted Class

Correct Normal
DoS

(Hulk)
DoS

(Slowloris)
FTP SSH Overall

Normal
4711

(78.52%)
9

(0.15%)

103
(1.72%)

148
(2.47%)

1029
(17.15%)

81.28%
DoS

(Hulk)
93

(1.55%)

5745
(95.75%)

33
(0.55%)

43
(0.72%)

86
(1.43%)

DoS
(Slowloris)

507
(8.45%)

0
(0%)

4668
(77.8%)

143
(2.38%)

682
(11.37%)

FTP
643

(10.72%)

1
(0.02%)

127
(2.12%)

4879
(81.32%)

350
(5.83%)

SSH
924

(15.4%)

34
(0.57%)

310
(5.17%)

350
(5.83%)

4382
(73.03%)

Table 5.21
Siamese Network: CICIDS2017 One-Shot Accuracy (SSH excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(SSH)
Normal

(j) Accuracy TPR FNR TNR FPR

1 72.72% 64.10% 16.43% 63.35% 36.65%

5 81.28% 73.03% 15.40% 78.52% 21.48%

10 82.56% 77.82% 13.40% 79.95% 20.05%

15 82.58% 78.43% 13.03% 79.92% 20.08%

20 82.49% 78.33% 13.18% 79.97% 20.03%

25 82.43% 78.30% 13.25% 79.78% 20.22%

30 82.49% 78.45% 13.13% 79.97% 20.03%

127

Table 5.22
Siamese Network: CICIDS2017 One-Shot Confusion Matrix (j = 5) (FTP excluded from
training)

Predicted Class

Correct Normal
DoS

(Hulk)
DoS

(Slowloris)
FTP SSH Overall

Normal
5231

(87.18%)
3

(0.05%)

152
(2.53%)

189
(3.15%)

425
(7.08%)

82.5%
DoS

(Hulk)
70

(1.17%)

5755
(95.92%)

48
(0.8%)

15
(0.25%)

112
(1.87%)

DoS
(Slowloris)

424
(7.07%)

1
(0.02%)

4433
(73.88%)

485
(8.08%)

657
(10.95%)

FTP
518

(8.63%)

1
(0.02%)

659
(10.98%)

4202
(70.03%)

620
(10.33%)

SSH
546
(9.1%)

3
(0.05%)

198
(3.3%)

124
(2.07%)

5129
(85.48%)

Table 5.23
Siamese Network: CICIDS2017 One-Shot Accuracy (FTP excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(FTP)
Normal

(j) Accuracy TPR FNR TNR FPR

1 72.91% 59.65% 8.03% 72.83% 27.17%

5 82.5% 70.03% 8.63% 87.18% 12.82%

10 84.57% 72.80% 8.32% 87.70% 12.30%

15 85.47% 76.72% 8.12% 87.40% 12.60%

20 85.78% 77.58% 8.10% 87.23% 12.77%

25 85.86% 78.27% 8.10% 86.92% 13.08%

30 85.94% 78.48% 8.00% 86.73% 13.27%

For transparency and reproducibility, the rest of the CICIDS2017 performance

evaluation tables are listed in Appendix D.2 and they follow similar performance

behaviour. DoS (Slowloris) result tables is listed in Table D.21 and Table D.22.

The TPR rises from 50.97% when using one pair to 72.82% when using 30 pairs.

DoS (Hulk) results are listed in Table D.23 and Table D.24, where the TPR rises from

91.07% when using one pair to 95.18% when using 30 pairs.

128

5.6.2.3 KDD Cup’99 and NSL-KDD Datasets Results

The CM of the KDD Cup’99 and NSL-KDD datasets One-Shot when DoS class is

excluded from training are presented in Table 5.24 and Table 5.26, respectively. As

observed, the overall accuracies are 76.67% and 77.99%, respectively. It is important

to note, however, that the FNR for the new class (i.e. DoS) are 26.38% for the

KDD Cup’99 and 9.87% for the NSL-KDD and the TPR are 40.28% and 78.87%

respectively. These percentages clearly demonstrate that the NSL-KDD results are

higher because it is an enhanced version of the KDD Cup’99. Given that the new

class is not used in training, having a better representation of instances shows a better

performance (i.e., NSL-KDD outperforms KDD Cup’99).

Table 5.24
Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (j = 5) (DoS excluded from
Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4562

(76.03%)
243

(4.05%)

522
(8.7%)

579
(9.65%)

94
(1.57%)

76.67%DoS
1583

(26.38%)

2417
(40.28%)

1831
(30.52%)

168
(2.8%)

1
(0.02%)

Probe
159

(2.65%)

214
(3.57%)

5367
(89.45%)

242
(4.03%)

18
(0.3%)

R2L
56

(0.93%)

275
(4.58%)

10
(0.17%)

5571
(92.85%)

88
(1.47%)

U2R
17

(0.28%)

205
(3.42%)

655
(10.92%)

40
(0.67%)

5083
(84.72%)

129

Table 5.25
Siamese Network: KDD Cup’99 One-Shot Accuracy (DoS excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(DoS)
Normal

(j) Accuracy TPR FNR TNR FPR

1 66.89% 41.67% 22.50% 66.35% 33.65%

5 76.67% 40.28% 26.38% 76.03% 23.97%

10 77.57% 40.07% 27.25% 76.10% 23.90%

15 77.67% 39.90% 27.32% 76.02% 23.98%

20 77.68% 39.93% 27.38% 76.02% 23.98%

25 77.68% 39.87% 27.40% 76.07% 23.93%

30 77.68% 39.88% 27.40% 76.03% 23.97%

Table 5.26
Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix (j = 5) (DoS excluded
from Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
5593

(93.22%)
61

(1.02%)

136
(2.27%)

122
(2.03%)

88
(1.47%)

77.99%DoS
592

(9.87%)

4732
(78.87%)

653
(10.88%)

12
(0.2%)

11
(0.18%)

Probe
67

(1.12%)

3305
(55.08%)

2595
(43.25%)

19
(0.32%)

14
(0.23%)

R2L
212

(3.53%)

7
(0.12%)

27
(0.45%)

5692
(94.87%)

62
(1.03%)

U2R
486
(8.1%)

6
(0.1%)

31
(0.52%)

693
(11.55%)

4784
(79.73%)

130

Table 5.27
Siamese Network: NSL-KDD One-Shot Accuracy (DoS excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(DoS)
Normal

(j) Accuracy TPR FNR TNR FPR

1 72.75% 67.35% 9.05% 84.87% 15.13%

5 77.99% 78.87% 9.87% 93.22% 6.78%

10 77.7% 84.62% 9.87% 93.35% 6.65%

15 79.05% 83.78% 9.87% 93.32% 6.68%

20 78.63% 85.25% 9.87% 93.37% 6.63%

25 79.49% 84.62% 9.87% 93.35% 6.65%

30 79.12% 85.37% 9.87% 93.35% 6.65%

For transparency and reproducibility, the rest of the KDD Cup’99 and NSL-KDD

dataset result tables are listed in Appendix D.3 and Appendix D.4, respectively.

5.7 Scenario 3: Zero-Day Attacks Detection

In this section, the IDS model relies on the similarity-based learning of the Siamese

network to detect zero-day attacks. The experiment evaluates how accurate the

similarity measure can detect attacks that are dissimilar to all classes involved during

the training process, i.e. zero-day attacks. Zero-Day attacks are flagged when their

similarity, with all known classes, is below a certain threshold. The threshold is decided

based on the model optimisation and training.

The distinction between One-Shot (Section 5.6) and zero-day detection presented

in this section is that, in the One-Shot scenario, newly detected attacks have a few

labelled instances that are not sufficient for retraining, while in a zero-day detection

scenario, there are no available data for the new attack. Therefore, the model is utilised

to detect instances that do not match any of the known classes. After the instances are

flagged as unknown, they can be filtered and labelled with the help of other methods

(experts for example) and then can be used for the learning of IDS.

131

5.7.1 Methodology

Figure 5.10 shows the process of building the intrusion detection model and how

its similarity learning approach is applied to detect unknown attacks (i.e. zero-day

attacks). The process is similar to Figure 5.9, however, after excluding class e, it is not

assumed that any of its labelled instances are available, thus is not used in the testing

pool of instances. During the evaluation process, a similarity threshold is used. If the

Yes No

Correct Class has
Highest Vote OR

Class is e and
Highest vote is

Zero-Day?

Correct
Classification False

For each testing instance ti

6- Evaluation

Calculate similarity with class pairs

Yes No

Highest
Similarity <
 Threshold

Vote for Zero-
Day attack

Vote for highest
similarity class

Dataset
N classes

2- Split each class (except e) into
50% training
50% testing

5- Train Siamese Network using B

3- Generate Training Batch B with
 * M Similar Pairs
 equal number of pairs for each class
 * M Dissimilar Pairs
 equal number of pairs for all classes combinations

4- Generate Testing Batch T with t instances for each
class N
 ti contains (N-1)*j pairs (j pairs with each class
except e)

1- Choose class e to be
excluded from training

Figure 5.10
Siamese Network for Intrusion Detection (Zero-Day Detection)

132

similarity is larger than the threshold, then the instance is suspected to be a zero-day

attack (knowing that the similarity/distance output is in the range [0 - 1]; the closer

the value to 0, the more similar the pair is and dissimilar pairs are closer to 1). The

determined threshold is stated for each dataset accordingly in the following sections.

The overall algorithm is the same as Algorithm 5.4 except that a different evaluation

function is called. The evaluation function is described in Algorithm 5.6.

Algorithm 5.6 Siamese Network: Evaluate Zero-Day
Input: Trained Siamese Network, Batch Size, Excluded Class (e), Threshold (th)
Output: Zero-Day Detection Accuracy

1: function EVALZERODAYDETECTION(batch size)
2: n correct← 0
3: num per class← batch size/N
4: K ← N − e
5: for c in N do
6: for i = 0 to num per class do
7: ins1 ← random instance ∈ c
8: for j = 0 to 5 do
9: pairs← (ins1, random instance ∈ K)

10: similarities← model.predict(pairs)
11: if similarities[argmin(similarities)] < th then
12: votes[zero day]+ = 1
13: else
14: votes[argmin(similarities)]+ = 1
15: end if
16: end for
17: if argmax(votes) == c OR c == e AND argmax(votes) == zero day

then
18: n correct+ = n correct+ 1
19: end if
20: end for
21: end for
22: accuracy = n correct ∗ 100/batch size
23: return accuracy
24: end function

133

5.7.2 Experiments and Results

5.7.2.1 SCADA Dataset Results

Based on the limitations regarding the SCADA dataset that was discussed in the

classification results (Section 5.5.2.1) and the One-Shot results (Section 5.6.2.1),

similarity-based zero-day detection is not anticipated to develop high detection

accuracies. However, for the completeness benefit, the SCADA results are outlined

in this section.

For instance, Table 5.28 and Table 5.29 present the results when person hitting with

high intensity and DoS classes are used to mimic zero-day attacks, respectively. Each

table lists the overall accuracy using different number of pairs for voting alongside the

percentage of attack instances flagged as unknown (i.e. zero-day correctly classified)

and as benign (i.e. zero-day attack classified as normal behaviour). Then, the tables

show the same for the benign class instances, the percentage of classification as

unknown and as benign. Finally, the percentage of known attacks (the ones used during

training) that are classified as zero-day is listed.

Table 5.28
Siamese Network: SCADA Zero-Day Accuracy (Person Hitting High Intensity excluded from
Training) Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S8)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 61.69% 50.8% 22.3% 23.65% 25.9% 10.59%

5 64.46% 44.1% 33.35% 33.1% 22.1% 9.25%

10 64.38% 64.5% 22.1% 20.45% 47.5% 13.48%

15 65.49% 55.65% 30.55% 26.05% 35.9% 11.05%

20 65.25% 67.45% 22.25% 19.3% 49.7% 13.11%

25 65.1% 74.05% 17.8% 13.65% 58.25% 14.57%

30 65.57% 69.85% 21.3% 17.7% 51.15% 13.1%

134

Table 5.29
Siamese Network: SCADA Zero-Day Accuracy (DoS excluded from Training) Using Different
j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S4)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 76.64% 100% 0% 40.15% 5.6% 4.75%

5 79.32% 100% 0% 63.3% 3.05% 4.15%

10 78.8% 100% 0% 60.65% 16% 6.55%

15 80.59% 100% 0% 71.75% 6.35% 4.8%

20 79.99% 100% 0% 70.65% 11.4% 5.91%

25 79.72% 100% 0% 69.45% 16.65% 6.77%

30 80.6% 100% 0% 75.2% 10.2% 5.63%

The overall accuracy falls in the same range as the one reported in the classification

and One-Shot sections, which reach 65.57% and 80.6%. Furthermore, it is observed

in Table 5.28 and Table 5.29 that the zero-day class detection accuracies reached

74.05% and 100% for S8 and S4, respectively. Also, the percentage of attacks detected

as benign is around 20% and 0%, respectively and the percentage of known attacks

detected as zero-day attacks reach a maximum of 14.57% and 6.77%, respective. This

is crucial as it conveys these attacks were misclassified as other attack classes which

ensures detection and the chance for taking corrective and mitigation actions. The rest

of the result tables are listed in Appendix E.1. The results show that the similarity, in

this case, does not flag zero-day attacks effectively. This is not only because of the

classes overlap problem, but also due to the scarcity of features in the SCADA dataset.

The dataset provides the sensors recordings only [81].

135

5.7.2.2 CICIDS2017 Dataset Results

The CICIDS2017 dataset encounters the highest performance in terms of zero-day

detection. When excluding SSH brute-force attack class from training and using it

to mimic zero-day attacks, 84.8% of the new class instances are correctly detected

as unknown. The overall accuracy reached 82.4% as demonstrated in Table 5.30.

Moreover, 9.85% of the known attacks are detected as unknown.

Similarly, when DoS (Hulk) class is used to mimic a zero-day attack, 94.17% of

the zero-day attack is detected as unknown with an overall accuracy of 76.14%. The

performance is outlined in Table 5.31. For completeness, the CICIDS2017 result tables

when other attack classes mimic zero-day attacks are listed in Appendix E.2. FTP

class experiences a low zero-day detection accuracy and the instances are misclassified

as other attack classes, with a very low classification of [3-5]% as normal. DoS

(Slowloros) class, on the other hand, reaches a zero-day detection accuracy of 88.88%.

Table 5.30
Siamese Network: CICIDS2017 Zero-Day Accuracy (SSH excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(SSH)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 65.98% 65.28% 18.13% 44.73% 44.83% 20.74%

5 77.74% 65.75% 21.72% 67.52% 28.17% 7.97%

10 80.35% 82.23% 11.1% 64.82% 33.67% 9.91%

15 81.48% 79.57% 13.82% 72.95% 25.6% 8.86%

20 81.87% 84.3% 9.93% 70.65% 28.37% 9.67%

25 81.92% 85.92% 8.45% 69.45% 29.67% 10.06%

30 82.44% 84.8% 9.58% 73.13% 25.98% 9.58%

136

Table 5.31
Siamese Network: CICIDS2017 Zero-Day Accuracy (DoS (Hulk) excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(DoS (Hulk))

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 57.47% 82.28% 15.88% 38.97% 50.85% 35.14%

5 71.53% 78.83% 19.82% 61.37% 33.37% 17.8%

10 73.13% 90.43% 8.57% 57.85% 39.5% 20.66%

15 74.83% 87.42% 11.53% 67.62% 29.77% 19.3%

20 75.28% 93.07% 5.95% 64.85% 32.83% 20.26%

25 75.48% 95.4% 3.62% 63.72% 34.12% 20.73%

30 76.14% 94.17% 4.82% 68.12% 29.72% 20.27%

5.7.2.3 KDD Cup’99 and NSL-KDD Datasets Results

The zero-day attack detection results of the KDD Cup’99 and NSL-KDD datasets

when R2L is excluded from training are presented in Table 5.32 and Table 5.33,

respectively.

As shown, the overall accuracy reaches 72.98% and 71.04% using 30 pairs in

voting. More importantly, the 85.85%, and 72.83% of the R2L class (zero-day class)

are correctly flagged as unknown. Around 25-30% of the known attack instances are

classified as unknown attacks. The rest of the classes zero-day detection result tables

are presented in Appendix E.3 and Appendix E.4.

137

Table 5.32
Siamese Network: KDD Cup’99 Zero-Day Accuracy (R2L excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(R2L)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 58.1% 87.98% 8.6% 44.4% 46.9% 42.36%

5 71.65% 86.03% 10.1% 62.27% 27.83% 25.67%

10 72.39% 86.27% 9.9% 63.7% 26.5% 25.38%

15 73% 85.92% 10.22% 64.93% 25.02% 24.52%

20 72.97% 85.88% 10.25% 65.07% 24.98% 24.62%

25 72.97% 85.88% 10.25% 65.13% 24.9% 24.64%

30 72.98% 85.85% 10.28% 65.15% 24.87% 24.62%

Table 5.33
Siamese Network: NSL-KDD Zero-Day Accuracy (R2L excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(R2L)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 56.7% 78.73% 14.42% 62.37% 36.1% 51.33%

5 69.44% 72.87% 18.03% 79.18% 20.38% 33.69%

10 69.62% 73.1% 18.12% 79.72% 20% 33.65%

15 70.87% 72.72% 18.15% 79.82% 19.88% 31.46%

20 70.82% 72.85% 18.13% 79.77% 19.95% 31.58%

25 70.81% 72.85% 18.12% 79.75% 19.97% 31.58%

30 71.04% 72.83% 18.13% 79.77% 19.93% 31.19%

138

5.8 Summary

In this chapter, a novel IDS implementation that leverages One-Shot learning was

presented. The models were built using Siamese networks. The objective is to build

models that can learn using a limited number of instances. To achieve this goal, three

usage scenarios were proposed and evaluated using four datasets. The datasets covered

CI networks and general-purpose networks as well.

In the first usage scenario, a Siamese network is trained to classify attacks

using limited instances during training. The aim is to evaluate to applicability of

similarity-based learning for cybersecurity use. ANN were used as the building

block of the Siamese twin networks and random search hyperparameter optimisation

alongside the literature hyperparameters values recommendations [277, 276] are

performed and loss curves are monitored to ensure the network convergence. The

results demonstrated that similarity-based learning using Siamese networks is indeed

applicable for cybersecurity use. However, a trade-off was encountered between the

number of overlapping classes and the effectiveness of the similarity-based learning.

This was demonstrated in the performance of the SCADA dataset, where some classes

classification accuracy reached 100%, while others were below 50%. The CICIDS2017

dataset experienced the highest classification accuracy that reached 84.771% with a

FPR of 6.15%.

In the second usage scenario, the Siamese network is trained using N − 1 classes.

After training, a class was added to the network without retraining. The new class

represents the case where a new attack is identified and a few labelled instances are

available to represent it, however, the instances are not enough to train IDS model.

In this case, the Siamese network model is evaluated on its adaptability to correctly

classify known attacks (the ones that were used during training) and a new attack.

The classification accuracy of attacks that were excluded from the training process

demonstrated the applicability of this approach. For the CICIDS2017 dataset, The

139

SSH Brute-force classification, when mimicking a new attack, reached 78.45% while

the FTP Brute-force reached 78.48%. The NSL-KDD and the KDD Cup’99 datasets

results confirmed the significance of having a few, yet representable, instances to

represent the new cyber attack class. This can be observed in the DoS classification

accuracy that rose from 39.88% to 85.37% for the NSL-KDD dataset.

Finally, in the third usage scenario, the Siamese network is further utilised by

leveraging the similarity to detect zero-day attacks. In this case, the new cyber attack

is assumed to be unknown and no instances exists to represent it. The similarity-based

comparison then discriminates instances that fall out of the accepted similarity

threshold. The Siamese network was capable of discriminating 84.8% of the SSH and

94.17% of the DoS (Hulk) attacks in the CICIDS2017.

Overall, the experiments and results demonstrate the ability of the proposed

Siamese network model to classify cyber attacks based on learning from similarity.

Furthermore, the results show the ability of the model to adapt to new cyber attacks

and zero-day attacks without the need for retraining. The code is available on GitHub

at https://github.com/AbertayMachineLearningGroup/siamese-network-for-IDS.

140

https://github.com/AbertayMachineLearningGroup/siamese-network-for-IDS

Chapter 6

Outlier-Based Zero-Day Attacks

Detection

6.1 Problem Statement

Detecting zero-day cyber attacks is a challenging task due to their complexity and

the pace at which they evolve and emerge [295]. Current ML-based IDS achieve

high detection accuracy for known attacks, but they are less effective at detecting

unknown zero-day attacks. This is due to the limitations of the models employed

by current IDS. With the advancement of ML and DL in domains like image and

video processing, Natural Language Processing (NLP), etc., researchers started to

leverage these techniques for cybersecurity usage. Nguyen and Reddi [296] discuss the

importance and benefit ML can bring to cybersecurity by granting a “robust resistance”

against attacks.

As defined by Chapman, a zero-day attack is “a traffic pattern of interest that

in general has no matching patterns in malware or attack detection elements in the

network” [297]. Bilge and Dumitras [298] discuss the implications of zero-day attacks

in the real world focusing on their impact and prevalence. The authors highlight

141

that zero-day attacks are significantly more prevalent than suspected, demonstrating

that out of the 18 attacks they analysed, 11 (61%) were previously unknown [298].

Furthermore, based on the authors’ findings, a zero-day attack can exist for a

substantial period of time, with an average of 10 months [298], before being detected,

thus compromising the target system during that period. The number of zero-day

attacks encountered in 2019 exceeds the previously reported figures of the last three

years [299]. As a result of all these discussed dimensions, there is a need for an

effective detection for zero-day attacks.

In Chapter 5, Siamese networks were utilised to detect zero-day attacks alongside

classifying known attacks. The Siamese network was used to flag instances that are

dissimilar to all known classes (benign and known attacks) as zero-day attacks.

Recent research uses outlier-based techniques to detect zero-day attacks (i.e.,

instances/occurrences that vary from benign traffic). However, the main drawback

of current outlier-based IDS research is that they have relatively low accuracy rates

as a result of both high FPR and high FNR [300]. The high FNR leaves the

system vulnerable to cyber attacks [301] and the high FPR needlessly consumes the

time of cybersecurity operation centres, leading to “alert fatigue” or “cybersecurity

fatigue” [302]. This is evidenced in a study by Cisco that shows that only 28% of

the investigated intrusions are real [301]. Therefore, this limits the performance and

practicality of deploying the models in real-life.

This chapter focuses on building a model that is capable of detecting zero-day

attacks efficiently. The aim is to build models with high detection rates while

keeping the false-negatives to a minimum. The proposed methodology leverages the

encoding-decoding of autoencoders, which benefits from their training technique that

minimises the reconstruction error. By training using benign traffic only, the model can

flag unknown attacks. To further demonstrate the efficiency of the autoencoder model,

besides comparing the results with recent research, the results are compared against

142

a One-Class SVM. One-Class SVM is considered one of the robust novelty detection

models and has proven its effectiveness and high accuracy in the literature [303].

6.2 Background

The two models that are utilised in this part of the research are explained in this

section. Autoencoder is outlined in Section 6.2.1, while Section 6.2.2 discusses the

unsupervised variant of a SVM (One-Class SVM) model. Finally, Section 6.2.3

provides an overview of recent IDS research that uses autoencoders.

6.2.1 Autoencoders

The zero-day detection model that is presented in this chapter benefits from

autoencoder characteristics and attributes, specifically the encoding-decoding

capabilities. The objective is that the autoencoder acts as an outlier-based zero-day

attack detector. In this case, the autoencoder model is used to perform binary

classification (i.e., benign and zero-day attack) and not multi-class classification.

Rumelhart et al. [304] are the first to introduce autoencoders. Their aim is to

overcome the back propagation in an unsupervised context by using the input as the

target. Autoencoders are categorised as self-supervised learners since the input and

output are the same, and the model performs representation learning [305]. As defined

by Goodfellow et al. [5], an autoencoder is “a neural network that is trained to attempt

to copy its input to its output” [5].

The basic architecture of an autoencoder is represented in Figure 6.1. The

architecture of an autoencoder and the number of hidden layers differ based on the

domain and the usage scenario [306]. Formally, given an input vector X , where X

represents the feature vector and its size is determined based on the number of features

in a dataset, an autoencoder is trained to minimise the reconstruction error, which is

143

Encode Decode

Figure 6.1
Autoencoder Architecture

represented in Equation 6.1 [305], such that φ and ψ are the encoding and decoding

functions, respectively.

φ : X → F

ψ : F → X ′

φ,ψ = argmin
φ,ψ

||X − (φ ◦ψ)X||2

(6.1)

Commonly, the reconstruction error of an input X is represented as the difference

between X and X ′. X ′ = g(f(X)), where f(x) is the encoding function φ,

which constructs the encoded vector of X . g(x) is the decoding function ψ, which

reconstructs/restores the encoded vector of X . Mean square error (L2 norm) and

mean absolute error (L1 norm) are common functions that are used to calculate the

reconstruction error as shown in Equation 6.2 and Equation 6.3, respectively, where n

is the number of features (data points).

||x||2 =

√√√√ n∑
i=1

(xi − x′i)2 (6.2)

||x||1 =
n∑

i=1

(|xi − x′i|) (6.3)

144

Autoencoders are popular for dimensionality reduction and feature learning [307,

308]. An autoencoder can be seen similar to Principal Component Analysis (PCA)

when its encoding function f(x) is a single-layer network with a linear function [309].

In this case the autoencoder adds neither non-linearity to the output nor depth (one

layer), which is what PCA does by learning linear transformation of features to another

space. This results in a similar output feature space [310]. However, various other

applications have been recently proposed for autoencoders in the literature including:

word semantics [311], image compression [312], image anomaly detection [313], and

denoising [314].

6.2.2 One-Class SVM

SVM is one of the well-established supervised ML techniques. Unlike supervised

SVM, One-Class SVM is an unsupervised variant. It is defined as a model capable of

detecting “Novelty” [315], first proposed by Schölkopf et al. [316]. The training goal of

One-Class SVM is to fit a hyperplane that acts as a boundary which best comprises all

the training data and excludes any other data points. The result of training a One-Class

SVM can be visualised as a spherically shaped boundary [317]. Since One-Class SVM

is considered one of the most established outlier-based ML techniques, it provides an

ideal comparison for assessing the performance of the proposed autoencoder.

Formally, given a class of instances {x1,, xN}, and a mapping function ϕ() that

maps the features to a space H , the goal of One-Class SVM is to “fit a hyperplane Π

in H that has the largest distance to the origin, and all ϕ(xi) lie at the opposite side

of hyperplane to the origin” [318]. Figure 6.2a and Figure 6.2b show examples of the

One-Class SVM boundary when using linear and RBF kernels, respectively.

145

4 2 0 2 4

4

2

0

2

4

Training instances
Testing instances
Anomaly instances

(a) Linear Kernel

4 2 0 2 4

4

2

0

2

4

Training instances
Testing instances
Anomaly instances

(b) RBF Kernel [319]

Figure 6.2
One-Class SVM Boundaries Example

6.2.3 Related Work

Autoencoders have been proposed for cybersecurity usage for feature engineering

and learning. For example, in the work by Kunang et al. [320], autoencoders are

used for feature extraction, then the features are used in a multi-class SVM classifier.

The authors use KDD Cup’99 and NSL-KDD datasets for evaluation. The evaluation

results of the model are an overall accuracy of 86.96% and a precision of 88.65%.

The different classes accuracies show a highly varying performance as follows;

97.91%, 88.07%, 12.78%, 8.12%, and 97.47% for DoS, probe, R2L, U2R and normal,

respectively, a precision of 99.45%, 78.12%, 97.57%, 50% and 81.59% for DoS, probe,

R2L, U2R and normal, respectively.

Kherlenchimeg and Nakaya [321] use a sparse autoencoder to extract features.

The bottleneck layer of the autoencoder (latent representation) is used as an input

to a Recurrent Neural Network (RNN) classifier. NSL-KDD dataset is used for

evaluation to reach an 80% accuracy. In a similar fashion, Shaikh and Shashikala [322]

use a stacked autoencoder with an LSTM classifier to detect DoS attacks. Using

the NSL-KDD dataset, the overall detection accuracy is 94.3% and a FNR of

5.7%. Abolhasanzadeh [323] uses autoencoders for dimensionality reduction and the

146

extraction of bottleneck features. The experiments are evaluated using the NSL-KDD

dataset. In addition, AL-Hawawreh et al. [167] train deep autoencoders on benign

traffic to deduce the most important feature representation to be used in their deep

feed-forward ANN. Shone et al. [168] use a stacked Non-Symmetric Deep autoencoder

to refine and learn the complex relationships between features. The authors use RF

for classification and evaluate their model using both KDD Cup’99 and NSL-KDD

datasets. Farahnakian and Heikkonen [324] use a deep autoencoder where it is fed into

a single supervised layer for classification. The KDD Cup’99 dataset is used and the

highest accuracies are 96.53% and 94.71% for binary and multi-class classification,

respectively. In all these experiments, autoencoders are used alongside other models

that perform the classification task.

6.3 Datasets

Three mainstream IDS datasets are chosen to evaluate the models proposed in

this chapter. CICIDS2017, NSL-KDD, and KDD Cup’99 are the datasets used for

evaluation.

The CICIDS2017 dataset [63] covers a wide range of recent insider and outsider

attacks in a 5-day recording. It contains a diverse coverage of protocols and attack

variations and it is provided in a raw format which allows the flexibility of processing

the dataset. Table 6.1 summarises the traffic scenarios recorded per day. The raw files

of the CICIDS2017 dataset are preprocessed as discussed below. The full CICIDS2017

description is available in [325].

The second and third datasets are the NSL-KDD [77] and the KDD Cup’99 [78].

Both datasets cover normal traffic and 4 cyber attack classes, namely, DoS, Probing,

R2L, and U2R, and are provided in CSV feature files. Each instance is represented

with its feature values alongside the class label. The feature files are prepared for ML

usage by undergoing categorical feature encoding.

147

Table 6.1
CICIDS2017 Attacks

Day Traffic
Monday Benign

Tuesday SSH and FTP Brute-force

Wednesday DoS/DDoS and Heartbleed

Thursday
Web Attack (Brute-force, XSS, Sql Injection) and

Infiltration

Friday Botnet, Portscan and DDoS

Benign traffic instances are solely used to train the models. The benign instances are

split into training and validation [326] using sklearn “train test split” function [326].

Each of the attack classes is then used to mimic a zero-day attack, thus assessing

the ability of the model to detect it. Since the NSL-KDD dataset is provided in

two files;“KDDTrain+.csv” and “KDDTest+.csv”, attacks in both files are used for

evaluation.

6.3.1 CICIDS2017 Dataset Preprocessing

To prepare the CICIDS2017 dataset, the process is outlined as follows. Firstly, the

PCAP files of the CICIDS2017 dataset are split based on the attack type and the

timestamps provided by the dataset owner. As a result, a PCAP file for each attack class

is created. Secondly, bidirectional flows features are extracted. It is important to note

that flow-based features are better suited for modern IDS development [53]. This is

due to the advancement and complexity of networks and the dependence on encrypted

traffic. Flow-based features are applicable for both encrypted and unencrypted traffic

analysis [53], because their extraction relies on the communication between two nodes,

rather than specific packet data. Thirdly, features with high correlation are dropped to

minimise model instability [327].

The process of dropping highly correlated features is described in Algorithm 6.1. A

threshold of 0.9 is used [328]. Features with correlation less than the threshold are used

148

for training. This is because features with high correlation have similar impact on the

output (i.e., the dependent variable) [328]. Therefore, one of them is dropped. Finally,

the features are scaled using a Standard Scaler. This is done to normalise the features

to a mean µ of 0 and standard deviation σ of 1, which accelerates the overall training

process [40]. It is important to note that only benign instances are used in selecting the

features and scaling to ensure zero influence of the cyber attack instances.

Algorithm 6.1 Drop Correlated Features
Input: Benign Data 2D Array, N, Correlation Threshold
Output: Benign Data 2D Array, Dropped Columns

1: correlation matrix← data.corr().abs()

2: upper matrix← correlation matrix[i, j] {i, j ∈ N : i <= j}
3: dropped← i{i ∈ N : correlation matrix[i,∗] > threshold}
4: data← data.drop columns(dropped)

5: return data, dropped

6.4 Methodology

6.4.1 Autoencoder-based model

An ANN is used as the building block for the proposed autoencoder. Random

search [275] is used for the ANN hyperparameter optimisation. The ANN architecture,

number of epochs, and learning rate are decided based on the output of random search.

Random search is known to converge faster than grid search to a semi-optimal set

of parameters. It has also been proven to be better than grid search when a small

number of parameters are needed [329]. Finally, it limits the possibility of overfitted

parameters.

Once the hyperparameters are decided, the model training takes place.

Algorithm 6.2 outlines the overall training process. First, benign instances are split

into 75%:25% for training and validation [231], respectively. The model is initialised

using the optimal ANN architecture (number of layers and number of hidden neurons

149

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy Training Accuracy

Validation Accuracy
Training Loss
Validation Loss

Figure 6.3
Autoencoder Convergence Curve

per layer). Finally, the model is trained for n number of epochs. The loss and accuracy

curves are analysed to confirm that the autoencoder converges.

Once the model converges, as shown in Figure 6.3, the model is evaluated using

Algorithm 6.3. An attack instance is flagged as a zero-day attack if the Mean Squared

Error (MSE) (reconstruction error) of the decoded (X ′) and the original instance

(X) is larger than a given threshold. The threshold is chosen at first based on the

value returned by the random search hyperparameter optimisation. For the purpose of

evaluation, multiple thresholds are assessed; 0.05, 0.1, 0.15, 0.2. The threshold plays

an important role in deciding the value at which an instance is considered a zero-day

attack, i.e., which MSE between X ′ and X is within the acceptable range.

Algorithm 6.2 Autoencoder: Training
Input: benign data, ANN architecture, regularisation value, num epochs
Output: Trained Autoencoder

1: training = 75% of benign data
2: testing = benign data− training
3: autoencoder ← build autoencoder(ANN Architecture, regularisation value)

4: batch size← 1024

5: autoencoder.train(batch size, num epochs, training, testing)

6: return autoencoder

150

Algorithm 6.3 Autoencoder: Evaluation
Input: Trained Autoencoder, attack, thresholds
Output: Detection accuracies

1: detection accuracies← {}
2: predictions← model.predict(attack)

3: for th ∈ thresholds do
4: accuracy ← (mse(predictions, attack) > th)/len(attack)

5: detection accuracies.add(threshold, accuracy)

6: end for
7: return detection accuracies

6.4.2 One-Class SVM based Model

Similar to the autoencoder-based model, One-Class SVM model is trained using the

benign instances only. A “ν” value is specified for training the One-Class SVM.

Chen et al. describe the ν value as “ν ∈ [0, 1] which is the lower and upper bound

on the number of examples that are support vectors and that lie on the wrong side

of the hyperplane, respectively” [330]. The ν default value in scikit-learn library is

0.5 [227]. This means that the goal is to produce in a hyperplane that includes 50% of

the training samples. However, for the purpose of this experiment, multiple ν values

are chosen (0.2, 0.15, 0.1, 0.05). These ν values were used to evaluate and compare the

autoencoder performance.

