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Laat ons een bloem en wat gras dat nog groen is
Laat ons een boom en het zicht op de zee

Vergeet voor één keer hoeveel geld een miljoen is
De wereld die moet nog een eeuwigheid mee

— Louis Neefs, Laat ons een bloem

Leave them a flower, some grass and a hedgerow
A hill and a valley, a view to the sea

These things are not yours to destroy as you want to
A gift given once for eternity

— Wally Whyton, Leave them a flower
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1| Introduction

The world around us is – and has been – changing constantly. In the past, there have
been large fluctuations in, for instance, solar activity [168], the concentration of carbon
dioxide in the earth’s atmosphere [2] and the global average temperature [74, 75] – to
name a few. These changes in climate have huge impacts on ecosystems; whole groups
of organisms can become extinct if these changes are severe [37, 82] – or, perhaps even
more crucially, if they happen at a rapid rate [37, 146, 157]. In these cases, nature
has too little leeway to adapt to the new status quo in a slow, minor way and instead
large, often more destructive changes occur [97, 157, 177] – such as the extinction of a
species. The prototypical example is the sudden mass extinction that occurred roughly
66 million years ago in which the dinosaurs died out (marking the end of the Mesozoic
Era and the beginning of the Cenozoic Era) [18, 61]. Nowadays, climate change is
again a (literal) hot topic. Since the start of the industrial revolution, changes in
climate have been both severe and unprecedentedly rapid. Undeniably, this already
has a large impact on life on earth, and also in the future will continue to change
earth [37, 88, 92, 96, 177]. To compensate the impact of these changes in climate,
deep knowledge of nature’s systems is necessary; a feat that can be achieved with the
use of mathematical analysis.

In this thesis, the focus is on ecosystem models that describe the dynamics in
dryland ecosystems, and the process of desertification that occurs in these areas (as
a consequence of climate change). Loosely speaking, desertification is the process in
which a relatively dry semi-arid region loses its vegetation – typically as an effect of
increased grazing activity, ongoing drought and/or global climate change [93, 114, 124,
139, 176]. At the end of the process, all vegetation is gone. Since water and nutrients
are better preserved in the soil when vegetation is present, their absence causes the
soil to deteriorate: it becomes hard and even less suitable for plants [145]. Therefore,
it is very hard to recolonize bare soil [145]. Hence, the desertification process needs
to be stopped before it has become irreversible. Not least since the areas in danger
grow in size every year, and even house a large portion of the world’s population [118].
Since the people in these regions rely heavily on livestock and crops made within
these regions, preservation of these areas is vital to their livelihood. This is a difficult
task, and one that also poses many important socioeconomic dilemmas that need to
be resolved [118, 167]. Nevertheless, a thorough understanding of the desertification
process is required to effectively combat it.

Vegetation patterns in semi-arid ecosystems have been the topic of research for
many decades. This interest started around the 1940s when aerial photographs – up
to that point mainly used for military operations – became (somewhat) more openly
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(a) Bands in Somalia (b) Gaps in Niger

(c) Spots in Zambia (d) Maze in Sudan

Figure 1.1 – Google Earth satellite images of several different vegetation patterns in
semi-arid climates. (a) Banded vegetation in Somalia (8◦5′N; 47◦27′E); (b) Gapped veg-
etation in Niger (12◦22′N; 2◦24′E); (c) Spotted vegetation patterns in Zambia (15◦38′S;
22◦46′E); (d) Maze pattern in Sudan (11◦8′N; 27◦50′E).

available. In 1950, this led Macfadyen to publish a report on the vegetation patterns
in ‘British Somaliland’ [112]. Since then, vegetation patterns have been observed in
many other semi-arid areas [57, 81, 119, 181]. Depending on the precise environment,
the reported patterns include gaps, bands, mazes and patches [42, 57, 64, 81, 112,
119, 136, 176, 181] – see Figure 1.1 for some examples. Currently, the existence of
these patterns is attributed to a combination of water scarcity in these systems and
the effect of vegetation on the soil’s permeability [136]. Through these two effects,
vegetation arranges itself in the observed patterns – that is, these are self-organized
patterns that are not caused by external inhomogeneities.

Over the years, numerous amounts of conceptual mathematical models have been
postulated that aim to capture the dynamics of these dryland ecosystems [67, 95, 136,
163, 176]. The most predominant models are of reaction-diffusion type. They describe
the interplay between vegetation and the little amount of water in these areas. In
general, most of these models can be captured heuristically as change in surface water = movement + precipitation − infiltration in soil;

change in soil water = movement + infiltration − deep infiltration − uptake;
change in vegetation = movement − mortality + growth through uptake.

(1.1)

Examples of these models include those by Rietkerk et al [136] and by Gilad et al [67].
They differ in the degree of complexity and realism that is used to model aforemen-
tioned effects. None of the models, however, are completely based on first principles
(although parts of them are – such as the movement of water that is typically modeled
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as diffusion). Moreover, most of these effects have never been measured accurately
and/or are very hard to measure for a given ecosystem (such as water movement in
the soil or vegetation growth through water uptake). Therefore, it is difficult to vali-
date models and to compare model output with observations on real ecosystems in a
meaningful way. Because of this, it is important to find the qualitative and universal
behavior of these models and compare that to reality.

These insights can be provided through numerical studies – as has been done exten-
sively in recent times [53, 152, 155, 158, 170, etc.]. However, it is hard to classify and
understand all possible model responses, for all parameter combinations, from direct
numerics alone. Therefore, to complement the numerical studies, it is typically insight-
ful to analyze the model mathematically as well – as such mathematical analyses are
better suited to, for example, pinpoint bifurcation/tipping points. To facilitate these
mathematical methods, in practice it is often unavoidable to make specific choices for
model and/or parameters – as will be done throughout this thesis as well. Here, it
is important to distinguish between generic and model-specific properties; the precise,
quantitative response is often model-specific, whereas the qualitative response is usu-
ally more universal. The challenge lies in finding those minimal models that (still)
capture the essential dynamics, but are also simple enough to study mathematically.

The general model (1.1) is already relatively complicated because it is a three-
component model (surface water, soil water, vegetation). Therefore, an inherently
simpler two-component model is usually used in mathematical studies. Those two-
component models only take into account one water component (and the vegetation
component). This can be achieved for instance by lumping together soil and surface
water in (1.1) or by ignoring the surface water component – the latter is a good
approximation when infiltration in the soil is fast. In words, these simpler models
have the form{

change in water = movement + precipitation − deep infiltration − uptake;
change in vegetation = movement − mortality + growth through uptake. (1.2)

This still leaves room for many models to coexist; there are still dozens of ways to
model each effect [163]. In this thesis, a few of those two component models are
explored in detail. Here, the models are often restricted to one spatial dimension to
further simplify them mathematically.

However, there are also similarities between models. For example, the vegetation’s
positive effect on the soil’s permeability is modeled in some way or another as this
is needed for patterns to emerge – as has been discussed before. Moreover, another
important feature of all models is the difference in movement/migration speed of water
and vegetation; water moves on much faster scales than vegetation. It is because of the
presence of such a ‘scale separation’ that patterns can emerge (this is true in general
and not only for dryland ecosystems [98, 138, 165]).

Whether, and which, patterns actually emerge depends on the water availability,
which is usually characterized by the amount of precipitation. For decreasing amount
of rainfall, in turn the following happens (see Figure 1.2 for a model run). Initially,
there is enough water available to sustain vegetation everywhere. Slowly, the density of
vegetation decreases, until, for some critical rainfall value, there is not enough water to
sustain vegetation everywhere and patterns emerge [165]. At first, these patterns are
small deviations from the uniform covered state1, but they will get more pronounced
as water becomes more scarce, until vegetation is only present at a few, localized

1These so-called ‘close-to-equilibrium’ patterns can be studied analytically using for instance am-
plitude equations; see for instance [35, 173]. This is, however, not the focus of this thesis.
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Figure 1.2 – Snapshots of direct simulation of a dryland ecosystem model (with one
spatial dimension) in which the precipitation was slowly decreased. Here, U(x) denotes
the water in the system and V (x) the amount of vegetation. The on-set of patterns from
a uniform configuration can be seen (small fluctuations are present in c), as well as the
typical pattern changes that subsequently occur when the amount of rainfall decreases,
until – for low precipitation – no vegetation can be sustained and all vegetation has
disappeared from the system. The model used is the extended-Klausmeier model with
parameters m = 0.45, D = 0.01, a(t) = 15(1− 10−6t) – see also chapter 3.

positions. Then, these localized patterns slowly change and vegetation continues to
disappear at more and more locations. Finally, for some critical precipitation value,
there is not enough water available to sustain any vegetation and the system is trapped
in a desert state – with no vegetation anywhere.

In this thesis, the focus is on the localized patterns that emerge when water scarcity
is high. These patterns exhibit vegetation only at some localized positions; elsewhere
there are no plants and the soil is bare. The aforementioned gaps, bands, mazes
and patches are all examples of this category of patterns (as are those in Figure 1.1).
These localized structures form the last resort for vegetation in dryland ecosystems;
once they cannot be maintained any longer, it is not possible for vegetation to exist
there any more.
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These patterns, however, are not fixed in time and space. Instead, the localized
vegetation structures are in competition for resources (mainly water); each tries to
optimize their own water uptake, which simultaneously changes the water distribution
in the system. It is through this mechanism that the localized structures interact
with each other. As a consequence of these interactions, the vegetation migrates
over the landscape, moving towards water – and thus typically improving their (own)
sustainability. Moreover, when resource scarcity is too high, these interactions can
prevent a total desertification by losing only some of the localized structures. All
in all, these patterns are thus highly self-structured and adaptive; They are able
to adjust to changes in climate. The way in which these adaptations occur, is not
predetermined though; it depends heavily on the severity and rate of the imposed
(climate) change [157, 158].

This thesis aims to improve the knowledge of this desertification process. For
this, it is necessary to determine the type of patterns that can emerge under which
conditions, to describe the interactions between localized structures and to understand
the possible adaptive responses of these systems. Luckily, since dryland ecosystems
have a natural separation of scales, this opens the way for advanced mathematical
techniques that can be used to answer these questions.

Mathematical Tools
Most of the mathematical analysis in this thesis utilizes perturbation arguments to
exploit the scale separations present in the models. In these problems there is a small
parameter (typically denoted by 0 < ε ≪ 1). Solutions to the full problem are then
related in one way or another to solutions for the ε = 0 case. In particular, the theory
of geometric singular perturbations and regular expansions are used for this. In this
thesis, these techniques will be used to study existence, stability and dynamics of
localized solutions to the ecosystem models. To illustrate the basics of both, in this
section they are applied to a simple example system.

Geometric arguments
Consider the following differential equation{

du
dξ = ε(v − u),
dv
dξ = v2

2u − v,
fast system (1.3)

where 0 < ε ≪ 1 is a small parameter and ξ is a so-called fast coordinate2. There is
also a slow coordinate2 x = εξ, and with a coordinate transformation the system can
also be written as {

du
dx = v − u,

ε dv
dx = v2

2u − v.
slow system (1.4)

Both systems are equivalent as long as ε ̸= 0; when ε = 0 they have different dynamics.
However, by combining the dynamics for both ε = 0 cases the behavior for the ε ̸= 0
system can be understood. First, by setting ε = 0 in the fast system the following fast

2For spatial coordinates, perhaps the terms ‘elongated’ and ‘shortened’ feel more suitable; however,
the terminology of ‘fast’ and ‘slow’ coordinates is typically used even for non-temporal coordinates.
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v = 0 v = 2u

(a) u > 0

v = 0v = 2u

(b) u < 0

Figure 1.3 – Flow of dv
dξ

= v2

2u
− v for fixed u > 0 (a) and u < 0 (b).

u = 0

(a) On the line {v = 0}

u = 0

(b) On the line {v = 2u}

Figure 1.4 – Flow of the slow reduced system on the lines {v = 0}(a) and {v = 2u}(b).

reduced system is found{
du
dξ = 0,
dv
dξ = v2

2u − v.
fast reduced system (1.5)

Clearly, u is constant in this system. For given u ̸= 0, the differential equation
v̇ = v2/(2u)− v has (hyperbolic) fixed points at v = 0 and v = 2u. In all cases flow is
directed away from v = 2u and towards v = 0 (see Figure 1.3).

On the other hand, setting ε = 0 in the slow system results in a slow reduced
system given by: {

du
dx = v − u,

0 = v2

2u − v.
slow reduced system (1.6)

The algebraic condition 0 = v2/(2u)− v stipulates v = 0 or v = 2u (not coincidentally
the fixed points of the fast reduced problem). So two separate cases are revealed. On
the line {v = 0}, the slow reduced system becomes

du

dx
= −u, slow reduced system on {v = 0} (1.7)

which has a stable fixed point at u = 0 (see Figure 1.4); on the line {v = 2u} the
system becomes

du

dx
= u, slow reduced system for {v = 2u} (1.8)

which has an unstable fixed point at u = 0 (see Figure 1.4).
Information from the reduced systems can then be combined. Graphically, the flow

is summarized in Figure 1.5. From this, one can heuristically deduce that a homoclinic
connection to the point (0, 0) can be constructed as follows: starting from (0, 0) flow
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u

v v = 2u

v = 0

(a)

x

u,v

(b)

Figure 1.5 – Flow of the system (1.3) as indicated by the reduced systems (a) and a
first order approximation of a homoclinic solution to this system with ε = 0.01 (b).

can be followed along the line {v = 2u}, and at some moment a so-called fast jump
occurs from the line {v = 2u} to the line {v = 0}, which is subsequently followed back
to the point (0, 0).

This construction is only based on the information from the reduced systems and
does not immediately guarantee the found solutions (a family of homoclinic connec-
tions) also exist for the ε ̸= 0 system. For that, it is necessary to verify that the
structure of the system persists for ε > 0. This can be achieved using for instance
geometric singular perturbation theory [62]. Without going into the details here, in
this case this theory indicates that the fast jumps from the line {v = 2u} to the line
{v = 0} persist in the system with ε > 0 and subsequently proves existence of the
found family of homoclinic orbits connecting (u, v) = (0, 0) to itself. Details on how to
use geometric singular perturbation theory to prove these assertions can be found in
one of the many excellent review articles on this topic – see for example [80, 86, 89].

Regular expansion
The above explained technique is useful to get a grip on the qualitative behavior of
the system. However, it is often also necessary to obtain approximations for these
solutions (e.g. for proofs using geometric singular perturbations these often come in
handy). To derive these estimates, regular expansions are used to expand u and v in
powers of 0 < ε≪ 1. Specifically, one sets(

u
v

)
=

(
u0
v0

)
+ ε

(
u1
v1

)
+O(ε2) (1.9)

and solves the system per order of ε. In practice, for most cases it is sufficient to
determine only the leading or next to leading order terms.

In the rest of this section, a leading order approximation for the homoclinic orbits
is derived. Here, for each building block of the homoclinic orbit another expansion
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is needed. For notational clarity, it is assumed that the fast jump occurs close to
x = 0, in a region denoted by If . The region to the left of the jump is denoted by I−s
and the solution in that region by (u−s , v

−
s )

T ; similarly to the right of the jump the
region is called I+s and the solution (u+s , v

+
s )

T ; in region If the solution is denoted
by (uf , vf )

T . The three regions are inspected one by one, and only the leading order
terms are computed in each region.

In I−s , the solution follows the dynamics of the slow system (1.4). To leading order
the system is given by {

d
dxu
−
s = v−s − u−s ,

0 =
(v−

s )2

2u−
s

− v−s .
(1.10)

From the previously determined geometrical structure of the solutions, it is known
that v−s = 2u−s . Thus,

du−s
dx

= u−s , (1.11)

which yields the family of solutions

u−s (x) = C−s e
x, v−s (x) = 2C−s e

x, (C−s ∈ R). (1.12)

In I+s , the same reasoning can be repeated. In this region, v+s = 0 and thus the
dynamics of u+s is governed by

du+s
dx

= −u+s , (1.13)

which results in the family of solutions given by

u+s (x) = C+
s e
−x, v+s (x) = 0, (C+

s ∈ R). (1.14)

During the jump (when x ∈ If ), the dynamics are governed by the fast system (1.3).
To leading order it is given by {duf

dξ = 0;
dvf

dξ =
v2
f

2uf
− vf .

(1.15)

Solving this system gives

uf (ξ) = Cf , vf (ξ) = Cf (1− tanh(ξ/2)) , (Cf ∈ R). (1.16)

The derived expressions still have undetermined constants. These can be related to
each other by requiring continuity at the edges of the different regions (typically
called ‘matching of solutions’). In practice, this can often be achieved by equating
the expressions (u−s (0), v

−
s (0))

T = limξ→−∞(uf (ξ), vf (ξ))
T and (u+s (0), v

+
s (0))

T =
limξ→∞(uf (ξ), vf (ξ))

T . For this problem that leads to C−s = Cf = C+
s .

