28,895 research outputs found

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    Discover hidden splicing variations by mapping personal transcriptomes to personal genomes.

    Get PDF
    RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify 'hidden' splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations

    Discovery of a second SALMFamide gene in the sea urchin Strongylocentrotus purpuratus reveals that L-type and F-type SALMFamide neuropeptides coexist in an echinoderm species

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in MARINE GENOMICS. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in MARINE GENOMICS, [VOL 3, ISSUE 2, (2010)] DOI: 10.1016/j.margen.2010.08.00

    Results, questions, perspectives of a study on human polyomavirus BK and molecular actors in prostate cancer development

    Get PDF
    Background: Prostate cancer (PC) is a common tumor in Western countries. Several risk factors play significant roles. MYC, BIRC5/survivin, CDC25 and P53 may contribute to PC risk. As demonstrated, human Polyomavirus BK (BKV) could affect cellular homeostasis contributing to PC pathogenesis. Materials and Methods: Biological samples were collected from PC patients. Viral RNA was searched using quantitative polymerase chain reaction (PCR), whereas a qualitative PCR was employed to find particular viral sequences. Proper size amplicons were analyzed. Single nucleotide polymorphisms (SNPs) were detected in p53 coding regions by means of a specific PCR. C-MYC, BIRC5/survivin and CDC25 gene expression was investigated using a Retro Transcriptional Quantitative PCR. Results: Viral DNA copy number was higher in cancer tissues taken from Gleason score 9 patients with Gleason score 7. Different p53 mutated compared to patients exons were found according to tumor advanced stage and a statistical significant correlation was found between Gleason score and p53 mutational rate. C-MYC, BIRC5/survivin and CDC25 expression was de-regulated according to the literature. Conclusion: The presence of BKV and its variants in transformed cells does not exclude viral pressure in cell immortalization. Expression of other target genes evidenced a significant change in their regulation, useful for cancer drug discovery and therapies

    MarkerMiner 1.0: a new application for phylogenetic marker development using angiosperm transcriptomes

    Get PDF
    Premise of the study: Targeted sequencing using next-generation sequencing (NGS) platforms offers enormous potential for plant systematics by enabling economical acquisition of multilocus data sets that can resolve difficult phylogenetic problems. However, because discovery of single-copy nuclear (SCN) loci from NGS data requires both bioinformatics skills and access to high-performance computing resources, the application of NGS data has been limited. Methods and Results: We developed MarkerMiner 1.0, a fully automated, open-access bioinformatic workflow and application for discovery of SCN loci in angiosperms. Our new tool identified as many as 1993 SCN loci from transcriptomic data sampled as part of four independent test cases representing marker development projects at different phylogenetic scales. Conclusions: MarkerMiner is an easy-to-use and effective tool for discovery of putative SCN loci. It can be run locally or via the Web, and its tabular and alignment outputs facilitate efficient downstream assessments of phylogenetic utility, locus selection, intron-exon boundary prediction, and primer or probe development

    Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing

    Get PDF
    Divergence of alternative splicing represents one of the major driving forces to shape phenotypic diversity during evolution. However, the extent to which these divergences could be explained by the evolving cis-regulatory versus trans-acting factors remains unresolved. To globally investigate the relative contributions of the two factors for the first time in mammals, we measured splicing difference between C57BL/6J and SPRET/EiJ mouse strains and allele-specific splicing pattern in their F1 hybrid. Out of 11,818 alternative splicing events expressed in the cultured fibroblast cells, we identified 796 with significant difference between the parental strains. After integrating allele-specific data from F1 hybrid, we demonstrated that these events could be predominately attributed to cis-regulatory variants, including those residing at and beyond canonical splicing sites. Contrary to previous observations in Drosophila, such predominant contribution was consistently observed across different types of alternative splicing. Further analysis of liver tissues from the same mouse strains and reanalysis of published datasets on other strains showed similar trends, implying in general the predominant contribution of cis-regulatory changes in the evolution of mouse alternative splicing

    Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs

    Get PDF
    Background: It was long assumed that proteins are at least 100 amino acids (AAs) long. Moreover, the detection of short translation products (e. g. coded from small Open Reading Frames, sORFs) is very difficult as the short length makes it hard to distinguish true coding ORFs from ORFs occurring by chance. Nevertheless, over the past few years many such non-canonical genes (with ORFs < 100 AAs) have been discovered in different organisms like Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster. Thanks to advances in sequencing, bioinformatics and computing power, it is now possible to scan the genome in unprecedented scrutiny, for example in a search of this type of small ORFs. Results: Using bioinformatics methods, we performed a systematic search for putatively functional sORFs in the Mus musculus genome. A genome-wide scan detected all sORFs which were subsequently analyzed for their coding potential, based on evolutionary conservation at the AA level, and ranked using a Support Vector Machine (SVM) learning model. The ranked sORFs are finally overlapped with ribosome profiling data, hinting to sORF translation. All candidates are visually inspected using an in-house developed genome browser. In this way dozens of highly conserved sORFs, targeted by ribosomes were identified in the mouse genome, putatively encoding micropeptides. Conclusion: Our combined genome-wide approach leads to the prediction of a comprehensive but manageable set of putatively coding sORFs, a very important first step towards the identification of a new class of bioactive peptides, called micropeptides
    • …
    corecore