Algorithm 6.4 shows the process of training the One-Class SVM model. Similar to

the autoencoder model in Section 6.2.1, 75% of the benign samples are used in the

training process. Unlike the autoencoder model where evaluation relies on a threshold,

a trained One-Class SVM model outputs a binary value {0,1}. The output represents

whether an instance belongs to the class to which the One-Class SVM is fit. Hence,

each attack is evaluated based on how many instances are predicted with a “0” output

of the One-Class SVM.

151

Algorithm 6.4 One-Class SVM Model
Input: benign data, nu value
Output: Trained SVM

1: training = 75% i ∈ benign data
2: testing = benign data ∩ training
3: oneclasssvm← OneClassSVM(nu value, ‘rbf ′)

4: oneclasssvm.fit(training)

5: return oneclasssvm

6.5 Experiments and Results

6.5.1 CICIDS2017 Dataset

Autoencoder Results

The optimised architecture for the CICIDS2017 dataset autoencoder model is as

follows:

• ANN Architecture: In(18):Hidden(15):Hidden(9):Hidden(15):Out(18)

• Batch size: 1024

• L2 regularisation: 0.0001

• Number of epochs: 50

• Loss: L2 norm (Mean Square Error)

Table 6.2 lists the autoencoder model accuracy of all CICIDS2017 classes. It is

important to note that the accuracy is defined differently for benign and attack classes.

The model’s accuracy reflects the detection of attacks. This relies on the reconstruction

error being larger than the given threshold. Unlike attacks, for the benign class the

accuracy represents the rate of instances not classified as zero-day attacks (i.e., the

reconstruction error smaller than the given threshold).

152

Table 6.2
Zero-Day Detection: CICIDS2017 Autoencoder Results

Class Detection Accuracy
Threshold 0.2 0.15 0.1 0.05

Benign (Validation) 96.56% 95.19% 90.47% 81.13%

FTP Brute-force 5.18% 5.34% 6.73% 82.82%

SSH Brute-force 7.2% 8.38% 78.05% 80.51%

DoS (Slowloris) 65.63% 71.73% 78.13% 80.85%

DoS (GoldenEye) 66.98% 85.55% 87.71% 90.01%

DoS (Hulk) 98.23% 98.23% 98.34% 98.43%

DoS (SlowHTTPTest) 22.42% 24.03% 28.09% 39.02%

DDoS 83.47% 92.23% 97.88% 99.67%

Heartbleed 28.61% 28.9% 39.6% 43.64%

Web BF 9.7% 9.95% 82.04% 85.41%

Web XSS 11.14% 11.28% 96.38% 99.46%

Web SQL 16.67% 16.67% 22.22% 27.78%

Infiltration - Dropbox 1 47.06% 52.94% 94.12% 94.12%

Infiltration - Dropbox 2 85.71% 85.71% 100% 100%

Infiltration - Dropbox 3 16.3% 23.8% 89.5% 98.04%

Infiltration - Cooldisk 48.08% 51.92% 86.54% 92.31%

Botnet 17.46% 17.77% 37.15% 66.88%

PortScan 16.15% 28.37% 75.21% 98.47%

From Table 6.2, it is noted that the benign class accuracy with a threshold of

0.2, 0.15, 0.1, and 0.05 is 96.56%, 95.19%, 90.47%, and 81.13%, respectively.

Furthermore, three categories of attack detection accuracy are observed. Firstly, cyber

attack classes that are distinctive from benign which are easily detected. For example,

DoS (Hulk) and DDoS where the detection accuracy is high regardless of the threshold

[83% - 99%]. Secondly, cyber attack classes that are slightly different from benign (for

example, SSH Brute-force, and PortScan). It is observed that the detection accuracy,

in this case, depends on the threshold value and an accuracy rise is observed for lower

thresholds. This emphasises the influence threshold value choice has on the detection

accuracy. Thirdly, cyber attack classes that are not distinguishable from benign traffic,

153

which are detected but with a lower accuracy (for example, Botnet, SQL Injection and

DoS-SlowHTTPTest). These cyber attacks behaviour are similar to the benign traffic

behaviour.

Figure 6.4 provides a visualisation of the different CICIDS2017 classes and their

corresponding detection accuracies with different threshold values. By observing

Figure 6.4, the three discussed categories can be seen, (i) classes with a high stable

detection accuracy, (ii) classes with a prompt rise in detection accuracy in the

right-most slice (0.05 threshold) and (iii) classes that are not distinguishable from

benign traffic. Finally, the benign accuracy (top left) falls within an acceptable range

with different thresholds, with 18.87% FPR at most. These can be observed further by

plotting the ROC curves for each of the attack classes, as shown in Appendix F.

96.56 95.19 90.47 81.13

Benign

5.18 5.34 6.73

82.82
FTP

7.2 8.38

78.05 80.51

SSH

65.63 71.73 78.13 80.85

Slowloris

66.98 85.55 87.71 90.01

GoldenEye

98.23 98.23 98.34 98.43

Hulk

22.42 24.03 28.09 39.02
SlowHTTPTest

28.61 28.90 39.60 43.64

0.2 0.15 0.1 0.05

Threshold

Heartbleed

9.7 9.95

82.04 85.41Web BF

11.14 11.28

96.38 99.46Web XSS

16.67 16.67 22.22 27.78
Web SQL

47.06 52.94 94.12 94.12

Dropbox 1

85.71 85.71 100.00 100.00

Dropbox 2

16.3 23.80
89.50 98.04Dropbox 3

48.08 51.92 86.54 92.31

Cooldisk

17.46 17.77 37.15
66.88Botnet

16.15 28.37

75.21 98.47

0.2 0.15 0.1 0.05

Threshold

Portscan

83.47 92.23 97.88 99.67

DDoS

Figure 6.4
CICIDS2017 Autoencoder Detection Results Summary Per Class

154

One-Class SVM Results

One-Class SVM model results are listed in Table 6.3. By analysing the One-Class

SVM results, three observations are identified; (i) The benign detection accuracy

decreases when the ν increases. The detection accuracy is 94.84% when ν = 0.05

and 79.71% when ν = 0.2. This is because One-Class SVM model includes more

instances within the decision boundary with lower ν. (ii) The classes with high

detection accuracy in the autoencoder results (Table 6.2) are detected effectively by the

One-Class SVM; however, the One-Class SVM fails to detect the two other categories.

This is due to the limitations of the One-Class SVM algorithm, which attempts to fit

a hyperplane to separate benign class from other classes. Classes that fall into this

hyperplane will always be classified as benign/normal. Finally, (iii) Detection rate of

the correctly identified attack classes varies within [0 - 5]% range. For example, DoS

(SlowHTTPTest) detection accuracy is 98.11% when ν = 0.05 and 98.71% when

ν = 0.2. Similarly, SSH detection accuracy is 78.96% when ν = 0.05 and 80.95%

when ν = 0.2.

155

Table 6.3
Zero-Day Detection: CICIDS2017 One-Class SVM Results

Class Detection Accuracy

ν 0.05 0.1 0.15 0.2

Benign (Validation) 94.84% 89.81% 84.84% 79.71%

FTP Brute-force 5.16% 10.19% 15.16% 20.29%

SSH Brute-force 78.96% 79.51% 80.26% 80.95%

DoS (Slowloris) 6.75% 7.66% 8.38% 10.37%

DoS (GoldenEye) 67.32% 71.87% 72.39% 72.85%

DoS (Hulk) 85.73% 90.69% 91.35% 91.55%

DoS (SlowHTTPTest) 98.11% 98.59% 98.66% 98.71%

DDoS 29.89% 39.35% 39.94% 40.96%

Heartbleed 99.09% 99.49% 99.54% 99.58%

Web BF 17.05% 21.1% 23.41% 35.84%

Web XSS 8.38% 9.58% 9.76% 10.13%

Web SQL 5.37% 5.77% 6.31% 6.85%

Infiltration - Dropbox 1 11.11% 38.89% 38.89% 38.89%

Infiltration - Dropbox 2 29.41% 29.41% 35.29% 35.29%

Infiltration - Dropbox 3 57.14% 57.14% 57.14% 57.14%

Infiltration - Cooldisk 90.96% 92.15% 93.8% 94.91%

Botnet 36.54% 44.23% 46.15% 50%

Portscan 57.61% 59.27% 60.04% 63.43%

The comparison of the autoencoder model with the One-Class SVM one is further

visualised in Figure 6.5. The two classes that One-Class SVM performs better with

than the autoencoder model are DoS (SlowHTTPTest) and Heartbleed. For these two

classes the autoencoder reconstruction error was below the zero-day threshold value,

however, they were placed on the opposite side of the One-Class SVM hyperplane,

which explains their detection accuracy. Therefore, One-Class SVM is well suited for

flagging recognisable zero-day attacks. However, autoencoders are better suited for

complex zero-day attacks as the performance ranking is significantly higher. Figure 6.5

shows a class-by–by-class comparison of the performance of autoencoder versus

One-Class SVM. Figure 6.5 (a) plots the results using One-Class SVM ν = 0.2 and

156

autoencoder threshold of 0.05, while Figure 6.5 (b) plots the results using One-Class

SVM ν = 0.09 and autoencoder threshold of 0.1.

0

10

20

30

40

50

60

70

80

90

100

D
et

ec
ti

o
n

A
cc

ur
ac

y

One_Class SVM Autoencoder

(a) SVM (ν = 0.2), AE (Threshold = 0.05)

0

10

20

30

40

50

60

70

80

90

100

D
et

ec
ti

o
n

A
cc

ur
ac

y

One_Class SVM Autoencoder

(b) SVM (ν = 0.1), AE (Threshold = 0.1)

Figure 6.5
CICIDS2017 Autoencoder and One-Class SVM Comparison

157

6.5.2 KDD Cup’99 and NSL-KDD Dataset

Autoencoder Results

The autoencoder optimised architecture for the KDD Cup’99 and NSL-KDD datasets

is:

• KDD Cup’99 ANN Architecture:

In(118):Hidden(100):Dr(0.2):Hidden(60):Dr(0.2):Hidden(100):Out(118)

• NSL-KDD ANN Architecture:

In(118):Hidden(122):Dr(0.2):Hidden(60):Dr(0.2):Hidden(100):Out(122)

• Batch size: 1024

• L2 regularisation: 0.001

• Number of epochs: 50

• Loss: L1 norm (Mean Absolute Error)

It is noted that L1 (Mean Absolute Error) is chosen over L2 for KDD dataset family

because it demonstrates better performance. Furthermore, due to the pre-engineered

features of these two datasets and their given ranges, L1 provided a better scale for the

reconstruction error. Table 6.4 and Table 6.5 list the autoencoder results for the KDD

Cup’99 and the NSL-KDD datasets, respectively. Similar to the CICIDS2017 dataset,

75% of the benign class is used for training the autoencoder. For NSL-KDD dataset,

attacks in both the KDDTrain+ and KDDTest+ files are used to evaluate the model. As

mentioned before, the threshold value is selected based on random search parameter

optimisation. The trade-off between the threshold choice and the TNR is observed

in the results, however, it is not as significant as the CICIDS2017 dataset discussion.

This is due to the limited attack coverage in the KDD datasets and the lower attack

discrimination complexity.

158

Table 6.4
Zero-Day Detection: KDD Cup’99 Autoencoder Results

Class Detection Accuracy
Threshold 0.3 0.25 0.2

Normal (Validation) 87.34% 83.95% 77.64%

DoS 99.4% 99.42% 99.48%

Probe 98.73% 98.93% 99.42%

R2L 96.36% 97.25% 100%

U2R 94.23% 96.15% 98.08%

Table 6.5
Zero-Day Detection: NSL-KDD Autoencoder Results

Class Detection Accuracy
Threshold 0.3 0.25 0.2

KDDTrain+.csv

Normal (Validation) 79.09% 77.80% 72.78%

DoS 98.15% 98.16% 98.17%

Probe 99.89% 99.94% 99.94%

R2L 83.12% 96.48% 96.48%

U2R 84.62% 100% 100%

KDDTest+.csv

Normal 84.82% 84.42% 80.94%

DoS 94.67% 94.67% 94.76%

Probe 100% 100% 100%

R2L 95.95% 96.5% 97%

U2R 83.78% 89.19% 100%

Compared to the available autoencoder implementation for detecting zero-day

attacks in the literature, the autoencoder results presented in this section

outperform [178]. Gharib et al. [178] use a hybrid two-stage autoencoder to detect

normal and abnormal traffic. Training on KDDTrain+ file and testing on KDDTest+,

the authors report an overall accuracy of 90.17%, whereas the proposed autoencoder in

this section has the overall accuracy of 91.84%, 92.96% and 94.54% using a threshold

of 0.3, 0.25 and 0.2, respectively. Moreover, it is important to note that Gharib et

159

al. [178] do not mention details as of how they define zero-day attacks or the classes

they choose in the testing process. Table 6.6 summarises the performance comparison

of the autoencoder implementation in this section and the work of Gharib et al. [178].

Moreover, it is shown that the implemented autoencoder outperforms the denoising

autoencoder proposed in [163]. The authors did not report any use of hyperparameter

optimisation or dropping correlated features. Moreover, attack instances influenced

their experiments. For example, the authors used the attack instances to train an

autoencoder to be able to decide the threshold value they used. Also, features

normalisation was performed with attack instances included. The results presented

in this work outperforms specifically for the KDDTest+ instances where the authors

model’s accuracy is capped at 88% while this work reaches 94%.

Table 6.6
Zero-Day Detection: NSL-KDD Performance Comparison

Year Reference Approach
Train:Test

% of
KDDTrain+

KDDTrain+
Accuracy

KDDTest+
Accuracy

This Work
AE th = 0.3
AE th = 0.25
AE th = 0.2

75 : 25
88.97%
94.48%
93.47%

91.84%
92.96%
94.54%

2019 [178] 2 AEs - - 90.17%

2017 [163]
AE

Denoising AE
80 : 20

93.62%
94.35%

88.28%
88.65%

One-Class SVM Results

For the KDD Cup’99 and NSL-KDD datasets, the One-Class SVM results are reported

in Table 6.7 and Table 6.8, respectively. The results show similar detection trends to

those of the autoencoder which are discussed in Section 6.5.2. This is due to the limited

variance of attacks covered by the KDD Cup’99 and NSL-KDD datasets. To visualise

the similarity in detection accuracy, Figure 6.6 and Figure 6.7 show the results for the

KDD Cup’99 and NSL-KDD datasets, respectively.

160

Table 6.7
Zero-Day Detection: KDD Cup’99 One-Class SVM Results

Class Detection Accuracy
ν 0.1 0.15 0.2

Normal (Validation) 90.15% 85.24% 79.93%

DoS 99.48% 99.49% 99.71%

Probe 99.05% 99.29% 99.37%

R2L 96.8% 97.51% 98.49%

U2R 96.15% 96.15% 98.08%

Table 6.8
Zero-Day Detection: NSL-KDD One-Class SVM Results

Class Detection Accuracy
ν 0.1 0.15 0.2

KDDTrain+.csv

Normal (Validation) 89.9% 85.14% 80.54%

DoS 98.13% 98.14% 98.14%

Probe 97.74% 98.77% 99.52%

R2L 49.35% 52.26% 81.71%

U2R 78.85% 80.77% 82.69%

KDDTest+.csv

Normal 88.12% 86.02% 84.72%

DoS 94.67% 94.67% 94.69%

Probe 99.55% 99.91% 100%

R2L 80.17% 82.22% 90.31%

U2R 78.38% 78.38% 83.78%

161

0

10

20

30

40

50

60

70

80

90

100

Normal DoS Probe R2L U2R

D
et

ec
ti

o
n

A
cc

ur
ac

y

One_Class SVM Autoencoder

Figure 6.6
KDD Cup’99 Autoencoder and One-Class SVM Comparison
SVM (ν = 0.2), AE (Threshold = 0.3)

0

10

20

30

40

50

60

70

80

90

100

Normal * DoS * Probe * R2L * U2R * Normal + DoS + Probe + R2L + U2R +

D
et

ec
ti

o
n

A
cc

ur
ac

y

One_Class SVM Autoencoder

Figure 6.7
NSL-KDD Autoencoder and One-Class SVM Comparison
SVM (ν = 0.2), AE (Threshold = 0.3)
*: KDDTrain+ file, +: KDDTest+ file

6.6 Summary

In this chapter, the zero-day detection problem is tackled from a different prospective.

Unlike Chapter 5 where zero-day attacks were detected using a Siamese network

trained to classify and discriminate attacks based on similarity, in this chapter, an

autoencoder is used. The autoencoder is trained using benign traffic only, then,

relying on the encoding-decoding capabilities of the autoencoder, zero-day attacks are

detected.

162

The proposed Autoencoder model is tested using three benchmark datasets, namely,

KDD Cup’99, NSL-KDD, and CICIDS2017. The experiments demonstrated a high

detection accuracy for zero-day attacks. The CICIDS2017 zero-day detection accuracy

reaches 90.01%, 98.43%, 98.47%, and 99.67% for DoS (GoldenEye), DoS (Hulk),

PortScan and DDoS attacks, respectively. The KDD Cup’99 dataset detection accuracy

reached 95.21% and NSL-KDD dataset detection accuracy reaches 92.96%.

Furthermore, to assess the autoencoder performance, it is compared to an

unsupervised outlier-based ML technique; One-Class SVM, which detects outliers.

The one-class SVM mode presents its effectiveness in detecting zero-day attacks

for KDD Cup’99 and NSL-KDD datasets and the distinctive attack classes from the

CICIDS2017 dataset. Compared to One-Class SVM, the autoencoder shows better

detection accuracies. Both models demonstrate low FPR. Finally, the CICIDS2017

classes that mimic benign traffic behaviour, DoS (Slowloris), DoS (SlowHTTPTest)

as an example, experience lower detection rates by both the autoencoder and the

One-Class SVM models. This is due to the tactic used by attackers to ensure that

attacks display similar behaviour to benign traffic. This problem - detecting attacks

mimicking benign behaviour - is addressed in the next chapter. The code is available

on GitHub at https://github.com/AbertayMachineLearningGroup/zero-day-detection.

163

https://github.com/AbertayMachineLearningGroup/zero-day-detection

Chapter 7

Classifying Benign Imitating Attacks

Using Flow Aggregation

7.1 Problem Statement

Cyber attacks are becoming more complex due to the expansion of attack surfaces

found in hardware and software of modern computing technologies, and the evolution

of more advanced evasion methods. As outlined in Chapter 6, there exists attacks that

are overlooked in recent research, or - when considered - demonstrate low detection

accuracy. One of the reasons behind this low detection accuracy is because these

attacks mimic benign traffic behaviour to evade detection mechanisms.

In ML models, the choice of features is more important than the choice of the

model [331]. Ghaffarian and Shahriari state that features play a vital role in the

development of IDS [42]. The features used in ML-based IDS cover (i) packet-based

information; for example, TCP flags, IP Flags, packet length, etc., and (ii) flow-based

features that characterise the communication between two nodes; for example, the

average size of packets, and average time between packets in a flow [332]. In current

research, these features have demonstrated their effectiveness when combined with

164

feature engineering techniques and sufficient training samples [331, 173]. However,

these features are not effective in cases where cyber attacks mimic benign traffic

behaviour. This is demonstrated in the difficulty to detect/flag those attacks (i.e.

zero-day).

In this chapter, an additional level of feature abstraction, named “Flow Aggregation”

is proposed to tackle this problem and aid in detecting cyber attacks that mimic

benign traffic behaviour. These new features are based on a higher level of abstraction

of network traffic. Specifically, flow aggregation is performed by grouping flows

initiated from a network host. This additional level of feature abstraction benefits

from the cumulative information, thus aiding in qualifying a model to classify

benign-mimicking attacks.

The CICIDS2017 dataset is used to evaluate the proposed features with a focus on

the attacks that are difficult to detect as shown in Chapter 6; namely, DoS (Slowloris)

and DoS (SlowHTTPTest) attacks. The new feature significance is evaluated on attack

classes that do and do not mimic benign behaviour. Finally, the experiments that are

presented in Chapter 6 are re-evaluated using the proposed features to assess the effect

they have on zero-day detection performance.

7.2 Background

7.2.1 Related Work

Different features are used to build IDS. Rezaei and Liu [53] discuss four main

categories of networking features, namely; time series, header, payload, and statistical.

The authors discuss the advantages of using time series and statistical features in

comparison with header and payload features, as the former can be extracted from

both encrypted and unencrypted traffic. The authors further highlight the shortcomings

of available encrypted traffic classification research [53]. Both packet-based and

165

flow-based features have been used for intrusion detection purposes and have proved

to be effective. However, with the dominance of network encryption, which reached

87% at the beginning of 2019 [333], packet-based features are rendered less reliable at

detecting cyber attacks in modern networking.

Older attacks are predominant in datasets like KDD Cup’99, and NSL-KDD. These

datasets are used to train ML-based IDS, and in many cases achieve good results.

More up-to-date cyber attacks are recorded in the CICIDS2017 dataset [63], therefore,

building IDS models using the CICIDS2017 is a more complex undertaking.

Table 7.1 and Table 7.2 provide a list of recent articles in which the CICIDS2017

dataset is used. The tables present the published articles, the ML models applied, the

metrics used to assess performance, and the accompanied results. Two observations are

noticed in Table 7.1. (i) Research utilising the CICIDS2017 dataset involve a subset of

attacks, specifically the ones that are distinctive from benign traffic. DDoS, PortScan,

and SSH, for example, have received attention from researchers, whilst others have

been overlooked due to their poor results and their benign-like behaviour that render

their classification difficult. Studies that include these other attacks demonstrate a low

detection accuracy. This low detection accuracy is not reflected in the classification

models’ overall accuracy due to the class imbalance problem of this dataset [334].

(ii) The overall accuracy is much higher than the accuracy of individual classes. For

example, in [176], when 1-layer ANN is used, the overall multi-class classification

accuracy is 96% (Table 7.1), while the individual classes detection accuracies are

55.9%, 95.9%, 85.4% and 85.2% for normal, SSH, DDoS and PortScan classes,

respectively (Table 7.2). This indicates the misleading effect of reporting the overall

accuracy when dealing with imbalanced datasets.

Vinayakumar et al. highlight in their recent research on the CICIDS2017 dataset

that by observing the saliency map for the dataset, it is shown that “the dataset requires

a few more additional features to classify the connection record correctly” [176].

166

Table 7.1
CICIDS2017 Recent Articles Performance Summary (1)

Year/Ref Approach
Covered
Attacks

Accuracy Precision Recall F-Score

2020/[184]+

MLP
SSH

- 82% 98% 90%
LSTM - 97% 98% 97%
MLP

FTP
- 93% 77% 85%

LSTM - 98% 99% 99%

2019/[176]+

DNN (1
Layer)

Binary

96.3% 90.8% 97.3% 93.9%

DNN (5
Layers)

93.1% 82.7% 97.4% 89.4%

LR 83.9% 68.5% 85% 75.8%
NB 31.3% 30% 97.9% 45.9%

KNN 91.0% 78.1% 96.8% 86.5%
SVM
(RBF)

79.9% 99.2% 32.8% 49.3%

DNN (1
Layer)

Multi-class

96% 96.9% 96% 96.2%

DNN (5
Layers)

95.6% 96.2% 95.6% 95.7%

LR 87% 88.9% 87% 86.8%
NB 25% 76.7% 25% 18.8%

KNN 90.9% 94.9% 90.9% 92.2%
SVM
(RBF)

79.9% 75.7% 79.9% 72.3%

2019/[179] AdaBoost DDoS 81.83% 81.83% 100% 90.01%

2018/[335]
DL

PortScan
97.80% 99% 99% 99%

SVM 69.79% 80% 70% 65%

2018/[336]

C5.0

DDoS

85.92% 86.45% 99.70% -
RF 86.29% 86.80% 99.63% -
NB 90.06% 79.99% 86.03% -

SVM 92.44% 79.88% 84.36 -
+ Only snippets of the results are listed in the table.
Where: DDoS: Distributed Denial of Service MLP: Multilayer Perceptron

DL: Deep Learning NB: Naı̈ve Bayes
DNN: Deep Neural Network RBF: Radial Basis Function
FTP: File Transfer Protocol RF: Random Forest
KNN: k-Nearest Neighbour SSH: Secure Shell
LR: Logistic Regression SVM: Support Vector Machine
LSTM: Long short-term memory

167

Table 7.2
CICIDS2017 Recent Articles Performance Summary (2)

Accuracy
Year/Ref Approach

Normal SSH DDoS PortScan

2019/[176]+

DNN (1
Layer)

55.9% 95.9% 85.4% 85.2%

DNN (5
Layers)

56.8% 95.8% 85.5% 85.5%

LR 88.5% 98.4% 92.2% 92.6%
NB 32.2% 75.7% 98.5% 87.9%

KNN 90.9% 97% 99.5% 99.6%
SVM (RBF) 79.8% 98.8% 92.9% 99%

+ Only snippets of the results are listed in the table.

The authors’ observations highlight this need specifically for the DoS class. As later

discussed in the experiments and results in Section 7.4, the findings in this chapter

concur with this observation regarding the attack classes that need the proposed

additional abstraction level of features to be discriminated from benign traffic and other

attacks.

7.3 Methodology

Starting with a raw PCAP file which contains network traffic, two levels of features can

be extracted as shown in Figure 7.1. The first level (lower level) inspects the individual

packets to extract packet-based features. For example, TCP and IP flags, packet size,

ports, protocol used, etc. The second level inspects flow to extract flow-based features,

either unidirectional or bidirectional. This is done by inspecting all individual packets

in a particular communication flow.

168

Raw Packets

Packet-based
Features

Unidirectional Flow
Features

Bidirectional Flow
Features

Aggregated Bidirectional
Flow Features

Low

High

Proposed

Figure 7.1
Abstraction Levels of Networking Features

The Centre for Applied Internet Data Analysis (CAIDA) defines a flow as “a

set of packets which share a common property” [24]. In other words, given two

nodes/endpoints in a network, the packets involved in the communication between

them are abstracted as network flows. A network flow could be 2-tuple, where the

source and destination IP addresses are used. When the source and destination ports

are also used, a flow is considered to be 4-tuple, then 5-tuple flows additionally include

the protocol used. The 5-tuple flow is the most commonly used one. Network flows can

be unidirectional (i.e., host A to host B), or bidirectional, which combines the packets

in the unidirectional flow (A−B) and (B − A).

In this chapter, a third additional level of abstraction is proposed. The aim is to

represent characteristics and information about the overall communication between

hosts. This new level groups bidirectional flows into bundles and aggregated features

are derived, called “Flow aggregation features”. The features provide additional traffic

characteristics in the form of cumulative information.

After these aggregated features are computed, they are propagated back to each

bidirectional flow in the bundle/group. This is represented by the superscript + sign in

Figure 7.1. The two proposed flow aggregation features in this chapter are (i) number

of flows and (ii) source ports delta.

169

Number of Flows: The first added feature represents the number of siblings in a

flow bundle. Given the communication between a host A and one or more hosts, all

flows initiated by A are counted. The advantage of this feature is that it is significant

for attacks that intentionally spread their associated requests over time when targeting a

single host. However, when grouped, the bundled flow will have additional information

about how many flows are in the same group that can resemble the communication

pattern. Moreover, it can represent patterns when an attacker targets many hosts, each

with a few communications, or spread the communication over time. When these flows

are grouped, a pattern can be identified.

Figure 7.2 shows how the flows bundling process takes place. Each letter at the

top of Figure 7.2 represents a node in the network. Similarly, each pair of arrows in

Figure 7.2 represents a bidirectional flow with the notation XYi, such that X is the

source node, Y is the destination node, and i is the communication counter. Finally,

the colours in Figure 7.2 represent the grouping of flows into bundles. It is observed

that the first bundle (in blue colour) has 4 flows, therefore, AB1, AB2, AC1, and AD1

will have the “number of flows” feature set to 4. Similarly, the second bundle (in green

colour), BC1 and BC2 will have the value 2 and so on.

A B C D E

AB1

AB2

BC1

DC1

DE1

DE2
AC1

AD1

BC2

Nodes

Time

Figure 7.2
Aggregation of Network Traffic Flows. Each Colour Represents an Aggregated Flow

170

Source Ports Delta: The second added feature is “source ports delta”. This feature

is calculated using all the port numbers used in a bundle. Algorithm 7.1 illustrates

how this feature is calculated. The advantage of this feature is to capture the level and

variation pattern of the used ports in legitimate traffic. The feature adds this piece of

information to each flow, which then enhances the learning and classification as further

discussed in this chapter.

Algorithm 7.1 Flow Aggregation: Calculate Ports Delta Feature
Input: List of bundle flow ports
Output: Ports Delta Feature

1: ports.sort()
2: for i ∈ length(ports)− 1 do
3: diff[i]← abs(ports[i+1] - ports[i])
4: end for
5: avg diff← diff.mean()
6: return avg diff

Recursive Feature Elimination (RFE) [337] is used to validate the significance of the

added features when used to classify classes that mimic benign traffic behaviour. RFE

is used to select the best k features (here, k = 5 [338]). Over the various experiments

discussed in Section 7.4, RFE demonstrates that the two features are important for

identifying classes that mimic benign behaviour. For attacks that are distinctive, flow

aggregation features are nonessential.

The parameters for the classification models are as follows:

• RFE: Logistic Regression with 2000 iterations

• ANN Architecture:

– Binary Classifier: In(5) : 3 : 2

– Three-Class Classifier: In(5) : 3 : 3

– Five-Class Classifier (1): In(5) : 3 : 5

– Five-Class Classifier (2): In(10) : 8 : 5

• Activation: Relu for hidden layers and Sigmoid for output layer

171

• Batch size: 64

• Number of epochs: 50

• Optimiser: Adam

• Loss: Mean Square Error

7.4 Experiments Methodology and Results

In this section, different classification experiments are performed to assess the

impact of “Flow Aggregation” on different attack classification problems. Moreover,

the autoencoder experiment that was evaluated in Chapter 6 is reassessed using

the proposed features to examine their significance in zero-day attack detection;

specifically, for attacks that were previously detected with low accuracy.

The CICIDS2017 dataset [62] is used for evaluation. The attacks of interest from

the CICIDS2017 dataset are DoS (SlowHTTPTest) and DoS (Slowloris). These two

attacks implement low-bandwidth DoS attacks in the application layer by draining

concurrent connections pool [339]. Since these two attacks are performed slowly, they

are hard to detect. Besides DoS (SlowHTTPTest) and DoS (Slowloris), two other

attacks are used for comparative purposes; PortScan and DoS (Hulk). These two

attacks resemble the case where attacks are easier to discriminate from benign traffic.

Since the attacks of interest are underrepresented in the CICIDS2017 dataset [340],

a portion of one hour of Monday benign traffic and PortScan are used for the

classification purpose [341].

Initially, each of the four attack classes and benign PCAP files are processed to

extract features. The output of this process is 5 CSV files containing bidirectional

flow features and aggregation features. RFE is then performed to select the best k

features which are fed into an ANN classifier. Because the focus is to evaluate the

additional level of feature abstraction and not the classifier model complexity, the ANN

classifier architecture is straightforward. It is composed of 5 input neurons, 1 hidden

layer composed of 3 neurons, and an output layer.

172

Three classification experiments are performed. The first experiment is a binary

classification problem for each of the attacks of interest versus the benign class

(Section 7.4.1). The second experiment is a three-class classification (Section 7.4.2).

This experiment evaluates the classification of benign, a benign-mimicking attack, and

a distinctive attack (i.e., not mimicking benign behaviour). Finally, the third experiment

is a five-class classification including all classes of interest (Section 7.4.3). Each

of these experiments is performed twice, with bidirectional features only and with

bidirectional features and aggregation features. The RFE is performed independently

in each experiment and the selected features are listed to highlight the cases where the

new features prove significant. For the purpose of performance comparison, the RFE

features that are selected without the flow aggregation ones are used alongside the two

new features.

7.4.1 Binary Classification Results

This section outlines the results of the first experiment which is a binary classification.

Each of the attacks of interest is classified against the benign class. The RFE ranking

for the proposed Flow aggregation features in the binary classification (each of the

attack classes versus benign class) is outlined in Table 7.3. It can be observed that the

new features are in the top list for the benign mimicking attacks (in bold) and not as

significant for the distinctive ones.

Table 7.3
Binary Classification Flow Aggregation RFE Ranking

Flow Aggregation Feature Rank
(out of 30 features)

Attack Class
Number of Flows Source Ports Delta

DoS (Slowloris) 10 1

DoS (SlowHTTPTest) 6 5

DoS (Hulk) 5 28

PortScan 1 27

173

Table 7.4 and Table 7.5 show the precision, recall, and F1-Score for DoS (Slowloris)

and DoS (SlowHTTPTest), respectively. The results are calculated using 5-fold cross

validations and are written as (Mean ± Standard Deviation). The recall of each of the

attack classes rises when the flow aggregation features are included. The recall rises

from 83.69% to 91.31% for DoS (Slowloris) attack class and from 65.94% to 70.03%

for the DoS (SlowHTTPTest) attack class. Unlike attacks that mimic benign behaviour

where flow aggregation features improve the classification performance, classification

performance does not hugely benefit from flow aggregation features in the case of

distinctive classes (classes that do not mimic benign traffic behaviour). This is observed

in Table 7.6 and Table 7.7 for DoS (Hulk) and PortScan classes, respectively. Precision

and recall are high for both of these attacks without utilising the aggregation flow

features. The increase in precision and recall for DoS (Hulk) is 0.01% and 0.48%, and

for PortScan is 0.64% and 0.11%, respectively.