To summarize, the leading order approximation of a homoclinic orbit of (1.4) is

u0(x) =


Uex, x ∈ I−s ;

U, x ∈ If ;

Ue−x, x ∈ I+s ;

v0(x) =


2Uex, x ∈ I−s ;

U
(
1− tanh x

2ε

)
, x ∈ If ;

0, x ∈ I+s ,

(1.17)

where U is a free constant, since a family of homoclinic connections exists in the system.
A plot of the found approximation is given in Figure 1.5.
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Contents of this thesis

The research presented in this thesis aims to improve the (mathematical) knowledge
about (localized) patterns in dryland ecosystems. The various chapters focus on dif-
ferent aspects and effects. The general idea, however, is the same in all chapters: an
(ecological) phenomenon is studied using an explicit ecosystem model that is deliber-
ately chosen to be as simple as possible, so that explicit mathematical analysis and
computations can be done – while making sure the desired behavior of the real system
is still present. In this way, the underlying structure is more transparent and quali-
tative conclusions can typically be extrapolated to more realistic models. Ultimately,
this leads to theoretical predictions for the real system, which can (and should) be
tested using data from real vegetation patterns – part of which is also done in this
thesis.

Multistability of patterns
Chapter 2, titled ‘Multistability of model and real dryland ecosystems through spa-
tial self-organization’3, explores the properties of patterns that generically emerge in
reaction-diffusion models, and compares these theoretical insights with data from ob-
servations on vegetation patterns in Somalia. In the models, typically a lot of different
patterns can be found – with differences in both their type (e.g. bands, gaps) and
their size (characterized for example by the band-interband period and wavenumber).
Importantly, these different patterns can even co-exist for the same parameter values –
that is, the models show multistability. The precise set of patterns that are stable solu-
tions to the model (for a given set of parameters) can be captured in a so-called Busse
balloon. For dyland ecosystems, this reveals that, for a given set of environmental con-
ditions, an ecosystem can sustain a set of patterns, whose wavenumber is contained
in a continuous range of substantial spread. In chapter 2, this theoretical insight is
confronted by data of vegetation patterns in Somalia, which indeed corroborate the
theories of multistability of patterned vegetation states.

This property has important consequences for the way in which vegetation pat-
terns indicate ecosystem resilience and mediate responses to environmental change.
In contrast to models with monostability – the typical assumption in ecological frame-
works [137, 144] – the multistable models do not posses a single tipping point, but
a cascade of destabilization; when environmental changes push a pattern outside of
the region of stable patterns (outside of the Busse balloon), a wavenumber adaptation
happens, in which typically only few patches are lost (and the remaining ones grow
in size). The precise extent of these adaptations depends on both the severity and
the rate of the change. In this way, vegetation is highly adaptive and self-organizing;
moreover, it shows that the adaptability of a pattern might be a better indicator for
ecosystem resilience than the shape of the pattern itself.

Despite these important conclusions, comparisons of model results have mainly
been limited to visual inspection. Therefore, in chapter 2 a systematic comparison
is performed using data on wavenumber, biomass and migration speed of banded
vegetation patterns in Somalia. In agreement with reaction-diffusion models, a wide
distribution of regular pattern wavenumbers was found in the data. This highlights the
potential for extrapolating predictions of those models to real ecosystems, including

3Joint work with Olfa Jaïbi, Vincent Deblauwe, Maarten B. Eppinga, Koen Siteur, Stéphane Mer-
moz, Alexandre Bouvet, Arjen Doelman and Max Rietkerk; has appeared as publication in PNAS [9].
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those that elucidate how spatial self-organization of vegetation enhances ecosystem
resilience.

Dynamics of disappearing pulses
The localized vegetation patterns in dryland ecosystems are not fixed in time and
space; instead, the vegetation is constantly changing and adapting to each other and
to variations in environmental conditions. This behavior is the topic of chapter 3, ‘The
dynamics of disappearing pulses in a singularly perturbed reaction-diffusion system with
parameters that vary in time and space’4. Here, topic of study is the evolution of pat-
terns with multiple (vegetation) pulses under changing climatological circumstances.
In particular, focus is given to the migration and disappearance of vegetation in a
simple ecosystem model.

In this chapter, a hybrid asymptotic-numerical method is used to get a grip on the
dynamics of the full model. First, the full dynamics are reduced to a simpler dynamical
system that describes the movement of the vegetation pulses. Next, the stability of
specific pulse configurations is studied. Here, not only the moment of destabilization
is studied, but also the pattern adaptation that then occurs. With the aid of numerous
simulations, the coarsening dynamics of pulses is then inspected in a wide variety of
situations.

It is found that vegetation migrates towards places with more water. Since the
presence of vegetation itself influences the distribution of water, ultimately vegetation
slowly evolves towards a regular, spatially periodic, pattern. Moreover, a difference
between pattern adaptations of regular and irregular patterns is revealed. In the case
of irregular patterns, pulses are typically lost one by one, whereas regular patterns
undergo catastrophic transitions in which either half or all pulses disappear.

Topographical effects
Most ecosystem models consider only specific, idealized topograhies, in which the
terrain is often taken to be perfectly flat, or constantly sloped – typically modeled
by reaction-(advection)-diffusion equations with constant coefficients. Such idealized
landscapes are of course not very realistic. Moreover, small variatiations in topography
can have large impacts on the distribution of water over the landscape, which in turn
impacts the migration of vegetation. Therefore, some behavior of the real system is lost
when those idealized terrains are used. To comprehend this more involved behavior,
in chapter 4, titled ‘Pulse solutions for an extended Klausmeier model with spatially
varying coefficients’5, a simple ecosystem model is extended to allow for more complex
topographies.

The inclusion of more generic terrains leads to behavior that cannot be found in
the simpler models. For instance, on constantly sloped terrains, models predict that
vegetation always migrates uphill, while on generic terrains, both uphill and downhill
movement is possible – challenging the assertion that movement of patterns can be
used as a mechanism to confirm or reject the presence of a specific pattern formation
mechanism [57]. Additionally, in chapter 4 the distinction between uphill and downhill
movement is linked to the terrains curvature.

4Joint work with Arjen Doelman; has appeared as publication in Physica D [8].
5Joint work with Martina Chirilus-Bruckner and Arjen Doelman; has been submitted for publica-

tion [7].
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From a mathematical perspective, the inclusion of generic topographies means
spatially varying terms need to be added to the model. These ecosystem models are
normally studied using geometric singular perturbation theory. The typical proofs rely
heavily on the presence of explicitly solvable (sub)systems – these are not present for
generic terrains. In chapter 4 this lack is compensated for by explicit bounds derived
from the theory of exponential dichotomies. In this way, existence of stationary pulse
solutions is established rigorously and their spectral stability is studied. It is found
that, due to the break-down of translation invariance, the presence of spatially vary-
ing coefficients can stabilize or destabilize pulse solutions. In particular, a pitchfork
bifurcation is found and existence of stationary multi-pulse solutions is shown.

Stable planar bands
Observations have indicated that depending on the topography different kind of pat-
terns are found; on flat grounds, reported patterns are gaps, mazes and spots, while
on sloped terrain, (curved) banded patterns form [42, 64, 136, 176]. It has been shown
(mathematically) that bands are unstable against lateral perturbations when move-
ment of water is diffusion dominant (as is the case for flat terrains) [148]. Moreover,
numerical analysis revealed 2D stable bands when movement is advection dominant
(that is, for large slopes) [155]. In chapter 5, ‘Stable planar vegetation stripe patterns
on sloped terrain in dryland ecosystems’6, the limit case is analyzed, in which the
movement of water is purely due to downhill movement.

Here, vegetation bands, stripes and fronts are constructed rigorously in a simple
ecosystem model. Mathematically, these solutions consist of (two) fast heteroclinic
connections, instead of (one) homoclinic connection that normally is found in the
diffusion dominant case. As a consequence, these patterns are now all stable in 2D
– aligning with the aforementioned observations. This fact also implies that curved
banded patterns can occur, which are typically oriented convex uphill. These pro-
vide a possible explanation for the observed vegetation arcs – even in the absence of
topographic mechanisms.

Impact in mathematics beyond ecology
Despite the fact that the mathematical models studied in this thesis were initially
designed to understand vegetation patterns in dryland ecosystems, the mathematical
results extend beyond this one specific application in ecology. The research in this
thesis can easily be adapted to other (singularly perturbed) systems – that can be
used to model a wide diversity of systems [10, 13, 15, 113, 115, 178, etc.]. In this
regard, chapter 3 contributes to the development of a general coarsening theory of
interacting pulses. Chapter 4 develops a method to rigorously study reaction-diffusion
equations with spatially varying coefficients by blending the theories of geometric
singular perturbations and exponential dichotomies. Finally, the research in chapter 5
explores the stabilizing effect that strong advection has on (stripe) patterns.

6Joint work with Paul Carter and Arjen Doelman; is set to appear in Nonlinearity [6].
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Lines in the Sand
In this thesis, various aspects of the desertification process are analyzed. Here, the
focus is on the localized vegetation patterns that arise when water scarcity is high,
and in particular on banded vegetation – Lines in the Sand (see Figure 1.1) – because
these vegetation bands are the easiest to capture mathematically. In the process
of desertification these localized vegetation patterns are the last resort; when water
scarcity becomes even higher, the ecosystem can no longer sustain any vegetation.
Since water and nutrients are better preserved in the soil when vegetation is present,
their absence causes the soil to deteriorate: it becomes hard and even less suitable for
plants, and as a consequence cracks in the soil – Lines in the Sand – appear (see cover
image). At this point, it has become very hard to recolonize the soil, and therefore it is
said that the desertification process has become (virtually) irreversible. The moment
when this happens is sometimes called a tipping point, or more informal a line in the
sand. However, as the research in this thesis demonstrates, dryland ecosystems do
not posses a single tipping point, but, instead, a cascade of destabilizations – that is,
multiple Lines in the Sand.
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2| Multistability of model and real dry-
land ecosystems through spatial self-
organization

Spatial self-organization of dryland vegetation constitutes one of the most promis-
ing indicators for an ecosystem’s proximity to desertification. This insight is
based on studies of reaction-diffusion models that reproduce visual characteris-
tics of vegetation patterns observed on aerial photographs. However, until now,
the development of reliable early warning systems has been hampered by the
lack of more in-depth comparisons between model predictions and real ecosys-
tem patterns. In this paper, we combined topographical data, (remotely sensed)
optical data and in-situ biomass measurements from two sites in Somalia to gen-
erate a multi-level description of dryland vegetation patterns. We performed an
in-depth comparison between these observed vegetation pattern characteristics
and predictions made by the extended-Klausmeier model for dryland vegeta-
tion patterning. Consistent with model predictions, we found that for a given
topography, there is multi-stability of ecosystem states with different pattern
wavenumbers. Furthermore, observations corroborated model predictions regard-
ing the relationships between pattern wavenumber, total biomass and maximum
biomass. In contrast, model predictions regarding the role of slope angles were
not corroborated by the empirical data, suggesting that inclusion of small-scale
topographical heterogeneity is a promising avenue for future model development.
Our findings suggest that patterned dryland ecosystems may be more resilient to
environmental change than previously anticipated, but this enhanced resilience
crucially depends on the adaptive capacity of vegetation patterns.

2.1 Introduction
A key aim of ecological modeling is to generate an understanding of the mechanisms
driving observed patterns [110]. A significant challenge in this pursuit, however, is that
multiple alternative processes may generate the same emergent outcome [59, 71, 110,
169], a phenomenon also referred to as equifinality [106, 107]. As a result, modeling
efforts may reveal that a particular ecological pattern can be explained by a suite of
alternative driver mechanisms. Therefore, a match between a pattern simulated with
a mechanistic model and a pattern observed in a real ecosystem may only constitute
limited support for the modeled mechanism being its true driver [71, 106, 107].

Pattern-oriented modeling [70, 71] aims to address the challenge of equifinality of
alternative model formulations. In this approach, model assessment is based on the
degree to which the output corresponds to observed patterns. A distinction is made be-
tween strong and weak patterns. Strong patterns are the dominant emergent features
a model should reproduce, such as the cycles within predator and prey population
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Multistability of model and real dryland ecosystems through spatial self-organization

sizes, or a spatial distribution of vegetation patches [70, 107]. Weak patterns are typ-
ically qualitative relationships, such as the existence of a population over a specific
timespan, or a positive association between one state variable and another [70, 107].
Rather than comparing model output to a single strong pattern, additional compar-
isons to multiple weak patterns, at different scales or levels of organization, provide
more power to model validation and selection procedures [70, 71, 107].

A specific type of ecological patterns that has received considerable attention is
regular spatial patterning of sessile biota [138]. On flat terrain, the reported patterns
are gaps, labyrinths, and spots [136, 176]. On sloping grounds banded patterns form,
their regular spacing enabling a description of the characteristic band-inter-band pe-
riod and wavenumber. Evidence is accumulating that these patterns are self-organized,
meaning that the larger-scale patterning is driven by internal ecosystem processes op-
erating at smaller scales [137, 138]. The crucial component in this self-organization
process is a long-range negative effect of biota on itself, either directly or through
modulation of resource availability. In cases where this long-range negative feedback
is coupled to a locally positive feedback, the mechanism creating pattern formation
may be linked to the existence of alternative stable states, as well as the possibility
of so-called catastrophic shifts between these states [137]. This phenomenon has been
most prominently studied in (semi-)arid ecosystems, where decreases in resource avail-
ability or increases in grazing pressure may trigger catastrophic shifts from vegetated
states to desert states without vegetation [114, 124, 139]. In this context, the forma-
tion of regular spatial vegetation patterns may indicate proximity to a threshold of
catastrophic change [137].

There is a long tradition in the scientific literature of explaining regular spatial
patterning with reaction-diffusion models [35, 129, 165]. In line with this work, a va-
riety of reaction-diffusion models has been applied to investigate self-organization in
(semi-)arid ecosystems [67, 95, 136, 176]. Despite the broad support for the findings
obtained with these models and their implications for (semi-)arid ecosystem function-
ing, comparisons of model results with empirical data have mainly been limited to
comparison of a single strong pattern, namely the spatial distribution of vegetation
patches. Until now, the few studies considering additional weak patterns have shown
that reaction-diffusion model simulations successfully reproduce associations between
pattern shape and aridity, and associations between pattern shape and slope of the
terrain [42]. In addition, models that account for sloped terrain also seem to capture
the observed migration of the location of banded patterns in uphill direction [41]. De-
spite these promising agreements between model results and empirical data, a more
systematic comparison between model results and data, based on multiple patterns at
different levels of organization [70, 71], was still lacking.

Advanced model analyses that have recently been applied to ecological models
have yielded a number of findings which, when confronted with high quality remote
sensing products, makes a more systematic comparison possible. More specifically,
recent theoretical studies have shown that for a given environmental condition (i.e. a
given parameter combination), not a single ecosystem state, but multiple ecosystem
states with patterns spanning a range of wavenumbers may be stable, hence observable
[155, 158, 170]. The range of observable patterns, across a range of environmental
conditions forms a bounded region in (parameter,wavenumber)-space. This region is
referred to as the Busse balloon, after F.H. Busse, who studied similar phenomena in
the field of fluid dynamics [19]. Although the patterned ecosystem states in the Busse
balloon are defined by their wavenumber, other properties, like migration speed and
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spatially averaged biomass, have also been studied [150] and are suggested to depend
on the position of a system within the Busse balloon. These theoretical findings provide
multiple additional weak patterns that can be compared to empirical data, providing
opportunities for more powerful tests of the validity of the developed reaction-diffusion
models to describe dryland ecosystems.

The aim of this study was to confront theoretical findings regarding pattern wavenum-
ber, biomass and migration speed with the same pattern properties derived from aerial
imagery and remote sensing products of banded vegetation patterns in the Horn of
Africa, a location with prominent undisturbed presence of vegetation pattern forma-
tion. Hence, a multi-level comparison between theory and data in line with the pattern-
oriented modeling approach was conducted [70, 71, 107].

2.2 Theory

2.2.1 Model description
Multiple reaction-diffusion models of dryland vegetation dynamics include a mecha-
nism in which vegetation acts as an ecosystem engineer, locally increasing the influx of
available water [67, 95, 136, 176]. Despite the different nuances between these models,
a number of predictions can be robustly derived from these frameworks. One of the
simplest of these ecosystem models – and the archetype considered in this article – is
an extended version of the dryland ecosystem model by Klausmeier [95, 170], which we
will refer to as the extended-Klausmeier model. This model describes the interaction
between water, w, and plant biomass, n. A non-dimensional version of this model
is used for the purposes of this article. A dimensional version of the model and the
physical meaning of its parameters can be found in appendix 2.A. The model is given
by the following equations{

∂w
∂t = e∂

2w
∂x2 + ∂(vw)

∂x + a− w − wn2,
∂n
∂t = ∂2n

∂x2 −mn+ wn2.
(2.2.1)

The reaction terms model the change in water as a combined effect of rainfall (+a),
evaporation (−w) and uptake by plants (−wn2). The change of plant biomass comes
from mortality (−mn) and plant growth (+wn2). Dispersion by plants is modeled as
diffusion and the movement of water as a combined effect of diffusion and advection.
The latter is due to gradients in the terrain, which are proportional to the slope
parameter v.

