53 research outputs found

    Application of Adversarial Attacks on Malware Detection Models

    Get PDF
    Malware detection is vital as it ensures that a computer is safe from any kind of malicious software that puts users at risk. Too many variants of these malicious software are being introduced everyday at increased speed. Thus, to guarantee security of computer systems, huge advancements in the field of malware detection are made and one such approach is to use machine learning for malware detection. Even though machine learning is very powerful, it is prone to adversarial attacks. In this project, we will try to apply adversarial attacks on malware detection models. To perform these attacks, fake samples that are generated using Generative Adversarial Networks (GAN) algorithm are used and these fake malware data along with the actual data is given to a machine learning model for malware detection. Here, we will also be experimenting with the percentage of fake malware samples to be considered and observe the behavior of the model according to the given input. The novelty of this project is given by the use of adversarial samples that are generated by the implementation of word embeddings produced by our generative algorithms

    LOCALINTEL: Generating Organizational Threat Intelligence from Global and Local Cyber Knowledge

    Full text link
    Security Operations Center (SoC) analysts gather threat reports from openly accessible global threat databases and customize them manually to suit a particular organization's needs. These analysts also depend on internal repositories, which act as private local knowledge database for an organization. Credible cyber intelligence, critical operational details, and relevant organizational information are all stored in these local knowledge databases. Analysts undertake a labor intensive task utilizing these global and local knowledge databases to manually create organization's unique threat response and mitigation strategies. Recently, Large Language Models (LLMs) have shown the capability to efficiently process large diverse knowledge sources. We leverage this ability to process global and local knowledge databases to automate the generation of organization-specific threat intelligence. In this work, we present LOCALINTEL, a novel automated knowledge contextualization system that, upon prompting, retrieves threat reports from the global threat repositories and uses its local knowledge database to contextualize them for a specific organization. LOCALINTEL comprises of three key phases: global threat intelligence retrieval, local knowledge retrieval, and contextualized completion generation. The former retrieves intelligence from global threat repositories, while the second retrieves pertinent knowledge from the local knowledge database. Finally, the fusion of these knowledge sources is orchestrated through a generator to produce a contextualized completion

    Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches

    Get PDF
    The Brazilian legal system postulates the expeditious resolution of judicial proceedings. However, legal courts are working under budgetary constraints and with reduced staff. As a way to face these restrictions, artificial intelligence (AI) has been tackling many complex problems in natural language processing (NLP). This work aims to detect the degree of similarity between judicial documents that can be achieved in the inference group using unsupervised learning, by applying three NLP techniques, namely term frequency-inverse document frequency (TF-IDF), Word2Vec CBoW, and Word2Vec Skip-gram, the last two being specialized with a Brazilian language corpus. We developed a template for grouping lawsuits, which is calculated based on the cosine distance between the elements of the group to its centroid. The Ordinary Appeal was chosen as a reference file since it triggers legal proceedings to follow to the higher court and because of the existence of a relevant contingent of lawsuits awaiting judgment. After the data-processing steps, documents had their content transformed into a vector representation, using the three NLP techniques. We notice that specialized word-embedding models—like Word2Vec—present better performance, making it possible to advance in the current state of the art in the area of NLP applied to the legal sector

    Deep Neural Attention for Misinformation and Deception Detection

    Get PDF
    PhD thesis in Information technologyAt present the influence of social media on society is so much that without it life seems to have no meaning for many. This kind of over-reliance on social media gives an opportunity to the anarchic elements to take undue advantage. Online misinformation and deception are vivid examples of such phenomenon. The misinformation or fake news spreads faster and wider than the true news [32]. The need of the hour is to identify and curb the spread of misinformation and misleading content automatically at the earliest. Several machine learning models have been proposed by the researchers to detect and prevent misinformation and deceptive content. However, these prior works suffer from some limitations: First, they either use feature engineering heavy methods or use intricate deep neural architectures, which are not so transparent in terms of their internal working and decision making. Second, they do not incorporate and learn the available auxiliary and latent cues and patterns, which can be very useful in forming the adequate context for the misinformation. Third, Most of the former methods perform poorly in early detection accuracy measures because of their reliance on features that are usually absent at the initial stage of news or social media posts on social networks. In this dissertation, we propose suitable deep neural attention based solutions to overcome these limitations. For instance, we propose a claim verification model, which learns embddings for the latent aspects such as author and subject of the claim and domain of the external evidence document. This enables the model to learn important additional context other than the textual content. In addition, we also propose an algorithm to extract evidential snippets out of external evidence documents, which serves as explanation of the model’s decisions. Next, we improve this model by using improved claim driven attention mechanism and also generate a topically diverse and non-redundant multi-document fact-checking summary for the claims, which helps to further interpret the model’s decision making. Subsequently, we introduce a novel method to learn influence and affinity relationships among the social media users present on the propagation paths of the news items. By modeling the complex influence relationship among the users, in addition to textual content, we learn the significant patterns pertaining to the diffusion of the news item on social network. The evaluation shows that the proposed model outperforms the other related methods in early detection performance with significant gains. Next, we propose a synthetic headline generation based headline incongruence detection model. Which uses a word-to-word mutual attention based deep semantic matching between original and synthetic news headline to detect incongruence. Further, we investigate and define a new task of incongruence detection in presence of important cardinal values in headline. For this new task, we propose a part-of-speech pattern driven attention based method, which learns requisite context for cardinal values