Table 7.4
Benign-DoS (Slowloris) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd Min Inter-arrival Time
2- Bwd Min Inter-arrival Time
3- Bwd mean time between the first
packet and each successive packet
4- Fwd mean time between the first
packet and each successive packet
5- Fwd STD Inter-arrival Time

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
99.04%±

0.08%

99.86%±
0.13%

99.45%±
0.05%

99.49%±
0.08%

99.99%±
0.01%

99.74%±
0.04%

Slowloris
97.35%±

2.35%

83.69%±
1.42%

89.97%±
0.81%

99.73%±
0.26%

91.31%±
1.35%

95.33%±
0.76%

174

Table 7.5
Benign-DoS (SlowHTTPTest) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd mean time between the first
packet and each successive packet
2- Bwd mean time between the first
packet and each successive packet
3- Fwd Min Inter-arrival Time
4- Bwd Min Inter-arrival Time
5- Fwd Max Inter-arrival Time

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
98.49%±

0.04%

99.94%±
0.02%

99.21%±
0.03%

98.68%±
0.40%

99.87%±
0.14%

99.27%±
0.17%

SlowHTTP

Test

98.13%±
0.56%

65.94%±
0.98%

78.87%±
0.82%

96.24%±
3.68%

70.03%±
9.27%

80.63%±
5.21%

Table 7.6
Benign-DoS (Hulk) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Bwd Min Packet Length
2- Fwd Num Reset Flags
3- Bwd Num Push Flags
4- Bwd Num Reset Flags
5- Fwd Max Inter-arrival Time

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta
Precision Recall F1-Score Precision Recall F1-Score

Benign
99.83%±

0.04%

99.99%±
0.01%

99.91%±
0.02%

100.0%±
0.00%

100.0%±
0.00%

100.0%±
0.00%

Hulk
99.98%±

0.03%

99.51%±
0.10%

99.74%±
0.06%

99.99%±
0.02%

99.99%±
0.02%

99.99%±
0.02%

175

Table 7.7
Benign-PortScan Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd STD Packet Length
2- Bwd Min Packet Length
3- Fwd Max Packet Length
4- Fwd Mean Packet Length
5- Fwd Number of Push Flags

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta
Precision Recall F1-Score Precision Recall F1-Score

Benign
99.40%±

0.03%

99.36%±
0.93%

99.38%±
0.45%

99.51%±
0.03%

100.0%±
0.00%

99.75%±
0.01%

PortScan
99.36%±

0.92%

99.39%±
0.04%

99.37%±
0.45%

100.0%±
0.00%

99.50%±
0.03%

99.75%±
0.01%

Figure 7.3 shows the effect of using flow aggregation features on the recall of four

attack classes. It is observed that the two attack classes that mimic benign behaviour,

DoS (SlowHTTPTest) and DoS (Slowloris), experience a rise in recall. However, for

the other classes, DoS (Hulk) and PortScan, the recall is high regardless of the use of

flow aggregation features. This emphasises the fact that bidirectional flow features are

sufficient for benign distinguishable attack classes, but not for the benign-mimicking

classes. This observation is further discussed in the following experiments.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

SlowHTTPTest Slowloris Hulk Portscan

R
ec

al
l

Without Aggregation With Aggregation

Figure 7.3
Binary Classification — Impact of Flow Aggregation on Classification Recall of Attack Classes
(Benign-Attack)

176

7.4.2 Three-Class Classification Results

In the second experiment, a complexity is added to the binary classification problem by

increasing the number of classes. This reduces the likelihood of the benign-mimicking

attack to be correctly discriminated. A three-class classification is performed. Benign

class alongside a discriminative class that does not mimic benign traffic behaviour

(PortScan is used for this purpose) and a benign-mimicking class are used. The RFE

ranking for the proposed Flow aggregation features in the three-class classification is

listed in Table 7.8.

Table 7.8
Three-Class Classification Flow Aggregation RFE Ranking

Flow Aggregation Feature Rank
(out of 30 features)

Attack Class
Number of Flows Source Ports Delta

DoS (Slowloris) 2 1

DoS (SlowHTTPTest) 1 13

DoS (Hulk) 1 28

The three-class classification results demonstrate similar behaviour to the binary

classification ones. The recall of the benign and PortScan classes is high without

using the flow aggregation features. However, the recall experiences a high rise in

the benign-mimicking attack class.

As shown in Table 7.9, the DoS (Slowloris) recall rises from 78.25% to 99.09%,

while in Table 7.10, the DoS (SlowHTTPTest) recall rises from 0% to 58.97%. Finally,

the DoS (Hulk) class recall rises from 98.56% to 99.50% as shown in Table 7.11.

177

Table 7.9
Benign-PortScan-DoS (Slowloris) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd STD Packet Length
2- Bwd Min Packet Length
3- Bwd mean time between the first
packet and each successive packet
4- Fwd mean time between the first
packet and each successive packet
5- Fwd Max Packet Length

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
98.31%±

0.16%

97.69%±
1.02%

98.00%±
0.49%

99.46%±
0.04%

99.99%±
0.01%

99.73%±
0.02%

PortScan
97.85%±

0.99%

99.60%±
0.12%

98.71%±
0.45%

100.0%±
0.01%

99.50%±
0.03%

99.74%±
0.01%

Slowloris
96.95%±

1.62%

78.25%±
1.68%

86.59%±
1.45%

99.75%±
0.15%

99.09%±
0.44%

99.42%±
0.21%

Table 7.10
Benign-PortScan-DoS (SlowHTTPTest) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd Mean Packet Length
2- Fwd STD Packet Length
3- Fwd Max Packet Length
4- Bwd mean time between the first
packet and each successive packet
5- Fwd mean time between the first
packet and each successive packet

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
95.10%±

0.04%

96.40%±
0.12%

95.75%±
0.06%

97.67%±
1.25%

99.99%±
0.01%

98.81%±
0.64%

PortScan
96.45%±

0.11%

99.52%±
0.05%

97.96%±
0.06%

99.99%±
0.02%

99.42%±
0.15%

99.70%±
0.08%

SlowHTTP

Test

0.00%±
0.00%

0.00%±
0.00%

0.00%±
0.00%

79.62%±
39.81%

58.97%±
29.88%

67.67%±
34.00%

178

Table 7.11
Benign-PortScan-DoS (Hulk) Classification (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd Mean Packet Length
2- Fwd Max Packet Length
3- Fwd Number of RST Flags
4- Fwd Number of Push Flags
5- Bwd Number of RST Flags

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta
Precision Recall F1-Score Precision Recall F1-Score

Benign
98.10%±

0.05%

99.30%±
0.95%

98.69%±
0.49%

99.57%±
0.25%

99.94%±
0.04%

99.75%±
0.12%

PortScan
99.10%±

0.94%

99.39%±
0.04%

99.24%±
0.48%

99.95%±
0.03%

99.73%±
0.24%

99.84%±
0.11%

Hulk
99.94%±

0.03%

98.56%±
0.06%

99.25%±
0.03%

99.98%±
0.03%

99.50%±
0.06%

99.74%±
0.03%

Figure 7.4 shows the effect of using flow aggregation features on the recall of attack

classes in a three-class classification problem. Flow aggregation shows its significance

with a more complex classification problem (three-class classification).

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

SlowHTTPTest Slowloris Hulk

R
ec

al
l

Without Aggregation With Aggregation

Figure 7.4
Multi-class Classification — Impact of Flow Aggregation on Recall of the Second Attack Class
(Benign-PortScan-Attack)

179

7.4.3 Five-Class Classification Results

The final classification experiment is a five-class classification one. It combines all

classes of interest into a more complex classification problem. The RFE ranking in the

five-class classification is 1 for “Number of Flows” and 2 for “Source Ports Delta”, out

of 30 features. This indicates the high significance of the proposed features.

The precision, recall, and F1-Score are presented in Table 7.12, for when the RFE

five features are used. Two observations are noted; (i) the recall of DoS (Slowloris)

rises from 1.40% to 67.81%. (ii) The recall of Dos (SlowHTTPTest) rises from 0% to

4.64% only. This is not because the new features were insignificant, but because the

model classified DoS (SlowHTTPTest) as DoS (Slowloris). Flow aggregation features

were used to discriminate benign-mimicking attacks from benign traffic but not to

discriminate the attacks from each other. Without the aggregation features, 82.84% of

DoS (SlowHTTPTest) attack instances are classified as benign, however, this drops to

58% when the flow aggregation features are used.

180

Table 7.12
Five-Classes Classification - 1 (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

1- Fwd Mean Packet Length
2- Bwd Mean Inter-arrival time
3- Fwd mean time between the first
packet and each successive packet
4- bwd mean time between the first
packet and each successive packet
5- Fwd Max packet length

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
90.97%±

2.99%

96.77%±
0.80%

93.74%±
1.33%

95.11%±
2.11%

97.11%±
3.30%

96.05%±
1.84%

PortScan
97.12%±

0.80%

98.90%±
1.05%

98.00%±
0.38%

99.92%±
0.13%

99.41%±
0.15%

99.67%±
0.08%

Slowloris
18.89%±
37.78%

1.40%±
2.80%

2.61%±
5.22%

66.88%±
8.94%

67.81%±
31.08%

63.14%±
25.95%

SlowHTTP

Test

0.00%±
0.00%

0.00%±
0.00%

0.00%±
0.00%

34.12%±
42.81%

4.64%±
6.51%

8.10%±
11.21%

Hulk
93.75%±

6.47%

98.61%±
0.73%

95.98%±
3.14%

93.00%±
8.58%

99.34%±
0.15%

95.85%±
4.87%

To overcome this low recall, five more features are added by choosing the next

top ones that are selected by RFE. The addition of new features results in an input

layer of 10 neurons. Therefore, the ANN architecture was updated to have 8 neurons

instead of 3 in the hidden layer. The results of this classification experiment are

summarised in Table 7.13. The rise in the recall for the attack classes with and

without flow aggregation features is as follows; from 33.94% to 80.39% and 21.45% to

64.91%, for DoS (Slowloris) and DoS (SlowHTTPTest), respectively. This behaviour

is visualised in Figure 7.5. It is important to mention that while there is a rise in the

recall of all classes, this rise is more significant for the attack classes that mimic benign

behaviour. This demonstrates the inability of bidirectional flow features to discriminate

benign-mimicking attacks solely compared to the other attack, as well as the improved

effect flow aggregation features have. This is reasoned by the nature of these attacks

which are crafted to bypass detection mechanisms.

181

Table 7.13
Five-Classes Classification - 2 (5-fold cross-validation)

Without Aggregation With Aggregation

RFE
Selected
Features

Five RFE features
+

6- Fwd Max Inter-arrival time
7- Fwd STD Inter-arrival time
8- Fwd Number of Reset Flags
9- Fwd Number of Bytes
10- Bwd Max Inter-arrival time

Without Aggregation Features
+

Number of Flows
+

Source Ports Delta

Precision Recall F1-Score Precision Recall F1-Score

Benign
92.37%±

3.56%

96.34%±
0.11%

94.28%±
1.83%

97.35%±
0.53%

99.90%±
0.13%

98.61%±
0.31%

PortScan
96.48%±

0.07%

99.74%±
0.03%

98.08%±
0.04%

99.84%±
0.18%

99.59%±
0.20%

99.71%±
0.10%

Slowloris
38.91%±
47.65%

33.94%±
41.60%

36.25%±
44.41%

93.52%±
5.64%

80.39%±
2.66%

86.44%±
3.94%

SlowHTTP

Test

37.52%±
45.98%

21.45%±
26.27%

27.29%±
33.44%

96.80%±
2.72%

64.91%±
16.75%

76.61%±
12.25%

Hulk
99.92%±

0.14%

98.63%±
0.67%

99.27%±
0.29%

99.88%±
0.14%

99.69%±
0.21%

99.78%±
0.15%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Benign Portscan Slowloris SlowHTTPTest Hulk

R
ec

al
l

Without Aggregation With Aggregation

Figure 7.5
Multi-class Classification — Impact of Flow Aggregation on the Classes Recall)

182

7.4.4 CICIDS2017 Zero-Day Attack Detection Reassessed

In Chapter 6, the autoencoder capability to detect zero-day attacks was discussed and

evaluated. Three attack categories were identified based on their detection; (i) attack

classes that are detected with high accuracy, (ii) attack classes that experience a rise in

the detection accuracy with lower thresholds, and (iii) attack classes that were detected

with low accuracy. The last category is of interest in this section.

The attacks that were detected with low accuracy were hard to discriminate

from benign behaviour, therefore their reconstruction error was below the zero-day

threshold. After observing how flow aggregation features are effective in classifying

attacks that mimic benign traffic, the autoencoder zero-day detection model is

reassessed using these additional features. The same model parameters that are

discussed in Chapter 6 are used.

Table 7.14 lists the zero-day detection accuracies when flow aggregation features

are used alongside bidirectional flow ones. The results show a high detection rate of all

the attacks, including the third category (attacks that were detected with low accuracy

without flow aggregation features). Similarly, Table 7.14 shows the rise in attack

detection accuracy and a decrease in benign class detection with lower thresholds,

compared with Table 6.2.

183

Table 7.14
Zero-Day Detection: CICIDS2017 Autoencoder Results With Flow Aggregation

Class Accuracy

Threshold 0.15 0.1 0.05

Benign (Validation) 89.5% 85.62% 67.59%

FTP Brute-force 99.81% 99.92% 100%

SSH Brute-force 99.37% 100% 100%

DoS (Slowloris) 94.12% 95.77% 100%

DoS (GoldenEye) 100% 100% 100%

DoS (Hulk) 100% 100% 100%

DoS (SlowHTTPTest) 99.91% 100% 100%

DDoS 99.79% 100% 100%

Heartbleed 99.13% 100% 100%

Web BF 99.7% 99.94% 100%

Web XSS 100% 100% 100%

Web SQL 77.78% 77.78% 100%

Infiltration - Dropbox 1 100% 100% 100%

Infiltration - Dropbox 2 100% 100% 100%

Infiltration - Dropbox 3 46.76% 68.68% 99.82%

Infiltration - Cooldisk 98.08% 100% 100%

Botnet 89.83% 98.98% 100%

PortScan 99.81% 99.85% 100%

Figure 7.6 shows the effectiveness of flow aggregation features by contrasting the

results that are discussed in this section versus the ones in Chapter 6. It is observed that

all attacks experience a better detection accuracy when the flow aggregation features

are used. This is because the additional feature abstraction provides consolidated

characteristics and information. This abstraction aids in discriminating the attacks

that mimic benign behaviour, therefore, the autoencoder reconstruction, in this case,

is above the zero-day threshold.

184

0

10

20

30

40

50

60

70

80

90

100

D
et

ec
ti

o
n

A
cc

ur
ac

y

Without Aggregation With Aggregation

(a) Threshold = 0.15

0

10

20

30

40

50

60

70

80

90

100

D
et

ec
ti

on
 A

cc
u
ra

cy

Without Aggregation With Aggregation

(b) Threshold = 0.1

0
10
20
30
40
50
60
70
80
90

100

Ti
tle

Without Aggregation With Aggregation

(c) Threshold = 0.05

Figure 7.6
CICIDS2017: Zero-day Detection using Autoencoder with and without Flow Aggregation

185

7.5 Summary

Cyber attacks are becoming more complex and attackers use available knowledge to

tailor attacks that can bypass detection methods. This chapter proposes an additional

abstraction level of network flow features. The aim is to improve the cyber attack

classification performance, specifically for attacks that mimic benign traffic behaviour.

Traditional network traffic features prove powerful when combined with sufficient

training examples to train ML-based classifiers, and the trained models are capable

of classifying cyber attacks. However, cyber attacks that are not distinctive are left

undetected. The idea proposed in this chapter is based on aggregating bidirectional

flows to bundles and computing bundle-specific features. Once the features are

computed, the values are populated back to the bidirectional flows. The advantage

of this additional feature abstraction level is that the bidirectional flows have some

additional information about the flows in the same bundle (sibling flows).

In this chapter, two flow aggregation features are used and evaluated using

CICIDS2017 dataset. Four cyber attack classes are used besides benign class; DoS

(Slowloris), DoS (SlowHTTPTest), DoS (Hulk), and Portscan. Three classification

experiments are conducted; binary classification, three-class classification, and

five-class classification. The results demonstrate the validity and effectiveness of the

proposed feature abstraction. This is shown in the rise of recall for attack classes. For

example, the recall of the DoS (Slowloris) attack increased from 83.69% to 91.31%

using binary classification, from 78.25% to 99.09% using three-class classification,

and finally, from 33.94% to 80.39% using multi-class classification.

Furthermore, the flow aggregation features are used to reassess the autoencoder

zero-day detection model. The results demonstrate an increase in the detection of all

attacks compared to the results previously discussed in Chapter 6. The code is available

on GitHub at https://github.com/AbertayMachineLearningGroup/flow-aggregation.

186

https://github.com/AbertayMachineLearningGroup/flow-aggregation

Chapter 8

Conclusions and Future Work

8.1 Conclusion

IDS are systems that monitor and analyse network traffic to detect anomalies and

cyber attacks. Various ML techniques have been utilised in the past decade to build

IDS. The predominant use of ML techniques is due to the sophistication and pace at

which new cyber attacks emerge. The work presented in this thesis investigates the

use of ML techniques to build special-purpose IDS. Moreover, this thesis investigates

utilising novel DL techniques that are used in other research domains to build towards

the next-generation IDS to improve their efficiency and effectiveness.

Based on the background presented in Chapter 2 and the analysis of the

past decade of IDS in Chapter 3, the following observations are highlighted:

(i) the underrepresentation of new cyber attacks in IDS datasets. (ii) the lack of

special-purpose network IDS datasets, and (iii) the dominance of ML techniques usage

to build IDS. Consequently, the objectives of this research are outlined.

187

In Chapter 4 two case studies of utilising ML techniques to build special-purpose

IDS are presented; one for a SCADA network and the other for an IoT network. Six

ML techniques are utilised, namely; LR, NB, k-NN, SVM, DT, and RF.

The first dataset simulates a CI that controls a water SCADA system. The dataset

consists of 14 real-world scenarios that cover hardware failures, sabotage, and cyber

attacks. Three experiments are conducted. The first experiment performs a binary

classification (i.e., normal versus anomaly classes). The second experiment classifies

the affected component (i.e., none in case of normal operation or the affected

component by an anomaly or a cyber attack). Finally, the third experiment aims to

classify the occurring scenario.

The evaluation of the three experiments shows that k-NN, DT, and RF outperform

NB, SVM, and LR. This is owed to the non-linearity of the dataset features, which

represents the CI networks setup. In this setup, normal operations and anomalies can

overlap [232]. The accuracy reached 94.12% for the binary classification, 82.71% for

the affected components, and 95.49% for the scenario classification. On account of

the scenario overlapping problem, a confidence interval is used to report the highest

probable scenario or two probable scenarios when the confidence is below the accepted

interval.

The second dataset is generated and collected using a simulated IoT network that

is based on MQTT protocol (a well-established machine-to-machine communication

protocol) [212]. The MQTT-IoT-IDS2020 dataset covers normal operations and four

cyber attack scenarios. After the dataset collection phase, three levels of feature

abstraction are generated; namely, packet-based, unidirectional flow, and bidirectional

flow.

The overall accuracy reached 88.55% when using packet-based features, 99.98%,

and 99.9% when using unidirectional and bidirectional flow features, respectively.

Furthermore, the recall demonstrated that the two classes for which performances

188

improved using flow-based features, are the benign class and MQTT-Brute-Force

attack class. This is because in an IoT setup, generic attacks (such as scanning) are

distinctive from IoT traffic behaviour. However, the challenge lies in MQTT-based

attacks (protocol-based attacks) as they rely on the known MQTT communication

commands, thus coinciding with normal traffic.

The main contributions of this Chapter are summarised as follows:

• Conducting three experiments on a SCADA dataset. The dataset covers real-life

cyber attacks, sabotage, and hardware failure scenarios.

• Analysing the class overlapping problem when classifying anomalies in SCADA

networks.

• Generating and analysing a novel dataset; MQTT-IoT-IDS2020. The dataset

comprises benign, generic cyber attack and MQTT-based attack scenarios.

• Evaluating the significance of using high-level (flow-based) features to build IDS

for IoT networks.

• Examining the different needs of MQTT-based versus generic attack detection,

which emphasise the special setup and, thus the needs of IoT networks.

In Chapter 5 a One-Shot learning model that can learn from limited data is

presented. This aims to resolve the proportional relation between the amount of

required data and the size of the ML model. To this end, this chapter proposes a novel

model to build IDS. This model is based on Siamese networks which differentiate

between classes based on pair similarities rather than specific class discriminating

features. Learning from similarities requires less data for training and provides the

ability to introduce and classify new cyber attacks after training.

The Siamese network model is evaluated in three scenarios. The first one evaluates

the validity of similarity-based learning for IDS usage. This is performed by assessing

the ability of Siamese networks to classify attacks (i.e., differentiate between attacks)

using pair similarity solely. The second scenario assesses the flexibility of the proposed

189

Siamese network model to classify a new cyber attacks without retraining using a few

samples of this new attack. Finally, in the third scenario, the Siamese network model

is evaluated to flag zero-day attacks alongside classifying known attacks (attacks that

are included in training).

Four datasets are used for evaluation; namely, SCADA, CICIDS2017, NSL-KDD,

and KDD Cup’99. In the classification scenario. the accuracy of the first dataset

(SCADA) is 76.06%. However, it is seen that the classes either have high classification

accuracy (reaching 100%) or a low accuracy (less than 50%). This is due to the

class overlapping problem of the SCADA dataset and its multi-label nature, where

classes are not mutually exclusive. The Siamese network cannot discriminate highly

overlapping classes only using similarity. By observing the classification results, it is

proved that Siamese network can discriminate classes that overlap with at most 7 other

classes (in a dataset of 14 classes).

For the CICIDS2017, the overall classification accuracy is 83.74%. The different

attack classes detection accuracies are 96.08%, 75.17%, 80.05%, and 76.55%,

respectively. The results show that using only one pair to classify attacks is not

enough. This is due to the pair selection randomness, which increases the probability

of selecting a representable pair as the number of pairs increases. Therefore, multiple

instances are used and majority voting technique decides on the class label. Similar

behaviour was noted for the NSL-KDD and KDD Cup’99 datasets with an overall

accuracy of 91.01% and 87.99%, respectively.

In the second scenario, an attack class is excluded from the Siamese network model

training. During the evaluation, a few instances from the excluded class are used as

labelled instances of a new attack. The excluded attack mimics the situation when a

new cyber attack is detected, but there are no enough instances to retrain IDS to detect

it. In this case, the proposed One-Shot learning model aims to classify this new attack,

using pair similarities, in the interim time between identifying this new attack and

collecting enough instances to retrain an IDS.

190

For the CICIDS2017 dataset, the overall accuracy is 81.28% and 82.5%, when

excluding the SSH and FTP attack classes, respectively. The overall accuracy

demonstrates that the network performance is not disturbed by the attack class addition

post training when compared to 83.74% when all classes are used during training.

Moreover, the new classes detection accuracies are 73.03% and 70.03% for SSH and

FTP, respectively.

The evaluation of the NSL-KDD demonstrated that it outperforms that of the KDD

Cup’99. The detection accuracies of the DoS attack (when excluded from training)

are 40.28% for the KDD Cup’99 and 78.87% for the NSL-KDD. This is because the

NSL-KDD dataset is an enhanced version of the KDD Cup’99. Given that the new

class is not included in training, having a better representation of instances shows a

better performance, therefore, NSL-KDD performance outperforms KDD Cup’99.

This demonstrates an observation about the Siamese network training. Since the

training and evaluation are based on pairing instances from different classes, the more

representative the instances are, the better the Siamese network performance.

Finally, for the zero-day detection scenario, the Siamese network was capable

of discriminating 84.8% of the SSH and 94.17% of the DoS (Hulk) attacks in

CICIDS2017. The FTP class was detected as zero-day attack with low rate, however,

only 4.83% was classified as normal. This indicates that the Siamese network classified

the new attack as another attack but not benign behaviour. For the NSL-KDD and

KDD Cup’99 datasets 85.85%, and 72.83% of the R2L class are correctly flagged

as unknown, respectively. Similar behaviour to the CICIDS2017 dataset classes was

observed for the other attack classes in the NSL-KDD and KDD Cup’99 datasets.

This indicates the restricted capability of detecting zero-day attacks for classes that are

highly distinctive from other attack classes.

The main contributions of this Chapter can be summarised as follows:

• Proposing a novel Siamese network model to classify attacks based on learning

from similarity (few samples-based standard classifier).

191

• Implementing a One-Shot Siamese network and evaluating its performance

to detect a new cyber attack class based on a few labelled samples without

retraining.

• Evaluating the use of Siamese network to detect Zero-Day attacks.

• Demonstrating the need for distinctive samples to boost the Siamese network

performance.

Chapter 6 focuses on building a model that is capable of detecting zero-day attacks.

The proposed model leverages the encoding-decoding capabilities of autoencoders.

Benign traffic is used to train the model and relying on the reconstruction error the

zero-day attacks are detected. Furthermore, the proposed autoencoder performance is

compared with a One-Class SVM.

The CICIDS2017 zero-day detection accuracy reaches 90.01%, 98.43%, 98.47%,

and 99.67% for DoS (GoldenEye), DoS (Hulk), PortScan and DDoS attacks,

respectively. The KDD Cup’99 dataset detection accuracy reached 95.21% and

NSL-KDD dataset detection accuracy reaches 92.96%.

The one-class SVM model shows its high performance in detecting zero-day

attacks for KDD Cup’99 and NSL-KDD datasets and the distinctive attack classes

from the CICIDS2017 dataset. Compared to One-Class SVM, which has proven its

effectiveness and high accuracy in novelty detection in the literature, the autoencoder

demonstrates its better detection accuracy. Both models demonstrate low FPR. Finally,

the CICIDS2017 classes that mimic benign traffic behaviour (DoS (Slowloris), DoS

(SlowHTTPTest)) experience lower detection rates by both the autoencoder and the

One-Class SVM models. This is because these attacks are launched with a behaviour

that is similar to benign traffic, thus, their reconstruction error is low.

The main contributions of this chapter are summarised as follows:

• Proposing and implementing an autoencoder model for zero-day detection IDS.

• Building an outlier detection One-Class SVM model.

192

• Comparing the performance of the One-Class SVM model as a baseline

outlier-based detector to the proposed autoencoder model.

Chapter 7 proposes an additional level of feature abstraction, named “Flow

Aggregation”, to assist in detecting benign-mimicking attacks. This additional

level of feature abstraction benefits from the cumulative information of the flow

communication between nodes.

In this chapter, the focus is on the attacks that are hard to detect using bidirectional

flow features. Three classification experiments are conducted; binary classification,

three-class classification, and five-class classification. The results demonstrate the

validity and effectiveness of the proposed feature abstraction. This is shown in the

rise of recall for attack classes. For example, the recall of the DoS (Slowloris) attack

increased from 83.69% to 91.31% using binary classification, from 78.25% to 99.09%

using three-class classification, and finally, from 21.45% to 99.69% using multi-class

classification.

Finally, the flow aggregation features are used to reassess the autoencoder zero-day

detection model. The results demonstrate an increase in the detection of all attacks,

including benign mimicking ones, compared to the results presented in Chapter 6.

The main contribution of this chapter is summarised as follows:

• Introducing a higher level of abstraction for network traffic analysis by proposing

novel features to describe bundles of flows.

• Assessing the performance improvements in binary classification of cyber

attacks when these new features are utilised, particularly for attacks that mimic

benign network traffic.

• Assessing the performance improvements in multi-class classification of cyber

attacks when these new features are utilised.

193

Within this thesis, different models are proposed and evaluated to address the

research questions as follows:

RQ1: How can Machine Learning be utilised to detect anomalies and attacks in

special-purpose networks (IoT and CI)?

For special-purpose IDS, ML can be utilised to detect anomalies and cyber attacks

as demonstrated in Chapter 4. Based on the chapter findings, special-purpose networks

have unique architecture based on their application. As a result, special-purpose

IDS development face different challenges compared with general-purpose ones.

Probabilistic models and confidence intervals can be used to overcome the overlapping

of anomaly scenarios. Also, flow-based features are better suited to discriminate

protocol-specific attacks.

RQ2: In an attempt to reduce the burden of needing to generate/collect large

volumes of data, can IDS models train using limited-size datasets?

Based on the Siamese network model proposed and evaluated in Chapter 5, IDS

can be trained using limited data, based on similar and dissimilar pairs. A One-Shot

learning paradigm using Siamese networks proved its applicability and effectiveness

to develop IDS. The experiments results demonstrate that Siamese networks perform

better when datasets contain representable instances from each class and minimise

class overlap.

RQ3: In order to reduce the interim period between identifying a new cyber attack

and detecting it, is there potential to build IDS that can detect new cyber attacks

without retraining?

The similarity-based learning using Siamese network presented in Chapter 5 was

found to benefit IDS development process by enabling the detection of new attacks

after initial training. Detection of new attacks is possible when a few instances are

available. This serves as an appropriate interim detection mechanism until more

samples are available and retraining takes place.

194

RQ4: How can non-conventional DL techniques provide improved robustness and

accuracy for IDS when detecting zero-day attacks?

In Chapter 6, autoencoders show their ability to serve as zero-day detection models

by training on normal traffic instances only and relying on their encoding-decoding

capabilities to flag attacks. Furthermore, in Chapter 7 flow aggregation features

are proposed. These features provide an additional level of feature abstraction that

improves the classification performance for complex attacks. This is demonstrated in

classifying benign-mimicking attacks and detecting zero-day attacks that are hard to

flag.

8.2 Future Work

The research presented in this thesis can be extended as follows.

8.2.1 Special-Purpose Network IDS

The lack of special-purpose network datasets, and special-purpose IDS accordingly,

are outlined in this thesis. To fill this gap, different ML techniques are used to build

IDS for a SCADA and IoT networks.

Building on the work discussed in this thesis, investigation of other IoT-based

attacks is needed. This investigation will help in examining the unique requirements

of special-purpose IDS. This process involves the generation of new special-purpose

datasets that comprise these attacks alongside generic ones. Firstly, the generation

setup and platform of MQTT-IoT-IDS2020 dataset can be extended to include

additional components and scenarios. This will result in a larger corpus of data and

a quick generation of datasets.

Secondly, utilising multi-label classification [342], where an instance can belong to

one or more classes, to build special-purpose IDS. This would assist in improving the

195

IDS performance and overcome the co-existable, inclusive and overlapping nature of

anomaly classes in these networks.

Thirdly, based on the constantly changing and different requirements for CI and IoT

networks, exploring the opportunities of transfer learning to assist in accelerating the

special-purpose IDS development is needed. This research will involve both methods

of standardising dataset generation, processing, and the applicability of different

transfer learning approaches.

8.2.2 Few-Shot Learning

This thesis proposed the use of Siamese networks as a One-Shot/Few-Shot learning

model to build a novel IDS. To the best of the author’s knowledge, this is the first

attempt to leverage these learning paradigms for IDS purposes. The Siamese network

demonstrated its ability to learn cyber attack similarities. As a result, the Siamese

network model is capable of detecting new attacks using a few samples and the ability

to flag unknown zero-day attacks.

Firstly, “Triplet Networks”, which are based on Siamese networks, have been

proposed in other domains to learn similar and dissimilar relation concurrently [343].

A Triplet network is composed of three identical networks that train simultaneously.

Unlike Siamese networks that learn from similar and dissimilar pairs, Triplet Networks

learn from a set of three instances (two of the same class and one from a different

class). These three instances are called; positive, anchor, negative. During training,

triplet loss is used to reduce the distance between the two instances from the same

class while increasing that of the instance from the different class [344]. Investigating

the use of Triplet networks for IDS can improve the detection accuracy in the interim

time between identifying a new attack and detecting it.

196

Secondly, the pair generation is still an open research issue [288]. Research in

this direction will involve studying different approaches to pair selection, other than

random selection, and their effect on the Siamese network model.

Thirdly, the examination of Siamese network adaptability can be extended. This can

be done by evaluating the performance of introducing multiple attacks post training.

The experiments presented in this thesis outlined the Siamese network ability to

classify a new attack without retraining. Examining the model capability to multiple

attacks will extend its usage and gain.

8.2.3 Zero-Day Attack Detection

In this thesis, autoencoders are used to detect zero-day attacks by relying on their

encoding-decoding capabilities. The autoencoder performance model is compared with

the novelty detection model; One-Class SVM. This experiment can be extended to

include other IDS datasets. Furthermore, other non-conventional ML techniques can

be considered to detect zero-day attacks. For example, the use of LSTM memorisation

capabilities to learn normal operation patterns can be examined.

8.2.4 Flow Aggregation

Flow aggregation is a new direction for extracting high-level network flow features.

In this thesis, two new features are proposed and their significance is evaluated.

Introducing other flow aggregation-based features can assist in the detection

of benign-mimicking attacks. These features represent the characteristics of the

communication between different nodes during normal and attack operations.

Flow aggregation features can be proposed and evaluated on other communication

networks. An investigation of their impact on ad-hoc networks, industrial protocols,

etc. allows benefiting from the concept of the additional level of feature abstraction.

197

Further work can include the generation of the flow aggregation features in a sliding

time-window scheme. Different time windows can be applied to grouping/bundling

the network flows. This experiment should examine both the impact of windowing on

the IDS detection accuracy and the trade-off between different window sizes and the

detection of various benign-mimicking attacks.

Finally, the potential of evaluating the models proposed in this thesis in real testing

setup would provide additional insights. This would further highlight the needs and

requirements in different operational scenarios, as opposed to benchmark datasets

evaluation.

198

References

[1] C. E. Bondoc and T. G. Malawit, “Cybersecurity for higher education

institutions: Adopting regulatory framework.” Global Journal of Engineering

and Technology Advances, vol. 2, no. 3, p. 16, 2020. https://doi.org/10.30574/

gjeta.2020.2.3.0013

[2] I. Nai-Fovino, R. Neisse, A. Lazari, G.-L. Ruzzante, N. Polemi, and M. Figwer,

“European cybersecurity centres of expertise map - definitions and taxonomy,”

Luxembourg, Publications Office of the European Union, 2018. https://doi.org/

10.2760/622400

[3] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems

in wireless sensor networks.” IEEE Communications Surveys & Tutorials,

vol. 16, no. 1, pp. 266–282, 2014. https://doi.org/10.1109/SURV.2013.050113.

00191

[4] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey of deep

learning methods for cyber security.” Information, vol. 10, no. 4, p. 122, 2019.

https://doi.org/10.3390/info10040122

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[6] A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning approaches

for anomaly-based intrusion detection systems: A survey, taxonomy,

and open issues.” Knowledge-Based Systems, vol. 189, p. 105124,

2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0950705119304897. https://doi.org/10.1016/j.knosys.2019.105124

199

https://doi.org/10.30574/gjeta.2020.2.3.0013
https://doi.org/10.30574/gjeta.2020.2.3.0013
https://doi.org/10.2760/622400
https://doi.org/10.2760/622400
https://doi.org/10.1109/SURV.2013.050113.00191
https://doi.org/10.1109/SURV.2013.050113.00191
https://doi.org/10.3390/info10040122
http://www.sciencedirect.com/science/article/pii/S0950705119304897
http://www.sciencedirect.com/science/article/pii/S0950705119304897
https://doi.org/10.1016/j.knosys.2019.105124

[7] Cisco, “Cisco annual internet report - Cisco annual internet report

(2018–2023) white paper,” 9 March 2020, Accessed: 9 December,

2020. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[8] U. P. Ramakrishnan and J. K. Tandon, “The evolving landscape of cyber

threats.” Vidwat: The Indian Journal of Management, vol. 11, 2018.

[9] P. Kreimel, O. Eigner, and P. Tavolato, “Anomaly-based detection and

classification of attacks in cyber-physical systems,” in Proceedings of the 12th

International Conference on Availability, Reliability and Security. ACM, 2017,

pp. 1–6. https://doi.org/10.1145/3098954.3103155

[10] S. Hameed, F. I. Khan, and B. Hameed, “Understanding security requirements

and challenges in internet of things (IoT): A review.” Journal of Computer

Networks and Communications, vol. 2019, pp. 1–14, 2019. https://doi.org/10.

1155/2019/9629381

[11] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow

applications.” Journal of Network and Computer Applications, vol. 36, no. 2,

pp. 567–581, 2013. https://doi.org/10.1016/j.jnca.2012.12.020

[12] Y. Ayrour, A. Raji, and M. Nassar, “Modelling cyber-attacks: A survey study.”