2.2.2 Theoretical outcomes
Multi-stability of patterned states

Reaction-advection-diffusion equations in general – and the extended-Klausmeier model
in particular – exhibit a vast variety of spatial patterns [109, 127]. However, not all fea-
sible patterns are stable solutions of these models. Which patterned states are stable
(hence, observable) depends on the combination of the model parameters. For regular
patterns, the concept of the Busse balloon can help to illustrate this dependency [19].
A Busse balloon is a model dependent shape in the (parameter,wavenumber)-space
that indicates all combinations of parameter and wavenumber that represent stable
solutions of the model. If, for a given set of model parameters, a wavenumber k lies
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Figure 2.1 – (slope, wavenumber)-Busse balloon slices for the extended-Klausmeier
model for two different values of the rainfall parameter a. A banded pattern solution to
the extended-Klausmeier model with slope v and wavenumber k is stable if the (v, k)-
combination lies inside the Busse balloon. This indicates that a wide spread of (v, k)-
combinations yields stable banded patterns. The latter are therefore expected for a
broad range of wavenumbers – and not for specific (v, k)-choices only. The shape of
a Busse balloon can change between models and between parameter values. This is
illustrated in the figures which were computed for different a-values.

within the Busse balloon, then regular patterns with wavenumber k are observable.
So, in measurements, all (non-transient) patterns are expected to be present in the
Busse balloon.

Typically, the Busse balloon is a high-dimensional structure due to the number
of parameters in a system. Therefore, usually, only one parameter is varied when a
Busse balloon is visualized. This produces a 2D-slice of the full Busse balloon. In
the context of desertification research, the straightforward choice would be to vary
the rainfall [158]. However, mean annual rainfall was relatively constant in our study
sites during the observation period considered. Instead, topography (i.e. the slope gra-
dient) comprised the main source of environmental variation within our study areas.
Thus, relevant theoretical predictions for our study sites can be generated by varying
the slope parameter v (while keeping rainfall constant). Here, we present two of such
2D-Busse balloon slices for the extended-Klausmeier model (Figure 2.1), which were
constructed by tracking the boundary of the Busse balloon using numerical continu-
ation methods [133, 154, 155, 158]. The shaded region in these figures indicates the
combinations of pattern wavenumber k and slope v for which stable solutions exist.
Thus, the model shows multi-stability; a given slope v can sustain a continuous range
of wavenumbers k. That is, knowing all current parameter values of a system is not
enough to predict the pattern, but only gives a range of possible wavenumbers – as in-
dicated by the Busse balloon. For patterns with wavenumbers above this range, there
are too few resources to sustain all bands; below this range, there is an abundance of
resources that leads to the formation of additional vegetation bands.

It is in general not possible to predict which of these wavenumbers is selected at
a specific location; small changes in the (entire) history of environmental changes can
have large impacts on the wavenumber that is currently selected [150, 153]. To un-
derstand these hysteretic dynamics, it is vital to acknowledge that model patterns
do not change their wavenumber unless they have to [154, 158]: if an environmental
change forces the system outside of the Busse balloon, the current pattern has become
unstable, and will need to adapt into a new pattern that is again stable – thus part
of the Busse balloon. During this (fast) adaption, only part of the vegetation bands
are lost, while the remaining bands increase in volume; these adaptations thus have
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(a) Total biomass contours.
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Figure 2.2 – (slope, wavenumber)-Busse balloon slices for the extended Klausmeier
model that include contours for the total biomass (per area) B (a) and the migration
speed c (b). Biomass (per area) is positively correlated with both wavenumber k and
slope v; the migration speed is negatively correlated with the wavenumber k. Model
parameters used: a = 3, m = 0.45, e = 500.

limited effect on the total biomass in the system [158]. Hence, multiple wavenumber
adaptations are expected to occur after each other that will, gradually, lead to a com-
plete desertification of the system [158]. Both the moment of a destabilization and the
then occurring wavenumber adaption can be vastly different depending on (historical)
environmental conditions [8, 150, 153]. Thus, indeed, precisely which wavenumber k
gets selected at each of these destabilizations is difficult to predict.

Numerical simulations help to get an insight in the kind of wavenumber distribution
one ought to expect in observations. To illustrate the typical spread in wavenumber, a
total of 200 simulations on a flat terrain (v = 0) were run, where the rainfall parameter
was slowly decreased from a = 3 to a = 0.5. The initial configurations for these runs
were chosen randomly, but close to the equilibrium state of uniform biomass before the
onset of patterns (between 90% and 110% of the uniform vegetated equilibrium state).
At the end of each simulation – after several pattern selections – the wavenumber
of the remaining pattern was measured. This gives a snapshot of the wavenumber
distribution, similar to the snapshots acquired from observations. Note that a similar
experiment was done before, albeit on a much smaller scale [154]. The histogram of
the resulting wavenumbers is shown in Figure 2.3. It shows a substantial spread, which
goes from a wavenumber of 0.08 to 0.16 (a difference of 100%).

Biomass & migration speed

Besides a wavenumber, each ecosystem state also has a specific biomass and a specific
pattern migration speed. The biomass of regular patterned states has been studied
using numerical simulations [158] and more general formulas have been derived for
patterns with small wavenumber [8]. Both indicate that the biomass (per unit area)
is positively correlated with both the wavenumber k of the pattern and the slope
parameter v [158]; see also Figure 2.2a. This has a physical interpretation: both steeper
slopes and higher wavenumbers (lower wavelengths) reduce the time it takes for water
to reach vegetation bands, and thereby reduce water losses during the transportation
process. As a result, the vegetation will be able to harvest water from the uphill
inter-bands more effectively. The biomass per wavelength is also of interest. The
same studies indicate that the band biomass (per wavelength) is increased when the
wavenumber k is decreased and when the slope v is increased. Hence, vegetation bands
are expected to have more biomass when other vegetation is farther away, because of
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Figure 2.3 – Histogram demonstrating a spread in wavenumber (k) at the end of
200 simulations of the extended-Klausmeier model on a flat terrain (v = 0) with model
parameters e = 500 and m = 0.45. These simulations had a random initial configuration
close to a stable fully vegetated state. A climate change was simulated by decreasing
the rainfall parameter a linearly from 3 to 0.5 over the course of 105 time unit, causing
several pattern selections and corresponding changes in wavenumber.

the larger (upslope) inter-band area water can be collected from.
The theoretical predictions for migration speed (of a pattern’s location) are a bit

more subtle. For terrains with a constant slope, numerical simulations have been
done [149, 151] and general formulas have been determined for patterns with small
wavenumber [8, 148]. In these idealized limit cases, migration speed is negatively
correlated with wavenumber k and positively correlated with slope v. However, beyond
these idealizations, numerical computations show the contour lines are slightly humped,
see Figure 2.2b. This indicates a (slightly) negative correlation between speed and
slope v for large slopes.

2.2.3 Testable predictions
The theoretical findings in this section lead to predictions that can be confronted with
the field data. First of all, the model possesses a Busse balloon, which should lead
to a wide spread in observable pattern wavenumbers (Figures 2.1 and 2.3). Moreover,
biomass and migration speed are affected by pattern wavenumber. The biomass (per
unit area) is expected to be positively correlated with both the wavenumber and the
slope of the terrain (Figure 2.2a). Migration speed is expected to decrease as a function
of pattern wavenumber; the effect of slope on the migration speed is context-specific,
as it can be either positive or negative depending on the specific topographical and
environmental conditions (Figure 2.2b).

2.3 Data acquisition & processing
For this comparison study, two sites were selected in Somalia. The first one (8◦0′14′′
to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) is located in the Haud pastoral region, which
will be referred to as the ‘Haud’ site. The other site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′
to 48◦43′15′′E) is located in the Sool-Plateau pastoral area and will be called the ‘Sool’
site. Both sites mainly exhibit banded vegetation and have ground slopes ranging from
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0% to 1%. Vegetation mainly constitutes of perennial grasses, which typically have an
average lifetime of 1-7 years [20, 108, 182]. A more detailed description of these sites
can be found in appendix 2.B; a map with the location of these sites along with the
mean annual rainfall in these areas is shown in Figure 2.7.

To study the pattern properties in these study areas, each site was divided into
square windows (of size 750m×750m for the Haud site and of size 1010m×1010m for
the Sool site). As has been done in previous studies, the type of pattern (e.g. bare soil,
banded vegetation), along with its wavenumber, was determined using spectral analy-
sis [4, 33, 42, 128]. Only those windows were kept that exhibited banded vegetation
with a wavenumber that could be determined with enough certainty (i.e. between 0.4
and 2.5 cycles per 100m). Moreover, windows with a too large curvature were ignored,
because the theoretical predictions only apply to terrains with a constant slope. To
obtain data on the migration speed of the banded vegetation, a cross-spectral anal-
ysis was performed, along the lines of previous studies [5, 41, 68]. A more in-depth
explanation of the processing steps can be found in appendix 2.D.

The topographical data used in this article were derived from the Advanced Land
Observation Satellite (ALOS) World 3D (AW3D) digital raster elevation model; biomass
data for the Haud site have been retrieved from a recently made map on (above-ground)
biomass of African savannahs and woodlands [14] (no reliable data for the Sool site
was available). Finally, optical data was acquired from various sources: three multi-
spectral WorldView-2 images were mosaicked and used as reference for the Haud site;
a panchromatic Ikonos ‘Geo’ Imagery was acquired for the same site. For the Sool site,
six WorldView-2 images were used and a panchromatic Satellite Pour l’Observation de
la Terre (SPOT) 4 image preprocessed to level 2A was used as reference layer (©Cnes
2004 – Spot Image distribution). Moreover, two 7µm digitized panchromatic declassi-
fied Corona spy satellite image, national intelligence reconnaissance system, available
from the US Geological Survey, were obtained for the Haud and the Sool sites. More
information about these data sets can be found in appendix 2.C.

2.4 Results

Empirical Busse balloon
The most prominent pattern property studied in this article is the pattern wave-
number, which was derived from aerial imagery. The resulting distribution of wavenum-
bers is reported in Figure 2.4 (a map with the spatial distribution of wavenumbers over
the study sites is shown in Figure 2.8). These figures show the number of windows
that have a particular slope-wavenumber combination. Also given is the relative fre-
quency that indicates the spread of wavenumbers across all windows. The data display
banded vegetation with wavenumbers roughly between 0.4 and 2.0 cycles per 100m.
Importantly, this large spread is present for all of the ground slope values which had
a representative sample size and could not be explained by present heterogeneities
in elevation or rainfall. This shows that for a given environmental condition not a
single wavenumber pattern, but rather multiple patterns spanning a sizable range
of wavenumbers are observable. Additionally, measurements used to determine the
migration speed show barely any changes in wavenumber over the scope of 39 years
(consistent with [68]), indicating that these patterns are in fact quite stable. Therefore,
the observations are in agreement with the existence of a Busse balloon in the real
ecosystem.
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(a) Frequency distribution for the Haud site
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(b) Frequency distribution for the Sool site

Figure 2.4 – Frequency distribution of banded patterns as function of ground slope
and wavenumber (number of cycles per 100m) for the Haud site (a) and Sool site (b).
The distribution on the right indicates the relative frequency of banded vegetation with
corresponding wavenumber. The color gradient indicates the amount of windows (N).
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Figure 2.5 – Biomass distribution per area (a) and per period (b) as a function of ground
slope and wavenumber (cycles per 100m) for the Haud site. The color gradient indicates
the amount of biomass measured for a particular (slope, wavenumber)-combination.

Biomass and migration speed

The processed biomass data for the Haud site is shown in Figure 2.5. In Figure 2.5a
the relation between biomass per area (in t ha−1) is plotted against the ground slope
and the wavenumber. From the same data the biomass per period is computed –
which is biomass per area divided by the window’s wavenumber. The resulting plot is
given in Figure 2.5b. The measurements of biomass show agreement with theoretical
predictions of model studies; in both, the total biomass increases (all slopes: r2 = 0.64,
n = 714, P < 0.001; linear regression) and the biomass per period decreases when the
wavenumber increases (all slopes: r2 = 0.09, n = 714, P < 0.001; linear regression).
However, a more in-depth inspection reveals disagreements. For one, the effect of
ground slope is not strongly present in the data, though its effect is clear in the
extended-Klausmeier model (Figure 2.2a). Additionally, the more refined details of
wavenumber dependence also differ (it is concave in the theoretical model and convex
in the real-life data).

The migration speed is plotted in Figure 2.6 for both the Haud and the Sool sites.
These measurements show an increase in speed when the wavenumber decreases (Haud:
r2 = 0.43, n = 104, P < 0.001; Sool: r2 = 0.45, n = 79, P < 0.001; linear regression),
corroborating theoretical predictions (see Figure 2.2b).
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Figure 2.6 – Observed (average) migration speed of vegetation bands in the Haud
(a) and the Sool (b) sites over the course of 39 years as a function of ground slope
and wavenumber (cycles per 100m). The color gradient indicates the migration speed
for a particular (slope, wavenumber)-combination. The sign indicates the direction of
migration relative to the slope, with positive and negative values indicating upslope and
downslope migration respectively.

2.5 Discussion
Leading ecological frameworks emphasize the potential role of regular spatial vegeta-
tion patterns as indicators for proximity to catastrophic ecosystem shifts [137, 144].
In these frameworks, however, mono-stability of patterns is implicitly assumed, sug-
gesting that for a given environmental condition there is only one stable vegetated
state, i.e. a single pattern with a specific wavelength [137, 144]. Subsequent theoret-
ical insights have challenged this view, highlighting the possibility of multi-stability
of patterns, bounded by the so-called Busse balloon. In this study, we provide em-
pirical evidence corroborating the existence of a Busse balloon for stable vegetation
patterns in dryland ecosystems. Specifically, our two study sites in Somalia revealed
the sustained (i.e. over a 39 year period) co-occurrence of banded vegetation with
wavenumbers varying over a substantial range. Our findings have major implications
for the way in which vegetation patterns indicate ecosystem resilience and mediate
ecosystem responses to environmental change.

Specifically, the existence of a Busse balloon implies that an ecosystem’s resilience
can no longer merely be defined by the magnitude of environmental change it can cope
with [82]. In these systems there is not one tipping point, but a cascade of destabiliza-
tions – indicated by the boundary of the Busse balloon. When environmental changes
push a patterned ecosystem beyond the boundary of the Busse balloon, a wavelength
adaptation occurs, and typically part of the vegetation patches are lost, while the
remaining patches grow in size. The extent of these adaptations depends on the rate
of environmental change [150, 156, 157, 158]. Moreover, human activities or natural
variations can cause local disturbances, diminishing the regularity of ecosystem pat-
terns. The recovery process from such disturbances may involve a rearrangement of
patches in the landscape [8, 158]. Again, the extent to which such recovery is possible
depends on the rate of environmental change that the ecosystem is exposed to [157].
Hence, the existence of a Busse balloon of stable dryland vegetation patterns suggests
that adaptability of patches to changing environmental conditions provides a more
comprehensive indicator for the ecosystem’s resilience than the shape of the pattern
itself, as suggested in current leading frameworks [137, 144]. To fully comprehend
the consequences of this, it is necessary to provide a more thorough understanding
of what determines the spatial rearrangement of vegetation patches resulting from
disturbances, environmental changes, and spatial heterogeneities in the landscape.
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The pattern-oriented modeling approach was mainly developed to aid model de-
velopment and design, but the approach can also be used to evaluate the success of
existing models to explain multiple strong and weak patterns observed [70]. This
so-called ‘reverse pattern-oriented modeling’ approach [70] was used in the current
study. Such systematic comparisons between model predictions and empirical data
can be part of an iterative process toward further model improvement [106, 107]. In
this context, it is interesting to note the discrepancy that we observed between model
predictions and field measurements of the influence of the ground slope on pattern mi-
gration speeds. Because topography critically changes the distribution of water within
ecosystems, it also alters the migration speed of patterns. Therefore, it is of interest to
determine the effects of more complex topographies for dryland ecosystem dynamics.

Moreover, the available empirical data aligns with theoretical predictions on both
strong and weak patterns. However, environmental conditions were characterized
by differences in slope gradient only. Although, indeed, the topography comprised
the main source of environmental variation, other less pronounced heterogeneities are
present and can cause spreads in wavenumber. The observed spread could not be
attributed to variation in rainfall or elevation, but the role of other heterogeneities
(e.g. soil composition and grazing activity) could not be fully determined for lack of
precise and accurate data sets. When these become more readily available, further
research might infer to which extent the observed wavenumber spread is explained by
these environmental drivers.

