7 research outputs found

    Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations

    Full text link
    In this paper we obtain new estimates of the Hadamard fractional derivatives of a function at its extreme points. The extremum principle is then applied to show that the initial-boundary-value problem for linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and this solution depends continuously on the initial and boundary conditions. The extremum principle for an elliptic equation with a fractional Hadamard derivative is also proved

    A linear Galerkin numerical method for a quasilinear subdiffusion equation

    Full text link
    We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.Comment: This is the accepted version of the manuscript published in Applied Numerical Mathematic
    corecore