Network Security, vol. 2018, no. 3, pp. 13–19, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1353485818300254. https://

doi.org/10.1016/S1353-4858(18)30025-4

[13] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson, and

X. Bellekens, “A taxonomy of network threats and the effect of current datasets

on intrusion detection systems.” IEEE Access, vol. 8, pp. 104 650–104 675,

2020. https://doi.org/10.1109/ACCESS.2020.3000179

[14] H. Hindy, E. Hodo, E. Bayne, A. Seeam, R. Atkinson, and X. Bellekens,

“A taxonomy of malicious traffic for intrusion detection systems.” in 2018

International Conference On Cyber Situational Awareness, Data Analytics

200

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/3098954.3103155
https://doi.org/10.1155/2019/9629381
https://doi.org/10.1155/2019/9629381
https://doi.org/10.1016/j.jnca.2012.12.020
http://www.sciencedirect.com/science/article/pii/S1353485818300254
https://doi.org/10.1016/S1353-4858(18)30025-4
https://doi.org/10.1016/S1353-4858(18)30025-4
https://doi.org/10.1109/ACCESS.2020.3000179

And Assessment (Cyber SA). IEEE, 2018, pp. 1–4. https://doi.org/10.1109/

CyberSA.2018.8551386

[15] H. Hindy, D. Brosset, E. Bayne, A. Seeam, and X. Bellekens, “Improving

SIEM for critical SCADA water infrastructures using machine learning.” in

SECPRE 2018, CyberICPS 2018, S. K. Katsikas, F. Cuppens, N. Cuppens,

C. Lambrinoudakis, A. Antón, S. Gritzalis, J. Mylopoulos, and C. Kalloniatis,

Eds. Cham: Springer International Publishing, 2019, pp. 3–19. https://doi.org/

10.1007/978-3-030-12786-2 1

[16] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,

“MQTT-IoT-IDS2020: MQTT internet of things intrusion detection

dataset.” 2020. [Online]. Available: https://ieee-dataport.org/open-access/

mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset. https://doi.

org/10.21227/bhxy-ep04

[17] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens,

“Machine learning based IoT intrusion detection system: an MQTT case study

(MQTT-IoT-IDS2020 dataset).” in 12th International Network Conference (INC

2020). Springer, 2020.

[18] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens, “Developing

a siamese network for intrusion detection systems,” in Proceedings of the 1st

Workshop on Machine Learning and Systems, ser. EuroMLSys ’21. New York,

NY, USA: ACM, 2021, p. 120–126. https://doi.org/10.1145/3437984.3458842

[19] H. Hindy, C. Tachtatzis, R. Atkinson, D. Brosset, M. Bures, I. Andonovic,

C. Michie, and X. Bellekens, “Leveraging Siamese networks for One-Shot

intrusion detection model.” arXiv preprint arXiv:2006.15343, 2020.

[20] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and

X. Bellekens, “Utilising deep learning techniques for effective zero-day attack

detection.” Electronics, vol. 9, no. 10, p. 1684, 2020. https://doi.org/10.3390/

electronics9101684

201

https://doi.org/10.1109/CyberSA.2018.8551386
https://doi.org/10.1109/CyberSA.2018.8551386
https://doi.org/10.1007/978-3-030-12786-2_1
https://doi.org/10.1007/978-3-030-12786-2_1
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.1145/3437984.3458842
https://doi.org/10.3390/electronics9101684
https://doi.org/10.3390/electronics9101684

[21] H. Hindy, R. Atkinson, C. Tachtatzis, E. Bayne, M. Bures, and X. Bellekens,

“Utilising flow aggregation to classify benign imitating attacks.” Sensors,

vol. 21, no. 5, p. 1761, 2021. https://doi.org/10.3390/s21051761

[22] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera,

Learning from imbalanced data sets. Springer, 2018, vol. 10.

[23] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep

learning for cyber security intrusion detection: Approaches, datasets, and

comparative study.” Journal of Information Security and Applications, vol. 50,

p. 102419, 2020. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S2214212619305046. https://doi.org/10.1016/j.jisa.2019.102419

[24] CAIDA, “Flow types,” November 2019, Accessed: 25 June, 2020. [Online].

Available: https://www.caida.org/research/traffic-analysis/flowtypes/index.xml

[25] C. Ehret and U. Ultes-Nitsche, “Immune system based intrusion detection

system.” in Innovative Minds (Information Systems Security Association-ISSA

2008), Johannesburg, South Africa, July 2008, 2008.

[26] B. Atli, “Anomaly-based intrusion detection by modeling probability

distributions of flow characteristics.” Master of Science in Technology,

School of Electrical Engineering, 23 October 2017. [Online]. Available:

http://urn.fi/URN:NBN:fi:aalto-201710307348

[27] X. J. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham,

“GLoP: Enabling massively parallel incident response through GPU log

processing.” in Proceedings of the 7th International Conference on Security

of Information and Networks, 2014, pp. 295–301. https://doi.org/10.1145/

2659651.2659700

[28] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,

“HAST-IDS: Learning hierarchical spatial-temporal features using deep neural

networks to improve intrusion detection.” IEEE Access, vol. 6, pp. 1792–1806,

2018. https://doi.org/10.1109/ACCESS.2017.2780250

202

https://doi.org/10.3390/s21051761
http://www.sciencedirect.com/science/article/pii/S2214212619305046
http://www.sciencedirect.com/science/article/pii/S2214212619305046
https://doi.org/10.1016/j.jisa.2019.102419
https://www.caida.org/research/traffic-analysis/flowtypes/index.xml
http://urn.fi/URN:NBN:fi:aalto-201710307348
https://doi.org/10.1145/2659651.2659700
https://doi.org/10.1145/2659651.2659700
https://doi.org/10.1109/ACCESS.2017.2780250

[29] DNSStuff, “IDS vs. IPS: What’s the difference?” June 28, 2019, Accessed: 21

October, 2020. [Online]. Available: https://www.dnsstuff.com/ids-vs-ips

[30] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion

detection systems: Techniques, datasets and challenges.” Cybersecurity, vol. 2,

no. 1, p. 20, 2019. https://doi.org/10.1186/s42400-019-0038-7

[31] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet

traffic classification using machine learning.” IEEE Communications Surveys &

Tutorials, vol. 10, no. 4, pp. 56–76, 2008. https://doi.org/10.1109/SURV.2008.

080406

[32] A. L. Buczak and E. Guven, “A survey of data mining and machine learning

methods for cyber security intrusion detection.” IEEE Communications surveys

& tutorials, vol. 18, no. 2, pp. 1153–1176, 2016. https://doi.org/10.1109/

COMST.2015.2494502

[33] T. Hamed, J. B. Ernst, and S. C. Kremer, A Survey and Taxonomy of Classifiers

of Intrusion Detection Systems., ser. Computer and Network Security Essentials.

Cham: Springer International Publishing, 2018, pp. 21–39. https://doi.org/10.

1007/978-3-319-58424-9 2

[34] G. Sunil, “Logging and monitoring to detect network intrusions and compliance

violations in the environment.” SANS Institute InfoSec Reading Room. SANS

Institute, pp. 1–42, 2012.

[35] F. Blog, “Categorical vs numerical data: 15 key differences & similarities,”

2020, Accessed: 12 January, 2021. [Online]. Available: https//www.formpl.us/

blog/categorical-numerical-data

[36] S. Kumar, “7 ways to handle missing values in machine learning,” 24 July 2020,

Accessed: 23 October, 2020. [Online]. Available: https://towardsdatascience.

com/7-ways-to-handle-missing-values-in-machine-learning-1a6326adf79e

[37] G. Rosati, “Dealing with missing data,” 28 July 2018, Accessed: 23

203

https://www.dnsstuff.com/ids-vs-ips
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1007/978-3-319-58424-9_2
https://doi.org/10.1007/978-3-319-58424-9_2
https//www.formpl.us/blog/categorical-numerical-data
https//www.formpl.us/blog/categorical-numerical-data
https://towardsdatascience.com/7-ways-to-handle-missing-values-in-machine-learning-1a6326adf79e
https://towardsdatascience.com/7-ways-to-handle-missing-values-in-machine-learning-1a6326adf79e

October, 2020. [Online]. Available: https://towardsdatascience.com/dealing-

with-missing-data-17f8b5827664

[38] V. Sharma, “Handling categorical data in machine learning models,” 20

February 2019, Accessed: 23 October, 2020. [Online]. Available: https://www.

pluralsight.com/guides/handling-categorical-data-in-machine-learning-models

[39] A. Bhandari, “Feature scaling — standardization vs

normalization,” 3 April 2020, Accessed: 23 October, 2020.

[Online]. Available: https://www.analyticsvidhya.com/blog/2020/04/feature-

scaling-machine-learning-normalization-standardization/

[40] T. Stöttner, “Why data should be normalized before training a

neural network,” 16 May 2019, Accessed: 12 January, 2021.

[Online]. Available: https://towardsdatascience.com/why-data-should-be-

normalized-before-training-a-neural-network-c626b7f66c7d

[41] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, “Deep

abstraction and weighted feature selection for Wi-Fi impersonation detection.”

IEEE Transactions on Information Forensics and Security, vol. 13, no. 3, pp.

621–636, 2018. https://doi.org/10.1109/TIFS.2017.2762828

[42] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and

discovery using machine-learning and data-mining techniques: A survey.” ACM

Computing Surveys (CSUR), vol. 50, no. 4, p. 56, 2017. https://doi.org/10.1145/

3092566

[43] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion

detection systems: A survey.” Applied Sciences, vol. 9, no. 20, p. 4396, 2019.

[44] T. Shah, “About train, validation and test sets in machine learning,”

6 December 2017, Accessed: Jul 14, 2021. [Online]. Available: https:

//towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

[45] G. Tennenholtz, T. Zahavy, and S. Mannor, “Train on validation: squeezing the

data lemon,” arXiv preprint arXiv:1802.05846, 2018.

204

https://towardsdatascience.com/dealing-with-missing-data-17f8b5827664
https://towardsdatascience.com/dealing-with-missing-data-17f8b5827664
https://www.pluralsight.com/guides/handling-categorical-data-in-machine-learning-models
https://www.pluralsight.com/guides/handling-categorical-data-in-machine-learning-models
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://doi.org/10.1109/TIFS.2017.2762828
https://doi.org/10.1145/3092566
https://doi.org/10.1145/3092566
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

[46] J. Brownlee, “What is the difference between test and validation datasets?”

13 July 2017, Accessed: Jul 12, 2021, 2021. [Online]. Available: https:

//machinelearningmastery.com/difference-test-validation-datasets/

[47] A. Bronshtein, “Train/test split and cross validation in Python,” 17 May 2017,

Accessed: 27 January, 2021. [Online]. Available: https://towardsdatascience.

com/train-test-split-and-cross-validation-in-python-80b61beca4b6

[48] T. Hastie, R. Tibshirani, and J. Friedman, Model Assessment and Selection:

Cross-Validation., 2nd ed., ser. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. New York: Springer Series in Statistics,

February 2009, pp. 219–249.

[49] P. Cunningham and S. J. Delany, “Algorithmic bias and regularisation in

machine learning.” arXiv preprint arXiv:2005.09052, 2020.

[50] R. Khandelwal, “L1 and L2 regularization,” 4 November 2018, Accessed: 10

March, 2021. [Online]. Available: https://medium.datadriveninvestor.com/l1-

l2-regularization-7f1b4fe948f2

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting.” Journal of

Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[52] Y. Chen, Y. Li, X.-Q. Cheng, and L. Guo, “Survey and taxonomy of feature

selection algorithms in intrusion detection system.” in International Conference

on Information Security and Cryptology. Springer, 2006, pp. 153–167. https:

//doi.org/10.1007/11937807 13

[53] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: An

overview.” IEEE Communications Magazine, vol. 57, no. 5, pp. 76–81, 2019.

https://doi.org/10.1109/MCOM.2019.1800819

[54] J. M. Cadenas, M. C. Garrido, and R. Martı́nez, “Feature subset

selection filter–wrapper based on low quality data.” Expert Systems with

Applications, vol. 40, no. 16, pp. 6241–6252, 2013. [Online]. Available:

205

https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://medium.datadriveninvestor.com/l1-l2-regularization-7f1b4fe948f2
https://medium.datadriveninvestor.com/l1-l2-regularization-7f1b4fe948f2
https://doi.org/10.1007/11937807_13
https://doi.org/10.1007/11937807_13
https://doi.org/10.1109/MCOM.2019.1800819

http://www.sciencedirect.com/science/article/pii/S0957417413003497. https:

//doi.org/10.1016/j.eswa.2013.05.051

[55] T. M. Phuong, Z. Lin, and R. B. Altman, “Choosing SNPs using feature

selection.” in 2005 IEEE Computational Systems Bioinformatics Conference

(CSB’05). IEEE, 2005, pp. 301–309. https://doi.org/10.1109/CSB.2005.22

[56] J. C. H. Hernandez, B. Duval, and J.-K. Hao, “A genetic embedded

approach for gene selection and classification of microarray data.” in European

Conference on Evolutionary Computation, Machine Learning and Data Mining

in Bioinformatics. Springer, 2007, pp. 90–101. https://doi.org/10.1007/978-3-

540-71783-6 9

[57] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion detection.”

ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 3,

pp. 186–205, 2000. https://doi.org/10.1145/357830.357849

[58] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,

“Taxonomy and survey of collaborative intrusion detection,” ACM Computing

Surveys (CSUR), vol. 47, no. 4, May 2015. https://doi.org/10.1145/2716260

[59] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson, “Shallow

and deep networks intrusion detection system: A taxonomy and survey.” arXiv

preprint arXiv:1701.02145, pp. 1–43, 2017.

[60] A. P. Bradley, “The use of the area under the ROC curve in the evaluation

of machine learning algorithms.” Pattern Recognition, vol. 30, no. 7, pp.

1145–1159, 1997. https://doi.org/10.1016/S0031-3203(96)00142-2

[61] S. Narkhede, “Understanding AUC - ROC curve,” 2018, Accessed: 29 July,

2019. [Online]. Available: https://towardsdatascience.com/understanding-auc-

roc-curve-68b2303cc9c5

[62] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new

intrusion detection dataset and intrusion traffic characterization.” in ICISSP,

2018, pp. 108–116. https://doi.org/10.5220/0006639801080116

206

http://www.sciencedirect.com/science/article/pii/S0957417413003497
https://doi.org/10.1016/j.eswa.2013.05.051
https://doi.org/10.1016/j.eswa.2013.05.051
https://doi.org/10.1109/CSB.2005.22
https://doi.org/10.1007/978-3-540-71783-6_9
https://doi.org/10.1007/978-3-540-71783-6_9
https://doi.org/10.1145/357830.357849
https://doi.org/10.1145/2716260
https://doi.org/10.1016/S0031-3203(96)00142-2
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://doi.org/10.5220/0006639801080116

[63] Canadian Institute for Cybersecurity, “Intrusion detection evaluation dataset

(CICIDS2017),” Accessed: 15 June, 2018. [Online]. Available: http://www.unb.

ca/cic/datasets/ids-2017.html

[64] Canadian Institute for Cybersecurity, “CIC DoS dataset,” Accessed: 15 June,

2018. [Online]. Available: http://www.unb.ca/cic/datasets/dos-dataset.html

[65] G. Creech and J. Hu, “ADFA IDS dataset,” 2017, Accessed: 13 May, 2019.

[Online]. Available: http://www.azsecure-data.org/

[66] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to retire

the KDD collection.” in 2013 IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, 2013, pp. 4487–4492. https://doi.org/10.1109/

WCNC.2013.6555301

[67] M. J. Turcotte, A. D. Kent, and C. Hash, “Unified host and network data set.”

Data Science For Cyber-security, vol. 3, pp. 1–16, 2018. https://doi.org/10.

1142/9781786345646 001

[68] S. Behal and K. Kumar, “Measuring the impact of DDoS attacks on

web services-a realtime experimentation.” International Journal of Computer

Science and Information Security, vol. 14, no. 9, p. 323, 2016.

[69] J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wierbosch,

L. Z. Granville, and A. Pras, “Booters — an analysis of DDoS-as-a-service

attacks.” in 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM). IEEE, 2015, pp. 243–251. https://doi.org/10.1109/INM.

2015.7140298

[70] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards generating

real-life datasets for network intrusion detection.” IJ Network Security, vol. 17,

no. 6, pp. 683–701, 2015.

[71] Canadian Institute for Cybersecurity, “Botnet dataset,” Accessed: 15 June,

2018. [Online]. Available: http://www.unb.ca/cic/datasets/botnet.html

207

http://www.unb.ca/cic/datasets/ids-2017.html
http://www.unb.ca/cic/datasets/ids-2017.html
http://www.unb.ca/cic/datasets/dos-dataset.html
http://www.azsecure-data.org/
https://doi.org/10.1109/WCNC.2013.6555301
https://doi.org/10.1109/WCNC.2013.6555301
https://doi.org/10.1142/9781786345646_001
https://doi.org/10.1142/9781786345646_001
https://doi.org/10.1109/INM.2015.7140298
https://doi.org/10.1109/INM.2015.7140298
http://www.unb.ca/cic/datasets/botnet.html

[72] A. A. Tobi, “STA2018,” September, 2018, Accessed: 10 October, 2018.

[Online]. Available: https://github.com/elud074/STA2018

[73] S. Garcı́a, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison

of botnet detection methods.” Computers & Security, vol. 45, pp. 100–123,

2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0167404814000923. https://doi.org/10.1016/j.cose.2014.05.011

[74] Canadian Institute for Cybersecurity, “Intrusion detection evaluation dataset

(ISCXIDS2012),” Accessed: 15 June, 2018. [Online]. Available: http:

//www.unb.ca/cic/datasets/ids.html

[75] RIPE Network Coordination Center, “The Waikoto internet trace

storage project dataset,” 2009, Accessed: 5 June, 2020. [Online].

Available: https://labs.ripe.net/datarepository/data-sets/the-waikato-internet-

traffic-storage-wits-passive-datasets

[76] Center for Applied Internet Data Analysis, “The CAIDA UCSD “DDoS

attack 2007” dataset,” 2007, Accessed: 05 May, 2020. [Online]. Available:

https://www.caida.org/data/passive/ddos-20070804 dataset.xml

[77] Canadian Institute for Cybersecurity, “NSL-KDD dataset,” Accessed: 15 June,

2018. [Online]. Available: http://www.unb.ca/cic/datasets/nsl.html

[78] S. Hettich and S. D. Bay, “The UCI KDD archive,” 1999, Accessed: 15 June,

2018. [Online]. Available: http://kdd.ics.uci.edu

[79] L. Laboratory, “MIT lincoln laboratory: DARPA intrusion detection evaluation,”

Accessed: 15 June, 2018. [Online]. Available: https://www.ll.mit.edu/ideval/

data

[80] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the

development of realistic botnet dataset in the Internet of Things for network

forensic analytics: Bot-IoT dataset.” Future Generation Computer Systems, vol.

100, pp. 779–796, 2019. [Online]. Available: http://www.sciencedirect.com/

208

https://github.com/elud074/STA2018
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://www.sciencedirect.com/science/article/pii/S0167404814000923
https://doi.org/10.1016/j.cose.2014.05.011
http://www.unb.ca/cic/datasets/ids.html
http://www.unb.ca/cic/datasets/ids.html
https://labs.ripe.net/datarepository/data-sets/the-waikato-internet-traffic-storage-wits-passive-datasets
https://labs.ripe.net/datarepository/data-sets/the-waikato-internet-traffic-storage-wits-passive-datasets
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.unb.ca/cic/datasets/nsl.html
http://kdd.ics.uci.edu
https://www.ll.mit.edu/ideval/data
https://www.ll.mit.edu/ideval/data
http://www.sciencedirect.com/science/article/pii/S0167739X18327687
http://www.sciencedirect.com/science/article/pii/S0167739X18327687

science/article/pii/S0167739X18327687. https://doi.org/10.1016/j.future.2019.

05.041

[81] P. M. Laso, D. Brosset, and J. Puentes, “Dataset of anomalies and malicious

acts in a cyber-physical subsystem.” Data in Brief, vol. 14, pp. 186–191,

2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S2352340917303402. https://doi.org/10.1016/j.dib.2017.07.038

[82] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma,

“IoT sentinel: Automated device-type identification for security enforcement in

IoT.” in IEEE 37th International Conference on Distributed Computing Systems

(ICDCS). IEEE, 2017, pp. 2177–2184. https://doi.org/10.1109/ICDCS.2017.

283

[83] Canadian Institute for Cybersecurity, “Tor-nonTor dataset,” Accessed: 15 June,

2018. [Online]. Available: http://www.unb.ca/cic/datasets/tor.html

[84] Canadian Institute for Cybersecurity, “VPN-nonVPN dataset,” Accessed: 15

June, 2018. [Online]. Available: http://www.unb.ca/cic/datasets/vpn.html

[85] NETRESEC, “SCADA / ICS PCAP files from 4SICS,” Accessed: 13 May,

2019. [Online]. Available: https://www.netresec.com/?page=PCAP4SICS

[86] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards

a reliable intrusion detection benchmark dataset.” Software Networking, vol.

2018, no. 1, pp. 177–200, 2018. https://doi.org/10.13052/jsn2445-9739.2017.

009

[87] T. S. Group, “DEFCON 8, 10 and 11,” 2000, Accessed: 15 June, 2018.

[Online]. Available: http://cctf.shmoo.com/

[88] Center for Applied Internet Data Analysis, “CAIDA data,” Accessed: 15 June,

2018. [Online]. Available: http://www.caida.org/data/index.xml

[89] L. Lawrence Berkeley National Laboratory and I. International Computer

Science Institute, “LBNL/ICSI enterprise tracing project,” 2005, Accessed:

209

http://www.sciencedirect.com/science/article/pii/S0167739X18327687
http://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.future.2019.05.041
http://www.sciencedirect.com/science/article/pii/S2352340917303402
http://www.sciencedirect.com/science/article/pii/S2352340917303402
https://doi.org/10.1016/j.dib.2017.07.038
https://doi.org/10.1109/ICDCS.2017.283
https://doi.org/10.1109/ICDCS.2017.283
http://www.unb.ca/cic/datasets/tor.html
http://www.unb.ca/cic/datasets/vpn.html
https://www.netresec.com/?page=PCAP4SICS
https://doi.org/10.13052/jsn2445-9739.2017.009
https://doi.org/10.13052/jsn2445-9739.2017.009
http://cctf.shmoo.com/
http://www.caida.org/data/index.xml

15 June, 2018. [Online]. Available: http://www.icir.org/enterprise-tracing/

Overview.html

[90] B. Sangster, T. J. O’Connor, T. Cook, R. Fanelli, E. Dean, C. Morrell, and G. J.

Conti, “Toward instrumenting network warfare competitions to generate labeled

datasets.” in CSET. Berkeley, CA: Usenix, The Advanced Computing System

Association), 2009.

[91] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical

analysis of honeypot data and building of Kyoto 2006 dataset for NIDS

evaluation.” in Proceedings of the First Workshop on Building Analysis Datasets

and Gathering Experience Returns for Security. ACM, 2011, pp. 29–36.

https://doi.org/10.1145/1978672.1978676

[92] A. Sperotto, R. Sadre, F. V. Vliet, and A. Pras, “A labeled data set for

flow-based intrusion detection.” in International Workshop on IP Operations

and Management. Springer, 2009, pp. 39–50. https://doi.org/10.1007/978-3-

642-04968-2 4

[93] S. Prusty, B. N. Levine, and M. Liberatore, “Forensic investigation of the

OneSwarm anonymous filesharing system.” in Proceedings of the 18th ACM

conference on Computer and communications security. ACM, 2011, pp.

201–214. https://doi.org/10.1145/2046707.2046731

[94] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of

network-based intrusion detection data sets.” Computers & Security, vol. 86,

pp. 147–167, 2019. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S016740481930118X. https://doi.org/10.1016/j.cose.2019.06.005

[95] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable anomaly-based

intrusion detection in real-world environments.” Computer Networks, vol. 127,

pp. 200–216, 2017. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1389128617303225. https://doi.org/10.1016/j.comnet.2017.08.013

[96] C. Xiang, P. C. Yong, and L. S. Meng, “Design of multiple-level hybrid

210

http://www.icir.org/enterprise-tracing/Overview.html
http://www.icir.org/enterprise-tracing/Overview.html
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1007/978-3-642-04968-2_4
https://doi.org/10.1007/978-3-642-04968-2_4
https://doi.org/10.1145/2046707.2046731
http://www.sciencedirect.com/science/article/pii/S016740481930118X
http://www.sciencedirect.com/science/article/pii/S016740481930118X
https://doi.org/10.1016/j.cose.2019.06.005
http://www.sciencedirect.com/science/article/pii/S1389128617303225
http://www.sciencedirect.com/science/article/pii/S1389128617303225
https://doi.org/10.1016/j.comnet.2017.08.013

classifier for intrusion detection system using bayesian clustering and

decision trees.” Pattern Recognition Letters, vol. 29, no. 7, pp. 918–924,

2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0167865508000251. https://doi.org/10.1016/j.patrec.2008.01.008

[97] G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli, “Intrusion detection

in computer networks by a modular ensemble of one-class classifiers.”

Information Fusion, vol. 9, no. 1, pp. 69–82, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1566253506000765. https://

doi.org/10.1016/j.inffus.2006.10.002

[98] K. Das, J. Schneider, and D. B. Neill, “Anomaly pattern detection in categorical

datasets.” in Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, 2008, pp. 169–176. https:

//doi.org/10.1145/1401890.1401915

[99] W. Hu, W. Hu, and S. Maybank, “AdaBoost-based algorithm

for network intrusion detection.” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 2,

pp. 577–583, 2008. [Online]. Available: https://www.scopus.com/

inward/record.uri?eid=2-s2.0-41749107387&doi=10.1109%2fTSMCB.

2007.914695&partnerID=40&md5=1622b833beb000ace00407a5bbeff106.

https://doi.org/10.1109/TSMCB.2007.914695

[100] A. Tajbakhsh, M. Rahmati, and A. Mirzaei, “Intrusion detection using fuzzy

association rules.” Applied Soft Computing, vol. 9, no. 2, pp. 462–469,

2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1568494608000975. https://doi.org/10.1016/j.asoc.2008.06.001

[101] D. Sánchez, M. A. Vila, L. Cerda, and J. M. Serrano, “Association rules

applied to credit card fraud detection.” Expert Systems with Applications,

vol. 36, no. 2, Part 2, pp. 3630–3640, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417408001176. https:

211

http://www.sciencedirect.com/science/article/pii/S0167865508000251
http://www.sciencedirect.com/science/article/pii/S0167865508000251
https://doi.org/10.1016/j.patrec.2008.01.008
http://www.sciencedirect.com/science/article/pii/S1566253506000765
https://doi.org/10.1016/j.inffus.2006.10.002
https://doi.org/10.1016/j.inffus.2006.10.002
https://doi.org/10.1145/1401890.1401915
https://doi.org/10.1145/1401890.1401915
https://www.scopus.com/inward/record.uri?eid=2-s2.0-41749107387&doi=10.1109%2fTSMCB.2007.914695&partnerID=40&md5=1622b833beb000ace00407a5bbeff106
https://www.scopus.com/inward/record.uri?eid=2-s2.0-41749107387&doi=10.1109%2fTSMCB.2007.914695&partnerID=40&md5=1622b833beb000ace00407a5bbeff106
https://www.scopus.com/inward/record.uri?eid=2-s2.0-41749107387&doi=10.1109%2fTSMCB.2007.914695&partnerID=40&md5=1622b833beb000ace00407a5bbeff106
https://doi.org/10.1109/TSMCB.2007.914695
http://www.sciencedirect.com/science/article/pii/S1568494608000975
http://www.sciencedirect.com/science/article/pii/S1568494608000975
https://doi.org/10.1016/j.asoc.2008.06.001
http://www.sciencedirect.com/science/article/pii/S0957417408001176
https://doi.org/10.1016/j.eswa.2008.02.001
https://doi.org/10.1016/j.eswa.2008.02.001

//doi.org/10.1016/j.eswa.2008.02.001

[102] K. Shafi and H. A. Abbass, “An adaptive genetic-based signature

learning system for intrusion detection.” Expert Systems with Applications,

vol. 36, no. 10, pp. 12 036–12 043, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417409002589. https:

//doi.org/10.1016/j.eswa.2009.03.036

[103] S. Wu and E. Yen, “Data mining-based intrusion detectors.” Expert Systems with

Applications, vol. 36, no. 3, Part 1, pp. 5605–5612, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417408004089. https://

doi.org/10.1016/j.eswa.2008.06.138

[104] T. P. Tran, L. Cao, D. Tran, and C. D. Nguyen, “Novel intrusion detection using

probabilistic neural network and adaptive boosting.” International Journal of

Computer Science & Information Security, vol. 6, no. 1, pp. 83–91, 2009.

[105] X. Tong, Z. Wang, and H. Yu, “A research using hybrid RBF/Elman neural

networks for intrusion detection system secure model.” Computer Physics

Communications, vol. 180, no. 10, pp. 1795–1801, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0010465509001519. https://

doi.org/10.1016/j.cpc.2009.05.004

[106] W. Lu and H. Tong, “Detecting network anomalies using CUSUM and EM

clustering.” in International Symposium on Intelligence Computation and

Applications. Springer, 2009, pp. 297–308. https://doi.org/10.1007/978-3-642-

04843-2 32

[107] G. Wang, J. Hao, J. Ma, and L. Huang, “A new approach to intrusion

detection using artificial neural networks and fuzzy clustering.” Expert Systems

with Applications, vol. 37, no. 9, pp. 6225–6232, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417410001417. https://

doi.org/10.1016/j.eswa.2010.02.102

[108] M. S. Mok, S. Y. Sohn, and Y. H. Ju, “Random effects logistic regression model

212

https://doi.org/10.1016/j.eswa.2008.02.001
https://doi.org/10.1016/j.eswa.2008.02.001
http://www.sciencedirect.com/science/article/pii/S0957417409002589
https://doi.org/10.1016/j.eswa.2009.03.036
https://doi.org/10.1016/j.eswa.2009.03.036
http://www.sciencedirect.com/science/article/pii/S0957417408004089
https://doi.org/10.1016/j.eswa.2008.06.138
https://doi.org/10.1016/j.eswa.2008.06.138
http://www.sciencedirect.com/science/article/pii/S0010465509001519
https://doi.org/10.1016/j.cpc.2009.05.004
https://doi.org/10.1016/j.cpc.2009.05.004
https://doi.org/10.1007/978-3-642-04843-2_32
https://doi.org/10.1007/978-3-642-04843-2_32
http://www.sciencedirect.com/science/article/pii/S0957417410001417
https://doi.org/10.1016/j.eswa.2010.02.102
https://doi.org/10.1016/j.eswa.2010.02.102

for anomaly detection.” Expert Systems with Applications, vol. 37, no. 10, pp.

7162–7166, 2010. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0957417410002885. https://doi.org/10.1016/j.eswa.2010.04.017

[109] M. M. T. Jawhar and M. Mehrotra, “Design network intrusion detection system

using hybrid fuzzy-neural network.” International Journal of Computer Science

and Security, vol. 4, no. 3, pp. 285–294, 2010.

[110] C. Wagner, J. François, and T. Engel, “Machine learning approach for

IP-flow record anomaly detection.” in International Conference on Research

in Networking. Springer, 2011, pp. 28–39. https://doi.org/10.1007/978-3-642-

20757-0 3

[111] C. M. Rahman, D. M. Farid, and M. Z. Rahman, “Adaptive intrusion detection

based on boosting and naive bayesian classifier.” International Journal of

Computer Applications, vol. 24, no. 3, pp. 11–19, 2011.

[112] M. Su, “Real-time anomaly detection systems for denial-of-service

attacks by weighted k-nearest-neighbor classifiers.” Expert Systems with

Applications, vol. 38, no. 4, pp. 3492–3498, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417410009450. https:

//doi.org/10.1016/j.eswa.2010.08.137

[113] M. S. Abadeh, H. Mohamadi, and J. Habibi, “Design and analysis of genetic

fuzzy systems for intrusion detection in computer networks.” Expert Systems

with Applications, vol. 38, no. 6, pp. 7067–7075, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417410013692. https://

doi.org/10.1016/j.eswa.2010.12.006

[114] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical

real-time intrusion detection using machine learning approaches.” Computer

Communications, vol. 34, no. 18, pp. 2227–2235, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S014036641100209X. https://

doi.org/10.1016/j.comcom.2011.07.001

213

http://www.sciencedirect.com/science/article/pii/S0957417410002885
http://www.sciencedirect.com/science/article/pii/S0957417410002885
https://doi.org/10.1016/j.eswa.2010.04.017
https://doi.org/10.1007/978-3-642-20757-0_3
https://doi.org/10.1007/978-3-642-20757-0_3
http://www.sciencedirect.com/science/article/pii/S0957417410009450
https://doi.org/10.1016/j.eswa.2010.08.137
https://doi.org/10.1016/j.eswa.2010.08.137
http://www.sciencedirect.com/science/article/pii/S0957417410013692
https://doi.org/10.1016/j.eswa.2010.12.006
https://doi.org/10.1016/j.eswa.2010.12.006
http://www.sciencedirect.com/science/article/pii/S014036641100209X
https://doi.org/10.1016/j.comcom.2011.07.001
https://doi.org/10.1016/j.comcom.2011.07.001

[115] S. Lee, G. Kim, and S. Kim, “Self-adaptive and dynamic clustering

for online anomaly detection.” Expert Systems with Applications,

vol. 38, no. 12, pp. 14 891–14 898, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417411008426. https:

//doi.org/10.1016/j.eswa.2011.05.058

[116] S. Wang, K. Yan, S. Wang, and C. Liu, “An integrated intrusion detection

system for cluster-based wireless sensor networks.” Expert Systems with

Applications, vol. 38, no. 12, pp. 15 234–15 243, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417411008608. https://

doi.org/10.1016/j.eswa.2011.05.076

[117] Y. Yi, J. Wu, and W. Xu, “Incremental SVM based on reserved set for network

intrusion detection.” Expert Systems with Applications, vol. 38, no. 6, pp.

7698–7707, 2011. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0957417410015046. https://doi.org/10.1016/j.eswa.2010.12.141

[118] Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir, “A k-means and naive

bayes learning approach for better intrusion detection.” Information technology

journal, vol. 10, no. 3, pp. 648–655, 2011.

[119] A. S. Aneetha and S. Bose, “The combined approach for anomaly detection

using neural networks and clustering techniques.” Computer Science &

Engineering, vol. 2, no. 4, pp. 37–46, 2012.

