80 research outputs found

    One-adhesive polymatroids

    Get PDF
    Adhesive polymatroids were defined by F. Mat\'u\v{s} motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have any extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the tripartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Peer ReviewedPostprint (author's final draft

    Obstructions to determinantal representability

    Get PDF
    There has recently been ample interest in the question of which sets can be represented by linear matrix inequalities (LMIs). A necessary condition is that the set is rigidly convex, and it has been conjectured that rigid convexity is also sufficient. To this end Helton and Vinnikov conjectured that any real zero polynomial admits a determinantal representation with symmetric matrices. We disprove this conjecture. By relating the question of finding LMI representations to the problem of determining whether a polymatroid is representable over the complex numbers, we find a real zero polynomial such that no power of it admits a determinantal representation. The proof uses recent results of Wagner and Wei on matroids with the half-plane property, and the polymatroids associated to hyperbolic polynomials introduced by Gurvits.Comment: 10 pages. To appear in Advances in Mathematic

    Linear Fractional Network Coding and Representable Discrete Polymatroids

    Full text link
    A linear Fractional Network Coding (FNC) solution over Fq\mathbb{F}_q is a linear network coding solution over Fq\mathbb{F}_q in which the message dimensions need not necessarily be the same and need not be the same as the edge vector dimension. Scalar linear network coding, vector linear network coding are special cases of linear FNC. In this paper, we establish the connection between the existence of a linear FNC solution for a network over Fq\mathbb{F}_q and the representability over Fq\mathbb{F}_q of discrete polymatroids, which are the multi-set analogue of matroids. All previously known results on the connection between the scalar and vector linear solvability of networks and representations of matroids and discrete polymatroids follow as special cases. An algorithm is provided to construct networks which admit FNC solution over Fq,\mathbb{F}_q, from discrete polymatroids representable over Fq.\mathbb{F}_q. Example networks constructed from discrete polymatroids using the algorithm are provided, which do not admit any scalar and vector solution, and for which FNC solutions with the message dimensions being different provide a larger throughput than FNC solutions with the message dimensions being equal.Comment: 8 pages, 5 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1301.300

    Finding lower bounds on the complexity of secret sharing schemes by linear programming

    Get PDF
    Optimizing the maximum, or average, length of the shares in relation to the length of the secret for every given access structure is a difficult and long-standing open problem in cryptology. Most of the known lower bounds on these parameters have been obtained by implicitly or explicitly using that every secret sharing scheme defines a polymatroid related to the access structure. The best bounds that can be obtained by this combinatorial method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants. By applying this linear programming approach, we improve some of the known lower bounds for the access structures on five participants and the graph access structures on six participants for which these parameters were still undetermined. Nevertheless, the lower bounds that are obtained by this combinatorial method are not tight in general. For some access structures, they can be improved by adding to the linear program non-Shannon information inequalities as new constraints. We obtain in this way new separation results for some graph access structures on eight participants and for some ports of non-representable matroids. Finally, we prove that, for two access structures on five participants, the combinatorial lower bound cannot be attained by any linear secret sharing schemePeer ReviewedPostprint (author's final draft

    Linear Network Coding, Linear Index Coding and Representable Discrete Polymatroids

    Full text link
    Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections among linear network coding, linear index coding and representable discrete polymatroids. We consider vector linear solutions of networks over a field Fq,\mathbb{F}_q, with possibly different message and edge vector dimensions, which are referred to as linear fractional solutions. We define a \textit{discrete polymatroidal} network and show that a linear fractional solution over a field Fq,\mathbb{F}_q, exists for a network if and only if the network is discrete polymatroidal with respect to a discrete polymatroid representable over Fq.\mathbb{F}_q. An algorithm to construct networks starting from certain class of discrete polymatroids is provided. Every representation over Fq\mathbb{F}_q for the discrete polymatroid, results in a linear fractional solution over Fq\mathbb{F}_q for the constructed network. Next, we consider the index coding problem and show that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a \textit{perfect linear index coding solution} for an index coding problem obtained from that matroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.Comment: 24 pages, 6 figures, 4 tables, some sections reorganized, Section VI newly added, accepted for publication in IEEE Transactions on Information Theor
    corecore