Since their appearance on aerial photographs in the 1950s [111], the origin of reg-
ular vegetation patterns in dryland ecosystems has been a topic of fascination within
the scientific community. The study of these patterns through reaction-diffusion mod-
eling subsequently highlighted the importance of these patterns for the functioning of
dryland ecosystems, and their response to environmental change. The recent increase
in the availability of optical and topographical data provides unprecedented oppor-
tunities to confront model predictions with empirical data [107, 153]. In this study,
we combined these data sources with in-situ measurements of biomass, enabling the
comparison of multiple pattern characteristics of Somalia drylands with predictions
derived from reaction-diffusion modeling. The empirical evidence corroborates theo-
ries of multi-stability of patterned vegetation states, improving our understanding of
these systems’ resilience to environmental changes. In addition, our results call for
more detailed investigations of the role of small-scale topographic variability in pattern
formation and migration.
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2.A Dimensional extended-Klausmeier

Appendices

2.A Dimensional extended-Klausmeier
The dimensional extended-Klausmeier model is given by (2.A.1). The model used
throughout the paper, equation (2.2.1), can be obtained from the dimensional version
by the right set of scaling. Following [158, Appendix A], the required scaling is given
in (2.A.2) for the variables and in (2.A.3) for the parameters of the model.{

∂W
∂T = E ∂2W

∂X2 + ∂(VW )
∂X +A− LW −RWN2

∂N
∂T = D ∂2N

∂X2 +RJWN2 −MN
(2.A.1)

w =

√
RJ√
L
W n =

√
R√
L
N x =

√
L√
D
X t = LT (2.A.2)

a =

√
RJ

L
√
L
A m =

1

L
M v =

1√
LD

V e =
E

D
(2.A.3)

In these equations, water is supplied to the system at a rate +A, modeling uniform
rainfall. Because of evaporation, water is lost at a rate −LW ; water is also lost
through uptake by plants, at rate −RWN2. The parameter J models the increase of
biomass per unit of water consumed, which results in the reproduction of plants at
rate +RJWN2. Plant mortality is modeled as −MN . The parameter V is the speed
at which water flows downhill; this is proportional to the slope gradient. Finally, E is
the diffusion coefficient of water; D is the diffusion coefficient of vegetation, modeling
the dispersal of biomass. See also [95].

2.B Description of study sites
For this study, two sites in Somalia were selected that exhibit mostly banded vegetation.
The Haud site is a 35km by 28km study area (8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to
47◦31′4′′E) at 650-750m elevation in the Haud pastoral region – see also Figure 2.7.
Here, banded vegetation dominates the landscape with some minor occurrences of
gapped vegetation on flat ground on the summits of rolling hills. Bands display a
broad range of wavelengths (from 60m to 200m). Ground slope ranges from 0 to
1%. Mean annual precipitation, ranging from 210mm to 270mm, is distributed in two
rainy seasons around spring (April–May) and fall (September–November) separated by
two dry seasons. Rainfall data was extracted from Climate Hazards Group InfraRed
Precipitation with Stations [63]. Estimates were provided by [43].

In the north-eastern corner of this area near Kalabaydh city, the soils of the bands
and inter-bands are very similar [81]. Moreover, the large perennial tussock grass
Andropogon kelleri dominates the core of the band along with some scattered small
trees and bushes [81]. Characteristically, plants are sparsely distributed on the downs-
lope side of the bands. Along this edge and below it, in the bare inter-band, dead
trees of all of the species found within the bands were present. Along the bands’ up-
slope side, some initial colonization by two perennial grass species, tussock-forming
Chrysopogon aucheri var. quinqueplumis and stoloniferous Dactyloctenium scindicum,
was observed [81]. Although the lifespan of perennial grasses is highly variable, rang-
ing from less than a year to multiple decades [108], the average lifespan of perennial
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grasses in arid and semi-arid environments is typically 1-7 years [20, 108, 182]. Upon
inspection of satellite imageries taken 39 years apart, an upslope migration speed of
0.3m yr−1 was observed [41].

The Sool site is an approximately 77km by 29km study site, located 190km to the
NE of the Haud site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′ to 48◦43′15′′E); it is located
in the Sool-Plateau pastoral area, which has more arid conditions (100mm-140mm)
and higher elevations (900m-1000m) – see also Figure 2.7. Here, the ground slope
ranges from 0 to 1%, and ground is either bare or covered with banded vegetation
which sometimes displays a dashed physiognomy. To the authors knowledge, there is
no published record of the composition of these vegetated bands and associated soils.
Remote sensing analysis of vegetation dynamic in this area over the last decades have
shown a continuous upslope migration of the bands as well as a change in band width.
However, no change in wavelength has been observed [41, 68].

2.C Data sets

2.C.1 Topographical data

For both sites, topographical data was retrieved from the ALOS World 3D 30m
(AW3D30, v. 2.1) digital raster elevation model. This model describes the height
above sea level (in m, rounded to the nearest integer), at a ground resolution of ap-
proximately 30m at the equator. The elevation data was preprocessed for the removal
of artifacts by applying a global soft-thresholding on its dual tree complex wavelet
transform. Specifically, we set a threshold of 0.9 on the first five dual-tree complex
wavelet transform levels. From the preprocessed data, we calculated the slope gradient
(in %) and slope aspect (in degrees). We first extracted square DEM windows of 33 by
33 cells (i.e. approximately 990m× 990m), centered on the image windows. We then
applied a least squares fitting procedure of an unconstrained quadratic surface on the
unweighted elevation values. From the first derivatives of this fitted surface, evaluated
at the focal cell, we could then calculate slope gradient and aspect analytically, follow-
ing [158]. Complex topographic features were discarded from subsequent analysis by
ignoring windows (see below) with quadratic fit RMSE above 1m or a total curvature
(as defined by [147]) above 10−10 radians per m2.

2.C.2 Biomass measurements

Recently, a map has been made with data on (above-ground) biomass of African
savannahs and woodlands at a resolution of 25m [14], which provides the biomass
data of the patterns studied in this article. This map is built from 2010 L-band
PALSAR mosaic produced by JAXA following a method adapted from [116], while the
perturbing sources that affect the SAR data have been minimized: the environmental
effects (soil and vegetation moisture) were reduced by stratifying the African continent
into wet/dry season areas, and the speckle noise inherent to SAR data acquisitions
was decreased by applying a multi-image filter developed by [17] that preserves the
spatial resolution of the images. Then, the sensitivity of the radar backscatter to
AGB was analyzed to develop a direct model relating the PALSAR backscatter to
AGB, calibrated with the help of in-situ and ancillary data. The in-situ data were
composed of 144 selected field plots, located in 8 countries (Cameroon, Burkina Faso,
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Malawi, Mali, Ghana, Mozambique, Botswana and South Africa), with plot size larger
than 0.25ha and a mean plot size of 0.89ha.

2.C.3 Optical data
Three multispectral WorldView-2 images, acquired on December 25th 2011, January
21st 2012 and July 21st 2012, were mosaicked and used as reference orthoimage for
the Haud site. For the diachronic study, a panchromatic Ikonos ‘‘Geo’’ imagery, with
a 1m nominal ground resolution, was used as the reference layer. It was acquired
on January 7th 2006. Orthorectification was performed using a rational polynomial
coefficient (RPC) camera model block adjustment without ground control points [72].

A mosaic of six WorldView-2 images, acquired between February 3rd 2011 and
September 12th 2013, was used for the Sool sites. For the diachronic study, a panchro-
matic SPOT4 image preprocessed to level 2A, with a 10m nominal ground resolution,
was use as reference layer (©Cnes 2004 – Spot Image distribution). It was acquired on
February 18th 2004.

Two 7µm digitized panchromatic declassified Corona spy satellite image, national
intelligence reconnaissance system, available from the USGS, were acquired on Febru-
ary 28th 1967 (KH-4A, mission 1039, AFT camera) and December 12th 1967 (KH-4B,
mission 1102, FWD camera), respectively for the Haud and the Sool. The images were
co-registered with the orthorectified reference imagery. Co-registration was performed
using a third-order polynomial adjustment using landmarks such as geological features,
crossroads, isolated trees, or large termite nests. We obtained an RMS adjustment er-
ror below the KH-4A ground resolution, which is 3m for this area. The resolution of
the imagery was then lowered through pixel averaging to match the coarsest image
pair.

The analysis of pattern wavelength was performed over the full area of the study
sites. However, for the diachronic study, a subset of each of the sites covered by the
historic and reference image was selected. Projection and datum for all data sets were
WGS 1984, UTM Zone 38N and 39N respectively for the Haud and the Sool sites.

2.D Data processing

2.D.1 Spectral analysis, direction of anisotropy and wavelength
On visible light digital images over drylands, bright pixels correspond to bare soil, inter-
mediate gray-scale levels to closed grass cover, and darker pixels to woody vegetation.
As a first approximation, gray-scale levels can thus be considered as a monotonically
decreasing function of the aboveground biomass [34]. This approximation allows us to
analyze the spatiotemporal dynamics of biomass organization through image analysis
techniques.

We used a Fourier windowing technique equivalent to short time Fourier transforms
to obtain spatial maps of dominant pattern wavelength λ and orientation θ from the
satellite images as previously used for banded vegetation systems [4, 33, 42, 128].
We applied a two-dimensional (2D) Fourier transform to obtain the power spectrum
within square, non-overlapping moving windows. In order to maintain resolution and
signal-to-noise ratio a boxcar windowing function to signal was applied. This choice
is, in this case, reasonable as only one periodic component is expected to be present
in the vegetation. The technique provides information about the local wave-vector
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k = kxx̂ + ky ŷ. The two-dimensional (2D) fast Fourier transform f̃(kx, ky) of the
pattern of biomass f(x, y) was obtained for each window f̃(k) of size L × L. As L
increases, the spatial resolution, i.e. localization in space of frequency or orientation
change, is reduced. Conversely, as L decreases, the frequency resolution is decreased,
i.e. the likelihood of separating frequency components close together in Fourier space.
To optimize both, L was chosen to be at least 3λ, i.e. 750m and 1010m respectively
for the Haud and the Sool sites.

To separate the characteristics of the signal that are meaningful for this study,
each k, of frequency 2π/λ (wavenumber), was decomposed into its orientation θ and
its magnitude. For each window, the power spectrum S(k) = |f̃(k)|2 was computed.
The power spectrum measures how the variation, or power, of the pattern is distributed
over the wavevectors k, of different frequencies and spatial directions. To identify the
dominant k in each window, S(k) was binned into annular rings of unit width [135].
The resulting radial spectrum thus quantifies the contribution of successive ranges of
spatial frequencies to the image variance across all orientations.

To deconvolve the natural 1/k scaling of the power spectrum, the total power within
each annular ring, S(k), was computed instead of the mean power. The location peak
of this total power is used to define the most energetic wavenumber, k1. To compensate
for the discrete k-resolution in Fourier space, the location of the weighted average
k1 := (

∑
k kS(k)) / (

∑
k S(k)) was computed over all rings that formed part of the

peak and contained more than 70% of the peak power.
The patterns were characterized in terms of level and orientation of anisotropy

(i.e. direction orthogonal to the long axis of the bands) following [42]. The average
pattern orientation was studied using the circular mean direction weighted by the
power spectrum values, θ̄ := 1

2arctan2(S,C), where

S :=

(∑
k

2kx,y sin θx,y

)
/

(∑
k

k

)

and

C :=

(∑
k

2kx,y cos θx,y

)
/

(∑
k

k

)
.

The norm of the resultant vector, R̄ :=
√
S2 + C2/ (

∑
k k), was used as an index

of pattern anisotropy. The division by the sum of periodogram amplitudes ensures
bounding between zero (perfect isotropy) and one (all variance concentrated in one
direction, i.e. perfect bands). Pattern orientation features were extracted from the
power spectrum, within the frequency ring characterizing periodic vegetation patterns,
i.e. between 0.4 and 2.5 cycles 100m−1 for both the Haul and the Sool site, to exclude
anisotropy sources resulting from large scale gradients or small scale (anthropogenic)
features.

2.D.2 Pattern classification
The vegetation cover of each window was quantified by converting the gray-scale inten-
sity image to a binary image using the Otsu thresholding method [125]. Windows with
less than 15% vegetation cover were considered as bare soil and discarded. Windows
with dominant patterns within the acceptable range (i.e. between 0.4 and 2.5 cycles
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100m−1 for both sites) and with anisotropy index above 0.2 were considered as banded
patterns.

2.D.3 Cross-spectral analysis and migration speed
Scale specific comparisons between pairs of periodic 2D signals – in this case, images
taken at different dates – can be performed through 2D Fourier cross-spectral analy-
sis. In principle, this means identifying the frequencies and orientations of patterns
dominating in any two images as well as possible shifts among them. Correction of
radiometric variability between dates is not required since Fourier coefficients are in-
variant to linear rescaling of gray-scale levels. A detailed mathematical development of
the analysis can be found in [5]. The procedure can be summarized as follows [41, 68].

To assess band migration distance for each temporal pair of image windows, a
coherency spectrum and a phase spectrum were computed. The coherency spectrum
expresses the correlation between the frequency components of the Fourier spectra of
the pair of windows. For each spatial frequency, the coherency value is interpreted
in a similar way to the classical Pearson’s coefficient but in absolute values, because
the sign of the correlation is expressed by the phase spectrum. For each window pair,
the maximum value of coherency and its associated frequency were recorded along
the direction of maximal anisotropy computed for the first acquisition date. Window
pairs with a maximum coherency below 0.9 were rejected from the analysis, because
this indicates that pattern characteristics (wavelength and orientation) changed be-
tween the dates. Rejected windows often corresponded to man-made perturbations or
ephemeral patterns, which are not the subject of this study. The obtained frequency
value therefore corresponds to a pattern of constant scale and orientations dominating
at both acquisition dates. The corresponding phase-spectrum value provides the phase
difference, i.e., the angular distance, between the selected frequency components at
both dates in the maximal anisotropy direction. This value is defined between −180
and 180 degrees, with the sign representing the forward (+) vs. backward (−) dis-
placement, with the direction of reference as the upslope direction. Angular distances
were then converted into meters by multiplying the phase difference by the wavelength,
which in turn were converted to an average migration speed for the time period. This
conversion allows for inter-site comparisons independent of varying time intervals. An
inherent limitation to this procedure is that only migration distances not exceeding
half the wavelength will be correctly estimated (phase saturation). This condition was
verified by visual inspection prior to image analysis.

2.D.4 Assessment of uncertainty in calculations of slope gradient and
aspect from topographical data

As the digital raster elevation model contains errors, these will propagate into derived
estimates of slope gradient and aspect. Ideally, one would use ground observations
(e.g. using differential global navigation satellite systems) to assess the magnitude of
these errors (e.g. [131]). Since such observations are not available for our study areas,
we used a simulation method to evaluate the propagation of error from the elevation
data to the estimates of slope gradient and aspect. Specifically, we created artificial
elevation grids with a fixed (from here referred to as ‘true’) slope and aspect, and
added to these grids (normally distributed) random errors with a similar standard
deviation as observed in the AW3D30 dataset. The resulting elevation values were
rounded to the nearest integers, as this is also done in the AW3D30 dataset. Then,
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utilizing the same procedures as described above (see section 2.C2.C.1), we derived
slope gradients and aspects from these simulated grids. Comparison of this ‘observed’
slope and aspect and the ‘true’ slope and aspect of the grid yielded insight in the
propagation of errors from the elevation model to the calculated metrics. Seven fixed
slope levels were considered: 0; 0.025; 0.05; 0.1; 0.2; 0.3 and 0.4%. For each level, we
simulated 10, 000 replicate grids of errors that were added to the fixed slope level. For
each replicate, the aspect was a randomly assigned value between 0 and 360 degrees.

Following the above procedure, we found that the distributions of errors in the cal-
culated slope gradients and aspects were relatively small, for all slope levels considered
(Figure 2.9). Because the estimated slope is bounded between zero and positive infin-
ity, a small positive bias was observed for slopes less than 0.1%. For slopes of 0.025%
and higher, the RMSE is 0.010% and 95% of the observed errors for slopes of 0.1% or
higher are within ± 0.016% (5th and 95th percentiles). For aspect, the magnitude of
errors was inversely proportional to the magnitude of the slopes (abscissa; Figure 2.9).
For slopes of 0.2% and higher, the RMSE is 2.9 degrees or lower, and 95% of the
observed errors are within ±4.8 degrees (5th and 95th percentiles). These results show
that the errors in calculated slopes and aspects were relatively small compared to the
observed range in the dataset. Hence, it is unlikely that correlations between pattern
metrics and slope gradients, as observed in the main text, are strongly affected by the
errors originating from the underlying topographical database.

Moreover, it should be noted that the above procedure may even be overestimating
the errors associated with the AW3D30 dataset (from here referred to as the 30m eleva-
tion dataset). To generate the simulated errors, we used the global average standard
deviation of the difference between the original AW3D 5m elevation dataset (from
here referred to as the 5m dataset), from which the 30m dataset has been derived,
and a reference LiDAR dataset. This standard deviation is 1.73m for gently sloping
terrain (below 17.6%) [162]. However, as the 30m elevation dataset was produced by
averaging non-overlapping windows of 7 by 7 pixels of the 5m elevation dataset, the
resulting standard deviation will be lower [161]. Additionally, the ground slope in our
study areas is at the lower end of the 0-17.6% range, namely below 1.5%, and therefore
likely to suffer from smaller errors than reported for the whole range. Finally, the So-
malian area we are studying displays relatively small errors in elevation measurements
compared to other areas of the world [162].