[120] C. A. Catania, F. Bromberg, and C. G. Garino, “An autonomous labeling

approach to support vector machines algorithms for network traffic anomaly

detection.” Expert Systems with Applications, vol. 39, no. 2, pp. 1822–1829,

2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0957417411011808. https://doi.org/10.1016/j.eswa.2011.08.068

[121] C. Cheng, W. P. Tay, and G. Huang, “Extreme learning machines for intrusion

detection.” in Neural networks (IJCNN), the 2012 international joint conference

on. IEEE, 2012, pp. 1–8. https://doi.org/10.1109/IJCNN.2012.6252449

214

http://www.sciencedirect.com/science/article/pii/S0957417411008426
https://doi.org/10.1016/j.eswa.2011.05.058
https://doi.org/10.1016/j.eswa.2011.05.058
http://www.sciencedirect.com/science/article/pii/S0957417411008608
https://doi.org/10.1016/j.eswa.2011.05.076
https://doi.org/10.1016/j.eswa.2011.05.076
http://www.sciencedirect.com/science/article/pii/S0957417410015046
http://www.sciencedirect.com/science/article/pii/S0957417410015046
https://doi.org/10.1016/j.eswa.2010.12.141
http://www.sciencedirect.com/science/article/pii/S0957417411011808
http://www.sciencedirect.com/science/article/pii/S0957417411011808
https://doi.org/10.1016/j.eswa.2011.08.068
https://doi.org/10.1109/IJCNN.2012.6252449

[122] I. Kang, M. K. Jeong, and D. Kong, “A differentiated one-class classification

method with applications to intrusion detection.” Expert Systems with

Applications, vol. 39, no. 4, pp. 3899–3905, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417411009286. https://

doi.org/10.1016/j.eswa.2011.06.033

[123] L. Koc, T. A. Mazzuchi, and S. Sarkani, “A network intrusion detection system

based on a hidden naı̈ve bayes multiclass classifier.” Expert Systems with

Applications, vol. 39, no. 18, pp. 13 492–13 500, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417412008640. https://

doi.org/10.1016/j.eswa.2012.07.009

[124] S. Lin, K. Ying, C. Lee, and Z. Lee, “An intelligent algorithm with feature

selection and decision rules applied to anomaly intrusion detection.” Applied

Soft Computing, vol. 12, no. 10, pp. 3285–3290, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1568494612002402. https://

doi.org/10.1016/j.asoc.2012.05.004

[125] S. S. S. Sindhu, S. Geetha, and A. Kannan, “Decision tree based light

weight intrusion detection using a wrapper approach.” Expert Systems

with Applications, vol. 39, no. 1, pp. 129–141, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417411009080. https://

doi.org/10.1016/j.eswa.2011.06.013

[126] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient intrusion

detection system based on support vector machines and gradually feature

removal method.” Expert Systems with Applications, vol. 39, no. 1, pp.

424–430, 2012. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0957417411009948. https://doi.org/10.1016/j.eswa.2011.07.032

[127] A. M. Chandrashekhar and K. Raghuveer, “Fortification of hybrid intrusion

detection system using variants of neural networks and support vector

machines.” International Journal of Network Security and Its Applications,

215

http://www.sciencedirect.com/science/article/pii/S0957417411009286
https://doi.org/10.1016/j.eswa.2011.06.033
https://doi.org/10.1016/j.eswa.2011.06.033
http://www.sciencedirect.com/science/article/pii/S0957417412008640
https://doi.org/10.1016/j.eswa.2012.07.009
https://doi.org/10.1016/j.eswa.2012.07.009
http://www.sciencedirect.com/science/article/pii/S1568494612002402
https://doi.org/10.1016/j.asoc.2012.05.004
https://doi.org/10.1016/j.asoc.2012.05.004
http://www.sciencedirect.com/science/article/pii/S0957417411009080
https://doi.org/10.1016/j.eswa.2011.06.013
https://doi.org/10.1016/j.eswa.2011.06.013
http://www.sciencedirect.com/science/article/pii/S0957417411009948
http://www.sciencedirect.com/science/article/pii/S0957417411009948
https://doi.org/10.1016/j.eswa.2011.07.032

vol. 5, no. 1, pp. 71–90, 2013.

[128] D. A. A. Zainaddin and Z. M. Hanapi, “Hybrid of fuzzy clustering neural

network over NSL dataset for intrusion detection system.” Journal of Computer

Science, vol. 9, no. 3, pp. 391–403, 2013. https://doi.org/10.3844/jcssp.2013.

391.403

[129] M. M. Lisehroodi, Z. Muda, and W. Yassin, “A hybrid framework based on

neural network MLP and k-means clustering for intrusion detection system.”

in Proceedings of 4th International Conference on Computing and Informatics,

ICOCI, 2013, pp. 305–311.

[130] S. Devaraju and S. Ramakrishnan, “Detection of accuracy for intrusion detection

system using neural network classifier.” International Journal of Emerging

Technology and Advanced Engineering, vol. 3, no. 1, pp. 338–345, 2013.

[131] S. Shin, S. Lee, H. Kim, and S. Kim, “Advanced probabilistic approach

for network intrusion forecasting and detection.” Expert Systems with

Applications, vol. 40, no. 1, pp. 315–322, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417412009128. https://

doi.org/10.1016/j.eswa.2012.07.057

[132] W. Yassin, N. I. Udzir, Z. Muda, and M. N. Sulaiman, “Anomaly-based intrusion

detection through k-means clustering and naives bayes classification.” in

Proceedings of the 4th International Conference on Computing and Informatics,

ICOCI 2013, 2013, pp. 298–303.

[133] Y. Sahin, S. Bulkan, and E. Duman, “A cost-sensitive decision tree approach

for fraud detection.” Expert Systems with Applications, vol. 40, no. 15, pp.

5916–5923, 2013. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0957417413003072. https://doi.org/10.1016/j.eswa.2013.05.021

[134] Z. A. Baig, S. M. Sait, and A. Shaheen, “GMDH-based networks

for intelligent intrusion detection.” Engineering Applications of Artificial

Intelligence, vol. 26, no. 7, pp. 1731–1740, 2013. [Online]. Available:

216

https://doi.org/10.3844/jcssp.2013.391.403
https://doi.org/10.3844/jcssp.2013.391.403
http://www.sciencedirect.com/science/article/pii/S0957417412009128
https://doi.org/10.1016/j.eswa.2012.07.057
https://doi.org/10.1016/j.eswa.2012.07.057
http://www.sciencedirect.com/science/article/pii/S0957417413003072
http://www.sciencedirect.com/science/article/pii/S0957417413003072
https://doi.org/10.1016/j.eswa.2013.05.021

http://www.sciencedirect.com/science/article/pii/S095219761300050X. https://

doi.org/10.1016/j.engappai.2013.03.008

[135] Z. M. Fadlullah, H. Nishiyama, N. Kato, and M. M. Fouda, “Intrusion detection

system (IDS) for combating attacks against cognitive radio networks.” IEEE

Network, vol. 27, no. 3, pp. 51–56, 2013. https://doi.org/10.1109/MNET.2013.

6523809

[136] J. Xiang, M. Westerlund, D. Sovilj, and G. Pulkkis, “Using extreme learning

machine for intrusion detection in a big data environment.” in Proceedings of

the 2014 Workshop on Artificial Intelligent and Security Workshop. ACM,

2014, pp. 73–82. https://doi.org/10.1145/2666652.2666664

[137] A. K. Shrivas and A. K. Dewangan, “An ensemble model for classification

of attacks with feature selection based on KDD99 and NSL-KDD data set.”

International Journal of Computer Applications, vol. 99, no. 15, pp. 8–13, 2014.

[138] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method

integrating anomaly detection with misuse detection.” Expert Systems with

Applications, vol. 41, no. 4, Part 2, pp. 1690–1700, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417413006878. https://

doi.org/10.1016/j.eswa.2013.08.066

[139] R. Ranjan and G. Sahoo, “A new clustering approach for anomaly intrusion

detection.” International Journal of Data Mining & Knowledge Management

Process, vol. 4, no. 2, pp. 29–38, 2014.

[140] W. Feng, Q. Zhang, G. Hu, and J. X. Huang, “Mining network data for

intrusion detection through combining SVMs with ant colony networks.” Future

Generation Computer Systems, vol. 37, pp. 127–140, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X13001416. https://

doi.org/10.1016/j.future.2013.06.027

[141] N. A. Seresht and R. Azmi, “MAIS-IDS: A distributed intrusion detection

system using multi-agent AIS approach.” Engineering Applications of Artificial

217

http://www.sciencedirect.com/science/article/pii/S095219761300050X
https://doi.org/10.1016/j.engappai.2013.03.008
https://doi.org/10.1016/j.engappai.2013.03.008
https://doi.org/10.1109/MNET.2013.6523809
https://doi.org/10.1109/MNET.2013.6523809
https://doi.org/10.1145/2666652.2666664
http://www.sciencedirect.com/science/article/pii/S0957417413006878
https://doi.org/10.1016/j.eswa.2013.08.066
https://doi.org/10.1016/j.eswa.2013.08.066
http://www.sciencedirect.com/science/article/pii/S0167739X13001416
https://doi.org/10.1016/j.future.2013.06.027
https://doi.org/10.1016/j.future.2013.06.027

Intelligence, vol. 35, pp. 286–298, 2014. https://doi.org/10.1016/j.engappai.

2014.06.022

[142] A. S. Eesa, Z. Orman, and A. M. A. Brifcani, “A novel feature-selection

approach based on the cuttlefish optimization algorithm for intrusion detection

systems.” Expert Systems with Applications, vol. 42, no. 5, pp. 2670–2679,

2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0957417414006952. https://doi.org/10.1016/j.eswa.2014.11.009

[143] B. W. Masduki, K. Ramli, F. A. Saputra, and D. Sugiarto, “Study on

implementation of machine learning methods combination for improving

attacks detection accuracy on intrusion detection system (IDS).” in Quality in

Research (QiR), 2015 International Conference on. IEEE, 2015, pp. 56–64.

https://doi.org/10.1109/QiR.2015.7374895

[144] W. Lin, S. Ke, and C. Tsai, “CANN: An intrusion detection system based on

combining cluster centers and nearest neighbors.” Knowledge-Based Systems,

vol. 78, pp. 13–21, 2015. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0950705115000167. https://doi.org/10.1016/j.knosys.2015.

01.009

[145] W. Srimuang and S. Intarasothonchun, “Classification model of network

intrusion using weighted extreme learning machine.” in 12th international joint

conference on Computer science and software engineering (JCSSE). IEEE,

2015, pp. 190–194. https://doi.org/10.1109/JCSSE.2015.7219794

[146] E. A. Abas, H. Abdelkader, and A. Keshk, “Artificial immune system based

intrusion detection.” in IEEE seventh international conference on intelligent

computing and information systems (ICICIS). IEEE, 2015, pp. 542–546.

https://doi.org/10.1109/IntelCIS.2015.7397274

[147] A. Hadri, K. Chougdali, and R. Touahni, “Intrusion detection system using

PCA and fuzzy PCA techniques.” in Advanced Communication Systems and

Information Security (ACOSIS), International Conference on. IEEE, 2016, pp.

218

https://doi.org/10.1016/j.engappai.2014.06.022
https://doi.org/10.1016/j.engappai.2014.06.022
http://www.sciencedirect.com/science/article/pii/S0957417414006952
http://www.sciencedirect.com/science/article/pii/S0957417414006952
https://doi.org/10.1016/j.eswa.2014.11.009
https://doi.org/10.1109/QiR.2015.7374895
http://www.sciencedirect.com/science/article/pii/S0950705115000167
http://www.sciencedirect.com/science/article/pii/S0950705115000167
https://doi.org/10.1016/j.knosys.2015.01.009
https://doi.org/10.1016/j.knosys.2015.01.009
https://doi.org/10.1109/JCSSE.2015.7219794
https://doi.org/10.1109/IntelCIS.2015.7397274

1–7. https://doi.org/10.1109/ACOSIS.2016.7843930

[148] B. Subba, S. Biswas, and S. Karmakar, “Enhancing performance of anomaly

based intrusion detection systems through dimensionality reduction using

principal component analysis.” in Advanced Networks and Telecommunications

Systems (ANTS), 2016 IEEE International Conference on. IEEE, 2016, pp.

1–6. https://doi.org/10.1109/ANTS.2016.7947776

[149] E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C. Tachtatzis,

and R. Atkinson, “Threat analysis of IoT networks using artificial neural

network intrusion detection system.” in 2016 International Symposium on

Networks, Computers and Communications (IEEE ISNCC’16). IEEE, 2016,

pp. 1–6. https://doi.org/10.1109/ISNCC.2016.7746067

[150] P. A. Sonewar and S. D. Thosar, “Detection of SQL injection and XSS attacks

in three tier web applications.” in Computing Communication Control and

automation (ICCUBEA), 2016 International Conference on. IEEE, 2016, pp.

1–4. https://doi.org/10.1109/ICCUBEA.2016.7860069

[151] P. Nskh, M. N. Varma, and R. R. Naik, “Principle component analysis based

intrusion detection system using support vector machine.” in Recent Trends

in Electronics, Information and Communication Technology (RTEICT), IEEE

International Conference on. IEEE, 2016, pp. 1344–1350. https://doi.org/10.

1109/RTEICT.2016.7808050

[152] O. Igbe, I. Darwish, and T. Saadawi, “Distributed network intrusion detection

systems: An artificial immune system approach.” in IEEE First International

Conference on Connected Health: Applications, Systems and Engineering

Technologies (CHASE). IEEE, 2016, pp. 101–106. https://doi.org/10.1109/

CHASE.2016.36

[153] G. Osada, K. Omote, and T. Nishide, “Network intrusion detection based on

semi-supervised variational auto-encoder.” in Computer Security – ESORICS

2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds. Cham: Springer

219

https://doi.org/10.1109/ACOSIS.2016.7843930
https://doi.org/10.1109/ANTS.2016.7947776
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ICCUBEA.2016.7860069
https://doi.org/10.1109/RTEICT.2016.7808050
https://doi.org/10.1109/RTEICT.2016.7808050
https://doi.org/10.1109/CHASE.2016.36
https://doi.org/10.1109/CHASE.2016.36

International Publishing, 2017, pp. 344–361. https://doi.org/10.1007/978-3-

319-66399-9 19

[154] A. R. Syarif and W. Gata, “Intrusion detection system using hybrid binary PSO

and k-nearest neighborhood algorithm.” in 11th International Conference on

Information and Communication Technology and System (ICTS). IEEE, 2017,

pp. 181–186. https://doi.org/10.1109/ICTS.2017.8265667

[155] B. Xu, S. Chen, H. Zhang, and T. Wu, “Incremental k-NN SVM method

in intrusion detection.” in 8th IEEE International Conference on Software

Engineering and Service Science (ICSESS). IEEE, 2017, pp. 712–717. https:

//doi.org/10.1109/ICSESS.2017.8343013

[156] C. Tran, T. N. Vo, and T. N. Thinh, “HA-IDS: A heterogeneous anomaly-based

intrusion detection system.” in 4th NAFOSTED Conference on Information

and Computer Science. IEEE, 2017, pp. 156–161. https://doi.org/10.1109/

NAFOSTED.2017.8108056

[157] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for

intrusion detection using recurrent neural networks.” IEEE Access, vol. 5, pp.

21 954–21 961, 2017. https://doi.org/10.1109/ACCESS.2017.2762418

[158] D. A. Effendy, K. Kusrini, and S. Sudarmawan, “Classification of intrusion

detection system (IDS) based on computer network.” in Proceedings of 2017

2nd International conferences on Information Technology, Information Systems

and Electrical Engineering (ICITISEE). IEEE, 2017, pp. 90–94. https://doi.

org/10.1109/ICITISEE.2017.8285566

[159] E. Hodo, X. Bellekens, E. Iorkyase, A. Hamilton, C. Tachtatzis, and

R. Atkinson, “Machine learning approach for detection of nonTor traffic.”

in Proceedings of the 12th International Conference on Availability,

Reliability and Security. New York, NY, USA: ACM, 2017, pp. 85:1–85:6.

[Online]. Available: http://doi.acm.org/10.1145/3098954.3106068. https://doi.

org/10.1145/3098954.3106068

220

https://doi.org/10.1007/978-3-319-66399-9_19
https://doi.org/10.1007/978-3-319-66399-9_19
https://doi.org/10.1109/ICTS.2017.8265667
https://doi.org/10.1109/ICSESS.2017.8343013
https://doi.org/10.1109/ICSESS.2017.8343013
https://doi.org/10.1109/NAFOSTED.2017.8108056
https://doi.org/10.1109/NAFOSTED.2017.8108056
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ICITISEE.2017.8285566
https://doi.org/10.1109/ICITISEE.2017.8285566
http://doi.acm.org/10.1145/3098954.3106068
https://doi.org/10.1145/3098954.3106068
https://doi.org/10.1145/3098954.3106068

[160] Q. Li, Z. Tan, A. Jamdagni, P. Nanda, X. He, and W. Han, “An intrusion

detection system based on polynomial feature correlation analysis.” in 2017

IEEE Trustcom/BigDataSE/ICESS. IEEE, 2017, pp. 978–983. https://doi.org/

10.1109/Trustcom/BigDataSE/ICESS.2017.340

[161] S. Zhao, W. Li, T. Zia, and A. Y. Zomaya, “A dimension reduction model

and classifier for anomaly-based intrusion detection in internet of things.” in

IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th

Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2017, pp. 836–843. https:

//doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141

[162] U. N. Wisesty and Adiwijaya, “Comparative study of conjugate gradient to

optimize learning process of neural network for intrusion detection system

(IDS).” in 3rd International Conference on Science in Information Technology

(ICSITech). IEEE, 2017, pp. 459–464. https://doi.org/10.1109/ICSITech.2017.

8257156

[163] R. C. Aygun and A. G. Yavuz, “Network anomaly detection with stochastically

improved autoencoder based models.” in IEEE 4th International Conference on

Cyber Security and Cloud Computing (CSCloud). IEEE, 2017, pp. 193–198.

https://doi.org/10.1109/CSCloud.2017.39

[164] D. He, X. Chen, D. Zou, L. Pei, and L. Jiang, “An improved kernel clustering

algorithm used in computer network intrusion detection.” in Proceedings of

2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,

2018, pp. 1–5. https://doi.org/10.1109/ISCAS.2018.8350994

[165] M. N. Napiah, M. Y. I. Idris, R. Ramli, and I. Ahmedy, “Compression header

analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication

protocol.” IEEE Access, vol. 6, pp. 16 623–16 638, 2018. https://doi.org/10.

1109/ACCESS.2018.2798626

221

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.340
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.340
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141
https://doi.org/10.1109/ICSITech.2017.8257156
https://doi.org/10.1109/ICSITech.2017.8257156
https://doi.org/10.1109/CSCloud.2017.39
https://doi.org/10.1109/ISCAS.2018.8350994
https://doi.org/10.1109/ACCESS.2018.2798626
https://doi.org/10.1109/ACCESS.2018.2798626

[166] M. H. Ali, B. A. D. A. Mohammed, M. A. B. Ismail, and M. F. Zolkipli, “A new

intrusion detection system based on fast learning network and particle swarm

optimization.” IEEE Access, vol. 6, pp. 20 255–20 261, 2018. https://doi.org/10.

1109/ACCESS.2018.2820092

[167] M. AL-Hawawreh, N. Moustafa, and E. Sitnikova, “Identification of

malicious activities in industrial internet of things based on deep learning

models.” Journal of Information Security and Applications, vol. 41, pp.

1–11, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S2214212617306002. https://doi.org/10.1016/j.jisa.2018.05.002

[168] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach

to network intrusion detection.” IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018. https://doi.org/10.

1109/TETCI.2017.2772792

[169] Q. Zhang, Y. Qu, and A. Deng, “Network intrusion detection using kernel-based

fuzzy-rough feature selection.” in 2018 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE). IEEE, 2018, pp. 1–6. https://doi.org/10.1109/FUZZ-

IEEE.2018.8491578

[170] D. Hooks, X. Yuan, K. Roy, A. Esterline, and J. Hernandez, “Applying

artificial immune system for intrusion detection.” in IEEE Fourth International

Conference on Big Data Computing Service and Applications (BigDataService).

IEEE, 2018, pp. 287–292. https://doi.org/10.1109/BigDataService.2018.00051

[171] J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Adaptive artificial immune

networks for mitigating DoS flooding attacks.” Swarm and Evolutionary

Computation, vol. 38, pp. 94–108, 2018. https://doi.org/10.1016/j.swevo.2017.

07.002

[172] S. Aljawarneh, M. B. Yassein, and M. Aljundi, “An enhanced J48 classification

algorithm for the anomaly intrusion detection systems.” Cluster Computing,

vol. 22, no. 5, pp. 10 549–10 565, 2019. https://doi.org/10.1007/s10586-017-

222

https://doi.org/10.1109/ACCESS.2018.2820092
https://doi.org/10.1109/ACCESS.2018.2820092
http://www.sciencedirect.com/science/article/pii/S2214212617306002
http://www.sciencedirect.com/science/article/pii/S2214212617306002
https://doi.org/10.1016/j.jisa.2018.05.002
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/FUZZ-IEEE.2018.8491578
https://doi.org/10.1109/FUZZ-IEEE.2018.8491578
https://doi.org/10.1109/BigDataService.2018.00051
https://doi.org/10.1016/j.swevo.2017.07.002
https://doi.org/10.1016/j.swevo.2017.07.002
https://doi.org/10.1007/s10586-017-1109-8
https://doi.org/10.1007/s10586-017-1109-8

1109-8

[173] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour,

“Cyber intrusion detection by combined feature selection algorithm.” Journal

of information security and applications, vol. 44, pp. 80–88, 2019. https://doi.

org/10.1016/j.jisa.2018.11.007

[174] O. Faker and E. Dogdu, “Intrusion detection using big data and deep learning

techniques.” in Proceedings of the 2019 ACM Southeast Conference. New

York, NY, USA: Association for Computing Machinery, 2019, pp. 86–93. https:

//doi.org/10.1145/3299815.3314439

[175] F. Salo, A. B. Nassif, and A. Essex, “Dimensionality reduction with IG-PCA

and ensemble classifier for network intrusion detection.” Computer Networks,

vol. 148, pp. 164–175, 2019. https://doi.org/10.1016/j.comnet.2018.11.010

[176] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat,

and S. Venkatraman, “Deep learning approach for intelligent intrusion detection

system.” IEEE Access, vol. 7, pp. 41 525–41 550, 2019. https://doi.org/10.1109/

ACCESS.2019.2895334

[177] J. Ghasemi, J. Esmaily, and R. Moradinezhad, “Intrusion detection system using

an optimized kernel extreme learning machine and efficient features.” Sādhanā,

vol. 45, no. 1, pp. 1–9, 2019. https://doi.org/10.1007/s12046-019-1230-x

[178] M. Gharib, B. Mohammadi, S. H. Dastgerdi, and M. Sabokrou, “AutoIDS:

Auto-encoder based method for intrusion detection system.” arXiv preprint

arXiv:1911.03306, 2019.

[179] A. Yulianto, P. Sukarno, and N. A. Suwastika, “Improving AdaBoost-based

intrusion detection system (IDS) performance on CIC IDS 2017 dataset.” in

Journal of Physics: Conference Series, vol. 1192. IOP Publishing, 2019, p.

012018. https://doi.org/10.1088/1742-6596/1192/1/012018

[180] S. Sen, K. D. Gupta, and M. M. Ahsan, “Leveraging machine learning approach

to setup software-defined network (SDN) controller rules during DDoS

223

https://doi.org/10.1007/s10586-017-1109-8
https://doi.org/10.1007/s10586-017-1109-8
https://doi.org/10.1016/j.jisa.2018.11.007
https://doi.org/10.1016/j.jisa.2018.11.007
https://doi.org/10.1145/3299815.3314439
https://doi.org/10.1145/3299815.3314439
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1007/s12046-019-1230-x
https://doi.org/10.1088/1742-6596/1192/1/012018

attack.” in Proceedings of International Joint Conference on Computational

Intelligence. Springer, 2020, pp. 49–60. https://doi.org/10.1007/978-981-13-

7564-4 5

[181] Z. Liu, Y. Zhu, X. Yan, L. Wang, Z. Jiang, and J. Luo, “Deep learning approach

for IDS.” in Fourth International Congress on Information and Communication

Technology. Springer, 2020, pp. 471–479. https://doi.org/10.1007/978-981-

15-0637-6 40

[182] M. Sarnovsky and J. Paralic, “Hierarchical intrusion detection using machine

learning and knowledge model.” Symmetry, vol. 12, no. 2, p. 203, 2020. https:

//doi.org/10.3390/sym12020203

[183] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS: An

intelligent anomaly based intrusion detection system for IoT edge devices.”

IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6882–6897, 2020. https:

//doi.org/10.1109/JIOT.2020.2970501

[184] M. D. Hossain, H. Ochiai, F. Doudou, and Y. Kadobayashi, “SSH and

FTP brute-force attacks detection in computer networks: LSTM and machine

learning approaches.” in 5th International Conference on Computer and

Communication Systems (ICCCS). IEEE, 2020, pp. 491–497. https://doi.org/

10.1109/ICCCS49078.2020.9118459

[185] A. M. A. Tobi and I. Duncan, “KDD 1999 generation faults: A review and

analysis.” Journal of Cyber Security Technology, pp. 1–37, 2018. https://doi.

org/10.1080/23742917.2018.1518061

[186] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 DARPA/Lincoln

laboratory evaluation data for network anomaly detection.” in Recent Advances

in Intrusion Detection, G. Vigna, C. Kruegel, and E. Jonsson, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003, pp. 220–237. https://doi.org/10.

1007/978-3-540-45248-5 13

[187] J. McHugh, “Testing intrusion detection systems: A critique of the 1998

224

https://doi.org/10.1007/978-981-13-7564-4_5
https://doi.org/10.1007/978-981-13-7564-4_5
https://doi.org/10.1007/978-981-15-0637-6_40
https://doi.org/10.1007/978-981-15-0637-6_40
https://doi.org/10.3390/sym12020203
https://doi.org/10.3390/sym12020203
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/ICCCS49078.2020.9118459
https://doi.org/10.1109/ICCCS49078.2020.9118459
https://doi.org/10.1080/23742917.2018.1518061
https://doi.org/10.1080/23742917.2018.1518061
https://doi.org/10.1007/978-3-540-45248-5_13
https://doi.org/10.1007/978-3-540-45248-5_13

and 1999 DARPA intrusion detection system evaluations as performed by

Lincoln Laboratory.” ACM Transactions on Information and System Security

(TISSEC), vol. 3, no. 4, pp. 262–294, 2000. [Online]. Available: http:

//doi.acm.org/10.1145/382912.382923. https://doi.org/10.1145/382912.382923

[188] K. Kendall, “A database of computer attacks for the evaluation of intrusion

detection systems.” Bachelor of Science, Electrical Engineering and Computer

Science, 1999.

[189] K. Siddique, Z. Akhtar, F. A. Khan, and Y. Kim, “KDD Cup 99 data sets: A

perspective on the role of data sets in network intrusion detection research.”

Computer, vol. 52, no. 2, pp. 41–51, 2019. https://doi.org/10.1109/MC.2018.

2888764

[190] D. Welch and S. Lathrop, “Wireless security threat taxonomy.” in Information

Assurance Workshop, 2003. IEEE Systems, Man and Cybernetics Society.

IEEE, 2003, pp. 76–83. https://doi.org/10.1109/SMCSIA.2003.1232404

[191] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad, “Proposed security

model and threat taxonomy for the internet of things (IoT).” in International

Conference on Network Security and Applications. Springer, 2010, pp.

420–429. https://doi.org/10.1007/978-3-642-14478-3 42

[192] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of

service attacks: Characterization and implications for CDNs and web sites.” in

Proceedings of the 11th international conference on World Wide Web, 2002, pp.

293–304. https://doi.org/10.1145/511446.511485

[193] Neustar, “Cyber threats & trends report: First half 2020.” Neustar, Inc.,

Tech. Rep., 2020. [Online]. Available: https://www.home.neustar/resources/

whitepapers/cyber-threats-and-trends-report-2020-first-half

[194] S. McClure, J. Scambray, G. Kurtz, and Kurtz, Hacking Exposed: Network

Security Secrets and Solutions., 6th ed. McGraw-Hill, 2009.

[195] PurpleSec, “2020 cyber security statistics: The ultimate list of stats, data &

225

http://doi.acm.org/10.1145/382912.382923
http://doi.acm.org/10.1145/382912.382923
https://doi.org/10.1145/382912.382923
https://doi.org/10.1109/MC.2018.2888764
https://doi.org/10.1109/MC.2018.2888764
https://doi.org/10.1109/SMCSIA.2003.1232404
https://doi.org/10.1007/978-3-642-14478-3_42
https://doi.org/10.1145/511446.511485
https://www.home.neustar/resources/whitepapers/cyber-threats-and-trends-report-2020-first-half
https://www.home.neustar/resources/whitepapers/cyber-threats-and-trends-report-2020-first-half

trends,” 08 November 2020, Accessed: 8 February, 2021. [Online]. Available:

https://purplesec.us/resources/cyber-security-statistics/

[196] “Malware vs viruses: What’s the difference?” February 2018, Accessed:

28 February, 2018. [Online]. Available: https://antivirus.comodo.com/blog/

computer-safety/malware-vs-viruses-whats-difference/

[197] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware: From

encryption to metamorphism.” International Journal of Computer Science and

Network Security, vol. 12, no. 8, pp. 74–83, 2012.

[198] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features model

for malware detection.” Journal of Computer Virology and Hacking Techniques,

vol. 12, no. 2, pp. 59–67, 2016. https://doi.org/10.1007/s11416-015-0244-0

[199] D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for

self-mutating malware.” IEEE Security & Privacy, vol. 5, no. 2, pp. 46–54,

2007. https://doi.org/10.1109/MSP.2007.31

[200] A. Javed, P. Burnap, and O. Rana, “Prediction of drive-by download attacks

on twitter.” Information Processing & Management, vol. 56, no. 3, pp.

1133–1145, 2019. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0306457317305824. https://doi.org/10.1016/j.ipm.2018.02.003

[201] L. Neely, “Threat landscape survey: Users on the front line. sans

institute,” 2017, Accessed: 18 February, 2018. [Online]. Available: https:

//www.sans.org/reading-room/whitepapers/threats/paper/37910

[202] SecurityFirst, “The top 9 network security threats of 2019,” 24 August 2018,

Accessed: May 16, 2019. [Online]. Available: https://securityfirstcorp.com/the-

top-9-network-security-threats-of-2019/

[203] P. Parrend, J. Navarro, F. Guigou, A. Deruyver, and P. Collet, “Foundations

and applications of artificial intelligence for zero-day and multi-step attack

detection.” EURASIP Journal on Information Security, vol. 2018, no. 1, p. 4,

2018. https://doi.org/10.1186/s13635-018-0074-y

226

https://purplesec.us/resources/cyber-security-statistics/
https://antivirus.comodo.com/blog/computer-safety/malware-vs-viruses-whats-difference/
https://antivirus.comodo.com/blog/computer-safety/malware-vs-viruses-whats-difference/
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1109/MSP.2007.31
http://www.sciencedirect.com/science/article/pii/S0306457317305824
http://www.sciencedirect.com/science/article/pii/S0306457317305824
https://doi.org/10.1016/j.ipm.2018.02.003
https://www.sans.org/reading-room/whitepapers/threats/paper/37910
https://www.sans.org/reading-room/whitepapers/threats/paper/37910
https://securityfirstcorp.com/the-top-9-network-security-threats-of-2019/
https://securityfirstcorp.com/the-top-9-network-security-threats-of-2019/
https://doi.org/10.1186/s13635-018-0074-y

[204] J. Kim, S. Bu, and S. Cho, “Zero-Day malware detection using

transferred generative adversarial networks based on deep autoencoders.”

Information Sciences, vol. 460-461, pp. 83–102, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0020025518303475. https:

//doi.org/10.1016/j.ins.2018.04.092

[205] L. Maglaras, M. A. Ferrag, A. Derhab, M. Mukherjee, H. Janicke, and S. Rallis,

“Threats, protection and attribution of cyber attacks on critical infrastructures.”

arXiv preprint arXiv:1901.03899, 2019.

[206] R. Mitchell and I. Chen, “A survey of intrusion detection techniques for

cyber-physical systems.” ACM Computing Surveys (CSUR), vol. 46, no. 4, pp.

1–29, 2014. https://doi.org/10.1145/2542049

[207] S. Amin, X. Litrico, S. Sastry, and A. M. Bayen, “Cyber security of water

SCADA systems—part I: Analysis and experimentation of stealthy deception

attacks.” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp.

1963–1970, 2012. https://doi.org/10.1109/TCST.2012.2211873

[208] S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Cyber security of water

SCADA systems—part II: Attack detection using enhanced hydrodynamic

models.” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp.

1679–1693, 2013. https://doi.org/10.1109/TCST.2012.2211874

[209] L. Cheng, K. Tian, and D. Yao, “Orpheus: Enforcing cyber-physical execution

semantics to defend against data-oriented attacks.” in Proceedings of the 33rd

Annual Computer Security Applications Conference. New York, USA:

Association for Computing Machinery, 2017, pp. 315–326. https://doi.org/10.

1145/3134600.3134640

[210] A. Mathur, “On the limits of detecting process anomalies in critical

infrastructure.” in Proceedings of the 4th ACM Workshop on Cyber-Physical

System Security. New York, USA: Association for Computing Machinery,

2018, p. 1. https://doi.org/10.1145/3198458.3198466

227

http://www.sciencedirect.com/science/article/pii/S0020025518303475
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1145/2542049
https://doi.org/10.1109/TCST.2012.2211873
https://doi.org/10.1109/TCST.2012.2211874
https://doi.org/10.1145/3134600.3134640
https://doi.org/10.1145/3134600.3134640
https://doi.org/10.1145/3198458.3198466

[211] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed

investigation and analysis of using machine learning techniques for intrusion

detection.” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.

686–728, 2019. https://doi.org/10.1109/COMST.2018.2847722

[212] A. Solovev and A. Petrova, “What is the MQTT protocol and why choosing it

for IoT devices,” 10 September 2020, Accessed: 27 October, 2020. [Online].

Available: https://www.integrasources.com/blog/mqtt-protocol-iot-devices/

[213] V. R. Konasani and S. Kadre, Machine Learning and Deep Learning Using

Python and TensorFlow. McGraw-Hill Education, 2021. [Online]. Available:

https://www.accessengineeringlibrary.com/content/book/9781260462296

[214] D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction

to Data Mining. John Wiley & Sons, 2014.

[215] L. Wei-Chao, K. Shih-Wen, and T. Chih-Fong, “Top 10 data mining techniques

in business applications: A brief survey.” Kybernetes, vol. 46, no. 7, pp.

1158–1170, 2017. https://doi.org/10.1108/K-10-2016-0302

[216] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic

Regression. John Wiley & Sons, 2013, vol. 398.

[217] H. Hegre, “Logistic regression: Binomial, multinomial and ordinal.”

Universitetet i Oslo, pp. 1–35, 23 September 2011. [Online]. Available:

https://havardhegre.files.wordpress.com/2014/03/logisticregression2011.pdf

[218] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University

Press, 2012.

