912 research outputs found

    Anti-periodic solution for fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results

    Exponential Lag Synchronization of Cohen-Grossberg Neural Networks with Discrete and Distributed Delays on Time Scales

    Full text link
    In this article, we investigate exponential lag synchronization results for the Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an arbitrary time domain by applying feedback control. We formulate the problem by using the time scales theory so that the results can be applied to any uniform or non-uniform time domains. Also, we provide a comparison of results that shows that obtained results are unified and generalize the existing results. Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these results. In the last section, we provide two simulated examples for different time domains to show the effectiveness and generality of the obtained analytical results.Comment: 20 pages, 18 figure

    Complete Stability of Neural Networks With Extended Memristors

    Get PDF
    The article considers a large class of delayed neural networks (NNs) with extended memristors obeying the Stanford model. This is a widely used and popular model that accurately describes the switching dynamics of real nonvolatile memristor devices implemented in nanotechnology. The article studies via the Lyapunov method complete stability (CS), i.e., convergence of trajectories in the presence of multiple equilibrium points (EPs), for delayed NNs with Stanford memristors. The obtained conditions for CS are robust with respect to variations of the interconnections and they hold for any value of the concentrated delay. Moreover, they can be checked either numerically, via a linear matrix inequality (LMI), or analytically, via the concept of Lyapunov diagonally stable (LDS) matrices. The conditions ensure that at the end of the transient capacitor voltages and NN power vanish. In turn, this leads to advantages in terms of power consumption. This notwithstanding, the nonvolatile memristors can retain the result of computation in accordance with the in-memory computing principle. The results are verified and illustrated via numerical simulations. From a methodological viewpoint, the article faces new challenges to prove CS since due to the presence of nonvolatile memristors the NNs possess a continuum of nonisolated EPs. Also, for physical reasons, the memristor state variables are constrained to lie in some given intervals so that the dynamics of the NNs need to be modeled via a class of differential inclusions named differential variational inequalities

    Periodic solutions for a Cauchy problem on time scales

    Get PDF
    AbstractThis paper firstly shows that there does not exist a nonzero periodic solution for a nonhomogeneous Cauchy problem by using the Laplace transformation on time scales. Secondly, two new Gronwall inequalities, which play an important role in the qualitative analysis of differential and integral equations, are established. Thirdly, by employing the contraction mapping principle, existence and uniqueness results of weighted S-asymptotically ω-periodic solutions for nonlinear Cauchy problem on time scales are obtained in an asymptotically periodic function space. Finally, some examples are presented to illustrate some of the results described here

    Spikes, synchrony, sequences and Schistocerca's sense of smell

    Get PDF
    • …
    corecore