2.D.5 Assessment of uncertainty in estimation of pattern frequency
from optical imagery

The estimation of the dominant pattern frequency using a Fourier windowing tech-
nique introduces an unknown uncertainty in these estimations. This uncertainty stems
from the decomposition of the signal into a discrete set of frequencies and from the
noise in the analyzed (non-stationary) signal. To asses the model’s uncertainty in the
wavenumber estimations, we have used a simulation method. Specifically, we simu-
lated 200 synthetic images, representing a two-dimensional sinusoid of each frequency
class between 0.4 and 2.4 cycles 100m−1, with step size of 0.2. The directions of the
sinusoidal waves were selected randomly and the signal was standardized to have zero
mean and standard deviation of one. To mimic real images of vegetation patterns, we
have added red noise with zero mean and standard deviation of 0.5 to each simulated
signal. Red noise is a self-similar, or fractal, random spatial structure; this is a de-
sirable property here because these are common in nature and especially in natural
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landscapes [94]. The noise was created using the Fourier synthesis technique with an
energy spectrum exponent of 0.5 [44]. Finally, in order to account for the fact that
reflectance values are constant over the width of both vegetated and bare bands, the
signal was converted to binomial values; that is, values between 0 and 1 were rounded
to the nearest integer value. Several examples of simulated bands are presented in
Figure 2.11.

Using the characteristics of the optical image windows of the Haud site (cell-size
of 2.36m and windows 317 by 317 cells), the root-mean-square error of the estimated
frequency was 0.082 cycles 100m−1. For the Sool (cell-size of 2.36m and windows 425
by 425 cells), the root-mean-square error was 0.044 cycles 100m−1. The magnitude of
this error is significantly less than the observed variability in frequency in both sites
(for every slope bin of Figure 3 in the main text, Levene’s test, P < 0.001), showing
significance of the observed wavenumber spread in both study sites.
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Figure 2.7 – Locations of the study sites and rainfall gradient in the Horn of Africa.
The ‘Haud’ site (8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) has a mean annual
rainfall of 210–270mm yr−1 whilst the ‘Sool’ site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′

to 48◦43′15′′E) has a mean annual rainfall of 100–140mm yr−1. The distribution of
periodic vegetation pattern shown in green is adapted from [40]. Precipitation data was
extracted from Climate Hazards Group InfraRed Precipitation with Stations [63] and is
averaged over the years 1981–2013.
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Figure 2.8 – The distribution of the measured banded pattern’s wavenumber over the
Haud site (a) and the Sool site (b). Here, darker red indicates a lower wavenumber and
lighter yellow a higher wavenumber. On the x- and y-axes the UTM coordinates of the
locations are given.
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Figure 2.9 – Slope (a) and aspect (b) estimation error from simulated topographical
surfaces. Median errors are shown as horizontal bars with 25th–75th percentile ranges
(boxes) and 5th and 95th percentile outlier cutoffs (whiskers). Note that aspect error
could range from −180 to +180 degrees but has been cropped to largest measured error
for visual purpose.
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Figure 2.10 – Examples of simulated vegetation patterns with frequency decreasing
from left (2.4 cycles 100m−1) to right (0.4 cycles 100m−1).
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Figure 2.11 – Pattern frequency estimation error for the Haud (a) and the Sool (b)
sites. Actual frequency of the simulated patterns and the corresponding estimation of
these frequencies is shown by the blue dots. The straight line represents the perfect
estimation line.
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3| The dynamics of disappearing pulses in a
singularly perturbed reaction-diffusion sys-
tem with parameters that vary in time and
space

We consider the evolution of multi-pulse patterns in an extended Klausmeier
equation with parameters that change in time and/or space. We formally show
that the full PDE dynamics of a N -pulse configuration can be reduced to a
N -dimensional dynamical system describing the dynamics on a N -dimensional
manifold MN . Next, we determine the local stability of MN via the quasi-steady
spectrum associated to evolving N -pulse patterns, which provides explicit infor-
mation on the boundary ∂MN . Following the dynamics on MN , a N -pulse
pattern may move through ∂MN and ‘fall off’ MN . A direct nonlinear extrap-
olation of our linear analysis predicts the subsequent fast PDE dynamics as the
pattern ‘jumps’ to another invariant manifold MM , and specifically predicts the
number N−M of pulses that disappear. Combining the asymptotic analysis with
numerical simulations of the dynamics on the various invariant manifolds yields a
hybrid asymptotic-numerical method describing the full process that starts with
a N -pulse pattern and typically ends in the trivial homogeneous state without
pulses. We extensively test this method against PDE simulations and deduce
general conjectures on the nature of pulse interactions with disappearing pulses.
We especially consider the differences between the evolution of irregular and reg-
ular patterns. In the former case, the disappearing process is gradual: irregular
patterns lose their pulses one by one. In contrast, regular, spatially periodic,
patterns undergo catastrophic transitions in which either half or all pulses dis-
appear. However, making a precise distinction between these two drastically
different processes is quite subtle, since irregular N -pulse patterns that do not
cross ∂MN typically evolve towards regularity.

3.1 Introduction
The far from equilibrium dynamics of solutions to systems of reaction-diffusion equa-
tions – patterns – often has the character of interacting localised structures. This is
especially the case when the diffusion coefficients of different components – species – in
the system vary significantly in magnitude. This property makes the system singularly
perturbed. Such systems appear naturally in ecological models; in fact, the presence
of processes that vary on widely different spatial scales is regarded as a fundamental
mechanism driving pattern formation in spatially extended ecological systems [138].
Moreover, while exhibiting behaviour of a richness comparable to general – non sin-
gularly perturbed – systems, the multi-scale nature of singularly perturbed systems
provides a framework by which this behaviour can be studied and (partly) understood
mathematically.
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tion.
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(c) A regular 5-pulse solution.

Figure 3.1 – Snapshots of several (multi-)pulse solutions of system (3.1.1) with a = 0.5,
m = 0.45, h(x) ≡ 0 and D = 0.01.

In this paper, we consider the interactions of singular pulses in an extended Klaus-
meier model [150, 153, 155, 158],{

Ut = Uxx + hxUx + hxxU + a− U − UV 2,

Vt = D2Vxx −mV + UV 2,
(3.1.1)

sometimes also called the generalised Klausmeier-Gray-Scott system [148, 170]. This
model is a generalization of the original ecological model by Klausmeier on the inter-
play between vegetation and water in semi-arid regions [95] – which was proposed to
describe the appearance of vegetation patterns as crucial intermediate step in the de-
sertification process that begins with a homogeneously vegetated terrain and ends with
the non-vegetated bare soil state: the desert – see [41, 117, 137] and the references
therein for observations of these patterns and their relevance for the desertification
process. In (3.1.1), U(x, t) represents (the concentration of) water and V (x, t) vege-
tation; for simplicity – and as in [148, 150, 153, 158, 170] – we consider the system
in a 1-dimensional unbounded domain, i.e. x ∈ R; parameter a models the rainfall
and m the mortality of the vegetation. Since the diffusion of water occurs on a much
faster scale than the diffusion – spread – of vegetation, the system is indeed – and in
a natural way – singularly perturbed: the diffusion coefficient of water is scaled to 1
in (3.1.1), so that the diffusion coefficient of the vegetation D can be assumed to be
small, i.e. 0 < D ≪ 1. The topography of the terrain is captured by the function
h : R → R. The derivative hx is a measure of the slope in (3.1.1) – see Appendix 3.A
for a derivation of this effect. Unlike in [95], we allow (some of) the parameters of
(3.1.1) to vary in time or space: we consider topography functions h that may vary
in x, and – most importantly – we study the impact of slow variations – typically
decrease – in time of the rainfall parameter a: by considering a = a(t) we incorporate
the effect of changing environmental – climatological – conditions into the model. It
is crucial for all analysis in this work that if a(t) varies with t it decreases, i.e. that
the external conditions worsen – see also [150, 153, 155, 158].

The pulse patterns studied in this paper – see Figure 3.1 for some examples –
correspond directly to localised vegetation ‘patches’; trivially extending them in a
y-direction leads to stripe patterns, the dominant structures exhibited by patchy veg-
etation covers on sloped terrains [41, 95, 155]. The central questions that motivated
the research presented in this paper have their direct origins in ecological questions.
Nevertheless, this paper focuses on fundamental issues in the dynamics of pulses in
singularly perturbed reaction-diffusion systems with varying parameters. The eco-
logical relevance of the insights obtained in the present work are subject of ongoing
research. In that sense, the (alternative) name of generalised Klausmeier-Gray-Scott
model [148, 170] perhaps is a more suitable name for model (3.1.1) in the setting of the
present paper: by setting h(x) ≡ 0 – i.e. in the ecological context of homogeneously
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flat terrains – it reduces to the Gray-Scott model [127] that has served as paradig-
matic model system for the development of our present day mathematical ‘machinery’
by which pulses in singularly perturbed reaction-diffusion equations can be studied –
see [28, 45, 46, 47, 99, 101] for research on pulse patterns in the Gray-Scott model and
[39, 48, 49, 102, 175] for generalizations.

N -pulse patterns are solutions (U(x, t), V (x, t)) to (3.1.1), characterised by V - compo-
nents that are exponentially small everywhere except for N narrow regions in which
they ‘peak’: the N pulses – see Figure 3.1 and notice that the heights of the pulses
typically varies. In the setting of singularly perturbed reaction-diffusion models with
constant coefficients, the evolution of N -pulse patterns can be regarded – and studied
– as the semi-strong interaction [49] of N pulses. Under certain conditions – see be-
low – the full infinite-dimensional PDE-dynamics can be reduced to an N -dimensional
system describing the dynamics of the pulse locations P1(t) < P2(t) < . . . < PN (t) –
see [12, 28, 49] and the references therein for different (but equivalent) methods for
the explicit derivation of this system. Note that the heights of the pulses also vary in
time, however, the pulse amplitudes are ‘slaved’ to their (relative) locations. As start-
ing point of our research, we show that this semi-strong pulse interaction reduction
method can be – straightforwardly – generalised to systems like (3.1.1) in which coeffi-
cients vary in time or space. We do so by following the matched asymptotics approach
developed by Michael Ward and co-workers – see [28, 29, 99, 100, 101, 102] and the
references therein – which also means that we apply – when necessary – the hybrid
asymptotic-numerical approach of [29] in which the asymptotic analysis is sometimes
‘assisted’ by numerical methods – for instance when the ‘algebra’ gets too involved or
when a reduced equation cannot be solved (easily) ‘by hand’.

This semi-strong interactions reduction mechanism has been rigorously validated
– by a renormalization group approach based on [130] – for several specific systems
[12, 50, 172]. It is established by the approach of [12, 50, 172] – and for the systems con-
sidered in these papers – that there indeed is an approximate N -dimensional manifold
MN (within an appropriately chosen function space in which the full PDE-dynamics
takes place) that is attractive and nonlinearly stable and that the flow on MN is (at
leading order) governed by the equations for the pulse locations Pj(t), j = 1, ..., N .
However, this validity result only holds if the quasi-steady spectrum – see Figure 3.2c
– associated to the N -pulse pattern can be controlled. The quasi-steady spectrum is
defined as the approximate spectrum associated to a ‘frozen’ N -pulse pattern. Due to
the slow evolution of the pattern – and the singularly perturbed nature of the problem
– this spectrum can be approximated explicitly (by methods based on the literature
on stationary pulse patterns, see [28, 175] and the references therein). By considering
(slow) time as a parameter, the elements of the quasi-steady spectrum trace orbits
through the complex plane, driven by the pulse locations Pj(t) and, in the case of
(3.1.1), by the slowly changing value of a(t). The manifold MN is attractive only
when this spectrum is in the left half of the complex plane: the proof of the valid-
ity result breaks down when there is no spectral gap of sufficient width between the
quasi-steady spectrum and the imaginary axis. Thus, the quasi-steady spectrum –
approximately – determines a boundary of MN .

The boundary ∂MN in general does not act as a threshold for the flow on MN ;
on the contrary, an evolving N -pulse pattern may evolve towards – and subsequently
through – the boundary ∂MN – as elements of the quasi-steady spectrum travel to-
wards the imaginary axis. Or equivalently, in the case of parameters that vary in time,
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Figure 3.2 – (a), (b): Simulations of (3.1.1) with a(t) = 0.5−5·10−4 t, m = 0.45, H = 0,
L = 10, P (0) = (1, 3, 4, 5.6, 8)T , D = 0.01, just before and after the 3rd pulse disappears
(at a(t) ≈ 0.28). (c): The red dots – that must travel over the blue ‘skeleton structure’
(section 3.3) – indicate the analytically determined quasi-steady spectrum associated to
the pattern in (a). (d): The (analytically determined) eigenfunction associated to the
critical (quasi-steady) eigenvalue in (c).

the boundary ∂MN may evolve towards the pulse pattern.

In this paper, we do not consider the issue of the rigorous validation of the semi-
strong reduction method – although we do remark that the methods of [12] a priori
seem sufficiently flexible to provide validity results for N -pulse dynamics in (3.1.1) with
non-homogeneous parameters (in fact, the results of [12] already cover specific param-
eter combinations in (3.1.1) – with a constant and h(x) ≡ 0 – see Figure 3.5b). Here,
we explore – in as much (formal) analytic detail as possible – the dynamics of N -pulse
patterns near and beyond the (stability) boundary of the (approximate) invariant man-
ifold MN . In other words, we intentionally consider situations in which we know that
the rigorous theory cannot hold. As noted above, this is partly motivated by ecological
issues: the final steps in the process of desertification are – conceptually – governed by
interacting pulses – vegetation patches. Under worsening climatological circumstances,
these patches may either ‘disappear’ in a gradual fashion – patches wither and turn
to bare soil one by one – or catastrophically – all patches in a large region disappear
simultaneously – see [11, 78, 137, 158] and the references therein. These types of tran-
sitions correspond to N -pulse patterns crossing through different components of the
boundary ∂MN of MN : the nature of these components of ∂MN – and especially
the associated dynamics of pulse patterns crossing through the component – clearly
varies significantly. This leads us directly to the mathematical themes we explore here,

Is it possible to analytically follow an N -pulse pattern as it crosses the stability boundary
of a manifold MN? Can we predict the M -pulse pattern that emerges as the pattern
‘settles’ on a lower dimensional manifold MM – and especially the value M < N?
More specifically, can we distinguish between N -pulse patterns for which M = 0 (a
catastrophic regime shift), M = N/2 (a period doubling) and M = N − 1 (a gradual
decline)?

The essence of our approach is represented by Figure 3.2. In Figures 3.2a and 3.2b two
snapshots of a (full) PDE simulation of a (originally) 5-pulse pattern is shown, just
before and just after the 3rd pulse has disappeared, i.e. before it ‘falls off’ M5 and
after it ‘lands’ on M4. In Figure 3.2c, the quasi-steady spectrum associated to the
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5-pulse pattern of Figure 3.2a – i.e. the pattern close to the boundary of is M5 – is
shown: as expected, a quasi-steady eigenvalue has approached the imaginary axis. The
spectral configuration of Figure 3.2c is determined by asymptotic analysis, an analysis
that simultaneously provides the (leading order) structure of the (critical) eigenfunc-
tion associated to the critical eigenvalue – see section 3.3. This eigenfunction is given
in Figure 3.2d. By construction, it describes the leading order structure of the (lin-
early) ‘most unstable perturbation’ that starts to grow as the pattern passes through
∂M5. The eigenfunction is clearly localised around the – disappearing – 3rd pulse: the
analytically obtained structure indicates that the unstable perturbation will mainly
affect the 3rd pulse. By formally extrapolating this observation based on the linear
asymptotic analysis – i.e. the information exhibited by Figures 3.2c and 3.2d that is
based on the state of the 5-pulse pattern before it falls off M5 – we are inclined to
draw the nonlinear conclusion that the destabilised 3rd pulse will ‘disappear’ as ∂M5

is crossed, while the other 4 pulses persist: M = 4 = N − 1. The PDE-simulation
of Figure 3.2b shows that this linear extrapolation indeed correctly predicts the full
dynamics of (3.1.1).

We develop a hybrid asymptotic-numerical method that describes the evolution of
an N -pulse pattern by the reduced N -dimensional system for the pulse locations Pj(t)
as long as the pulse pattern is in the interior of (approximate) invariant manifold MN .
With the pulse locations as input, we (analytically) determine the associated (evolving)
quasi-steady spectrum, and thus know whether the pulse configuration indeed is in this
interior, i.e. bounded away from ∂MN . As elements of the quasi-steady spectrum
approach the imaginary axis – i.e. as the pattern approaches ∂MN – the method
follows the above described – relatively simple – extrapolation procedure: based on the
(approximate) structure of the critical eigenfunction(s) corresponding to the critical
element(s) of the quasi-steady eigenvalues that end up on the imaginary axis, it is –
automatically – decided which pulse(s) are eliminated and thus what is the value of
M < N . Next, the process is continued by following the dynamics of the M -pulse
configuration on MM , that has the locations of the M remaining pulses as ∂MN

is crossed as initial conditions. Thus, this method provides a formal way to follow
the PDE dynamics of an evolving N -pulse pattern throughout the ‘desertification’
process of disappearing pulses, or – equivalently – as the pulse pattern falls off and
subsequently lands on a sequence of invariant manifolds MNi

of decreasing dimension
Ni.