[219] A. Barone, “Tools for fundemental analysis — conditional probability,”

29 August 2020, Accessed: 9 September, 2020. [Online]. Available:

https://www.investopedia.com/terms/c/conditional probability.asp

[220] J. Maillo, I. Triguero, and F. Herrera, “A mapreduce-based k-nearest neighbor

approach for big data classification.” in 2015 IEEE Trustcom/BigDataSE/ISPA,

vol. 2. IEEE, 2015, pp. 167–172. https://doi.org/10.1109/Trustcom.2015.577

228

https://doi.org/10.1109/COMST.2018.2847722
https://www.integrasources.com/blog/mqtt-protocol-iot-devices/
https://www.accessengineeringlibrary.com/content/book/9781260462296
https://doi.org/10.1108/K-10-2016-0302
https://havardhegre.files.wordpress.com/2014/03/logisticregression2011.pdf
https://www.investopedia.com/terms/c/conditional_probability.asp
https://doi.org/10.1109/Trustcom.2015.577

[221] D. Subramanian, “A simple introduction to k-nearest neighbors

algorithm,” 8 June 2019, Accessed: 27 October, 2020. [Online].

Available: https://towardsdatascience.com/a-simple-introduction-to-k-nearest-

neighbors-algorithm-b3519ed98e

[222] J. B. Mitchell, “Machine learning methods in chemoinformatics,” Wiley

Interdisciplinary Reviews: Computational Molecular Science, vol. 4, no. 5, pp.

468–481, 2014.

[223] I. Steinwart and A. Christmann, Support Vector Machines. Springer Science

& Business Media, 2008.

[224] C. Cortes and V. Vapnik, “Support-vector networks.” Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995. https://doi.org/10.1007/BF00994018

[225] A. Ng, “Part V: Support vector machines — CS229 lecture notes.” pp. 1–25,

2000. [Online]. Available: http://cs229.stanford.edu/notes/cs229-notes3.pdf

[226] A. Zisserman, “The SVM classifier — C19 machine learning.” pp. 1–40, 2015.

[Online]. Available: https://www.robots.ox.ac.uk/∼az/lectures/ml/lect2.pdf

[227] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python.” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[228] R. Lior, Data Mining with Decision Trees: Theory and Applications. World

scientific, 2014, vol. 81.

[229] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A

survey of machine learning techniques applied to software defined networking

(SDN): Research issues and challenges.” IEEE Communications Surveys &

Tutorials, vol. 21, no. 1, pp. 393–430, 2019. https://doi.org/10.1109/COMST.

2018.2866942

229

https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://doi.org/10.1007/BF00994018
http://cs229.stanford.edu/notes/cs229-notes3.pdf
https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1109/COMST.2018.2866942

[230] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009.

[231] J. Yin, “Understanding the data splitting functions in scikit-learn,”

3 September 2018, Accessed: 21 October, 2020. [Online].

Available: https://medium.com/@julie.yin/understanding-the-data-splitting-

functions-in-scikit-learn-9ae4046fbd26

[232] S. Stone and M. Temple, “Radio-frequency-based anomaly detection for

programmable logic controllers in the critical infrastructure.” International

Journal of Critical Infrastructure Protection, vol. 5, no. 2, pp. 66–73,

2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1874548212000200. https://doi.org/10.1016/j.ijcip.2012.05.001

[233] Statista, “Global number of connected IoT devices 2015-2025,” 4 January

2021, Accessed: 20 January, 2021. [Online]. Available: https://www.statista.

com/statistics/1101442/iot-number-of-connected-devices-worldwide/

[234] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,

M. Shafie-khah, and P. Siano, “IoT-based smart cities: A survey.” in IEEE 16th

International Conference on Environment and Electrical Engineering (EEEIC).

IEEE, 2016, pp. 1–6. https://doi.org/10.1109/EEEIC.2016.7555867

[235] N. Ahmed, D. De, and I. Hussain, “Internet of things (IoT) for smart precision

agriculture and farming in rural areas.” IEEE Internet of Things Journal, vol. 5,

no. 6, pp. 4890–4899, 2018. https://doi.org/10.1109/JIOT.2018.2879579

[236] M. Abdel-Basset, G. Manogaran, and M. Mohamed, “Internet of things

(IoT) and its impact on supply chain: A framework for building smart,

secure and efficient systems.” Future Generation Computer Systems, vol. 86,

pp. 614–628, 2018. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0167739X1830400X. https://doi.org/10.1016/j.future.2018.04.051

[237] Z. Alansari, S. Soomro, M. R. Belgaum, and S. Shamshirband, “The rise of

internet of things (IoT) in big healthcare data: Review and open research

230

https://medium.com/@julie.yin/understanding-the-data-splitting-functions-in-scikit-learn-9ae4046fbd26
https://medium.com/@julie.yin/understanding-the-data-splitting-functions-in-scikit-learn-9ae4046fbd26
http://www.sciencedirect.com/science/article/pii/S1874548212000200
http://www.sciencedirect.com/science/article/pii/S1874548212000200
https://doi.org/10.1016/j.ijcip.2012.05.001
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://doi.org/10.1109/EEEIC.2016.7555867
https://doi.org/10.1109/JIOT.2018.2879579
http://www.sciencedirect.com/science/article/pii/S0167739X1830400X
http://www.sciencedirect.com/science/article/pii/S0167739X1830400X
https://doi.org/10.1016/j.future.2018.04.051

issues.” in Progress in Advanced Computing and Intelligent, K. Saeed, N. Chaki,

B. Pati, S. Bakshi, and D. P. Mohapatra, Eds. Singapore: Springer Singapore,

Engineering 2018, pp. 675–685. https://doi.org/10.1007/978-981-10-6875-1 66

[238] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks (MQTT-SN)

protocol specification.” International business machines (IBM) Corporation

version, vol. 1, no. 2, pp. 1–28, 2013.

[239] M. S. Harsha, B. M. Bhavani, and K. R. Kundhavai, “Analysis of vulnerabilities

in MQTT security using Shodan API and implementation of its countermeasures

via authentication and ACLs.” in 2018 International Conference on Advances

in Computing, Communications and Informatics (ICACCI). IEEE, 2018, pp.

2244–2250. https://doi.org/10.1109/ICACCI.2018.8554472

[240] D. Dinculeană and X. Cheng, “Vulnerabilities and limitations of MQTT

protocol used between IoT devices.” Applied Sciences, vol. 9, no. 5, p. 848,

2019. https://doi.org/10.3390/app9050848

[241] C. Dietz, R. L. Castro, J. Steinberger, C. Wilczak, M. Antzek, A. Sperotto,

and A. Pras, “IoT-Botnet detection and isolation by access routers.” in 9th

International Conference on the Network of the Future (NOF). IEEE, 2018,

pp. 88–95. https://doi.org/10.1109/NOF.2018.8598138

[242] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “IoT-KEEPER:

Detecting malicious IoT network activity using online traffic analysis at the

edge.” IEEE Transactions on Network and Service Management, vol. 17, no. 1,

pp. 45–59, 2020. https://doi.org/10.1109/TNSM.2020.2966951

[243] Vyopta, “What’s an acceptable amount of packet loss in 2019?” 19

December 2018, Accessed: 19 November, 2020. [Online]. Available:

https://www.vyopta.com/blog/video-conferencing/understanding-packet-loss/

[244] D. Abeles and M. Zioni, “MQTT-PWN, IoT exploitation & recon framework,”

Accessed: February, 2020. [Online]. Available: https://mqtt-pwn.readthedocs.

io/en/latest/index.html

231

https://doi.org/10.1007/978-981-10-6875-1_66
https://doi.org/10.1109/ICACCI.2018.8554472
https://doi.org/10.3390/app9050848
https://doi.org/10.1109/NOF.2018.8598138
https://doi.org/10.1109/TNSM.2020.2966951
https://www.vyopta.com/blog/video-conferencing/understanding-packet-loss/
https://mqtt-pwn.readthedocs.io/en/latest/index.html
https://mqtt-pwn.readthedocs.io/en/latest/index.html

[245] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, A Toolset for

Intrusion and Insider Threat Detection., ser. Data Analytics and Decision

Support for Cybersecurity. Springer, 2017, pp. 3–31. https://doi.org/10.1007/

978-3-319-59439-2 1

[246] Y. Roh, G. Heo, and S. E. Whang, “A survey on data collection for machine

learning: A Big Data-AI integration perspective.” IEEE Transactions on

Knowledge and Data Engineering, 2019. https://doi.org/10.1109/TKDE.2019.

2946162

[247] S. Jain, “NanoNets: How to use deep learning when you have limited

data.” 30 January 2017, Accessed: 20 November 2018, 2018. [Online].

Available: https://medium.com/nanonets/nanonets-how-to-use-deep-learning-

when-you-have-limited-data-f68c0b512cab

[248] S. Roshan, Y. Miche, A. Akusok, and A. Lendasse, “Adaptive and online

network intrusion detection system using clustering and extreme learning

machines.” Journal of the Franklin Institute, vol. 355, no. 4, pp. 1752–1779,

2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0016003217302995. https://doi.org/10.1016/j.jfranklin.2017.06.006

[249] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Machine

learning with big data: Challenges and approaches.” IEEE Access, vol. 5, pp.

7776–7797, 2017. https://doi.org/10.1109/ACCESS.2017.2696365

[250] S. J. Pan and Q. Yang, “A survey on transfer learning.” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. https:

//doi.org/10.1109/TKDE.2009.191

[251] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning .”

Journal of Big Data, vol. 3, no. 1, p. 9, 2016. https://doi.org/10.1186/s40537-

016-0043-6

[252] Q. Wang, X. Zhao, J. Huang, Y. Feng, Z. Liu, J. Su, Z. Luo, and G. Cheng,

“Addressing complexities of machine learning in big data: Principles, trends

232

https://doi.org/10.1007/978-3-319-59439-2_1
https://doi.org/10.1007/978-3-319-59439-2_1
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1109/TKDE.2019.2946162
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab
http://www.sciencedirect.com/science/article/pii/S0016003217302995
http://www.sciencedirect.com/science/article/pii/S0016003217302995
https://doi.org/10.1016/j.jfranklin.2017.06.006
https://doi.org/10.1109/ACCESS.2017.2696365
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6

and challenges from systematical perspectives.” Preprints, 2017.

[253] L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep CNNs for microscopic image

classification by exploiting transfer learning and feature concatenation.” in 2018

IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018,

pp. 1–5. https://doi.org/10.1109/ISCAS.2018.8351550

[254] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, and M. Bernstein, “Imagenet large scale visual

recognition challenge.” International journal of computer vision, vol. 115, no. 3,

pp. 211–252, 2015. https://doi.org/10.1007/s11263-015-0816-y

[255] J. Ngiam, D. Peng, V. Vasudevan, S. Kornblith, Q. V. Le, and R. Pang,

“Domain adaptive transfer learning with specialist models.” arXiv preprint

arXiv:1811.07056, 2018.

[256] L. Torrey and J. Shavlik, Transfer Learning., ser. Handbook of Research

on Machine Learning Applications and Trends: Algorithms, Methods, and

Techniques. IGI global, 2010, pp. 242–264. https://doi.org/10.4018/978-1-

60566-766-9.ch011

[257] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian networks

for probabilistic identification of zero-day attack paths.” IEEE Transactions

on Information Forensics and Security, vol. 13, no. 10, pp. 2506–2521, 2018.

https://doi.org/10.1109/TIFS.2018.2821095

[258] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric

discriminatively, with application to face verification.” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

vol. 1. IEEE, 2005, pp. 539–546. https://doi.org/10.1109/CVPR.2005.202

[259] L. Fei-Fei, R. Fergus, and P. Perona, “One-Shot learning of object categories.”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4,

pp. 594–611, 2006. https://doi.org/10.1109/TPAMI.2006.79

[260] L. Wang, Y. Li, and S. Wang, “Feature learning for One-Shot face recognition.”

233

https://doi.org/10.1109/ISCAS.2018.8351550
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.4018/978-1-60566-766-9.ch011
https://doi.org/10.4018/978-1-60566-766-9.ch011
https://doi.org/10.1109/TIFS.2018.2821095
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/TPAMI.2006.79

in 25th IEEE International Conference on Image Processing (ICIP). IEEE,

2018, pp. 2386–2390. https://doi.org/10.1109/ICIP.2018.8451464

[261] D. Wu, F. Zhu, and L. Shao, “One Shot learning gesture recognition from RGBD

images.” in 2012 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops. IEEE, 2012, pp. 7–12. https://doi.org/10.1109/

CVPRW.2012.6239179

[262] Y. Yang, I. Saleemi, and M. Shah, “Discovering motion primitives for

unsupervised grouping and One-Shot learning of human actions, gestures, and

expressions.” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 7, pp. 1635–1648, 2013. https://doi.org/10.1109/TPAMI.2012.253

[263] J. Bruce, N. Sünderhauf, P. Mirowski, R. Hadsell, and M. Milford, “One-Shot

reinforcement learning for robot navigation with interactive replay.” arXiv

preprint arXiv:1711.10137, 2017.

[264] Z. Zhang and H. Zhao, “One-Shot learning for question-answering in gaokao

history challenge.” in Proceedings of the 27th International Conference on

Computational Linguistics, 2018, pp. 449–461.

[265] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “ABCNN: Attention-based

convolutional neural network for modeling sentence pairs.” Transactions of the

Association of Computational Linguistics, vol. 4, no. 1, pp. 259–272, 2016.

https://doi.org/10.1162/tacl a 00097

[266] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande, “Low data drug

discovery with One-Shot learning.” ACS central science, vol. 3, no. 4, pp.

283–293, 2017. https://doi.org/10.1021/acscentsci.6b00367

[267] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature

verification using a “siamese” time delay neural network.” in Advances in neural

information processing systems, 1994, pp. 737–744.

[268] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for

234

https://doi.org/10.1109/ICIP.2018.8451464
https://doi.org/10.1109/CVPRW.2012.6239179
https://doi.org/10.1109/CVPRW.2012.6239179
https://doi.org/10.1109/TPAMI.2012.253
https://doi.org/10.1162/tacl_a_00097
https://doi.org/10.1021/acscentsci.6b00367

One-Shot image recognition.” in Proceedings of the 32nd International

Conference on Machine Learning, 2015.

[269] G. Koch, “Siamese neural networks for One-Shot image recognition.” Master of

Science, Computer Science, 2015.

[270] Y. Yao, X. Wu, W. Zuo, and D. Zhang, “Learning Siamese network with

top-down modulation for visual tracking.” in International Conference on

Intelligent Science and Big Data Engineering. Springer, 2018, pp. 378–388.

https://doi.org/10.1007/978-3-030-02698-1 33

[271] R. R. Varior, M. Haloi, and G. Wang, “Gated Siamese convolutional neural

network architecture for human re-identification.” in European Conference on

Computer Vision. Springer, 2016, pp. 791–808. https://doi.org/10.1007/978-

3-319-46484-8 48

[272] S. Ruder, “An overview of gradient descent optimization algorithms.” arXiv

preprint arXiv:1609.04747, 2016.

[273] U. Shaham and R. R. Lederman, “Learning by coincidence: Siamese networks

and common variable learning.” Pattern Recognition, vol. 74, pp. 52–63,

2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0031320317303588. https://doi.org/10.1016/j.patcog.2017.09.015

[274] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an

invariant mapping.” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1735–1742. https:

//doi.org/10.1109/CVPR.2006.100

[275] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”

The Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.

[276] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “The omniglot challenge:

A 3-year progress report.” Current Opinion in Behavioral Sciences, vol. 29,

pp. 97–104, 2019. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S2352154619300051. https://doi.org/10.1016/j.cobeha.2019.04.007

235

https://doi.org/10.1007/978-3-030-02698-1_33
https://doi.org/10.1007/978-3-319-46484-8_48
https://doi.org/10.1007/978-3-319-46484-8_48
http://www.sciencedirect.com/science/article/pii/S0031320317303588
http://www.sciencedirect.com/science/article/pii/S0031320317303588
https://doi.org/10.1016/j.patcog.2017.09.015
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
http://www.sciencedirect.com/science/article/pii/S2352154619300051
http://www.sciencedirect.com/science/article/pii/S2352154619300051
https://doi.org/10.1016/j.cobeha.2019.04.007

[277] S. Pang, S. Qiao, T. Song, J. Zhao, and P. Zheng, “An improved convolutional

network architecture based on residual modeling for person re-identification

in edge computing.” pp. 106 748–106 759, 2019. https://doi.org/10.1109/

ACCESS.2019.2933364

[278] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity.” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp.

115–133, 1943. https://doi.org/10.1007/BF02478259

[279] J. L. McClelland and D. E. Rumelhart, A Distributed Model of Human

Learning and Memory., ser. Parallel distributed processing: Explorations in

the microstructure of cognition, Vol. 2: Psychological and biological models.

Cambridge, MA, USA: MIT Press, 1986, pp. 170–215.

[280] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural

networks.” International Journal of Engineering Applied Sciences and

Technology, vol. 4, no. 12, pp. 310–316, 2020.

[281] Algorithmia, “Introduction to optimizers.” 7 May 2018, Accessed: Jul 16,

2021, 2021. [Online]. Available: https://algorithmia.com/blog/introduction-to-

optimizers

[282] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[283] DeepAI, “Weight (artificial neural network),” 17 May 2019, Accessed:

4 November, 2020. [Online]. Available: https://deepai.org/machine-learning-

glossary-and-terms/weight-artificial-neural-network

[284] T. Yiu, “Understanding neural networks,” 2 June 2019, Accessed: 4 November,

2020. [Online]. Available: https://towardsdatascience.com/understanding-

neural-networks-19020b758230

[285] “KDD Cup 1999 data,” Accessed: 12 July, 2018. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[286] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis

236

https://doi.org/10.1109/ACCESS.2019.2933364
https://doi.org/10.1109/ACCESS.2019.2933364
https://doi.org/10.1007/BF02478259
https://algorithmia.com/blog/introduction-to-optimizers
https://algorithmia.com/blog/introduction-to-optimizers
https://deepai.org/machine-learning-glossary-and-terms/weight-artificial-neural-network
https://deepai.org/machine-learning-glossary-and-terms/weight-artificial-neural-network
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/understanding-neural-networks-19020b758230
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

of the KDD CUP 99 data set.” in 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications. IEEE, 2009, pp. 1–6.

https://doi.org/10.1109/CISDA.2009.5356528

[287] D. Preethi and N. Khare, “Sparse auto encoder driven support vector regression

based deep learning model for predicting network intrusions.” Peer-to-Peer

Networking and Applications, pp. 1–11, 2020. https://doi.org/10.1007/s12083-

020-00986-3

[288] K. Martin, N. Wiratunga, S. Massie, and J. Clos, “Informed pair selection for

self-paced metric learning in Siamese neural networks.” in Artificial Intelligence

XX, M. Bramer and M. Petridis, Eds. Cham: Springer International Publishing,

XV 2018, pp. 34–49. https://doi.org/10.1007/978-3-030-04191-5 3

[289] J. Brownlee, “How to configure the number of layers and nodes in a

neural network,” 27 July 2018, Accessed: 25 September, 2020. [Online].

Available: https://machinelearningmastery.com/how-to-configure-the-number-

of-layers-and-nodes-in-a-neural-network/

[290] S. Sayad, “ZeroR,” Accessed: 8 December, 2019. [Online]. Available:

https://www.saedsayad.com/zeror.htm

[291] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic

study.” Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002. https://doi.

org/10.3233/IDA-2002-6504

[292] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class

imbalance.” Journal of Big Data, vol. 6, no. 1, p. 27, 2019. https://doi.org/10.

1186/s40537-019-0192-5

[293] P. Illy, G. Kaddoum, C. M. Moreira, K. Kaur, and S. Garg, “Securing

fog-to-things environment using intrusion detection system based on ensemble

learning.” in 2019 IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, 2019, pp. 1–7. https://doi.org/10.1109/WCNC.2019.8885534

[294] Y. Li, Y. Xu, Z. Liu, H. Hou, Y. Zheng, Y. Xin, Y. Zhao, and L. Cui,

237

https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1007/s12083-020-00986-3
https://doi.org/10.1007/s12083-020-00986-3
https://doi.org/10.1007/978-3-030-04191-5_3
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://www.saedsayad.com/zeror.htm
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/WCNC.2019.8885534

“Robust detection for network intrusion of industrial IoT based on multi-CNN

fusion.” Measurement, vol. 154, p. 107450, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S026322411931317X. https://

doi.org/10.1016/j.measurement.2019.107450

[295] N. Kaloudi and J. Li, “The AI-based cyber threat landscape: A survey.” ACM

Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–34, 2020. https://doi.org/10.

1145/3372823

[296] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber security.”

arXiv preprint arXiv:1906.05799, 2019.

[297] C. Chapman, Chapter 1 - Introduction to Practical Security and

Performance Testing., ser. Network Performance and Security. Boston:

Syngress, 2016, pp. 1–14. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/B9780128035849000019. https://doi.org/10.1016/B978-0-

12-803584-9.00001-9

[298] L. Bilge and T. Dumitraş, “Before we knew it: An empirical study of zero-day

attacks in the real world.” in Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 2012, pp. 833–844. https:

//doi.org/10.1145/2382196.2382284

[299] K. Metrick, P. Najafi, and J. Semrau, “Zero-Day exploitation increasingly

demonstrates access to money, rather than skill — intelligence for vulnerability

management, part one — FireEye inc,” April 2020, Accessed: 24 June,

2020. [Online]. Available: https://www.fireeye.com/blog/threat-research/2020/

04/zero-day-exploitation-demonstrates-access-to-money-not-skill.html

[300] F. Iglesias, A. Hartl, T. Zseby, and A. Zimek, “Are network attacks outliers?

A study of space representations and unsupervised algorithms.” in Machine

Learning and Knowledge Discovery in Databases, P. Cellier and K. Driessens,

Eds. Cham: Springer International Publishing, 2020, pp. 159–175. https:

//doi.org/10.1007/978-3-030-43887-6 13

238

http://www.sciencedirect.com/science/article/pii/S026322411931317X
https://doi.org/10.1016/j.measurement.2019.107450
https://doi.org/10.1016/j.measurement.2019.107450
https://doi.org/10.1145/3372823
https://doi.org/10.1145/3372823
http://www.sciencedirect.com/science/article/pii/B9780128035849000019
http://www.sciencedirect.com/science/article/pii/B9780128035849000019
https://doi.org/10.1016/B978-0-12-803584-9.00001-9
https://doi.org/10.1016/B978-0-12-803584-9.00001-9
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/2382196.2382284
https://www.fireeye.com/blog/threat-research/2020/04/zero-day-exploitation-demonstrates-access-to-money-not-skill.html
https://www.fireeye.com/blog/threat-research/2020/04/zero-day-exploitation-demonstrates-access-to-money-not-skill.html
https://doi.org/10.1007/978-3-030-43887-6_13
https://doi.org/10.1007/978-3-030-43887-6_13

[301] Cisco, “Cisco 2017 annual cyber security report,” 2017, Accessed: 20 July,

2020. [Online]. Available: https://www.grouppbs.com/wp-content/uploads/

2017/02/Cisco 2017 ACR PDF.pdf

[302] Cisco Secure, “Cisco cybersecurity report series 2020: CISO benchmark

study. securing what’s now and what’s next. 20 cybersecurity

considerations for 2020.” Cisco, Tech. Rep., February 2020.

[Online]. Available: ‘https://www.cisco.com/c/dam/en/us/products/collateral/

security/2020-ciso-benchmark-cybersecurity-series-feb-2020.pdf

[303] S. Alam, S. K. Sonbhadra, S. Agarwal, and P. Nagabhushan, “One-class

support vector classifiers: A survey.” Knowledge-Based Systems, vol. 196,

p. 105754, 2020. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0950705120301647. https://doi.org/10.1016/j.knosys.2020.105754

[304] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation.” California Univ San Diego La Jolla Inst

for Cognitive Science, Tech. Rep., 1985.

[305] M. Stewart, “Comprehensive introduction to autoencoder,” April 2019,

Accessed: 21 July, 2020. [Online]. Available: https://towardsdatascience.com/

generating-images-with-autoencoders-77fd3a8dd368

[306] K. Pawar and V. Z. Attar, Assessment of Autoencoder Architectures

for Data Representation., ser. Deep Learning: Concepts and

Architectures. Cham: Springer International Publishing, 2020, pp. 101–132.

[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-3-030-

31756-0 4. https://doi.org/10.1007/978-3-030-31756-0 4

[307] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks.” Science, vol. 313, no. 5786, pp. 504–507, 2006. https:

//doi.org/10.1126/science.1127647

[308] J. Zabalza, J. Ren, J. Zheng, H. Zhao, C. Qing, Z. Yang, P. Du, and S. Marshall,

“Novel segmented stacked autoencoder for effective dimensionality reduction

239

https://www.grouppbs.com/wp-content/uploads/2017/02/Cisco_2017_ACR_PDF.pdf
https://www.grouppbs.com/wp-content/uploads/2017/02/Cisco_2017_ACR_PDF.pdf
`https://www.cisco.com/c/dam/en/us/products/collateral/security/2020-ciso-benchmark-cybersecurity-series-feb-2020.pdf
`https://www.cisco.com/c/dam/en/us/products/collateral/security/2020-ciso-benchmark-cybersecurity-series-feb-2020.pdf
https://www.sciencedirect.com/science/article/pii/S0950705120301647
https://www.sciencedirect.com/science/article/pii/S0950705120301647
https://doi.org/10.1016/j.knosys.2020.105754
https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
https://link.springer.com/chapter/10.1007%2F978-3-030-31756-0_4
https://link.springer.com/chapter/10.1007%2F978-3-030-31756-0_4
https://doi.org/10.1007/978-3-030-31756-0_4
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647

and feature extraction in hyperspectral imaging.” Neurocomputing, vol. 185, pp.

1–10, 2016. https://doi.org/10.1016/j.neucom.2015.11.044

[309] D. Barber, “Implicit representation networks.” University College London,

Department of Computer Science, Tech. Rep., 2014.

[310] E. Plaut, “From principal subspaces to principal components with linear

autoencoders,” arXiv preprint arXiv:1804.10253, 2018.

[311] C. Liou, W. Cheng, J. Liou, and D. Liou, “Autoencoder for

words.” Neurocomputing, vol. 139, pp. 84–96, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0925231214003658. https:

//doi.org/10.1016/j.neucom.2013.09.055

[312] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression

with compressive autoencoders.” in International Conference on Learning

Representations (ICLR 2017), 2017. https://doi.org/10.17863/CAM.51995

[313] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep

autoencoders.” in Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. New York, USA:

Association for Computing Machinery, 2017, pp. 665–674. https://doi.org/10.

1145/3097983.3098052

[314] A. Creswell and A. A. Bharath, “Denoising adversarial autoencoders.” IEEE

transactions on neural networks and learning systems, vol. 30, no. 4, pp.

968–984, 2018. https://doi.org/10.1109/TNNLS.2018.2852738

[315] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.

Platt, “Support vector method for novelty detection.” in Advances in neural

information processing systems, 2000, pp. 582–588.

[316] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional distribution.” Neural

Computation, vol. 13, no. 7, pp. 1443–1471, 2001. https://doi.org/10.1162/

089976601750264965

240

https://doi.org/10.1016/j.neucom.2015.11.044
http://www.sciencedirect.com/science/article/pii/S0925231214003658
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.17863/CAM.51995
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1109/TNNLS.2018.2852738
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965

[317] D. M. J. Tax and R. P. W. Duin, “Support vector data description.” Machine

Learning, vol. 54, no. 1, pp. 45–66, 2004. https://doi.org/10.1023/B:MACH.

0000008084.60811.49

[318] S. Wang, Q. Liu, E. Zhu, F. Porikli, and J. Yin, “Hyperparameter

selection of one-class support vector machine by self-adaptive data shifting.”

Pattern Recognition, vol. 74, pp. 198–211, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0031320317303564. https://

doi.org/10.1016/j.patcog.2017.09.012

[319] Scikit-learn Developers, “One-class SVM with non-linear kernel (RBF),”

2007, Accessed: 04 December, 2020. [Online]. Available: https://scikit-

learn.org/stable/auto examples/svm/plot oneclass.html

[320] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus, and Jasmir,

“Automatic features extraction using autoencoder in intrusion detection system.”

in 2018 International Conference on Electrical Engineering and Computer

Science (ICECOS). IEEE, 2018, pp. 219–224. https://doi.org/10.1109/

ICECOS.2018.8605181

[321] Z. Kherlenchimeg and N. Nakaya, “Network intrusion classifier using

autoencoder with recurrent neural network.” in Proceedings of The Fourth

International Conference on Electronics and Software Science (ICESS2018),

Japan, Japan, 2018, pp. 94–100.

[322] R. A. Shaikh and S. V. Shashikala, “An autoencoder and LSTM based intrusion

detection approach against denial of service attacks.” in 1st International

Conference on Advances in Information Technology (ICAIT). IEEE, 2019,

pp. 406–410. https://doi.org/10.1109/ICAIT47043.2019.8987336

[323] B. Abolhasanzadeh, “Nonlinear dimensionality reduction for intrusion detection

using auto-encoder bottleneck features.” in 7th Conference on Information and

Knowledge Technology (IKT). IEEE, 2015, pp. 1–5. https://doi.org/10.1109/

IKT.2015.7288799

241

https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49
http://www.sciencedirect.com/science/article/pii/S0031320317303564
https://doi.org/10.1016/j.patcog.2017.09.012
https://doi.org/10.1016/j.patcog.2017.09.012
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
https://doi.org/10.1109/ICECOS.2018.8605181
https://doi.org/10.1109/ICECOS.2018.8605181
https://doi.org/10.1109/ICAIT47043.2019.8987336
https://doi.org/10.1109/IKT.2015.7288799
https://doi.org/10.1109/IKT.2015.7288799

[324] F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for

intrusion detection system.” in 20th International Conference on Advanced

Communication Technology (ICACT). IEEE, 2018, p. 1. https://doi.org/10.

23919/ICACT.2018.8323687

[325] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “A detailed analysis of the

CICIDS2017 data set.” in Information Systems Security and Privacy, P. Mori,

S. Furnell, and O. Camp, Eds. Cham: Springer International Publishing, 2019,

pp. 172–188. https://doi.org/10.1007/978-3-030-25109-3 9

[326] S. Guggisberg, “How to split a dataframe into train and test

set with Python,” May 2020, Accessed: 17 August, 2020. [Online].

Available: https://towardsdatascience.com/how-to-split-a-dataframe-into-train-

and-test-set-with-python-eaa1630ca7b3

[327] A. V. Srinivasan, “Why exclude highly correlated features when

building regression model?” 23 August 2019, Accessed: 28 October,

2020. [Online]. Available: https://towardsdatascience.com/why-exclude-

highly-correlated-features-when-building-regression-model-34d77a90ea8e

[328] R. Vishal, “Feature selection — correlation and P-value,” 11 September 2018,

Accessed: 8 March, 2021. [Online]. Available: https://towardsdatascience.com/

feature-selection-correlation-and-p-value-da8921bfb3cf

[329] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic

algorithm: A big comparison for NAS.” arXiv preprint arXiv:1912.06059, 2019.

[330] P. Chen, C. Lin, and B. Schölkopf, “A tutorial on ν-support vector machines.”

Applied Stochastic Models in Business and Industry, vol. 21, no. 2, pp. 111–136,

2005. https://doi.org/10.1002/asmb.537

[331] K. V. Ravi, V. V. Kumari, and S. S. Kumar, “A survey of feature selection

techniques in intrusion detection system: A soft computing perspective.” in

Progress in Computing, P. K. Pattnaik, S. S. Rautaray, H. Das, and J. Nayak, Eds.

Singapore: Springer Singapore, Analytics and Networking 2018, pp. 785–793.

242

https://doi.org/10.23919/ICACT.2018.8323687
https://doi.org/10.23919/ICACT.2018.8323687
https://doi.org/10.1007/978-3-030-25109-3_9
https://towardsdatascience.com/how-to-split-a-dataframe-into-train-and-test-set-with-python-eaa1630ca7b3
https://towardsdatascience.com/how-to-split-a-dataframe-into-train-and-test-set-with-python-eaa1630ca7b3
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://towardsdatascience.com/feature-selection-correlation-and-p-value-da8921bfb3cf
https://towardsdatascience.com/feature-selection-correlation-and-p-value-da8921bfb3cf
https://doi.org/10.1002/asmb.537

https://doi.org/10.1007/978-981-10-7871-2 75

[332] H. Alaidaros, M. Mahmuddin, and A. A. Mazari, “An overview of flow-based

and packet-based intrusion detection performance in high speed networks.” in

Proceedings of the International Arab Conference on Information Technology,

2011, pp. 1–9.

[333] F. Y. Rashid, “Encryption, privacy in the internet trends report,” June 2019,

Accessed: 14 September, 2020. [Online]. Available: https://duo.com/decipher/

encryption-privacy-in-the-internet-trends-report

[334] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for

designing intrusion detection systems.” International Journal of Engineering

& Technology, vol. 7, no. 3.24, pp. 479–482, 2018.

[335] D. Aksu and M. A. Aydin, “Detecting port scan attempts with comparative

analysis of deep learning and support vector machine algorithms.” in 2018

International Congress on Big Data, Deep Learning and Fighting Cyber

Terrorism (IBIGDELFT). IEEE, 2018, pp. 77–80. https://doi.org/10.1109/

IBIGDELFT.2018.8625370

[336] A. A. Abdulrahman and M. K. Ibrahem, “Evaluation of DDoS attacks detection

in a new intrusion dataset based on classification algorithms.” Iraqi Journal of

Information & Communications Technology, vol. 1, no. 3, pp. 49–55, 2018.

[337] M. Kuhn and K. Johnson, Recursive Feature Elimination., ser. Feature

Engineering and Selection: A Practical Approach for Predictive Models.

Taylor & Francis Group, 2019, ch. 11.3. [Online]. Available: https:

//bookdown.org/max/FES/recursive-feature-elimination.html

[338] J. Brownlee, “Recursive feature elimination (RFE) for feature selection in

Python,” 25 May 2020, Accessed: 5 November, 2020. [Online]. Available:

https://machinelearningmastery.com/rfe-feature-selection-in-python/

[339] OffSec Services, “SlowHTTPTest — penetration testing tools,” 2020,

243

https://doi.org/10.1007/978-981-10-7871-2_75
https://duo.com/decipher/encryption-privacy-in-the-internet-trends-report
https://duo.com/decipher/encryption-privacy-in-the-internet-trends-report
https://doi.org/10.1109/IBIGDELFT.2018.8625370
https://doi.org/10.1109/IBIGDELFT.2018.8625370
https://bookdown.org/max/FES/recursive-feature-elimination.html
https://bookdown.org/max/FES/recursive-feature-elimination.html
https://machinelearningmastery.com/rfe-feature-selection-in-python/

Accessed: 29 July, 2020. [Online]. Available: https://tools.kali.org/stress-

testing/slowhttptest

[340] M. Alrowaily, F. Alenezi, and Z. Lu, “Effectiveness of machine learning

based intrusion detection systems.” in Security, Privacy, and Anonymity in

Computation, Communication, and Storage, G. Wang, J. Feng, M. Z. A.

