51 research outputs found

    Improved Cauchy Reed-Solomon Codes for Cloud Data Retrieval and Secured Data Storage using Role-Based Cryptographic Access and forensic investigation

    Get PDF
    Doling out client consent strategies to PC frameworks presents a huge test in guaranteeing legitimate approval, especially with the development of open frameworks and scattered stages like the cloud.  RBAC  has turned into a broadly involved strategy in cloud server applications because of its versatility. Granting access to cloud-stored data for investigating potential wrongdoings is crucial in computer forensic investigations. In cases where the cloud service provider's reliability is questionable, maintaining data confidentiality and establishing an efficient procedure for revoking access upon credential expiration is essential. As storage systems expand across vast networks, frequent component failures require stronger fault tolerance measures. Our work secure data-sharing system combines role (Authorized) based access control and AES encryption technology to provide safe key distribution and data sharing for dynamic groups. Data recovery entails protecting data dispersed over distributed systems by storing duplicate data and applying the erasure code technique. Erasure coding strategies, like Reed-Solomon codes, guarantee disc failure robustness while cutting down on data storage expenses dramatically. They do, however, also result in longer access times and more expensive repairs. Consequently, there has been a great deal of interest in academic and business circles for the investigation of novel coding strategies for cloud storage systems. The objective of this study is to present a novel coding method that utilizes the intricate Cauchy matrix in order to improve Reed-Solomon coding efficiency and strengthen fault tolerance

    Virtual time synchronization in distributed database systems

    Full text link
    Distributed systems synchronized by Virtual Time have been topics of recent interest. Virtual Time follows an optimistic philosophy relying on rollback for synchronization instead of abortion or blocKing Although many applications have been suggested as candidates for Virtual Time, few were simulated or implemented. This research reports on the first implementation and results of a Distributed Database Management System synchronized by virtual time. We argue that virtual time is a viable alternate concurrency control method for distributed database systems if its memory overhead can be absorbed

    Utilizing Blockchain and IoT in Food Network: Systematic Literature Review

    Get PDF
    Food is required by everyone daily and because of this various supply chains have to operate smoothly to deliver quality goods to nearby stores. These operations contain several different parties and each one of them performs critical tasks. These supply networks can become very complex and their management can be a hassle. This complexity creates several challenges that could be solved with a single common platform that everyone involved uses. This approach, however, would be flawed with a centralized solution, so we need to turn into decentralized solutions like distributed ledgers. Currently consumers do not know much about the food products that they buy and eat. The goal in this thesis is to research how using blockchain technology could improve food supply chains since they face several issues currently and anything that can solve or even alleviate those would over time have a big positive impact. Currently the exact origins of products are mostly unknown due to lack of transparency and lots of food is wasted and thrown away due to various reasons which is not sustainable. Technology can provide new solutions for these issues which also involves IoT devices. Combining blockchain and IoT together can provide much safer and more transparent food supply chains for the masses. There are also several other related issues with food that could be improved, including supply chain optimization, collaboration and better data sharing. The used research method in this thesis is Kitchenham's systematic literature review. The results in this thesis cover extensively how distributed systems can benefit the parties involved in the food value chain and how these could be utilized for several things. Some potential concerns with the performance of these distributed systems and their security are also discussed

    Examining Future Data Center Power Supply Infrastructures

    Get PDF
    The rapid expansion of data processing in the past few years has created a massive demand for data center installations worldwide, and energy conservation strategies have become crucial. The enormous increase in data center installations and their significant contribution to global energy consumption require the implementing of energy saving techniques and participating in supporting the power grid. This thesis presents an architecture-level review of power distribution systems in data centers, examining AC, DC, and hybrid architectures with a focus on enhancing efficiency and reliability One of the key areas that can be enhanced to improve the overall energy efficiency of data centers and the provision of ancillary services for the grid is the Uninterruptible Power Supplies (UPS). This thesis reviews the current state-of-the-art power supply systems and topologies mainly used in data centers and aims to identify ways to increase the overall energy efficiency of data center power supply systems. Moreover, this work presents a detailed analysis of the power supply losses and proposes systems that can improve the con- version efficiency of UPS systems under various loading conditions. The performance metrics in the data center business need to be more accurate. Therefore, the variety of performance metrics, considering energy efficiency, sustainability, reliability and costs, are analysed in the thesis. The conclusion of the thesis wraps up the findings and provides guidelines for planning the power supply infrastructure for various conditions