    A Review on Human-Computer Interaction and Intelligent Robots

    Get PDF
    In the field of artificial intelligence, human–computer interaction (HCI) technology and its related intelligent robot technologies are essential and interesting contents of research. From the perspective of software algorithm and hardware system, these above-mentioned technologies study and try to build a natural HCI environment. The purpose of this research is to provide an overview of HCI and intelligent robots. This research highlights the existing technologies of listening, speaking, reading, writing, and other senses, which are widely used in human interaction. Based on these same technologies, this research introduces some intelligent robot systems and platforms. This paper also forecasts some vital challenges of researching HCI and intelligent robots. The authors hope that this work will help researchers in the field to acquire the necessary information and technologies to further conduct more advanced research

    Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies -- a tiered approach

    Get PDF
    Critical infrastructure, such as transport networks and bridges, are systematically targeted during wars and suffer damage during extensive natural disasters because it is vital for enabling connectivity and transportation of people and goods, and hence, underpins national and international economic growth. Mass destruction of transport assets, in conjunction with minimal or no accessibility in the wake of natural and anthropogenic disasters, prevents us from delivering rapid recovery and adaptation. As a result, systemic operability is drastically reduced, leading to low levels of resilience. Thus, there is a need for rapid assessment of its condition to allow for informed decision-making for restoration prioritisation. A solution to this challenge is to use technology that enables stand-off observations. Nevertheless, no methods exist for automated characterisation of damage at multiple scales, i.e. regional (e.g., network), asset (e.g., bridges), and structural (e.g., road pavement) scales. We propose a methodology based on an integrated, multi-scale tiered approach to fill this capability gap. In doing so, we demonstrate how automated damage characterisation can be enabled by fit-for-purpose digital technologies. Next, the methodology is applied and validated to a case study in Ukraine that includes 17 bridges, damaged by human targeted interventions. From regional to component scale, we deploy technology to integrate assessments using Sentinel-1 SAR images, crowdsourced information, and high-resolution images for deep learning to facilitate automatic damage detection and characterisation. For the first time, the interferometric coherence difference and semantic segmentation of images were deployed in a tiered multi-scale approach to improve the reliability of damage characterisations at different scales

    Darknet Traffic Analysis A Systematic Literature Review

    Full text link
    The primary objective of an anonymity tool is to protect the anonymity of its users through the implementation of strong encryption and obfuscation techniques. As a result, it becomes very difficult to monitor and identify users activities on these networks. Moreover, such systems have strong defensive mechanisms to protect users against potential risks, including the extraction of traffic characteristics and website fingerprinting. However, the strong anonymity feature also functions as a refuge for those involved in illicit activities who aim to avoid being traced on the network. As a result, a substantial body of research has been undertaken to examine and classify encrypted traffic using machine learning techniques. This paper presents a comprehensive examination of the existing approaches utilized for the categorization of anonymous traffic as well as encrypted network traffic inside the darknet. Also, this paper presents a comprehensive analysis of methods of darknet traffic using machine learning techniques to monitor and identify the traffic attacks inside the darknet.Comment: 35 Pages, 13 Figure

    Segment Anything Model (SAM) for Radiation Oncology

    Full text link
    In this study, we evaluate the performance of the Segment Anything Model (SAM) model in clinical radiotherapy. We collected real clinical cases from four regions at the Mayo Clinic: prostate, lung, gastrointestinal, and head \& neck, which are typical treatment sites in radiation oncology. For each case, we selected the OARs of concern in radiotherapy planning and compared the Dice and Jaccard outcomes between clinical manual delineation, automatic segmentation using SAM's "segment anything" mode, and automatic segmentation using SAM with box prompt. Our results indicate that SAM performs better in automatic segmentation for the prostate and lung regions, while its performance in the gastrointestinal and head \& neck regions was relatively inferior. When considering the size of the organ and the clarity of its boundary, SAM displays better performance for larger organs with clear boundaries, such as the lung and liver, and worse for smaller organs with unclear boundaries, like the parotid and cochlea. These findings align with the generally accepted variations in difficulty level associated with manual delineation of different organs at different sites in clinical radiotherapy. Given that SAM, a single trained model, could handle the delineation of OARs in four regions, these results also demonstrate SAM's robust generalization capabilities in automatic segmentation for radiotherapy, i.e., achieving delineation of different radiotherapy OARs using a generic automatic segmentation model. SAM's generalization capabilities across different regions make it technically feasible to develop a generic model for automatic segmentation in radiotherapy
    • …
    corecore