Bhuiyan, and R. Lu, Eds. Cham: Springer International Publishing, 2019,

pp. 277–288. https://doi.org/10.1007/978-3-030-24907-6 21

[341] R. Vijayanand, D. Devaraj, and B. Kannapiran, “Intrusion detection system

for wireless mesh network using multiple support vector machine classifiers

with genetic-algorithm-based feature selection.” Computers & Security, vol. 77,

pp. 304–314, 2018. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0167404818303766. https://doi.org/10.1016/j.cose.2018.04.010

[342] M. Bello, G. Nápoles, R. Morera, K. Vanhoof, and R. Bello, “Outliers detection

in multi-label datasets,” in Advances in Soft Computing, L. Martı́nez-Villaseñor,

O. Herrera-Alcántara, H. Ponce, and F. A. Castro-Espinoza, Eds. Cham:

Springer International Publishing, 2020, pp. 65–75. https://doi.org/10.1016/j.

ins.2020.06.017

[343] E. Hoffer and N. Ailon, “Deep metric learning using triplet network.” in

Similarity-Based Pattern Recognition, A. Feragen, M. Pelillo, and M. Loog,

Eds. Cham: Springer International Publishing, 2015, pp. 84–92. https://doi.

org/10.1007/978-3-319-24261-3 7

[344] Y. Jun, C. Zhu, J. Zhang, Q. Huang, and D. Tao, “Spatial pyramid-enhanced

NetVLAD with weighted triplet loss for place recognition.” IEEE Transactions

on Neural Networks and Learning Systems, vol. 31, no. 2, pp. 661–674, 2020.

https://doi.org/10.1109/TNNLS.2019.2908982

[345] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K. Bhattacharyya, and J. K.

Kalita, “Network attacks: Taxonomy, tools and systems.” Journal of Network

and Computer Applications, vol. 40, pp. 307–324, 2014. [Online]. Available:

244

https://tools.kali.org/stress-testing/slowhttptest
https://tools.kali.org/stress-testing/slowhttptest
https://doi.org/10.1007/978-3-030-24907-6_21
http://www.sciencedirect.com/science/article/pii/S0167404818303766
http://www.sciencedirect.com/science/article/pii/S0167404818303766
https://doi.org/10.1016/j.cose.2018.04.010
https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.1109/TNNLS.2019.2908982

http://www.sciencedirect.com/science/article/pii/S1084804513001756. https://

doi.org/10.1016/j.jnca.2013.08.001

245

http://www.sciencedirect.com/science/article/pii/S1084804513001756
https://doi.org/10.1016/j.jnca.2013.08.001
https://doi.org/10.1016/j.jnca.2013.08.001

Appendices

246

Appendix A

IDS Datasets Remarks

Section 2.4 discusses different IDS datasets and the attacks included in each. Table A.1

summarises the different institutes that contributes to the generation of the discussed

datasets alongside the details of the attack types they cover (if available).

Table A.1
IDS Datasets Remarks

Dataset Name Institute Attacks Remarks
General-Purpose Networks

ADFA-IDS 2017

[65, 66]

Australian Defense Force

Academy

Brute-force (FTP and SSH), U2R,

Webshell, and remote code execution

Booters [69]

University of Twente,

SURFnet, Federal

University of Rio Grande

do Sul

9 DDoS attacks

Botnet dataset

[71]
CIC

7 Botnet types in training set and 16 in test

set

CAIDA DDoS

[76]
CAIDA

1 hour of DDoS attack divided into

5-minute PCAP files

CIC DoS dataset

[64]

CIC

8 DoS attack traces

CICIDS2017

[63]

Brute-force (FTP and SSH), 4 DoS types,

DDoS, Heartbleed, Web Attacks,

Infiltration Dropbox Download and Cool

disk, Botnet, and PortScan
CICIDS2018

[62]

247

Table A.1 continued

Dataset Name Institute Attacks Remarks
CTU-13 [73] CTU University 13 captures of botnet samples

DARPA [79] MIT Lincoln Laboratory 17 DoS, 12 U2R, 15 R2L, and 10 Probing

DDoSTB [68]

Punjab Technical

University & SBS State

Technical Campus

DDoS Testbed using emulated and real

nodes

ISCXIDS2012

[74]
CIC

HTTP, SMTP, SSH, IMAP, POP3, and

FTP Traffic

KDD-99 [78] University of California
Covers 24 training attack types and 14

additional types in the test data

TUIDS [70] Tezpur University

(1) TUIDS IDS dataset. (2) TUIDS Scan

dataset. (3) TUIDS DDoS dataset (22

DDoS attack types)

NSL-KDD [77] CIC Improvement of KDD’99 dataset

STA2018 [72] University of St Andrews
Transformation of UNB ISCX (contains

550 features)

Unified Network

Dataset [67]

Los Alamos National

Laboratory
90 days of Network and Host logs

Waikato [75]
RIPE Network

Coordination Centre
UDP traffic only

Special-Purpose Networks
4SICS ICS [85] Netresec -

Anomalies

Water System

[81]

French Naval Academy

15 different real situations covering cyber

attacks (DoS & Spoofing), breakdown

(Sensor Failure & Wrong connection),

sabotage (Blocked Measures & Floating

Objects)

Bot-IoT [80]
The centre of UNSW

Canberra Cyber

Attacks include DoS/DDoS, OS and

Service Scan, Keylogging and Data

Exfiltration

IoT devices

captures [82]
Aalto University

represents the data of 31 smart home IoT

devices of 27 different types

Tor-nonTor

dataset [83] CIC

7 traffic categories (Browsing, Email,

Chat, Audio/Video-Streaming, FTP, VoIP,

P2P)

248

Table A.1 continued

Dataset Name Institute Attacks Remarks

VPN-nonVPN

dataset [84]

14 traffic categories (VPN-VOIP,

VPN-P2P, etc.) covering Browsing, Email,

Chat, Streaming, File Transfer, VoIP,

TraP2P

249

Appendix B

Attack Tools

Section 3.2 provides a taxonomy of networking threats. The analysis of attacks

considered by recent IDS, with respect to the taxonomy, demonstrates the lack of

attack representation is IDS datasets. In order to represent these threats, various

tools [194, 345] can be used to initiate different attacks. Figure B.1 lists the main

tools classified by the attacks they are used to initiate. This can be used by researchers

when generating new IDS datasets. For a specific attack, the associated tools are

used to launch it, which leads to collecting the relevant traffic data. For example, for

impersonation attacks, Caffe-Latte, Wep0ff, and Cain and Abel are tools to consider.

Nmap and Netcat are used for scanning and so on.

250

HULK

XOIC

DDOSIM

PyLoris

GoldenEye

OWASP HTTP DoS

HOIC

LOIC

R.U.D.Y.

SlowLoris

Jolt2

Nemesy

Panther2

Blast20

UDP Flood

FSMax

Some Trouble

BlackEnergy

#RefRef

Bubonic.c

Stacheldrath

Crazy Pinger

Shaft

Knight

Targa

hping

Hgod

TFN

Trinoo

Land and LaTierra

T50

Packeth

Packit

Scapy

packet excalibur

Nemesis

Tcpinject

Libnet

SendIP

IP sorcery

Pacgen

ARP-SK

ARPspoof

dnet

dpkt

irpas

Libpal

Aicmpsend

Caffe-Latte

Wep0ff

Tcpdump

WinDump

Wireshark

Net2pcap

Snoop

Angst

Ngrep

Ettercap

Dsniff

Cain and Abel

Tcptrace

Tcptrack

Maltego

Nfdump

P0f

Xprobe

NetworkMiner

Masscan

SinFP

NetSleuth

Fpdns

Hassh

JA3

SQLMap

NoSQLMap

Blisqy

jSQL Injection

Whitewidow

Nmap

Amap

Angry IP Scan

SolarWinds Port Scanner

Advanced IP Scanner

LanSweeper IP Scanner

Slitheris

Unicornscan

IKE-scan

Paketto

strobe

Zenmap

Nikto

OpenVAS

Wapiti

Netcat

Attack Tools

DoS
DDoS

Information
Gathering

Sql Injection

Packet Forging

Fingerprinting

Impersonate

Scanning

1

Figure B.1
Attacking Tools

251

Appendix C

SCADA Dataset Classification

Results Tables

Section 4.4 discusses the results of the SCADA scenarios classification. The full results

are listed here for completeness and reproducibility.

252

Table C.1
SCADA Results: Scenarios Classification (5-fold cross-validation) - LR

Class (Scenario) Recall Precision F1-Score
LR

Normal 7.25% 83.05% 13.31%

Plastic bag 6.05% 51.75% 10.78%

Blocked measure 1 0% 0% 0%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 81.74% 48.39% 60.76%

Floating objects in main tank (7 objects) 95.5% 84.71% 89.76%

Humidity 0% 0% 0%

Sensor Failure 86.89% 54.59% 67.05%

DoS 100% 100% 100%

Spoofing 100% 55.33% 71.24%

Wrong connection 44.1% 68.33% 53.58%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 100% 100%

Person hitting the tanks (high intensity) 92.85% 85.19% 88.77%

Accuracy 60.95% 63.37% 63.37%

Table C.2
SCADA Results: Scenarios Classification (5-fold cross-validation) - NB

Class (Scenario) Recall Precision F1-Score
NB

Normal 21.54% 45.55% 29.23%

Plastic bag 0% 0% 0%

Blocked measure 1 100% 100% 100%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 29.28% 35.69% 32.09%

Floating objects in main tank (7 objects) 96.59% 33.55% 49.79%

Humidity 100% 100% 100%

Sensor Failure 3.85% 100% 7.41%

DoS 99.68% 100% 99.84%

Spoofing 100% 44.68% 61.75%

Wrong connection 49.15% 20.44% 28.86%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 100% 100%

Person hitting the tanks (high intensity) 100% 53.46% 68.28%

Accuracy 41.12% 54.4% 54.4%

253

Table C.3
SCADA Results: Scenarios Classification (5-fold cross-validation) - k-NN

Class (Scenario) Recall Precision F1-Score
k-NN

Normal 76.71% 74.11% 75.37%

Plastic bag 75.91% 69.04% 72.3%

Blocked measure 1 100% 100% 100%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 70.14% 75.98% 72.91%

Floating objects in main tank (7 objects) 96.73% 95.33% 96.01%

Humidity 100% 100% 100%

Sensor Failure 76.23% 75.12% 75.66%

DoS 100% 100% 100%

Spoofing 89.7% 94.58% 92.07%

Wrong connection 75.1% 81.95% 78.36%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 100% 100%

Person hitting the tanks (high intensity) 97.26% 100% 98.58%

Accuracy 81.19% 81.51% 81.51%

Table C.4
SCADA Results: Scenarios Classification (5-fold cross-validation) - SVM

Class (Scenario) Recall Precision F1-Score
SVM

Normal 23.29% 92.35% 37.18%

Plastic bag 77.26% 56.97% 65.53%

Blocked measure 1 100% 100% 100%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 29.28% 92.38% 44.37%

Floating objects in main tank (7 objects) 95.91% 86.08% 90.72%

Humidity 35.48% 47.41% 34.11%

Sensor Failure 89.49% 54.79% 67.95%

DoS 100% 100% 100%

Spoofing 88.86% 95.5% 92.05%

Wrong connection 44.25% 87.94% 58.76%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 100% 100%

Person hitting the tanks (high intensity) 100% 100% 100%

Accuracy 70.68% 77.94% 77.94%

254

Table C.5
SCADA Results: Scenarios Classification (5-fold cross-validation) - Kernel SVM

Class (Scenario) Recall Precision F1-Score
Kernel SVM

Normal 54.07% 78% 63.78%

Plastic bag 77.76% 58.65% 66.86%

Blocked measure 1 100% 100% 100%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 29.28% 92.1% 44.33%

Floating objects in main tank (7 objects) 95.09% 86.51% 90.59%

Humidity 100% 100% 100%

Sensor Failure 87.07% 61.84% 72.31%

DoS 100% 100% 100%

Spoofing 87.35% 90.81% 89.03%

Wrong connection 45.9% 97.38% 62.33%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 100% 100%

Person hitting the tanks (high intensity) 98.64% 100% 99.31%

Accuracy 74.78% 79.26% 79.26%

Table C.6
SCADA Results: Scenarios Classification (5-fold cross-validation) - DT

Class (Scenario) Recall Precision F1-Score
DT

Normal 74.91% 74.72% 74.8%

Plastic bag 70.02% 70.38% 70.18%

Blocked measure 1 100% 100% 100%

Blocked measure 2 100% 100% 100%

Floating objects in main tank (2 objects) 75.66% 74.72% 75.12%

Floating objects in main tank (7 objects) 96.05% 96.32% 96.18%

Humidity 100% 100% 100%

Sensor Failure 74.01% 74.57% 74.28%

DoS 100% 99.06% 99.52%

Spoofing 91.35% 91.11% 91.23%

Wrong connection 77% 76.46% 76.67%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 98.93% 100% 99.45%

Person hitting the tanks (high intensity) 99.66% 100% 99.83%

Accuracy 80.38% 80.41% 80.41%

255

Table C.7
SCADA Results: Scenarios Classification (5-fold cross-validation) - RF

Class (Scenario) Recall Precision F1-Score
RF

Normal 76.21% 74.27% 75.22%

Plastic bag 72.81% 70.79% 71.76%

Blocked measure 1 100% 99.57% 99.78%

Blocked measure 2 99.31% 100% 99.65%

Floating objects in main tank (2 objects) 77.53% 74.02% 75.67%

Floating objects in main tank (7 objects) 97.82% 95.65% 96.71%

Humidity 100% 100% 100%

Sensor Failure 76.05% 74.95% 75.48%

DoS 99.68% 100% 99.84%

Spoofing 90.8% 93.62% 92.19%

Wrong connection 74.1% 80.89% 77.31%

Person hitting the tanks (low intensity) 100% 100% 100%

Person hitting the tanks (med intensity) 100% 99.66% 99.83%

Person hitting the tanks (high intensity) 99.66% 100% 99.83%

Accuracy 81.19% 81.35% 81.35%

256

Appendix D

Siamese One-Shot Learning Results

Tables

In Section 5.6, the proposed Siamese network model is evaluated on classifying a

new cyber attack class without the need for retraining. An attack class is excluded

from training, one at a time, and used to mimic a new cyber attack with a few

instances available. For completeness and transparency, the following subsections list

the confusion matrices of the different attacks in the four datasets that are used for

evaluation. Furthermore, the results tables list the performance with different number

of pairs (j).

257

D.1 SCADA Dataset

Table D.1
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Wrong Connection excluded
from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
600
(30%)

150
(7.5%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

112
(5.6%)

491
(24.55%)

0
(0%)

0
(0%)

394
(19.7%)

41
(2.05%)

163
(8.15%)

49
(2.45%)

67.87%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

1201
(60.05%)

665
(33.25%)

5
(0.25%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

27
(1.35%)

40
(2%)

62
(3.1%)

S7
6

(0.3%)

535
(26.75%)

141
(7.05%)

0
(0%)

0
(0%)

5
(0.25%)

947
(47.35%)

1
(0.05%)

0
(0%)

0
(0%)

33
(1.65%)

11
(0.55%)

303
(15.15%)

18
(0.9%)

S8
9

(0.45%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1958
(97.9%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

31
(1.55%)

1
(0.05%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
275

(13.75%)

4
(0.2%)

0
(0%)

0
(0%)

24
(1.2%)

32
(1.6%)

16
(0.8%)

215
(10.75%)

0
(0%)

0
(0%)

1291
(64.55%)

101
(5.05%)

0
(0%)

42
(2.1%)

S12
148
(7.4%)

0
(0%)

0
(0%)

233
(11.65%)

210
(10.5%)

195
(9.75%)

6
(0.3%)

249
(12.45%)

60
(3%)

0
(0%)

488
(24.4%)

124
(6.2%)

213
(10.65%)

74
(3.7%)

S13
52

(2.6%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

42
(2.1%)

14
(0.7%)

385
(19.25%)

0
(0%)

0
(0%)

0
(0%)

42
(2.1%)

1381
(69.05%)

84
(4.2%)

S14
18

(0.9%)

413
(20.65%)

0
(0%)

0
(0%)

7
(0.35%)

116
(5.8%)

276
(13.8%)

9
(0.45%)

145
(7.25%)

442
(22.1%)

427
(21.35%)

62
(3.1%)

48
(2.4%)

37
(1.85%)

Table D.2
Siamese Network: SCADA One-Shot Accuracy (Wrong Connection excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(S14)
Normal

(j) Accuracy TPR FNR TNR FPR

1 65.13% 3.75% 0.8% 23.35% 76.65%

5 67.87% 1.85% 0.9% 30% 70%

10 69.32% 1.45% 0.35% 28.4% 71.6%

15 69.37% 1.5% 0.45% 28.65% 71.35%

20 69.8% 1.25% 0.35% 28.2% 71.8%

25 69.8% 0.95% 0.4% 28% 72%

30 70.05% 0.6% 0.3% 28.45% 71.55%

258

Table D.3
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Spoofing excluded from
Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
627

(31.35%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

32
(1.6%)

84
(4.2%)

903
(45.15%)

0
(0%)

0
(0%)

65
(3.25%)

115
(5.75%)

167
(8.35%)

7
(0.35%)

65.87%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
11

(0.55%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1608
(80.4%)

2
(0.1%)

1
(0.05%)

0
(0%)

0
(0%)

198
(9.9%)

16
(0.8%)

164
(8.2%)

0
(0%)

S7
157

(7.85%)

0
(0%)

581
(29.05%)

0
(0%)

662
(33.1%)

0
(0%)

359
(17.95%)

0
(0%)

0
(0%)

0
(0%)

34
(1.7%)

71
(3.55%)

131
(6.55%)

5
(0.25%)

S8
11

(0.55%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1984
(99.2%)

0
(0%)

0
(0%)

4
(0.2%)

1
(0.05%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
90

(4.5%)

0
(0%)

0
(0%)

40
(2%)

12
(0.6%)

283
(14.15%)

41
(2.05%)

522
(26.1%)

0
(0%)

0
(0%)

447
(22.35%)

174
(8.7%)

385
(19.25%)

6
(0.3%)

S12
404

(20.2%)

0
(0%)

0
(0%)

0
(0%)

61
(3.05%)

40
(2%)

68
(3.4%)

497
(24.85%)

0
(0%)

0
(0%)

262
(13.1%)

421
(21.05%)

246
(12.3%)

1
(0.05%)

S13
424

(21.2%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

187
(9.35%)

152
(7.6%)

0
(0%)

0
(0%)

0
(0%)

436
(21.8%)

241
(12.05%)

558
(27.9%)

2
(0.1%)

S14
40
(2%)

205
(10.25%)

0
(0%)

1121
(56.05%)

1
(0.05%)

38
(1.9%)

20
(1%)

0
(0%)

0
(0%)

0
(0%)

16
(0.8%)

11
(0.55%)

108
(5.4%)

440
(22%)

Table D.4
Siamese Network: SCADA One-Shot Accuracy (Spoofing excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(S13)
Normal

(j) Accuracy TPR FNR TNR FPR

1 65.29% 31.25% 15.1% 23.3% 76.7%

5 65.87% 27.9% 21.2% 31.35% 68.65%

10 65.6% 32% 21.2% 29.7% 70.3%

15 65.83% 36.75% 20% 27.5% 72.5%

20 65.63% 39% 19.2% 26.75% 73.25%

25 65.86% 42.55% 18.8% 26.85% 73.15%

30 65.85% 43.95% 18.15% 25.4% 74.6%

259

Table D.5
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Sensor Failure excluded from
Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
475

(23.75%)
0
(0%)

0
(0%)

168
(8.4%)

4
(0.2%)

753
(37.65%)

31
(1.55%)

0
(0%)

0
(0%)

0
(0%)

132
(6.6%)

139
(6.95%)

35
(1.75%)

263
(13.15%)

67.44%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

1996
(99.8%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

1
(0.05%)

0
(0%)

S6
340
(17%)

0
(0%)

0
(0%)

33
(1.65%)

0
(0%)

1513
(75.65%)

5
(0.25%)

0
(0%)

0
(0%)

0
(0%)

59
(2.95%)

50
(2.5%)

0
(0%)

0
(0%)

S7
8

(0.4%)

0
(0%)

240
(12%)

349
(17.45%)

264
(13.2%)

0
(0%)

882
(44.1%)

103
(5.15%)

0
(0%)

0
(0%)

83
(4.15%)

5
(0.25%)

66
(3.3%)

0
(0%)

S8
5

(0.25%)

0
(0%)

0
(0%)

39
(1.95%)

19
(0.95%)

0
(0%)

3
(0.15%)

1932
(96.6%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

1
(0.05%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
164
(8.2%)

1
(0.05%)

0
(0%)

5
(0.25%)

638
(31.9%)

428
(21.4%)

7
(0.35%)

0
(0%)

0
(0%)

0
(0%)

300
(15%)

41
(2.05%)

214
(10.7%)

202
(10.1%)

S12
431

(21.55%)

0
(0%)

0
(0%)

117
(5.85%)

69
(3.45%)

671
(33.55%)

27
(1.35%)

1
(0.05%)

0
(0%)

0
(0%)

125
(6.25%)

281
(14.05%)

96
(4.8%)

182
(9.1%)

S13
15

(0.75%)

0
(0%)

0
(0%)

0
(0%)

946
(47.3%)

0
(0%)

16
(0.8%)

229
(11.45%)

0
(0%)

0
(0%)

301
(15.05%)

13
(0.65%)

475
(23.75%)

5
(0.25%)

S14
185

(9.25%)

317
(15.85%)

0
(0%)

67
(3.35%)

2
(0.1%)

0
(0%)

5
(0.25%)

210
(10.5%)

0
(0%)

0
(0%)

90
(4.5%)

76
(3.8%)

18
(0.9%)

1030
(51.5%)

Table D.6
Siamese Network: SCADA One-Shot Accuracy (Sensor Failure excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(S12)
Normal

(j) Accuracy TPR FNR TNR FPR

1 64.4% 18.5% 18.2% 19.65% 80.35%

5 67.44% 14.05% 21.55% 23.75% 76.25%

10 68.78% 16.15% 14.85% 19.25% 80.75%

15 68.94% 16.45% 12.45% 14.65% 85.35%

20 69.49% 17.4% 10.35% 13.15% 86.85%

25 69.74% 18.7% 8.2% 12.7% 87.3%

30 69.92% 19.95% 7.4% 10.35% 89.65%

260

Table D.7
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Plastic Bag excluded from
Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
969

(48.45%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

408
(20.4%)

0
(0%)

63
(3.15%)

0
(0%)

0
(0%)

117
(5.85%)

166
(8.3%)

277
(13.85%)

0
(0%)

74.4%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
259

(12.95%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1547
(77.35%)

16
(0.8%)

0
(0%)

0
(0%)

0
(0%)

132
(6.6%)

38
(1.9%)

8
(0.4%)

0
(0%)

S7
1

(0.05%)

0
(0%)

484
(24.2%)

0
(0%)

742
(37.1%)

58
(2.9%)

498
(24.9%)

0
(0%)

0
(0%)

0
(0%)

10
(0.5%)

53
(2.65%)

0
(0%)

154
(7.7%)

S8
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
529

(26.45%)

48
(2.4%)

0
(0%)

0
(0%)

0
(0%)

267
(13.35%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

338
(16.9%)

264
(13.2%)

554
(27.7%)

0
(0%)

S12
511

(25.55%)

0
(0%)

0
(0%)

0
(0%)

112
(5.6%)

301
(15.05%)

138
(6.9%)

423
(21.15%)

0
(0%)

0
(0%)

153
(7.65%)

250
(12.5%)

107
(5.35%)

5
(0.25%)

S13
32

(1.6%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

117
(5.85%)

11
(0.55%)

1837
(91.85%)

0
(0%)

S14
9

(0.45%)

310
(15.5%)

0
(0%)

0
(0%)

212
(10.6%)

0
(0%)

52
(2.6%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

2
(0.1%)

21
(1.05%)

1393
(69.65%)

Table D.8
Siamese Network: SCADA One-Shot Accuracy (Plastic Bag excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(S11)
Normal

(j) Accuracy TPR FNR TNR FPR

1 71.05% 19.05% 19.2% 35.15% 64.85%

5 74.4% 16.9% 26.45% 48.45% 51.55%

10 74.83% 12.15% 27.4% 48.15% 51.85%

15 75.15% 12.3% 27.15% 46.7% 53.3%

20 75.24% 11.45% 26.1% 47.5% 52.5%

25 75.23% 10.8% 25.3% 46.85% 53.15%

30 75.23% 10.7% 25.45% 47.45% 52.55%

261

Table D.9
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Person Hitting Low Intensity
excluded from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
455

(22.75%)
0
(0%)

0
(0%)

38
(1.9%)

24
(1.2%)

335
(16.75%)

11
(0.55%)

421
(21.05%)

278
(13.9%)

0
(0%)

130
(6.5%)

73
(3.65%)

21
(1.05%)

214
(10.7%)

61.79%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

1978
(98.9%)

0
(0%)

15
(0.75%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

4
(0.2%)

0
(0%)

S6
181

(9.05%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

634
(31.7%)

0
(0%)

790
(39.5%)

334
(16.7%)

0
(0%)

46
(2.3%)

15
(0.75%)

0
(0%)

0
(0%)

S7
11

(0.55%)

0
(0%)

431
(21.55%)

0
(0%)

601
(30.05%)

0
(0%)

326
(16.3%)

0
(0%)

226
(11.3%)

194
(9.7%)

66
(3.3%)

12
(0.6%)

131
(6.55%)

2
(0.1%)

S8
17

(0.85%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

70
(3.5%)

0
(0%)

1911
(95.55%)

0
(0%)

0
(0%)

1
(0.05%)

1
(0.05%)

0
(0%)

0
(0%)

S9
1

(0.05%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

0
(0%)

0
(0%)

1998
(99.9%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

51
(2.55%)

0
(0%)

0
(0%)

1947
(97.35%)

0
(0%)

0
(0%)

0
(0%)

2
(0.1%)

S11
186
(9.3%)

0
(0%)

0
(0%)

0
(0%)

784
(39.2%)

204
(10.2%)

75
(3.75%)

298
(14.9%)

52
(2.6%)

0
(0%)

168
(8.4%)

38
(1.9%)

116
(5.8%)

79
(3.95%)

S12
195

(9.75%)

0
(0%)

0
(0%)

816
(40.8%)

145
(7.25%)

171
(8.55%)

22
(1.1%)

215
(10.75%)

13
(0.65%)

0
(0%)

64
(3.2%)

187
(9.35%)

30
(1.5%)

142
(7.1%)

S13
1

(0.05%)

0
(0%)

0
(0%)

0
(0%)

889
(44.45%)

0
(0%)

140
(7%)

0
(0%)

0
(0%)

279
(13.95%)

169
(8.45%)

14
(0.7%)

507
(25.35%)

1
(0.05%)

S14
147

(7.35%)

334
(16.7%)

0
(0%)

0
(0%)

5
(0.25%)

0
(0%)

6
(0.3%)

0
(0%)

22
(1.1%)

204
(10.2%)

38
(1.9%)

47
(2.35%)

7
(0.35%)

1190
(59.5%)

Table D.10
Siamese Network: SCADA One-Shot Accuracy (Person Hitting Low Intensity excluded from
Training) Using Different j Votes

No Votes Overall
New Class

(S10)
Normal

(j) Accuracy TPR FNR TNR FPR

1 58.55% 85.9% 0% 15.5% 84.5%

5 61.79% 97.35% 0% 22.75% 77.25%

10 61.79% 99.15% 0% 20.1% 79.9%

15 61.77% 99.8% 0% 19.1% 80.9%

20 61.5% 99.95% 0% 18.05% 81.95%

25 61.49% 99.95% 0% 18.3% 81.7%

30 61.2% 100% 0% 17.65% 82.35%

262

Table D.11
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Person Hitting Medium
Intensity excluded from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
255

(12.75%)
0
(0%)

0
(0%)

87
(4.35%)

220
(11%)

317
(15.85%)

25
(1.25%)

218
(10.9%)

13
(0.65%)

0
(0%)

155
(7.75%)

26
(1.3%)

216
(10.8%)

468
(23.4%)

58.24%

S2
0
(0%)

1997
(99.85%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

1999
(99.95%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

0
(0%)

0
(0%)

0
(0%)

S6
206

(10.3%)

0
(0%)

0
(0%)

4
(0.2%)

107
(5.35%)

898
(44.9%)

0
(0%)

106
(5.3%)

0
(0%)

0
(0%)

71
(3.55%)

41
(2.05%)

566
(28.3%)

1
(0.05%)

S7
37

(1.85%)

395
(19.75%)

458
(22.9%)

0
(0%)

94
(4.7%)

0
(0%)

279
(13.95%)

0
(0%)

285
(14.25%)

100
(5%)

260
(13%)

31
(1.55%)

0
(0%)

61
(3.05%)

S8
9

(0.45%)

0
(0%)

0
(0%)

669
(33.45%)

0
(0%)

6
(0.3%)

0
(0%)

1313
(65.65%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

0
(0%)

S9
2

(0.1%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

4
(0.2%)

0
(0%)

1758
(87.9%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

236
(11.8%)

S10
0
(0%)

895
(44.75%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1105
(55.25%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
102
(5.1%)

0
(0%)

0
(0%)

0
(0%)

531
(26.55%)

203
(10.15%)

138
(6.9%)

0
(0%)

0
(0%)

0
(0%)

726
(36.3%)

46
(2.3%)

238
(11.9%)

16
(0.8%)

S12
98

(4.9%)

0
(0%)

0
(0%)

669
(33.45%)

65
(3.25%)

189
(9.45%)

68
(3.4%)

135
(6.75%)

0
(0%)

0
(0%)

320
(16%)

340
(17%)

106
(5.3%)

10
(0.5%)

S13
126
(6.3%)

0
(0%)

0
(0%)

0
(0%)

357
(17.85%)

660
(33%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

76
(3.8%)

14
(0.7%)

767
(38.35%)

0
(0%)

S14
251

(12.55%)

0
(0%)

0
(0%)

0
(0%)

9
(0.45%)

0
(0%)

25
(1.25%)

0
(0%)

770
(38.5%)

0
(0%)

48
(2.4%)

20
(1%)

8
(0.4%)

869
(43.45%)

Table D.12
Siamese Network: SCADA One-Shot Accuracy (Person Hitting Medium Intensity excluded
from Training) Using Different j Votes

No Votes Overall
New Class

(S9)
Normal

(j) Accuracy TPR FNR TNR FPR

1 56.04% 73.8% 0.3% 13.4% 86.6%

5 58.24% 87.9% 0.1% 12.75% 87.25%

10 59.55% 96.5% 0% 7.3% 92.7%

15 60.1% 97.1% 0% 4.5% 95.5%

20 60.27% 98.7% 0% 2.5% 97.5%

25 60.63% 98.8% 0% 1.5% 98.5%

30 60.58% 99.25% 0% 1.3% 98.7%

263

Table D.13
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (7 Floating Objects excluded
from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
1222

(61.1%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

74
(3.7%)

0
(0%)

0
(0%)

392
(19.6%)

223
(11.15%)

89
(4.45%)

0
(0%)

81.49%

S2
0
(0%)

1999
(99.95%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1996
(99.8%)

4
(0.2%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S7
16

(0.8%)

0
(0%)

650
(32.5%)

0
(0%)

1
(0.05%)

101
(5.05%)

1089
(54.45%)

23
(1.15%)

0
(0%)

0
(0%)

51
(2.55%)

1
(0.05%)

66
(3.3%)

2
(0.1%)

S8
30

(1.5%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

36
(1.8%)

6
(0.3%)

1920
(96%)

0
(0%)

0
(0%)

7
(0.35%)

1
(0.05%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
499

(24.95%)

53
(2.65%)

0
(0%)

0
(0%)

0
(0%)

4
(0.2%)

46
(2.3%)

32
(1.6%)

0
(0%)

0
(0%)

929
(46.45%)

101
(5.05%)

336
(16.8%)

0
(0%)

S12
645

(32.25%)

469
(23.45%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

48
(2.4%)

0
(0%)

0
(0%)

247
(12.35%)

324
(16.2%)

267
(13.35%)

0
(0%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

1
(0.05%)

1996
(99.8%)

0
(0%)

S14
0
(0%)

330
(16.5%)

0
(0%)

0
(0%)

39
(1.95%)

0
(0%)

249
(12.45%)

37
(1.85%)

0
(0%)

0
(0%)

0
(0%)

3
(0.15%)

0
(0%)

1342
(67.1%)

Table D.14
Siamese Network: SCADA One-Shot Accuracy (7 Floating Objects excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(S7)
Normal

(j) Accuracy TPR FNR TNR FPR

1 78.27% 48.25% 0.95% 43.8% 56.2%

5 81.49% 54.45% 0.8% 61.1% 38.9%

10 82.29% 54.45% 0.65% 66.95% 33.05%

15 82.87% 54.35% 0.7% 70.35% 29.65%

20 83.13% 54.45% 0.65% 72.55% 27.45%

25 83.28% 54.5% 0.75% 74.3% 25.7%

30 83.38% 54.4% 0.75% 75.05% 24.95%

264

Table D.15
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (2 Floating Objects excluded
from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
1142

(57.1%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

45
(2.25%)

18
(0.9%)

368
(18.4%)

0
(0%)

0
(0%)

339
(16.95%)

86
(4.3%)

2
(0.1%)

0
(0%)

72.81%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

401
(20.05%)

96
(4.8%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1503
(75.15%)

0
(0%)

S7
12

(0.6%)

36
(1.8%)

469
(23.45%)

0
(0%)

0
(0%)

53
(2.65%)

528
(26.4%)

0
(0%)

0
(0%)

0
(0%)

76
(3.8%)

34
(1.7%)

785
(39.25%)

7
(0.35%)

S8
76

(3.8%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

34
(1.7%)

0
(0%)

1860
(93%)

0
(0%)

0
(0%)

2
(0.1%)

28
(1.4%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
538

(26.9%)

52
(2.6%)

0
(0%)

0
(0%)

0
(0%)

72
(3.6%)

74
(3.7%)

53
(2.65%)

0
(0%)

0
(0%)

975
(48.75%)

80
(4%)

153
(7.65%)

3
(0.15%)

S12
346

(17.3%)

0
(0%)

0
(0%)

0
(0%)

418
(20.9%)

18
(0.9%)

65
(3.25%)

628
(31.4%)

0
(0%)

0
(0%)

246
(12.3%)

103
(5.15%)

173
(8.65%)

3
(0.15%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

46
(2.3%)

0
(0%)

0
(0%)

0
(0%)

9
(0.45%)

5
(0.25%)

1937
(96.85%)

3
(0.15%)

S14
0
(0%)

311
(15.55%)

0
(0%)

0
(0%)

17
(0.85%)

0
(0%)

8
(0.4%)

23
(1.15%)

0
(0%)

0
(0%)

6
(0.3%)

8
(0.4%)

186
(9.3%)

1441
(72.05%)

Table D.16
Siamese Network: SCADA One-Shot Accuracy (2 Floating Objects excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(S6)
Normal

