3,201 research outputs found

    Pulse propagation in discrete systems of coupled excitable cells

    Get PDF
    Propagation of pulses in myelinated fibers may be described by appropriate solutions of spatially discrete FitzHugh-Nagumo systems. In these systems, propagation failure may occur if either the coupling between nodes is not strong enough or the recovery is too fast. We give an asymptotic construction of pulses for spatially discrete FitzHugh-Nagumo systems which agrees well with numerical simulations and discuss evolution of initial data into pulses and pulse generation at a boundary. Formulas for the speed and length of pulses are also obtained.Comment: 16 pages, 10 figures, to appear in SIAM J. Appl. Mat

    Nonlinear physics of electrical wave propagation in the heart: a review

    Get PDF
    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that are triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media and their application to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact in cardiac arrhythmias.Peer ReviewedPreprin

    Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system

    Get PDF
    We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor, and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.Comment: 10 pages, 5 figures, as accepted to Chaos on 2017/06/2

    Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models

    Full text link
    We demonstrate how direct simulation of stochastic, individual-based models can be combined with continuum numerical analysis techniques to study the dynamics of evolving diseases. % Sidestepping the necessity of obtaining explicit population-level models, the approach analyzes the (unavailable in closed form) `coarse' macroscopic equations, estimating the necessary quantities through appropriately initialized, short `bursts' of individual-based dynamic simulation. % We illustrate this approach by analyzing a stochastic and discrete model for the evolution of disease agents caused by point mutations within individual hosts. % Building up from classical SIR and SIRS models, our example uses a one-dimensional lattice for variant space, and assumes a finite number of individuals. % Macroscopic computational tasks enabled through this approach include stationary state computation, coarse projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure
    • …
    corecore