    Design of a modular digital computer system

    Get PDF
    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability

    A Dual-Rate Model Predictive Controller for Fieldbus Based Distributed Control Systems

    Get PDF
    In modern Distributed Control Systems (DCS), an industrial computer network protocol known as fieldbus is used in chemical, petro-chemical and other process industries for real-time communication between digital controllers, sensors, actuators and other smart devices. In a closed-loop digital control system, data is transferred from sensor to controller and controller to actuator cyclically in a timely but discontinuous fashion at a specific rate known as sampling-rate or macrocycle through fieldbus. According to the current trend of fieldbus technology, in most industrial control systems, the sampling-rate or macrocycle is fixed at the time of system configuration. This fixed sampling-rate makes it impossible to use a multi-rate controller that can automatically switch between multiple sampling-rates at run time to gain some advantages, such as network bandwidth conservation, energy conservation and reduction of mechanical wear in actuators. This thesis is concerned about design and implementation of a dual-rate controller which automatically switches between the two sampling-rates depending on system’s dynamic state. To be more precise, the controller uses faster sampling-rate when the process goes through transient states and slower sampling-rate when the process is at steady-state operation. The controller is based on a Model Predictive Control (MPC) algorithm and a Kalman filter based observer. This thesis starts with theoretical development of the dual-rate controller design. Subsequently, the developed controller is implemented on a Siemens PCS 7 system for controlling a physical process. The investigation has concluded that this control strategy can indeed lead to conservation of network bandwidth, energy savings in field devices and reduction of wear in mechanical actuators in fieldbus based distributed control systems

    Space Station needs, attributes and architectural options study. Volume 7-4A: Data book, architecture, technology and programmatics, part A

    Get PDF
    Various parameters of the orbital space station are discussed. The space station environment, data management system, communication and tracking, environmental control, and life support system are considered. Specific topics reviewed include crew work stations, restraint systems, stowage, computer hardware, and expert systems

    Analysis, Development And Design For Early Fault Detection And Fire Safety In Lithium-Ion Battery Technology

    Get PDF
    Energy storage technologies in its natural form play a key role in the electrical infrastructure, renewable and mobility industry. This form includes the material nomenclature for cell. technology, battery module design, Battery enclosure system design, control, and communication strategy, chemistry profile of various cell technologies, formation and formfactors of cell structure, electrical and mechanical properties of a lithium-ion cell, behavior of the cell under high voltage, low voltage, elevated temperature and lower temperature, multiple charging of a lithium-ion batteries. Energy storage industry is growing rapidly, and the industry is experiencing an unprecedented safety concern and issues in terms of fire and explosion at cell and system level. There has been. other research conducted with proposed theories and recommendations to resolve these issues. The failure modes for energy storage systems can be derived using different methodologies such as failure mode effects analysis (FMEA). Early detection mode and strategies in lithium-ion batteries to overcome the failure modes can be caused by endothermic reaction in the cell, further protection. devices, fire inhibition and ventilation. Endothermic safety involves modifications of materials in anode, cathode, and electrolyte. Chemical components added to the battery electrolyte improve the characteristics helping in the improvement of solid-electrolyte interphase and stability. Traditional energy storage system protection device fuse at the cell level, and contactors at the rack level and circuit breakers, current interrupt devices, and positive temperature coefficient devices at the system level. This research will employ classical experimental methods to explore, review and evaluate all the five main energy technologies and narrow down to electrochemical energy storage technologies. with the two main market ready lithium-ion battery technology (LiFePO4/ G and NMC/G) technology cells and why are they valuable in the energy storage and E-mobility space. Also, will focus on the electrical, mechanical design, testing of the battery module into a rack system, advancements in battery chemistries, relevant modes, mechanisms of potential failures, and early detection strategies to overcome these failures. Finally, how the problems of fires, safety concerns and difficulty in transporting already fully assembled energy storage systems can be resolved and be demystified in lithium-ion technology. Keywords Control strategy, Energy storage system, electrolyte, failure mode, early detection, Lithium-Ion cell technology, Battey system

    Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    Get PDF
    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28
    • …
    corecore