research

Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations

Abstract

In this paper we obtain new estimates of the Hadamard fractional derivatives of a function at its extreme points. The extremum principle is then applied to show that the initial-boundary-value problem for linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and this solution depends continuously on the initial and boundary conditions. The extremum principle for an elliptic equation with a fractional Hadamard derivative is also proved

    Similar works

    Full text

    thumbnail-image