A priori, one would guess that this method cannot work – even if there would be
rigorous validation results on the reduced dynamical systems on the finite-dimensional
manifolds MNi

. First, one can in principle not expect that the structure of the most
critical eigenfunction always is as clear-cut as in Figure 3.2d: a priori one expects
that the ‘automatic’ decision on which pulse(s) to eliminate – and thus how many –
must be incorrect in many situations. Moreover, it is not at all clear that the (fast)
nonlinear dynamics that takes the pattern from MN to MM indeed only eliminates
these ‘most vulnerable pulses’. For instance, if the destabilization is induced by a pair
of complex conjugate (quasi-steady) eigenvalues, our method automatically assumes
that the associated ‘quasi-steady Hopf bifurcation’ is subcritical – i.e. that there is no
(stable) periodic oscillating pulse behaviour beyond the bifurcation; in fact, even if the
bifurcation is subcritical, our method implicitly assumes that the oscillating process
by which the affected pulse disappears is so fast, that it does not influence the other
pulses and thus can be completely neglected.

Nevertheless, we found that this method is remarkably successful. Figure 3.3a
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(a) PDE simulation. (b) ODE simulation.

Figure 3.3 – The evolution of a 5-pulse pattern in the extended Klausmeier model (3.1.1)
represented by the locations of the pulses (with a = 0.5, m = 0.45, h(x) = x, D = 0.01,
L = 10). (a) A full PDE simulation. (b) The hybrid asymptotic-numerical ODE method
developed in this work.

shows a full PDE simulation of a 5-pulse configuration ‘moving uphill’, i.e. extended
Klausmeier model (3.1.1) in the (Klausmeier) setting of a constant slope, h(x) = x, on
a bounded domain (with homogeneous Neumann boundary conditions). One by one,
3 pulses disappear from the system, eventually leading to a stationary stable 2-pulse
pattern. Figure 3.3b shows the evolution of the same 5-pulse configuration (at t = 0)
as described by our – finite-dimensional – method: the pulse configuration ‘jumps’
from M5 to M4 and M3, eventually settling down in a stable critical point of the
2-dimensional dynamical system that governs the flow on M2. This is quite a slow
– and nontrivial – process and it takes quite a long time before the system reaches
equilibrium, nevertheless, the ODE reduction method not only provides a qualitatively
correct picture, it is remarkably accurate in a quantitative sense.

This latter observation is even more remarkable, since our approach is via an
asymptotic analysis and thus based on the assumption that a certain parameter –
or parameter combination – is ‘sufficiently small’. Nevertheless our methods remain
valid for ‘relatively large values’ of the ‘asymptotically small parameter’. This is not
atypical for asymptotically derived insights. It yields another motivation to indeed
set out to obtain rigorous results on the dynamics of systems like (3.1.1): in practice,
such results are expected to be relevant way beyond the necessary ‘for ε sufficiently
small’ caveat.

The end-goal of the numerical simulations we present – see section 3.4 – is to test
our method, both to get a (formal) insight in its limitations, as well as to isolate
typical behaviour of pulse configurations that may be formulated as conjectures –
i.e. as challenges for the development of the theory. As an example, we mention
the ‘generalised Ni conjecture’ [52, 121] of section 3.4.1 (for systems with h(x) ≡ 0):
When a multi-pulse pattern is sufficiently irregular, the localised V -pulse with the
lowest maximum is the most unstable pulse, and thus the one to disappear first. In
fact, one could claim that at a formal level, the evolution of sufficiently irregular
N -pulse patterns can be understood by (successive applications of) this conjecture
– and thus be described accurately by our reduction method. However, even when
the initial conditions form an irregular N -pulse pattern, the situation becomes more
complex than that, since the reduced N -dimensional dynamics typically evolve towards
a critical point on MN . In fact, our study indicates that N -pulse patterns (on bounded
domains) always evolve to one specific configuration – in the Gray-Scott setting of flat
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terrains, i.e. h(x) ≡ 0, this is a regularly spaced (spatially periodic) N -pulse pattern.
The final pattern is less regular if h(x) ̸≡ 0 – see the stable 2-pulse pattern of Figure 3.3.

The evolution towards spatially periodic patterns induces a mechanism that chal-
lenges our method. For irregular patterns, the elements of the quasi-steady spectrum
typically ‘spread out’ (over a certain skeleton structure, see Figure 3.2c and section
3.3). However, these elements might cluster together as the pattern becomes more and
more regular (which agrees with the spectral analysis of spatially periodic patterns in
Gray-Scott/Klausmeier type models, see [47, 148]). Therefore, it gets harder to isolate
the critical (quasi-steady) eigenvalue that induces the destabilization. Moreover, the
structure of the associated eigenfunctions also changes significantly: in the irregular
setting these have a structure that is centered around one well-defined pulse location
(as in Figure 3.2d) – which makes them very suitable for the application of our method;
in the periodic case, the eigenfunctions have a more global structure. Nevertheless, as
the regularised N -pulse pattern approaches the boundary of MN , two most critical
quasi-steady eigenvalues can be distinguished – i.e. there typically are two (quasi-
steady) eigenvalues that may cause the destabilization. The associated two critical
eigenfunctions are also (almost) periodic, either with the same period of the underly-
ing pattern, or with twice that period – which is in agreement with analytical insights
in the destabilization mechanisms of ‘perfect’ spatially periodic patterns [38, 52, 53]
(see also the two conjectures in section 3.4.1). These critical eigenfunctions are plotted
in Figure 3.4 for a stationary regular 2-pulse pattern for h(x) ≡ 0 and a fixed near
its bifurcation value – i.e. in the classical constant coefficients setting of (3.1.1). The
eigenfunction in Figure 3.4a has the same periodicity as the underlying pattern, it
represents the catastrophic ‘full collapse’ scenario in which all pulse disappear simul-
taneously. Of course, this statement is once again a fully nonlinear extrapolation of
completely linear insight, but it is – once again – backed up by our numerical simula-
tions: also in the regular case, the linear mechanisms are good predictors for the fast
transitions between invariant manifolds.

This nonlinear extrapolation of a linear mechanism also works for the other critical
eigenfunction represented by Figure 3.4b, which induces a period doubling bifurcation
in which half of the pulses of an N pulse pattern disappear. However, in this case – that
is quite dominant in simulations of desertification scenarios [155, 158] – our method
faces an intrinsic problem, that gets harder the more regular the pattern becomes: if
the number of pulses N is odd, our method predicts that ‘half of the pulses’ disappear,
but it cannot decide whether the N -pulse configuration jumps from MN to M(N+1)/2

– in which all (N − 1)/2 even numbered pulses disappear – or from MN to M(N−1)/2
– in which the even numbered pulses are the surviving ones. A similar problem occurs
in the jump from MN to MN/2 for N even: our method cannot predict whether the
even or the odd numbered pulses survive. Nevertheless, also in this case our method
is doing better than could be expected; moreover, also in direct PDE simulations, the
resolution of this parity issue seems extremely sensitive on initial conditions.

The set-up of this paper is as follows. In section 3.2, we first perform the PDE to
ODE reduction for N -pulse patterns in (3.1.1) with – in its most general setting –
a = a(t) varying in time and h = h(x) varying in space (on unbounded domains and
on bounded domains with various kinds of boundary conditions). As a result we ob-
tain explicit expressions for the N -dimensional – or N−1-dimensional1 – systems that

1On unbounded domains or domains with periodic boundary conditions it is essentially N -1-
dimensional, as only the distances between pulses is relevant, thus reducing the dimension by 1.
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(a) A full collapse eigenfunction
(eigenvalue λ̂ = −0.087).
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(b) A period doubling eigenfunction
(eigenvalue λ̂ = −0.063).

Figure 3.4 – The 2 critical eigenfunctions of a regular 2-pulse pattern of extended
Klausmeier model (3.1.1) on a domain with periodic boundaries with a ≈ 0.19187 (near
bifurcation), m = 0.45, h(x) ≡ 0 and D = 0.01.

describe the evolution of the pulse locations Pj(t), and thus of the N -pulse pattern on
MN . Subsequently, the flow on MN is studied – the critical points and their char-
acters are determined analytically; as a consequence, the special role of the spatially
periodic patterns – as attractive fixed points – can be identified. These results need to
be supplemented with an analysis of the stability of the manifold MN , especially since
the analysis of section 3.2 is not equipped to distinguish the boundaries of MN – i.e.
it ignores the process of pulse patterns falling off MN . This is the topic of section 3.3
in which N -pulse solutions are frozen and their quasi-steady spectrum – and thus the
boundary of MN – is determined. A central part of the analysis is dedicated to deter-
mining the skeleton structure on – or better: near – which the quasi-steady eigenvalues
must lie (see Figure 3.2c). Moreover, the (linearised) nature of the bifurcations that
occur when specific components of ∂MN are crossed is studied. Next, in section 3.4,
we first numerically check the validity of our asymptotic analysis, then set up our
hybrid asymptotic-numerical method – based on the analysis of sections 3.2 and 3.3
– and subsequently extensively test its ‘predictions’ against full PDE-simulations. We
find that the asymptotic analysis is correct for parameter values beyond the reaches
of current rigorous theory. Moreover, we observe that our method – that is based on
direct extrapolations of linear insights – works better than a priori could be expected,
but also couple this to a search for the limitations of this approach. Based on these
tests and simulations, we formulate general conjectures on the nature of multi-pulse
dynamics generated by models as (3.1.1). Finally, we briefly discuss the implications
of our findings and indicate future lines of research in the concluding section 3.5.

3.1.1 Size assumptions
The asymptotic analysis presented in this paper does not hold for all magnitudes
of the parameters a, m, D and all height functions h. We therefore need to make
several assumptions on the (relative) magnitudes of the parameters in (3.1.1). These
assumptions are listed here, together with the type of bifurcation that occurs when
these assumptions are violated.

(A1) a2

m2 ≪ 1 [Pulse Splitting bifurcation]

(A2) Da2

m
√
m

≪ 1 [Travelling Wave bifurcation]

(A3) m
√
mD

a2 ≪ 1 [Saddle-Node bifurcation]

(A4) m2D
a2 ≪ 1 [Hopf bifurcation]
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(b) Size assumptions Stability

Figure 3.5 – Graphical summary of size assumptions (A1)-(A3) in (a) and assumptions
(A1)-(A4) in (b). Here µ and α denote the size of m respectively a in order of magnitude
of 0 < D ≪ 1. That is, m = O(Dµ) and a = O(Dα). This positions the pulse
splitting bifurcation (PS) on the line µ = α, the Travelling-Wave bifurcation (TW) on
µ = 2

3
(1 + 2α), the Saddle-Node bifurcation (SN) on µ = 2

3
(2α − 1) and the Hopf

bifurcation (HF) on µ = α − 1
2
. The coloured-in region in (a) indicate the region in

which pulse solutions exist (under the additional assumptions (A5)). The coloured-
in regions in (b) indicate the region in which stable pulse solutions exist (under the
additional assumptions (A5),(A6)). We have also plotted the line µ = 0, which indicates
the boundary between the cases m ≫ 1 and m ≪ 1 which becomes relevant in the
distinction between coupled and decoupled stability problem in our linear stability study
in section 3.3. The dashed yellow line (on the Hopf line) indicates the scaling regime for
which validity of the ODE reduction has been proven [12].

(A5) Dm
√
m

a2 hx(x) ≪ 1 and a2

m2

(
Dm
√
m

a2

)2
hxx(x) ≪ 1 for all x ∈ R [Saddle-Node

bifurcation]

(A6) m2D
a2 hx(x) ≪ 1 for all x ∈ R [Hopf bifurcation].

Previous studies of the Gray-Scott system indicate the necessity of three size as-
sumptions to ensure the existence of (one-)pulse solutions [28, 46, 148]. The assump-
tions found in those previous studies can be directly linked2 to our assumptions (A1)-
(A3). In Figure 3.5a we have visualised the assumptions on parameters a and m that
follow from (A1)-(A3). Asymptotic stability analysis has shown that a pulse solution
is stable if it satisfies an additional fourth size assumption, which corresponds to our
assumption (A4). We have also visualised the assumptions on a and m that follow
from the assumptions (A1)-(A4) in Figure 3.5b. Finally, the assumptions on the height
function h in assumptions (A5) and (A6) are new, and include the case studied in [148]
(but are more general). These guarantee that the height function h does not change
too rapidly, i.e. h changes on a slower scale than the V -pulse does. This ensures that
the standard ‘flat-terrain’ (i.e. h(x) ≡ 0) existence theory can be reproduced almost
directly.

In principle assumptions (A3) and (A4) can be extended to include the O(1) cases
(i.e. O(1) with respect to a

m ≪ 1). In fact, to study the bifurcations that occur when
2A handy conversion table between different scalings of the Gray-Scott model can be found in [148,

section 2.2].
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the rainfall a is decreased, it is necessary to include these cases. This leads to the
alternative assumptions (A3’) and (A4’) which are stated below.

(A3’) m
√
mD

a2 ≤ O(1)

(A4’) m2D
a2 ≤ O(1)

Remark 3.1.1. Assumption (A3) corresponds to the so-called ‘intermediate feed-rate
regime’ and m

√
mD

a2 = O(1) to the ‘low feed-rate regime’ in [100, 160]. Thus assumption
(A3’) includes both regimes and (A3) can be seen as a further approximation of (A3’).

3.2 PDE to ODE reduction
In this section we study the dynamical movement of a N -pulse solution to the scaled
extended Klausmeier model (3.1.1). We assume that there are N localised vegetation
V -pulses at positions P1(t) < P2(t) < . . . < PN (t), as depicted in Figure 3.6. De-
pending on the domain of our problem we may put additional requirements on the
first and last positions (e.g. 0 < P1(t) and PN (t) < L on the bounded domain [0, L]).
The positions of the N pulses are not fixed in time. In fact, the j-th pulse turns out
to move with a time-dependent movement speed ĉj(t) =

dPj(t)
dt so that its location is

given by Pj(t) =
∫ t

0
ĉj(s)ds+ Pj(0). Our goal is to derive an ODE that describes the

evolution of the locations of these pulses, that is, to find expressions for the speeds
ĉj(t). To do so, we first need to find the approximate form of a N -pulse solution
to (3.1.1). For this, we divide the domain in several regions: near each pulse we have
an inner region and between pulses we have outer regions. Note that in the context of
geometric singular perturbation theory these regions are called fast (the inner regions)
respectively slow (the outer regions).

We follow the asymptotic approach developed by Michael Ward and co-workers –
see [28, 29, 99, 100, 101, 102] and references therein – to find approximate solutions
in the N inner regions and in the N + 1 outer regions. In the outer regions we find
V = 0 and in the inner regions we find U to be constant (both to leading order). A
combination of a Fredholm condition and the matching of the inner and outer solution
at the pulse locations then gives us the speed of the j-th pulse as a function of the
solution U in the outer regions [28]. The latter is, in the end, determined by N + 1
linear ODEs that are coupled via internal boundary conditions at all the pulse locations.
Therefore we find a pulse-location ODE that depends only on the (current) positions
of the pulses. Hence this ODE-description is a reduction of the infinite-dimensional
flow of the PDE to a finite-dimensional flow on a N -dimensional3 manifold MN on
which N -pulses live.

After we have found this ODE description, we study the dynamics of generic N -
pulse configurations in section 3.2.3 and section 3.2.4. Here the difference between
assumption (A3) and (A3’) and the need for a hybrid aymptotic-numerics approach
becomes apparent: in the former case analytical results can be found, whereas numerics
are necessary to study the possibilities in the latter case. Note that assumptions (A4)
and (A6) are not needed for the analysis in this section.

3On unbounded domains or domains with periodic boundary conditions this manifold is essentially
N − 1-dimensional, as only the distances between pulses matters, thus reducing the dimension of the
manifold by 1.
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3.2.1 The inner regions
We start inspecting the inner regions of the N -pulse solution. To zoom in to the j-th
inner region, close to x = Pj(t), we introduce the stretched traveling wave coordinate
centered around Pj(t)

ξj =

√
m

D
(x− Pj(t)) =

√
m

D

(
x− Pj(0)−

∫ t

0

ĉj(s)ds

)
. (3.2.1)

Note that by assumptions (A3) and (A1) this is a stretched coordinate since D√
m

≤
a2

m2 ≪ 1. We will denote this j-th inner region by Iinj . As is common practice
in geometric singular perturbation theory, we explicitly define Iinj by assuming that
ξj ∈ [− 1√

ε
, 1√

ε
], with ε = a

m .
Following the scalings introduced in [28, 46, 155] we set ĉj(t) = Da2

m
√
m
cj(t) where

cj(t) = O(1). By assumption (A2) we thus have ĉj(t) ≪ 1, i.e. pulses move only slowly
in time. We can thus use a quasi-steady approximation and treat t as a parameter in
our analysis (cf. [28, 45, 46, 160]). At the pulse location we also need to scale U and
V . Again following the previously mentioned scalings [28, 46, 155], it turns out we
need to scale these in the inner regions as

U =
m
√
mD

a
u; V =

a√
mD

v. (3.2.2)

Putting in these scalings in (3.1.1) gives us the following problem for the inner region
at the j-th pulse:

− a2

m2
Dm
√
m

a2
Da2

m
√
m
cj(t)u

′
j = u′′j − a2

m2ujv
2
j +

a4

m4
Dm
√
m

a2 − a4

m4

(
Dm
√
m

a2

)2
uj

+ a2

m2
Dm
√
m

a2 hx

(
Pj +

D√
m
ξj

)
u′j

+ a4

m4

(
Dm
√
m

a2

)2
hxx

(
Pj +

D√
m
ξj

)
uj

− a2

m2 cj(t)v
′
j = v′′j − vj + ujv

2
j ,

(3.2.3)

where the prime denotes derivatives with respect to ξj and the subscript j is here to
remind us that we are looking for a solution in the j-th inner region. To find solutions
in the inner region, we use regular expansions for u and v. The equations (3.2.3)
suggest that the main small parameter is a2

m2 – which is small by assumption (A1).
Hence we look for solutions of the form{

uj = u0j +
a2

m2u1j + . . .

vj = v0j +
a2

m2 v1j + . . .
(3.2.4)

The leading order problem in the j-th inner region is then given by the following set
of equations. This system is usually called the fast-reduced system in the context of
geometric singular perturbation theory.{

0 = u′′0j ,

0 = v′′0j − v0j + u0jv
2
0j .

