15 research outputs found

    Brain Tumor Diagnosis Support System: A decision Fusion Framework

    Get PDF
    An important factor in providing effective and efficient therapy for brain tumors is early and accurate detection, which can increase survival rates. Current image-based tumor detection and diagnosis techniques are heavily dependent on interpretation by neuro-specialists and/or radiologists, making the evaluation process time-consuming and prone to human error and subjectivity. Besides, widespread use of MR spectroscopy requires specialized processing and assessment of the data and obvious and fast show of the results as photos or maps for routine medical interpretative of an exam. Automatic brain tumor detection and classification have the potential to offer greater efficiency and predictions that are more accurate. However, the performance accuracy of automatic detection and classification techniques tends to be dependent on the specific image modality and is well known to vary from technique to technique. For this reason, it would be prudent to examine the variations in the execution of these methods to obtain consistently high levels of achievement accuracy. Designing, implementing, and evaluating categorization software is the goal of the suggested framework for discerning various brain tumor types on magnetic resonance imaging (MRI) using textural features. This thesis introduces a brain tumor detection support system that involves the use of a variety of tumor classifiers. The system is designed as a decision fusion framework that enables these multi-classifier to analyze medical images, such as those obtained from magnetic resonance imaging (MRI). The fusion procedure is ground on the Dempster-Shafer evidence fusion theory. Numerous experimental scenarios have been implemented to validate the efficiency of the proposed framework. Compared with alternative approaches, the outcomes show that the methodology developed in this thesis demonstrates higher accuracy and higher computational efficiency

    Infocommunications Journal 13.

    Get PDF

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Deep learning of brain asymmetry digital biomarkers to support early diagnosis of cognitive decline and dementia

    Get PDF
    Early identification of degenerative processes in the human brain is essential for proper care and treatment. This may involve different instrumental diagnostic methods, including the most popular computer tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. These technologies provide detailed information about the shape, size, and function of the human brain. Structural and functional cerebral changes can be detected by computational algorithms and used to diagnose dementia and its stages (amnestic early mild cognitive impairment - EMCI, Alzheimer’s Disease - AD). They can help monitor the progress of the disease. Transformation shifts in the degree of asymmetry between the left and right hemispheres illustrate the initialization or development of a pathological process in the brain. In this vein, this study proposes a new digital biomarker for the diagnosis of early dementia based on the detection of image asymmetries and crosssectional comparison of NC (normal cognitively), EMCI and AD subjects. Features of brain asymmetries extracted from MRI of the ADNI and OASIS databases are used to analyze structural brain changes and machine learning classification of the pathology. The experimental part of the study includes results of supervised machine learning algorithms and transfer learning architectures of convolutional neural networks for distinguishing between cognitively normal subjects and patients with early or progressive dementia. The proposed pipeline offers a low-cost imaging biomarker for the classification of dementia. It can be potentially helpful to other brain degenerative disorders accompanied by changes in brain asymmetries

    Addressing Complexity and Intelligence in Systems Dependability Evaluation

    Get PDF
    Engineering and computing systems are increasingly complex, intelligent, and open adaptive. When it comes to the dependability evaluation of such systems, there are certain challenges posed by the characteristics of “complexity” and “intelligence”. The first aspect of complexity is the dependability modelling of large systems with many interconnected components and dynamic behaviours such as Priority, Sequencing and Repairs. To address this, the thesis proposes a novel hierarchical solution to dynamic fault tree analysis using Semi-Markov Processes. A second aspect of complexity is the environmental conditions that may impact dependability and their modelling. For instance, weather and logistics can influence maintenance actions and hence dependability of an offshore wind farm. The thesis proposes a semi-Markov-based maintenance model called “Butterfly Maintenance Model (BMM)” to model this complexity and accommodate it in dependability evaluation. A third aspect of complexity is the open nature of system of systems like swarms of drones which makes complete design-time dependability analysis infeasible. To address this aspect, the thesis proposes a dynamic dependability evaluation method using Fault Trees and Markov-Models at runtime.The challenge of “intelligence” arises because Machine Learning (ML) components do not exhibit programmed behaviour; their behaviour is learned from data. However, in traditional dependability analysis, systems are assumed to be programmed or designed. When a system has learned from data, then a distributional shift of operational data from training data may cause ML to behave incorrectly, e.g., misclassify objects. To address this, a new approach called SafeML is developed that uses statistical distance measures for monitoring the performance of ML against such distributional shifts. The thesis develops the proposed models, and evaluates them on case studies, highlighting improvements to the state-of-the-art, limitations and future work

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Information Management in the Department of Defense: The Role of Librarians

    Get PDF
    Proceedings of the Military Librarians Workshop (24th) 15-17 October 1980, held at Monterey, CaliforniaThe 24th Military Librarians Workshop convened to consider the role played by librarians in the management of defense-related information needs. Speakers from the Department of Defense, the General Accounting Office, the National Aeronautics and Space Administration, industry, the academic world, and from libraries in the civilian sector discussed current and projected trends in the area of information management and marketing. Emphasis was placed on Department of Defense requirements and on the optimal utilization of information resources.Approved for public release; distribution is unlimited
    corecore