5,802 research outputs found

    Expected Runtime of Quantum Programs

    Full text link
    Building upon recent work on probabilistic programs, we formally define the notion of expected runtime for quantum programs. A representation of the expected runtimes of quantum programs is introduced with an interpretation as an observable in physics. A method for computing the expected runtimes of quantum programs in finite-dimensional state spaces is developed. Several examples are provided as applications of this method; in particular, an open problem of computing the expected runtime of quantum random walks is solved using our method

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Quantum SDP-Solvers: Better upper and lower bounds

    Get PDF
    Brand\~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension nn of the problem and the number mm of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with mnmn when m≈nm\approx n, which is the same as classical.Comment: v4: 69 pages, small corrections and clarifications. This version will appear in Quantu

    Computation with narrow CTCs

    Full text link
    We examine some variants of computation with closed timelike curves (CTCs), where various restrictions are imposed on the memory of the computer, and the information carrying capacity and range of the CTC. We give full characterizations of the classes of languages recognized by polynomial time probabilistic and quantum computers that can send a single classical bit to their own past. Such narrow CTCs are demonstrated to add the power of limited nondeterminism to deterministic computers, and lead to exponential speedup in constant-space probabilistic and quantum computation. We show that, given a time machine with constant negative delay, one can implement CTC-based computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte

    SICStus MT - A Multithreaded Execution Environment for SICStus Prolog

    Get PDF
    The development of intelligent software agents and other complex applications which continuously interact with their environments has been one of the reasons why explicit concurrency has become a necessity in a modern Prolog system today. Such applications need to perform several tasks which may be very different with respect to how they are implemented in Prolog. Performing these tasks simultaneously is very tedious without language support. This paper describes the design, implementation and evaluation of a prototype multithreaded execution environment for SICStus Prolog. The threads are dynamically managed using a small and compact set of Prolog primitives implemented in a portable way, requiring almost no support from the underlying operating system

    Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem

    Get PDF
    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's Problem - a black box period-finding problem which has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's Problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.Comment: 9 pages, 5 figure
    • …
    corecore