(3.2.5)

Hence we find u0j to be constant and

v0j(ξ) =
3

2

1

u0j
sech2(ξ/2). (3.2.6)
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Thus, all V -pulses are at leading order given by the same sech-function. However,
their amplitudes vary, as these are determined by the values of u0j , which are, so far,
unknown. Later on, we will see that the values of u0j will be determined by (all) the
pulse locations P1(t), . . . , PN (t). Note that the pulses thus influence each other (only)
through this mechanism. By assumptions (A1)-(A3) and (A5) we notice that the next
order problem is given by{

u′′1j = u0jv
2
0j ,

v′′1j − v1j + 2u0jv0jv1j = −cj(t)v′0j − v20ju1j ,
(3.2.7)

Unlike the u-equation, it is not clear a priori whether the v-equation is solvable. We
define the self-adjoint operator L := ∂2ξ −1+2u0jv0j . L has a non-empty kernel, since
Lv′0j = 0. Hence the inhomogeneous equation Lv1j = −cj(t)v′0j − v20ju1j might not be
solvable and we need to impose a Fredholm solvability condition∫

Iin
j

cj(t)v
′
0j(η)

2dη =

∫
Iin
j

−v0j(η)2u1j(η)v′0j(η)dη. (3.2.8)

Applying integration by parts twice to the right-hand side yields∫
Iin
j

u1j(η)v0j(η)
2v′0j(η)dη =

1

3

∫
Iin
j

u1j(η)
d

dη
[v0j(η)

3]dη

=
1

3

[
v0j(η)

3u1j(η)
]η= 1√

ε

η=− 1√
ε

− 1

3

∫
Iin
j

u′1j(η)v0j(η)
3dη

= − 1

3

[
u′1j(η)

∫ η

0

v0j(y)
3dy

]η= 1√
ε

η=− 1√
ε

+
1

3

∫
Iin
j

u′′1j(η)

∫ η

0

v0j(y)
3dy dη + h.o.t.

To get from the second to the third line, we have used that v0j gets exponentially small
near the boundaries of Iinj and that u1j does not get exponentially large there. We note
that v0j is an even function. Therefore u′′1j is an even function and η 7→

∫ η

0
v0j(y)

3dy
is an odd function. So the last integral over the inner region vanishes. Finally, because
v30j is even, we can reformulate the solvability condition and obtain

cj(t)

∫
Iin
j

v′0j(η)
2dη =

1

6

[
u′1j

(
1√
ε

)
+ u′1j

(
− 1√

ε

)]∫
Iin
j

v0j(η)
3dη. (3.2.9)

The integrals over the inner region can be approximated by integrals over R, because
v0j is exponentially small outside Iinj . As we know the function v0j explicitly, it is
possible to evaluate the integrals in this Fredholm condition explicitly. This gives us
an expression for the (scaled) speed of the j-th pulse as

cj(t) =
1

u0j

[
u′1j

(
1√
ε

)
+ u′1j

(
− 1√

ε

)]
. (3.2.10)

It follows from the u-equation in (3.2.7) that,

u′1j

(
1√
ε

)
− u′1j

(
− 1√

ε

)
=

∫
Iin
j

u′′1j(η)dη =

∫
Iin
j

u0jv0j(η)
2dη

=

∫ ∞
−∞

u0jv0j(η)
2dη + h.o.t. =

6

u0j
+ h.o.t. (3.2.11)
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Combining this with (3.2.10), we conclude

cj(t) =
1

6

[
u′1j

(
1√
ε

)
+ u′1j

(
− 1√

ε

)][
u′1j

(
1√
ε

)
− u′1j

(
− 1√

ε

)]
=

1

6

[
u′1j

(
1√
ε

)2

− u′1j

(
− 1√

ε

)2
]
. (3.2.12)

The values u′1j (±1/
√
ε) can be found by matching this inner solution to the outer

solutions for U . Note that the speed of the j-th pulse does not seem to depend
explicitly on the other pulses. However, the values of u′1j are not yet determined and
we will find that these do depend on the location of (all) other pulses.

3.2.2 The outer regions
In the outer regions, the V -component should be exponentially small, since v0j gets
exponentially small near the boundaries of the inner regions. Since the V -equation is
automatically solved by V = 0, we can set V = 0 in the outer regions to acquire a
leading order approximation and we thus only need to deal with the U -equation. In
each of the outer regions, equation (3.1.1) reduces to the ODE

0 = Uxx + hxUx + hxxU + a− U. (3.2.13)

Since the pulses only travel asymptotically slow, the solutions of these equations are
expected to be of order O(a) because of the forcing term. Therefore we rescale U as
U = aŨ , so that

0 = Ũxx + hxŨx + hxxŨ + 1− Ũ . (3.2.14)
Without explicitly solving these equations, we can already match the outer solutions
to the inner solutions. For this we need to recall the scalings in equations (3.2.1)
and (3.2.2). Careful bookkeeping then reveals that

Ũ(Pj) =
m
√
mD

a2
u0j + h.o.t.

Ũx(P
±
j ) =

m
√
mD

a2

√
m

D

a2

m2
u′1j

(
± 1√

ε

)
+ h.o.t. = u′1j

(
± 1√

ε

)
+ h.o.t.

where P+
j denotes taking the limit from above (from the right), and P−j the limit from

below (from the left). Thus at this moment we have reduced the full PDE problem to
a ODE problem with (undetermined) internal boundary conditions. We thus need to
find a function Ũ and constants u0j that simultaneously satisfy the ODE

0 = Ũxx + hxŨx + hxxŨ + 1− Ũ ; Ũ(Pj) =
m
√
mD

a2
u0j . (3.2.15)

and, by (3.2.11), the jump conditions

Ũx(P
+
j )− Ũx(P

−
j ) =

6

u0j
, (3.2.16)

This set of an ODE coupled with an algebraic equation is often referred to as a
differential-algebraic equation (DAE) and was first identified in the Gierer-Meinhardt
model [85].
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Ũ0

Ũ1
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Figure 3.6 – Sketch of the outer regions and the solutions Ũk in the corresponding k-th
outer region.

Note that the ODE should also be accompanied by two boundary conditions, which
– of course – depend on the type of domain we are interested in. Moreover, the
expression (3.2.12) for the speed cj(t) can be rewritten to

cj(t) =
1

6

[
Ũx(P

+
j )2 − Ũx(P

−
j )2

]
. (3.2.17)

Thus the speed of the j-th pulse is determined by the (differences of the) squares of the
derivative of Ũ at the pulse location. Since we are interested in this pulse movement,
our next task is to actually solve the problem given by (3.2.15)-(3.2.16). We separate
this problem into two different cases: (i) the case of assumption (A3) and (ii) the
case of assumption (A3’), in particular when m

√
mD

a2 = O(1). The former case will be
significantly simpler as the internal boundaries are approximately zero.

3.2.3 Pulse location ODE under assumption (A3)

Under assumption (A3), the internal boundary conditions are approximated as Ũ(Pj) =

0 so that Ũ is independent of u0j at leading order,

0 = Ũxx+hxŨx+hxxŨ+1−Ũ ; Ũ(Pj) = 0. (j = 1, . . . , N) (3.2.18)

This immensely reduces the complexity of the problem, as Ũ in the k-th outer region
now only depends on the positions Pk−1(t) and Pk(t) – and not on any of the others.
It is therefore relatively easy to analytically approximate these expressions – and the
pulse location ODE – if we know the explicit solutions to the ODE. For general
h = h(x) it is, however, in general not possible to find explicit solutions (in closed
form) of this ODE. This does not obstruct the fact that also in this case the PDE can
be reduced to a finite dimensional system of ODEs. However, to explicitly evaluate
the ODE dynamics, we need to turn to numerical boundary value problem solvers.
Note that although the value of u0j does not play a leading order role in the outer
region expressions Ũ , it does play a leading order role in the linear stability analysis
– therefore it is important to (also) still find a leading order expression of u0j .

Terrain with constant slope, i.e. h(x) = Hx

When we consider a terrain with a constant slope, we do have access to explicit solu-
tions for the outer region ODE (3.2.18). Equation (3.2.18) then becomes

0 = Ũxx +HŨx + 1− Ũ ; Ũ(Pj) = 0. (j = 1, . . . , N) (3.2.19)
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The general solution is
Ũ(x) = 1 + C1e

D1x + C2e
D2x,

where

D1,2 :=
1

2

(
−H ±

√
H2 + 4

)
.

We denote the solution in the k-th outer region by Ũk (see Figure 3.6). All, but the
first and last, satisfy two internal boundary conditions Ũk(Pk) = 0 and Ũk(Pk+1) = 0,
and are then given by

Ũk(x) = 1 +

(
1− eD2∆Pk

)
eD1(x−Pk) +

(
eD1∆Pk − 1

)
eD2(x−Pk)

eD2∆Pk − eD1∆Pk
, (k = 1, . . . , N − 1)

(3.2.20)
where ∆Pk := Pk+1−Pk is the distance between the two consecutive pulses. To derive
an expression for the pulse-location ODE, it is necessary to find Ũk

x (Pk) and Ũk
x (Pk+1).

Direct computation of these derivatives yields after some algebra:

lim
x↓Pk

Ũk
x (x) =

D1

(
1− eD2∆Pk

)
+D2

(
eD1∆Pk − 1

)
eD2∆Pk − eD1∆Pk

=
H

2
−

√
H2 + 4

2

eH∆Pk/2 − cosh(
√
H2 + 4∆Pk/2)

sinh(
√
H2 + 4∆Pk/2)

,

lim
x↑Pk+1

Ũk
x (x) =

D1

(
1− eD2∆Pk

)
eD1∆Pk +D2

(
eD1∆Pk − 1

)
eD2∆Pk

eD2∆Pk − eD1∆Pk

=
H

2
+

√
H2 + 4

2

e−H∆Pk/2 − cosh(
√
H2 + 4∆Pk/2)

sinh(
√
H2 + 4∆Pk/2)

. (3.2.21)

Substitution of these expression in equation (3.2.17) gives the movement of pulses on
a terrain given by h(x) = Hx as

dPj

dt
=

Da2

m
√
m

1

6

(H
2

−
√
H2 + 4

2

eH∆Pj/2 − cosh
(√
H2 + 4∆Pj/2

)
sinh

(√
H2 + 4∆Pj/2

) )2

−

(
H

2
+

√
H2 + 4

2

e−H∆Pj−1/2 − cosh
(√
H2 + 4∆Pj−1/2

)
sinh

(√
H2 + 4∆Pj−1/2

) )2
 . (3.2.22)

For completely flat terrains we have a slope H = 0 so that the ODE reduces to
dPj

dt
=

Da2

m
√
m

1

6

[
tanh(∆Pj/2)

2 − tanh(∆Pj−1/2)
2
]
, (j = 2, . . . , N − 1)

(3.2.23)
which is in agreement with [28, Equation (2.28)]. The values for u0j are obtained by
combining the expressions in (3.2.21) with equation (3.2.16). We obtain

6

u0j
=−

√
H2 + 4

2

[
eH∆Pj/2 − cosh(

√
H2 + 4∆Pj/2)

sinh(
√
H2 + 4∆Pj/2)

+
e−H∆Pj−1/2 − cosh(

√
H2 + 4∆Pj−1/2)

sinh(
√
H2 + 4∆Pj−1/2)

]
. (j = 2, . . . , N − 1)

(3.2.24)
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For H = 0 this expression reduces to

6

u0j
= tanh(∆Pj/2)+tanh(∆Pj−1/2). (j = 2, . . . , N−1). (3.2.25)

Note that in principle these expressions (3.2.22)-(3.2.25) do not hold for j = 1 and
j = N as these pulses do not have two neighbours. In fact, the solutions Ũ in the first
and last outer region do not satisfy the same boundary conditions as the solution in
the other regions. One should therefore recompute Ũ1

x(P1) and ŨN+1(PN ) for each
type of domain. However, it is possible to introduce the two auxiliary locations P0

and PN+1 in such a way that expressions (3.2.22) and (3.2.23) still holds true for j = 1
and j = N (see Figure 3.6). Below we inspect several type of domains and explain
this reasoning further.

Unbounded domains On unbounded domains, we only have the requirement that
solutions stay bounded as |x| → ∞. So Ũ1 should satisfy this boundedness require-
ment, the ODE and the boundary condition Ũ(P1) = 0. From this it follows that
Ũ1
x(P1) = H

2 −
√
H2+4
2 . Similarly, ŨN+1

x (PN ) = H
2 +

√
H2+4
2 . When we introduce

P0 → −∞ and PN+1 → ∞ in equation (3.2.22) we see that the pulse location ODE is
given by (3.2.22), even for j = 1 and j = N .

Bounded domains with periodic boundary conditions When we consider the
bounded domain [0, L] with periodic boundary conditions, we set Ũ(0) = Ũ(L). That
is, the first pulse has the last pulse as a neighbour. Therefore expression (3.2.22)
is directly applicable when we set ∆P0 = ∆PN = L − PN + P1 or – equivalently –
P0 := PN − L and PN+1 := L+ P1.

Domains with Neumann boundary conditions When the domain [0, L] has
Neumann boundary conditions, we impose the boundary conditions Ũx(0) = 0 and
Ũx(L) = 0. A similar and straightforward computation then yields

lim
x↑P1

Ũ0
x(x) =

−2 sinh(
√
H2 + 4P1/2)

H sinh(
√
H2 + 4P1/2) +

√
H2 + 4 cosh(

√
H2 + 4P1/2)

,

lim
x↓PN

ŨN
x (x) =

2 sinh(
√
H2 + 4PN/2)

H sinh(
√
H2 + 4PN/2) +

√
H2 + 4 cosh(

√
H2 + 4PN/2)

.

The positions of the auxiliary locations P0 < 0 respectively PN+1 > L are determined
as the negative zero of Ũ0 extended below x = 0 respectively the second zero of ŨN

extended beyond x = L. However, for general H there is no simple expression (in
closed form) for P0 and PN+1, though we find that ∆P0 = P1 − P0 decreases as
P0 decreases and ∆PN = PN+1 − PN decreases as L − PN decreases (i.e. as PN

increases). In the specific case H = 0 we do find explicit expressions: P0 = −P1 and
PN+1 = 2L− PN .

Fixed points of the pulse-location ODE

It is natural to study the fixed points of the pulse-location ODE (3.2.22). Whether this
ODE has any fixed points depends on the type of domain and boundary conditions.
Below we summarise the results we acquired for bounded domains with Neumann
boundary conditions, for bounded domains with periodic boundary conditions and
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for unbounded domains. The proofs of these statements rely on the fact that the
derivatives ∆Ũ(P±k ) strictly increase/decrease as a function of the distance to the
neighbouring pulse. The (mostly technical) details of the proofs can be found in
appendix 3.B.

Note that the results in this section only consider the behaviour of the pulse-
location ODE (3.2.22) in itself and do not take the behaviour of the full PDE into
account. Specifically we do not take the stability of the N -pulse manifold MN into
account. It can happen that a fixed point of the ODE is stable under the flow of the
ODE, but not under the flow of the complete PDE (as we will see in section 3.4, e.g.
Figure 3.20).

Bounded domains with Neumann boundary conditions For these domains
the pulse location ODE (3.2.22) has precisely one fixed point. This fixed point is
(locally) stable under the flow of the ODE. An example of this is given in Figure 3.20.

Bounded domain with periodic boundary conditions On these domains the
ODE does not have any fixed points, unless H = 0, for which there is a continuous
family of fixed points. All of these fixed points are regularly spaced configurations, i.e.
∆Pj = L/N for all j. This family of fixed points is (globally) stable under the flow of
the ODE.

Moreover, on bounded domains with periodic boundary conditions, the pulse-
location ODE (3.2.22) has a continuous family of uniformly traveling solutions in
which all pulses move with the same speed and the distance between two consecutive
pulses is ∆Pj = L/N for all j, i.e. the pulses are regularly spaced. This family of
solutions is stable under the flow of the ODE.

Unbounded domains In this situation the ODE (3.2.22) does not have any fixed
points and there does not exist any uniformly traveling solution either, unless N = 1.
In fact, the distance between the first and last pulse, PN − P0, is ever increasing.