(j) Accuracy TPR FNR TNR FPR

1 69.9% 21.05% 0% 38.5% 61.5%

5 72.81% 20.05% 0% 57.1% 42.9%

10 73.1% 17.6% 0% 58.85% 41.15%

15 73% 14.8% 0% 60.35% 39.65%

20 72.89% 13.1% 0% 61.6% 38.4%

25 72.73% 12.4% 0% 61.55% 38.45%

30 72.59% 11.25% 0% 61.75% 38.25%

265

Table D.17
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Humidity excluded from
Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
198

(9.9%)
0
(0%)

0
(0%)

240
(12%)

206
(10.3%)

239
(11.95%)

20
(1%)

196
(9.8%)

0
(0%)

0
(0%)

149
(7.45%)

33
(1.65%)

221
(11.05%)

498
(24.9%)

60.45%

S2
0
(0%)

1999
(99.95%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
13

(0.65%)

0
(0%)

0
(0%)

0
(0%)

1937
(96.85%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2
(0.1%)

2
(0.1%)

46
(2.3%)

0
(0%)

S6
170
(8.5%)

0
(0%)

0
(0%)

470
(23.5%)

77
(3.85%)

658
(32.9%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

59
(2.95%)

24
(1.2%)

542
(27.1%)

0
(0%)

S7
28

(1.4%)

285
(14.25%)

518
(25.9%)

0
(0%)

120
(6%)

0
(0%)

243
(12.15%)

0
(0%)

423
(21.15%)

0
(0%)

288
(14.4%)

30
(1.5%)

0
(0%)

65
(3.25%)

S8
8

(0.4%)

0
(0%)

0
(0%)

17
(0.85%)

0
(0%)

4
(0.2%)

0
(0%)

1959
(97.95%)

0
(0%)

0
(0%)

0
(0%)

12
(0.6%)

0
(0%)

0
(0%)

S9
0
(0%)

883
(44.15%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

45
(2.25%)

0
(0%)

1072
(53.6%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
110
(5.5%)

0
(0%)

0
(0%)

1
(0.05%)

547
(27.35%)

208
(10.4%)

148
(7.4%)

0
(0%)

0
(0%)

0
(0%)

598
(29.9%)

82
(4.1%)

244
(12.2%)

62
(3.1%)

S12
92

(4.6%)

0
(0%)

0
(0%)

127
(6.35%)

74
(3.7%)

144
(7.2%)

64
(3.2%)

783
(39.15%)

0
(0%)

0
(0%)

287
(14.35%)

298
(14.9%)

111
(5.55%)

20
(1%)

S13
147

(7.35%)

0
(0%)

0
(0%)

4
(0.2%)

408
(20.4%)

607
(30.35%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

82
(4.1%)

32
(1.6%)

720
(36%)

0
(0%)

S14
254

(12.7%)

16
(0.8%)

0
(0%)

0
(0%)

24
(1.2%)

1
(0.05%)

137
(6.85%)

0
(0%)

188
(9.4%)

0
(0%)

99
(4.95%)

30
(1.5%)

6
(0.3%)

1245
(62.25%)

Table D.18
Siamese Network: SCADA One-Shot Accuracy (Humidity excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(S5)
Normal

(j) Accuracy TPR FNR TNR FPR

1 58.44% 80.9% 2.85% 12.9% 87.1%

5 60.45% 96.85% 0.65% 9.9% 90.1%

10 62.07% 99.35% 0.05% 4.3% 95.7%

15 62.65% 99.95% 0% 2.7% 97.3%

20 62.91% 100% 0% 1.6% 98.4%

25 63.16% 100% 0% 0.5% 99.5%

30 63.17% 100% 0% 0.45% 99.55%

266

Table D.19
Siamese Network: SCADA One-Shot Confusion Matrix (j = 5) (Blocked Measure 2 excluded
from Training)

Predicted Class

Correct Normal
Blocked
measure

1

Blocked
measure

2
DoS Humidity

2
Floating
objects

7
Floating
objects

Person
hitting
high

intensity

Person
hitting
med

intensity

Person
hitting

low
intensity

Plastic
bag

Sensor
failure

Spoofing
Wrong

connection
Overall

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) (S9) (S10) (S11) (S12) (S13) (S14)

S1
1136

(56.8%)
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

482
(24.1%)

0
(0%)

0
(0%)

175
(8.75%)

207
(10.35%)

0
(0%)

0
(0%)

78.96%

S2
0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S3
0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S4
0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S5
0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S6
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1618
(80.9%)

8
(0.4%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

374
(18.7%)

0
(0%)

S7
6

(0.3%)

8
(0.4%)

17
(0.85%)

0
(0%)

0
(0%)

106
(5.3%)

1390
(69.5%)

9
(0.45%)

0
(0%)

0
(0%)

37
(1.85%)

5
(0.25%)

421
(21.05%)

1
(0.05%)

S8
57

(2.85%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

11
(0.55%)

1903
(95.15%)

0
(0%)

0
(0%)

17
(0.85%)

12
(0.6%)

0
(0%)

0
(0%)

S9
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S10
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

2000
(100%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

S11
546

(27.3%)

52
(2.6%)

0
(0%)

0
(0%)

0
(0%)

1
(0.05%)

96
(4.8%)

334
(16.7%)

0
(0%)

0
(0%)

757
(37.85%)

88
(4.4%)

121
(6.05%)

5
(0.25%)

S12
474

(23.7%)

0
(0%)

0
(0%)

0
(0%)

414
(20.7%)

0
(0%)

127
(6.35%)

456
(22.8%)

0
(0%)

0
(0%)

234
(11.7%)

223
(11.15%)

68
(3.4%)

4
(0.2%)

S13
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

239
(11.95%)

79
(3.95%)

0
(0%)

0
(0%)

0
(0%)

5
(0.25%)

2
(0.1%)

1674
(83.7%)

1
(0.05%)

S14
1

(0.05%)

311
(15.55%)

0
(0%)

0
(0%)

36
(1.8%)

0
(0%)

51
(2.55%)

13
(0.65%)

0
(0%)

0
(0%)

22
(1.1%)

12
(0.6%)

145
(7.25%)

1409
(70.45%)

Table D.20
Siamese Network: SCADA One-Shot Accuracy (Blocked Measure 2 excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(S3)
Normal

(j) Accuracy TPR FNR TNR FPR

1 75.99% 100% 0% 43.4% 56.6%

5 78.96% 100% 0% 56.8% 43.2%

10 80.15% 100% 0% 61.3% 38.7%

15 80.7% 100% 0% 62.65% 37.35%

20 80.94% 100% 0% 64.6% 35.4%

25 81.1% 100% 0% 65.2% 34.8%

30 81.23% 100% 0% 66.3% 33.7%

267

D.2 CICIDS2017 Dataset

Table D.21
Siamese Network: CICIDS2017 One-Shot Confusion Matrix (j = 5) (DoS (Slowloris)
excluded from training)

Predicted Class

Correct Normal
DoS

(Hulk)
DoS

(Slowloris)
FTP SSH Overall

Normal
5307

(88.45%)
6

(0.1%)

459
(7.65%)

64
(1.07%)

164
(2.73%)

81.07%
DoS

(Hulk)
37

(0.62%)

5794
(96.57%)

65
(1.08%)

53
(0.88%)

51
(0.85%)

DoS
(Slowloris)

574
(9.57%)

26
(0.43%)

4024
(67.07%)

582
(9.7%)

794
(13.23%)

FTP
482

(8.03%)

1
(0.02%)

598
(9.97%)

4639
(77.32%)

280
(4.67%)

SSH
446

(7.43%)

0
(0%)

817
(13.62%)

181
(3.02%)

4556
(75.93%)

Table D.22
Siamese Network: CICIDS2017 One-Shot Accuracy (DoS (Slowloris) excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(DoS (Slowloris))
Normal

(j) Accuracy TPR FNR TNR FPR

1 70.89% 50.97% 11.50% 72.65% 27.35%

5 81.07% 67.07% 9.57% 88.45% 11.55%

10 82.67% 71.38% 7.38% 89.48% 10.52%

15 82.85% 72.20% 7.18% 89.37% 10.63%

20 83.01% 72.77% 6.85% 89.67% 10.33%

25 82.98% 72.93% 6.58% 89.65% 10.35%

30 82.94% 72.82% 6.68% 89.70% 10.30%

268

Table D.23
Siamese Network: CICIDS2017 One-Shot Confusion Matrix (j = 5) (DoS (Hulk) excluded
from training)

Predicted Class

Correct Normal
DoS

(Hulk)
DoS

(Slowloris)
FTP SSH Overall

Normal
4314

(71.9%)
1095

(18.25%)

174
(2.9%)

113
(1.88%)

304
(5.07%)

80.81%
DoS

(Hulk)
78

(1.3%)

5708
(95.13%)

60
(1%)

58
(0.97%)

96
(1.6%)

DoS
(Slowloris)

451
(7.52%)

51
(0.85%)

4767
(79.45%)

111
(1.85%)

620
(10.33%)

FTP
624

(10.4%)

171
(2.85%)

138
(2.3%)

4521
(75.35%)

546
(9.1%)

SSH
597

(9.95%)

26
(0.43%)

245
(4.08%)

198
(3.3%)

4934
(82.23%)

Table D.24
Siamese Network: CICIDS2017 One-Shot Accuracy (DoS (Hulk) excluded from Training)
Using Different j Votes

No Votes Overall
New Class

(DoS (Hulk))
Normal

(j) Accuracy TPR FNR TNR FPR

1 72.28% 91.07% 4.90% 58.05% 41.95%

5 80.81% 95.13% 1.30% 71.90% 28.10%

10 82.59% 95.22% 1.22% 75.58% 24.42%

15 82.54% 95.23% 1.20% 74.67% 25.33%

20 82.86% 95.20% 1.20% 76.02% 23.98%

25 82.76% 95.20% 1.15% 75.50% 24.50%

30 82.93% 95.18% 1.22% 76.15% 23.85%

269

Table D.25
Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (j = 5) (U2R excluded from
Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4146

(69.1%)

5
(0.08%)

440
(7.33%)

796
(13.27%)

613
(10.22%)

75.72%DoS
7

(0.12%)

5921
(98.68%)

59
(0.98%)

6
(0.1%)

7
(0.12%)

Probe
53

(0.88%)

384
(6.4%)

5449
(90.82%)

59
(0.98%)

55
(0.92%)

R2L
35

(0.58%)

0
(0%)

13
(0.22%)

5849
(97.48%)

103
(1.72%)

U2R
958

(15.97%)

1
(0.02%)

669
(11.15%)

3022
(50.37%)

1350
(22.5%)

D.3 KDD Cup’99 Dataset

Table D.26
Siamese Network: KDD Cup’99 One-Shot Accuracy (U2R excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(U2R)
Normal

(j) Accuracy TPR FNR TNR FPR

1 70.69% 21.40% 17.28% 59.27% 40.73%

5 75.72% 22.50% 15.97% 69.10% 30.90%

10 76.26% 21.82% 17.17% 72.18% 27.82%

15 76.33% 21.83% 17.15% 72.52% 27.48%

20 76.31% 21.48% 17.52% 72.72% 27.28%

25 76.34% 21.45% 17.55% 72.77% 27.23%

30 76.33% 21.27% 17.73% 72.90% 27.10%

270

Table D.27
Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (j = 5) (R2L excluded from
Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4288

(71.47%)
1

(0.02%)

400
(6.67%)

730
(12.17%)

581
(9.68%)

74.2%DoS
10

(0.17%)

5909
(98.48%)

72
(1.2%)

9
(0.15%)

0
(0%)

Probe
90

(1.5%)

160
(2.67%)

5338
(88.97%)

165
(2.75%)

247
(4.12%)

R2L
1702

(28.37%)

2
(0.03%)

1344
(22.4%)

2148
(35.8%)

804
(13.4%)

U2R
527

(8.78%)

1
(0.02%)

682
(11.37%)

213
(3.55%)

4577
(76.28%)

Table D.28
Siamese Network: KDD Cup’99 One-Shot Accuracy (R2L excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(R2L)
Normal

(j) Accuracy TPR FNR TNR FPR

1 67.75% 38.48% 25.95% 59.65% 40.35%

5 74.2% 35.80% 28.37% 71.47% 28.53%

10 77.27% 42.22% 23.85% 74.38% 25.62%

15 78.34% 46.65% 22.05% 74.50% 25.50%

20 78.94% 49.18% 21.45% 74.62% 25.38%

25 79.44% 51.32% 20.72% 74.65% 25.35%

30 79.87% 53.35% 20.65% 74.55% 25.45%

271

Table D.29
Siamese Network: KDD Cup’99 One-Shot Confusion Matrix (j = 5) (Probe excluded from
Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4515

(75.25%)
16

(0.27%)

383
(6.38%)

1016
(16.93%)

70
(1.17%)

72.23%DoS
18

(0.3%)

5896
(98.27%)

81
(1.35%)

4
(0.07%)

1
(0.02%)

Probe
719

(11.98%)

3707
(61.78%)

612
(10.2%)

941
(15.68%)

21
(0.35%)

R2L
26

(0.43%)

0
(0%)

16
(0.27%)

5946
(99.1%)

12
(0.2%)

U2R
55

(0.92%)

37
(0.62%)

264
(4.4%)

943
(15.72%)

4701
(78.35%)

Table D.30
Siamese Network: KDD Cup’99 One-Shot Accuracy (Probe excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(Probe)
Normal

(j) Accuracy TPR FNR TNR FPR

1 66.72% 15.72% 11.77% 65.72% 34.28%

5 72.23% 10.20% 11.98% 75.25% 24.75%

10 72.59% 5.90% 13.30% 78.65% 21.35%

15 72.35% 4.82% 13.08% 78.57% 21.43%

20 72.26% 3.58% 13.50% 79.20% 20.80%

25 72.17% 3.05% 13.55% 79.23% 20.77%

30 72.07% 2.17% 13.98% 79.62% 20.38%

272

Table D.31
Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix (j = 5) (U2R excluded
from Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
4530

(75.5%)
127

(2.12%)

76
(1.27%)

237
(3.95%)

1030
(17.17%)

77.04%DoS
120
(2%)

5771
(96.18%)

49
(0.82%)

16
(0.27%)

44
(0.73%)

Probe
43

(0.72%)

304
(5.07%)

5574
(92.9%)

69
(1.15%)

10
(0.17%)

R2L
403

(6.72%)

1
(0.02%)

27
(0.45%)

5238
(87.3%)

331
(5.52%)

U2R
2191

(36.52%)

0
(0%)

221
(3.68%)

1589
(26.48%)

1999
(33.32%)

D.4 NSL-KDD Dataset

Table D.32
Siamese Network: NSL-KDD One-Shot Accuracy (U2R excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(U2R)
Normal

(j) Accuracy TPR FNR TNR FPR

1 72.42% 34.37% 35.55% 66.58% 33.42%

5 77.04% 33.32% 36.52% 75.50% 24.50%

10 77.08% 30.42% 36.95% 77.85% 22.15%

15 77.19% 30.20% 36.70% 78.22% 21.78%

20 77.12% 29.37% 36.67% 78.52% 21.48%

25 77.14% 28.85% 36.72% 78.87% 21.13%

30 77.12% 28.30% 37.10% 79.25% 20.75%

273

Table D.33
Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix (j = 5) (R2L excluded
from Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
5199

(86.65%)
24

(0.4%)

148
(2.47%)

530
(8.83%)

99
(1.65%)

80.16%DoS
15

(0.25%)

5799
(96.65%)

36
(0.6%)

26
(0.43%)

124
(2.07%)

Probe
90

(1.5%)

242
(4.03%)

5416
(90.27%)

236
(3.93%)

16
(0.27%)

R2L
2526

(42.1%)

1
(0.02%)

142
(2.37%)

2759
(45.98%)

572
(9.53%)

U2R
852

(14.2%)

3
(0.05%)

0
(0%)

270
(4.5%)

4875
(81.25%)

Table D.34
Siamese Network: NSL-KDD One-Shot Accuracy (R2L excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(R2L)
Normal

(j) Accuracy TPR FNR TNR FPR

1 74.5% 46.05% 38.13% 74.73% 25.27%

5 80.16% 45.98% 42.10% 86.65% 13.35%

10 80.79% 46.82% 41.58% 88.07% 11.93%

15 81.09% 49.02% 39.88% 87.72% 12.28%

20 81% 48.62% 40.38% 87.90% 12.10%

25 80.95% 48.37% 40.63% 87.88% 12.12%

30 80.91% 48.20% 40.93% 87.93% 12.07%

274

Table D.35
Siamese Network: NSL-KDD Cup’99 One-Shot Confusion Matrix (j = 5) (Probe excluded
from Training)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal
5389

(89.82%)
89

(1.48%)

195
(3.25%)

245
(4.08%)

82
(1.37%)

75.31%DoS
37

(0.62%)

5842
(97.37%)

95
(1.58%)

21
(0.35%)

5
(0.08%)

Probe
1697

(28.28%)

2571
(42.85%)

565
(9.42%)

948
(15.8%)

219
(3.65%)

R2L
54

(0.9%)

0
(0%)

55
(0.92%)

5800
(96.67%)

91
(1.52%)

U2R
263

(4.38%)

0
(0%)

21
(0.35%)

720
(12%)

4996
(83.27%)

Table D.36
Siamese Network: NSL-KDD One-Shot Accuracy (Probe excluded from Training) Using
Different j Votes

No Votes Overall
New Class

(Probe)
Normal

(j) Accuracy TPR FNR TNR FPR

1 70.62% 18.80% 24.78% 77.53% 22.47%

5 75.31% 9.42% 28.28% 89.82% 10.18%

10 75.2% 4.83% 28.82% 91.08% 8.92%

15 75.12% 4.05% 29.08% 91.18% 8.82%

20 75.11% 3.47% 29.20% 91.45% 8.55%

25 75% 3.02% 29.55% 91.35% 8.65%

30 74.94% 2.68% 29.68% 91.33% 8.67%

275

Appendix E

Siamese Zero-Day Detection Results

Tables

In Section 5.7, the proposed Siamese network model is evaluated on detecting

unknown (zero-day) attacks based on pair similarity. Relying on the similarity, an

attack is classified as unknown, if its similarity is less than a given threshold (i.e., the

difference with all known classes is high). An attack class is excluded from training,

one at a time, and used to mimic a zero-day attack. For completeness and transparency,

the following subsections list the zero-day detection performance of the different

attacks in the four datasets that are used for evaluation.

276

E.1 SCADA Dataset

Table E.1
Siamese Network: SCADA Zero-Day Accuracy (Wrong Connection excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S14)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 68.17% 99.5% 0.15% 13.15% 55.25% 15.44%

5 71.8% 99.55% 0.25% 14.25% 53.55% 12.16%

10 69.59% 99.95% 0.05% 5.5% 64.35% 15.63%

15 71.52% 99.9% 0.1% 6.8% 62.25% 13.21%

20 70.16% 99.95% 0.05% 3.65% 66.2% 15.06%

25 69.26% 99.95% 0.05% 2.1% 67.9% 16.3%

30 70.4% 99.9% 0.1% 2.75% 67.1% 14.84%

Table E.2
Siamese Network: SCADA Zero-Day Accuracy (Spoofing excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S13)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 62.78% 5.25% 16.55% 22.45% 12.6% 7.99%

5 64.49% 5.2% 22.05% 29.7% 11.1% 6.86%

10 63.8% 26.5% 14.2% 19.9% 28.75% 10.55%

15 64.15% 14.8% 18.35% 24.85% 20% 8.72%

20 64.14% 28.95% 13.35% 19.7% 30.8% 10.57%

25 64.18% 37.05% 11.25% 15.95% 39.45% 11.96%

30 64.15% 29.95% 13.35% 18.9% 33.15% 10.8%

277

Table E.3
Siamese Network: SCADA Zero-Day Accuracy (Sensor Failure excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S12)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 63.92% 48.45% 11.35% 17.45% 32.45% 9.18%

5 66.84% 43.15% 11.45% 20.2% 22.65% 6%

10 66.46% 55.45% 3.35% 10.25% 37.55% 8.75%

15 67.55% 47.35% 5.05% 11% 26.85% 6.21%

20 67.25% 52.45% 2.65% 6.45% 34.6% 7.43%

25 67.05% 55.6% 1.6% 4.4% 38.6% 8.15%

30 67.54% 51.25% 2.1% 4.9% 32.75% 6.71%

Table E.4
Siamese Network: SCADA Zero-Day Accuracy (Plastic Bag excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S11)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 71.54% 3.95% 22.05% 35.05% 13.55% 4.08%

5 73.75% 0.7% 28.25% 45.5% 4.45% 3.59%

10 73.61% 6.75% 24.4% 41.9% 7.85% 5.36%

15 74.03% 1.05% 26.8% 44.45% 2.4% 4.05%

20 73.75% 5.25% 25% 43.9% 3.55% 5.23%

25 73.81% 8.6% 24.25% 42.75% 5.4% 5.95%

30 73.7% 4.2% 24.7% 44.6% 2.45% 5.21%

278

Table E.5
Siamese Network: SCADA Zero-Day Accuracy (Person Hitting Low Intensity excluded from
Training) Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S10)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 54.41% 32.1% 3.4% 14.15% 13.25% 6.46%

5 57.83% 29.3% 1.55% 19.15% 13.6% 5.42%

10 48.79% 0% 0% 9.9% 29.5% 14.29%

15 58.76% 45.5% 0% 13.25% 21.85% 6.73%

20 58.65% 58.45% 0% 7.45% 30% 8.66%

25 58.37% 63.95% 0% 5.5% 36.1% 10.38%

30 58.8% 59.8% 0% 7% 31.25% 8.38%

Table E.6
Siamese Network: SCADA Zero-Day Accuracy (Person Hitting Medium Intensity excluded
from Training) Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S9)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 52.06% 49.15% 1.7% 11.65% 22.9% 15.55%

5 53.94% 25.6% 0.55% 11.15% 16.65% 12.1%

10 52.15% 31% 0% 4.6% 28.9% 19.19%

15 53.91% 15.85% 0% 4.3% 19.75% 13.81%

20 52.66% 18.45% 0% 2.3% 25.2% 17.21%

25 51.84% 19.8% 0% 1.15% 28.65% 19.88%

30 52.76% 11.75% 0% 1.5% 22.5% 16.38%

279

Table E.7
Siamese Network: SCADA Zero-Day Accuracy (7 Floating Object excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S7)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 79.26% 58.55% 1.6% 43.8% 7.3% 0.81%

5 82.11% 58.55% 1% 61.2% 1.55% 0.18%

10 81.96% 58.85% 0.65% 61% 8.2% 0.78%

15 83.08% 58.45% 0.7% 70.1% 0.75% 0.12%

20 83.09% 58.65% 0.6% 70.75% 2.95% 0.35%

25 83.11% 58.75% 0.6% 70.7% 5.35% 0.6%

30 83.49% 58.45% 0.7% 73.95% 1.55% 0.2%

Table E.8
Siamese Network: SCADA Zero-Day Accuracy (2 Floating Objects excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S6)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 67.63% 0% 0% 38.5% 8.15% 4.55%

5 71.08% 0% 0% 56.85% 3.8% 3.53%

10 70.36% 0% 0% 51.8% 12.45% 4.83%

15 71.43% 0% 0% 59.3% 3.35% 3.54%

20 71.08% 0% 0% 58.35% 6.45% 3.97%

25 70.81% 0% 0% 57% 10.2% 4.3%

30 71.17% 0% 0% 61% 5.05% 3.69%

280

Table E.9
Siamese Network: SCADA Zero-Day Accuracy (Humidity excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S5)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 52.6% 26.25% 11% 12.35% 18.35% 12.85%

5 55.92% 24.25% 7.9% 11.45% 10.75% 9.78%

10 56.94% 52.2% 1.25% 3.95% 20.55% 16.2%

15 58.47% 37.05% 1.4% 4.1% 10% 11.05%

20 58.79% 53.6% 0.4% 2.3% 14.45% 13.64%

25 58.75% 64.5% 0% 1.6% 19.05% 15.83%

30 59.54% 54.55% 0.05% 1.25% 13.05% 12.45%

Table E.10
Siamese Network: SCADA Zero-Day Accuracy (Blocked Measure 2 excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S3)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 68.69% 0% 0% 42.55% 10.25% 0.86%

5 71.8% 0% 0% 55.6% 3.4% 0.24%

10 72.48% 0% 0% 54.9% 8.9% 1.31%

15 73.43% 0% 0% 61.05% 2.3% 0.28%

20 73.54% 0% 0% 61.6% 4.3% 0.65%

25 73.59% 0% 0% 61% 5.5% 0.87%

30 73.96% 0% 0% 64.6% 1.7% 0.34%

281

Table E.11
Siamese Network: SCADA Zero-Day Accuracy (Blocked Measure 1 excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(S2)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 69.38% 0% 0% 40.65% 8.55% 4.72%

5 72.33% 0% 0% 59.55% 1.6% 4.07%

10 72.3% 0% 0% 59.7% 6.7% 5.32%

15 73.45% 0% 0% 66.95% 0.85% 4.38%

20 73.18% 0% 0% 66.35% 3.15% 4.88%

25 72.97% 0% 0% 64.95% 4.85% 5.18%

30 73.41% 0% 0% 68.6% 1.35% 4.78%

E.2 CICIDS2017 Dataset

Table E.12
Siamese Network: CICIDS2017 Zero-Day Accuracy (FTP excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(FTP)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 56.57% 31.82% 3.75% 38.43% 53.3% 23.09%

5 64.64% 11.48% 4.83% 61.92% 32.93% 10.34%

10 64.22% 12.27% 3.62% 58.88% 37.73% 11.59%

15 65.63% 10.22% 4.87% 67.23% 29.33% 10.76%

20 65.39% 11.38% 4.02% 65.03% 31.8% 11.31%

25 65.19% 11.67% 3.77% 63.82% 33.15% 11.63%

30 65.84% 11.03% 4.35% 67.6% 29.37% 11.24%

282

Table E.13
Siamese Network: CICIDS2017 Zero-Day Accuracy (DoS (Slowloris) excluded from Training)
Using Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(DoS (Slowloris))

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 67.45% 71.65% 6.33% 49.87% 41.8% 21.54%

5 80.56% 76.28% 4.35% 73.8% 21.17% 8.82%

10 82.46% 87.58% 2% 72.97% 24.32% 10.94%

15 83.61% 86.72% 2.52% 79.2% 18.08% 10.17%

20 83.53% 88.57% 2.18% 77.6% 20.1% 11.02%

25 83.59% 89.52% 1.92% 77.02% 20.78% 11.34%

30 83.95% 88.88% 2.12% 79.48% 18.28% 11.04%

E.3 KDD Cup’99 Dataset

Table E.14
Siamese Network: KDD Cup’99 Zero-Day Accuracy (U2R excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(U2R)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 60.18% 52.07% 2.62% 46.3% 46.1% 30.18%

5 71.35% 50.07% 0.13% 64.93% 26.9% 18.87%

10 72.01% 50.22% 0% 66.28% 25.63% 18.31%

15 72.51% 50.22% 0% 67.4% 24.52% 17.84%

20 72.47% 50.22% 0% 67.3% 24.62% 17.87%

25 72.5% 50.22% 0% 67.37% 24.55% 17.84%

30 72.52% 50.22% 0% 67.43% 24.48% 17.83%

283

Table E.15
Siamese Network: KDD Cup’99 Zero-Day Accuracy (Probe excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(Probe)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 64.51% 55.38% 6.27% 53.63% 38.53% 25.82%

5 75.1% 53.17% 7.32% 71.1% 18.93% 16.04%

10 75.2% 53.43% 7.38% 71.93% 18.13% 16.35%

15 75.6% 53.35% 7.48% 72.53% 17.5% 15.85%

20 75.52% 53.47% 7.47% 72.5% 17.57% 16.01%

25 75.48% 53.48% 7.47% 72.47% 17.62% 16.07%

30 75.51% 53.47% 7.48% 72.52% 17.55% 16.03%

Table E.16
Siamese Network: KDD Cup’99 Zero-Day Accuracy (DoS excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(DoS)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 57.05% 75.15% 0.42% 45.32% 46.5% 38.06%

5 70.85% 68% 0.07% 64.15% 26.02% 23.04%

10 71.25% 67.65% 0.07% 65.38% 24.88% 22.77%

15 71.95% 67.4% 0.07% 66.85% 23.42% 21.97%

20 71.9% 67.38% 0.07% 66.83% 23.43% 22.03%

25 71.92% 67.38% 0.07% 66.9% 23.37% 22.02%

30 71.93% 67.38% 0.07% 66.93% 23.33% 22.01%

284

E.4 NSL-KDD Dataset

Table E.17
Siamese Network: NSL-KDD Zero-Day Accuracy (U2R excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(U2R)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 54.16% 71.2% 21.82% 36.67% 59.95% 43.92%

5 66.52% 58.18% 36.4% 58.27% 39.8% 25.18%

10 67.17% 61.67% 34.38% 56.7% 42.65% 24.89%

15 68.52% 53.17% 42.97% 67.95% 31.37% 22.99%

20 68.5% 54.7% 41.58% 67.12% 32.23% 23.43%

25 68.2% 55.28% 41.02% 65.6% 33.77% 23.59%

30 68.76% 50.98% 45.32% 71.3% 28.05% 22.79%

Table E.18
Siamese Network: NSL-KDD Zero-Day Accuracy (Probe excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(Probe)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 61.32% 58.57% 13% 58.78% 39.8% 34.82%

5 70.01% 52.72% 16.8% 76.3% 22.55% 24.52%

10 70.08% 52.5% 17.1% 76.85% 22.03% 24.62%

15 71.31% 52.28% 17.27% 77.15% 21.72% 22.56%

20 71.27% 52.28% 17.25% 77.12% 21.77% 22.62%

25 71.32% 52.38% 17.25% 77.08% 21.8% 22.57%

30 71.59% 52.33% 17.27% 77.08% 21.8% 22.08%

285

Table E.19
Siamese Network: NSL-KDD Zero-Day Accuracy (DoS excluded from Training) Using
Different j Votes

No
Votes

Overall
Accuracy

Zero-Day Class
(DoS)

Benign Class
Known
Attack
Classes

Classified As:

(j) Unknown Normal Normal Unknown Unknown

1 52.48% 19.12% 6.1% 64.17% 33.8% 38.43%

5 61.63% 3.9% 7.58% 79.07% 19.75% 23.17%

10 61.82% 3.78% 7.48% 79.52% 19.37% 22.97%

15 62.31% 3.48% 7.78% 79.6% 19.27% 22.05%

20 62.33% 3.45% 7.82% 79.62% 19.25% 22%

25 62.36% 3.52% 7.77% 79.63% 19.23% 21.98%

30 62.38% 3.38% 7.88% 79.63% 19.23% 21.91%

286

Appendix F

Autoencoder Experiment ROC Plots

In Chapter 6, an autoencoder model is evaluated on its ability to detect zero-day

attacks. Figure F.1 shows the ROC curves for each of the attacks in the CICIDS2017

dataset, based on the results discussed in Section 6.5.1.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

DDoS

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

DoS (GoldenEye)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

DoS (Slowloris)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

DoS (SlowHTTPTest)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

DoS (Hulk)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Heartbleed

Figure F.1
Autoencoder Classification ROC Curves

287

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

FTP Brute-force

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

SSH Brute-force

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Web BF

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Web XSS

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Web SQL

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Infiltration - Dropbox 1

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Infiltration - Dropbox 2

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Infiltration - Dropbox 3

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Infiltration - Cooldisk

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Botnet

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

TP
R

FPR

Portscan

Figure F.1
Autoencoder Classification ROC Curves

288

	Declaration
	Certificate of Approval
	Acknowledgements
	Abstract
	Acronyms
	List of Symbols
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Research Objectives
	Thesis Statement
	Thesis Contributions
	Thesis Organisation

	Intrusion Detection Systems
	IDS Overview
	Machine Learning Overview
	IDS Conceptualisation
	General Attributes
	Decision-Making
	Evaluation

	IDS Datasets
	Summary

	IDS in Literature
	Analysis of Recent IDS Research
	Threats Taxonomy
	Network Threats
	Host Threats
	Software Threats
	Physical Threats
	Other Threats

	Attacks Coverage
	Summary

	Utilising Machine Learning for Special-Purpose IDS
	Problem Statement
	Background
	Logistic Regression
	Naïve Bayes
	k-Nearest Neighbour
	Support Vector Machine
	Decision Tree and Random Forest

	SCADA Dataset
	SCADA Dataset Architecture
	SCADA Operation and Dataset Scenarios
	SCADA Dataset Preprocessing

	SCADA Experiments and Results
	Experiment 1: Anomaly Detection
	Experiment 2: Affected Component Classification
	Experiment 3: Scenarios Classification
	One Scenario Classification
	Two Scenarios Classification
	Scenarios Classification Using Confidence

	MQTT IDS Dataset Generation
	MQTT-IoT-IDS2020

	MQTT Experiments and Results
	Summary

	IDS using Limited-Size Data
	Problem Statement
	Background
	Learning from Limited-Size Datasets
	One-Shot Learning
	Siamese Network
	Artificial Neural Networks

	Datasets
	KDD Cup'99
	NSL-KDD
	CICIDS2017

	Siamese Network Usage Scenarios Overview
	Scenario 1: Classification using Limited Data
	Methodology
	Experiments and Results
	SCADA Dataset Results
	CICIDS2017 Dataset Results
	KDD Cup'99 and NSL-KDD Datasets Results

	Scenario 2: One-Shot Detection
	Methodology
	Experiments and Results
	SCADA Dataset Results
	CICIDS2017 Dataset Results
	KDD Cup'99 and NSL-KDD Datasets Results

	Scenario 3: Zero-Day Attacks Detection
	Methodology
	Experiments and Results
	SCADA Dataset Results
	CICIDS2017 Dataset Results
	KDD Cup'99 and NSL-KDD Datasets Results

	Summary

	Outlier-Based Zero-Day Attacks Detection
	Problem Statement
	Background
	Autoencoders
	One-Class SVM
	Related Work

	Datasets
	CICIDS2017 Dataset Preprocessing

	Methodology
	Autoencoder-based model
	One-Class SVM based Model

	Experiments and Results
	CICIDS2017 Dataset
	KDD Cup'99 and NSL-KDD Dataset

	Summary

	Classifying Benign Imitating Attacks Using Flow Aggregation
	Problem Statement
	Background
	Related Work

	Methodology
	Experiments Methodology and Results
	Binary Classification Results
	Three-Class Classification Results
	Five-Class Classification Results
	CICIDS2017 Zero-Day Attack Detection Reassessed

	Summary

	Conclusions and Future Work
	Conclusion
	Future Work
	Special-Purpose Network IDS
	Few-Shot Learning
	Zero-Day Attack Detection
	Flow Aggregation

	References
	Appendix IDS Datasets Remarks
	Appendix Attack Tools
	Appendix SCADA Dataset Classification Results Tables
	Appendix Siamese One-Shot Learning Results Tables
	SCADA Dataset
	CICIDS2017 Dataset
	KDD Cup'99 Dataset
	NSL-KDD Dataset

	Appendix Siamese Zero-Day Detection Results Tables
	SCADA Dataset
	CICIDS2017 Dataset
	KDD Cup'99 Dataset
	NSL-KDD Dataset

	Appendix Autoencoder Experiment ROC Plots