3.2.4 Pulse location ODE under assumption (A3')

When m
√
mD

a2 = O(1), equation (3.2.15) can no longer be simplified to (3.2.18). Thus
we do need to determine the values of u0j directly and we do need to make sure these
lead to a solution Ũ that satisfies the jump conditions in equation (3.2.16). More
concretely, for a given u⃗0 := (u01, . . . , u0N )T , a vector of the values of the internal
boundary conditions, the boundary value problem (3.2.15) is well-posed and has a
(uniquely determined) solution Ũ on all subdomains. With this Ũ we can validate the
jump conditions (3.2.16). The following quantity defines a way to measure how well
the internal boundary conditions u⃗0 satisfy the jump conditions

F⃗ (u⃗0) :=

 Ũx(P
+
1 ; u⃗0)− Ũx(P

−
1 ; u⃗0)− 6

u01...
Ũx(P

+
N ; u⃗0)− Ũx(P

−
N ; u⃗0)− 6

u0N

 .

The correct internal boundary conditions u⃗∗0 should satisfy F⃗ (u⃗∗0) = 0⃗. If (3.2.15) has
closed-form solutions, the function F⃗ (u⃗∗0) can be constructed explicitly. However, in
general one needs a numerical root-finding scheme to solve F⃗ (u⃗∗0) = 0⃗. We have used
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the standard Newton scheme for this. Note that F⃗ (u⃗0) = 0⃗ does not necessarily have
any solution and if it has, those solutions are – in general – not unique. Some cases for
which we can find the roots explicitly are studied below. For notational convenience
we define δ := m

√
mD

a2 .

Terrain with constant slope, i.e. h(x) = Hx

The reasoning in section 3.2.3 leading to the pulse-location ODE (3.2.22) in the case
of δ ≪ 1, can be repeated here. The only difference is the addition of non-zero internal
boundary conditions. The derivatives Ũk

x (Pk) and Ũk
x (Pk+1) can be computed in a

similar way as before. This time – when δ = O(1) – we find

lim
x↓Pk

Ũk
x (x) = (1− δu0,k)

H

2

−
√
H2 + 4

2

(1− δu0,k+1) e
H∆Pk/2 − (1− δu0,k) cosh(

√
H2 + 4∆Pk/2)

sinh(
√
H2 + 4∆Pk/2)

,

lim
x↑Pk+1

Ũk
x (x) = (1− δu0,k+1)

H

2

+

√
H2 + 4

2

(1− δu0,k) e
−H∆Pk/2 − (1− δu0,k+1) cosh(

√
H2 + 4∆Pk/2)

sinh(
√
H2 + 4∆Pk/2)

(k = 1, . . . , N − 1)

Substitution of these expressions in equation (3.2.17) gives the movement of the pulses
as

dPj

dt
=

Da2

m
√
m

1

6


κkH

2
−

√
H2 + 4

2

κk+1e
H∆Pj/2 − κk cosh

(
H2+4

2 ∆Pj

)
sinh

(√
H2 + 4∆Pj/2

)
2

−

κkH
2

+

√
H2 + 4

2

κk−1e
−H∆Pj−1/2 − κk cosh

(
H2+4

2 ∆Pj

)
sinh

(√
H2 + 4∆Pj−1/2

)
2
 , (3.2.26)

where κj := 1 − δu0j . However, the u0j-values are still unknown at this moment.
To obtain these we need to solve F⃗ (u⃗0) = 0⃗. With the explicit expressions for the
derivatives Ũk

x (Pk) and Ũk
x (Pk+1) at hand we can express the components of this

function explicitly

F k(u⃗0) = −
√
H2 + 4

2

[
κk+1e

H∆Pk/2 − κk cosh(
√
H2 + 4∆Pk/2)

sinh(
√
H2 + 4∆Pk/2)

+
κk−1e

−H∆Pk−1/2 − κk cosh(
√
H2 + 4∆Pk−1/2)

sinh(
√
H2 + 4∆Pk−1/2)

]
− 6

u0k
. (3.2.27)

As before equations (3.2.26) and (3.2.27) do not hold true for j = 1 and j = N because
these do not have two neighbour pulses. Again it is possible to derive expressions for
Ũ1
x(P1) and ŨN+1

x (PN ) as we did in section 3.2.3 when δ ≪ 1. As the procedure
is so similar, we refrain from doing that here. In general, one cannot expect to be
able to determine the roots of (3.2.27) explicitly. Therefore we only consider the
upcoming one-pulse example explicitly. We refrain from studying the pulse-location
ODE analytically and use a numerical root-solving algorithm in section 3.4.
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A one-pulse on R

The simplest, explicitly solvable, case is a 1-pulse on R. The solution of ODE (3.2.15)
is for all u01 and given by

Ũ0(x) = 1 + (δu01 − 1) eD1(x−P1), Ũ1(x) = 1 + (δu01 − 1) eD2(x−P1).

Thus the function F is given by

F (u01) =
√
H2 + 4 (1− δu01)−

6

u01
.

so that F (u01) = 0 is solved by

(u01)± =
1

2

1±
√
1− 24δ/

√
H2 + 4

δ
. (3.2.28)

This expression agrees with the expressions found in the literature [45, 148]. It is also
clear from this expression that there are two solutions as long as δ < δc :=

1
24

√
H2 + 4.

So for H = 0 we find δc = 1
12 , again in correspondence with the literature [45, page 8].

When δ = δc a saddle-node bifurcation occurs where the two solutions coincide and
for δ > δc solutions no longer exist. The pulse-location ODE for this situation is given
by

dP1

dt
=

Da2

m
√
m
H
√
H2 + 4 (1− δu01)

2
. (3.2.29)

In the asymptotic limit δ ≪ 1, equation (3.2.28) yields two solutions, given to leading
order by

(u01)+ =
1

δ
+O(1), (u01)− =

6√
H2 + 4

+O(δ).

In section 3.2.3, in equation (3.2.24) we found only one value for u0j . Carefully taking
the limit ∆P0 → −∞ and ∆P1 → ∞ of (3.2.24) reveals that only (u01)− is found. This
is because (u01)+ ≫ 1 in this asymptotic limit and it therefore does not satisfy the
(implicit) assumption that u01 = O(1). This focus on (u01)− is justified; if one were
to study the other possibility, i.e. pulses that have the internal boundary condition
(u01)+, one would quickly find out that these pulses are always unstable [47].

3.3 Linear Stability
In this section, we look at perturbations of N -pulse solutions and study the associ-
ated quasi-steady spectrum. For this we freeze the N -pulse solution and (at leading
order) its time-dependent movement on the manifold MN . We then linearise around
this N -pulse configuration to obtain a quasi-steady eigenvalue problem, which can
be solved along the very same lines as the existence problem. This gives us quasi-
steady eigenvalues and eigenfunctions. We can compute these for any given time t
and as such these quasi-steady eigenvalues and eigenfunctions are parametrised by
time t (via the pulse locations Pj(t)) – see also [12, 50, 172]). Although our approach
in principle works in a general setting – thus for instance with a general topography
h(x) – both its interpretation and its presentation are significantly facilitated when
we restrict ourselves to pulse-solutions of the extended Klausmeier model (3.1.1) for
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terrains with constant slope, i.e. h(x) = Hx. For other kind of terrains the PDE has
space-dependent coefficients and explicit expressions are not present in general. Here
other techniques need to be used [7].

We start with the classical case of a single pulse (i.e. N = 1) on R in section 3.3.1.
This illustrates the concepts and shows how it generalises to other boundaries or
multiple pulses, which we will study subsequently in section 3.3.2. In both sections we
find essential differences between the asymptotic cases m ≫ 1 +H2/4 and m ≪ 1 +
H2/4. In the former case (m≫ +H2/4) we find Hopf bifurcations. Moreover, we find
that pulses in the stability problem are far apart such that the eigenfunctions decouple
and can be studied per pulse. In the latter case (m≪ 1 +H2/4) we find saddle-node
bifurcations. However, in this situation the eigenfunctions are coupled, which leads to
a more involved eigenvalue problem and more involved eigenfunctions [28].

The first step in the stability analysis consists of linearizing the extended Klaus-
meier model around a (frozen) N -pulse solution. We denote the N -pulse configuration
of this equation by (UN

p , V
N
p ) and set (U, V ) = (UN

p , V
N
p ) + eλt(Ū , V̄ ) to study its lin-

ear stability. Following the scalings in [28, 46] we scale the eigenvalue as λ = mλ̂ to
study the so-called large eigenvalues that correspond to perturbations non-tangent to
the manifold MN of N -pulse solutions. Thus we obtain the quasi-steady eigenvalue
problem {

0 = Ūxx +HŪx − (1 +mλ̂+ (V N
p )2)Ū − 2UN

p V
N
p V̄

0 = D2V̄xx + (2UN
p V

N
p −m−mλ̂)V̄ + (V N

p )2Ū .
(3.3.1)

Our aim is to find the values λ̂ for which we can solve this eigenvalue problem. To
find these eigenvalues λ̂ we can exploit the inner and outer regions of our previously
obtained N -pulse solution. Because V N

p is localised near the pulse locations, we see
that in the outer regions this problem reduces in leading order to{

0 = Ūxx +HUx − (1 +mλ̂)Ū

0 = −(m+mλ̂)V̄ .
(3.3.2)

Hence V̄ = 0 in the outer regions; V̄ is also concentrated around the pulse locations
in the stability problem.

Our approach now essentially boils down to the following. We first solve the Ū -
equation in the outer regions for general λ̂. We then need to glue these solutions
together at the pulse locations. For this we require continuity of Ū and we additionally
obtain a λ̂-dependent jump condition for Ūx at each pulse location, which is imposed
by the solution in the inner regions. The correct eigenvalues λ̂ are then those values
that allow solutions Ū which satisfy the boundary conditions at both ends of the
domain. This method thus also immediately gives us the form of the eigenfunction as
well.

3.3.1 Stability of homoclinic pulses on R

We first consider the case of a homoclinic pulse on R that is located at x = P1. In
this setting we have one inner region, Iin1 , and two outer regions, Iout1,2 . Since we
are working on R we do not have boundary conditions, but only require solutions in
the outer regions to be bounded. Solving the homogeneous ODE (3.3.2) in the outer
regions gives the solutions Ū1 in the first outer field and Ū2 in the second outer region
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as

Ū1(x) = C1e
1
2 [−H+

√
H2+4(1+mλ̂)](x−P1),

Ū2(x) = C2e
1
2 [−H−

√
H2+4(1+mλ̂)](x−P1),

where C1 and C2 are some constants. To satisfy the continuity condition on Ū , we set
C1 = C2 = ρ1. With respect to the outer regions the jump in Ūx is given by

∆outŪx(P1) := Ūx(P
+
1 )− Ūx(P

−
1 ) = −ρ1

√
H2 + 4(1 +mλ̂). (3.3.3)

In the inner region the system is given by{
0 = m

D2 Ū
′′ +

√
m
D Ū ′ − (1 +mλ̂)Ū − 2UN

p V
N
p V̄ − (V N

p )2Ū ;

0 = mV̄ ′′ − (m+mλ̂)V̄ + 2UN
p V

N
p v̄ + (V N

p )2Ū ,
(3.3.4)

where primes again denote derivatives with respect to the stretched coordinate ξ1.
From equation (3.2.6) and the scalings of (3.2.2) we know the approximate form of V 1

p

and U1
p in the inner region. For notational convenience we write ω(ξ) := 3

2 sech(ξ/2)2.
Moreover we note that Ū ≈ ρ1 in the inner region by matching with the solutions in
the outer region. Upon scaling V̄ as

V̄ = − a2

m2

1

D2

ρ1
u201

Vin, (3.3.5)

the stability problem in the inner region reduces to

Ū ′′+
a2

m2

Dm
√
mH

a2
Ū ′− a4

m4

(
Dm

√
m

a2

)2

(1+mλ̂)Ū − a2

m2

(
2ωVin − ω2

)
= 0, (3.3.6)

where Vin satisfies(
Lf (ζ)− λ̂

)
Vin := V ′′in − (1 + λ̂)Vin + 2ωVin = ω2. (3.3.7)

Because of assumptions (A1), (A3) and (A5) we find the leading order change of Ū ′
in the inner region to be

∆inŪ
′
1 :=

∫
Iin
1

Ū ′′(ζ)dζ =
a2

m2

ρ1
u201

∫ ∞
−∞

(ω2 − 2ωVin)dζ + h.o.t. (3.3.8)

For notational simplicity we write

Ĉ(λ̂) :=

∫ ∞
−∞

(ω(ζ)2 − 2ω(ζ)Vin(ζ; λ̂))dζ. (3.3.9)

Because Ūx =
√
m
D Ū ′, we find the total jump in Ūx over Iin1 ,

∆inŪx(P1) =
a2

m
√
mD

ρ1
u201

Ĉ(λ̂). (3.3.10)

Combining the outer and inner approximations of ∆Ūx in equations (3.3.3) and (3.3.10)
yields

a2

m
√
mD

ρ1
u201

Ĉ(λ̂) = −
√
H2 + 4(1 +mλ̂)ρ1. (3.3.11)
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Figure 3.7 – The function R(λ̂). In (a) we show the form of R(λ̂) only for real-valued
λ̂, whereas in (b) we also show the complex values of λ̂ that lead to R(λ̂) that do not
have an imaginary part (shown in green). In both figures the poles at λ̂ = −3/4 and
λ̂ = 5/4 are indicated with dashed red lines.

Since ρ1 = 0 corresponds to ‘small eigenvalue’ solutions of (3.3.1) – which are already
captured by the pulse-location ODE (3.2.17) – we take ρ1 ̸= 0 and find the eigenvalue
condition

m2D
u201
a2

=

∫∞
−∞ ωVindζ − 3√

λ̂+ H2+4
4m

(3.3.12)

where we have used (3.3.9) and
∫∞
−∞ ω(ζ)2dζ = 6. We can only get a detailed under-

standing of the eigenvalues λ̂ of this problem, once we understand the form of the
right-hand side of (3.3.12), which boils down to studying the integral

R(λ̂) :=

∫ ∞
−∞

ω(ζ)Vin(ζ; λ̂)dζ, (3.3.13)

where Vin(ζ; λ̂) is a bounded function that solves (3.3.7).

Properties of the integral R(λ̂)

To get a detailed understanding of R(λ̂), we need to solve (3.3.7). It is possible to
transform this differential equation to a hypergeometric differential equation. The
details of this procedure can be found in [47, section 5] and [48, section 5.2] – see
Figure 3.7 for evaluations of R(λ̂) based on this procedure. For several specific values
of λ̂ it is possible to get a direct grip on R(λ̂). Foremost, Vin is only uniquely defined
for λ̂ that are not eigenvalues of the operator Lf . When λ̂ is an eigenvalue of Lf , the
solution Vin is either not defined or not uniquely defined. When Vin(ξ; λ̂) does not
exist, the function R(λ̂) has a pole for this value of λ̂. When Vin(ξ; λ̂) is not uniquely
defined for an eigenvalue λ̂ of Lf , the value of R(λ̂) is still uniquely defined [48].

The operator Lf is well-studied. The eigenvalues are known to be λ̂ = 5
4 , λ̂ = 0

and λ̂ = − 3
4 and the essential spectrum is (−∞,−1) [54]. It turns out that R(λ̂)

has poles for λ̂ = 5
4 and for λ̂ = − 3

4 . For λ̂ = 0 one can verify that Vin is given by
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Vin(ξ; 0) = Cω′(ξ)+ω(ξ), where C is a constant. Direct substitution in (3.3.13) shows
that this constant C drops out and we obtain

R(0) = 6. (3.3.14)

The derivative of R at λ̂ = 0 can also be determined. For this, we first observe that
R′(λ̂) =

∫∞
−∞ ω(ξ)∂λ̂Vin(ξ; λ̂)dξ, where ∂λ̂Vin(ξ; λ̂) satisfies

Lf

(
∂λ̂Vin(ξ; λ̂)

)
= Vin(ξ; λ̂). (3.3.15)

Thus we must solve Lf

(
∂λ̂Vin(x; 0)

)
= ω. This yields ∂λ̂Vin(ξ; 0) = Cω′(ξ) + ω(ξ) +

1
2ξω

′(ξ) and hence
R′(0) = 9

2
. (3.3.16)

Finally, at λ̂ = −1, the boundary of the essential spectrum, the differential equation
for Vin(ξ;−1) has a family of bounded solutions given as

Vin(ξ;−1) = ω(ξ)− 1

2
+ C

(
2 tanh(ξ/2) + 10

3
ω′(ξ)

)
(3.3.17)

and thus
R(−1) = 3. (3.3.18)

The above properties are the most important properties of R for the analysis in this
article. A more extensive study of the properties of R is presented in [54, section 4.1]
and [48, section 5]4.

Finding eigenvalues

There is also a square root on the right-hand side of (3.3.12). Thus, real solutions are
only possible when λ̂ > λ̂H := H2+4

4m . Moreover, this term can create an additional
pole at λ̂ = λ̂H . Depending on the value of λ̂H one of three things can happen.

• λ̂H ≤ −1: The new pole falls in the essential spectrum and the whole form of
R(λ̂) is visible.

• −1 < λ̂H < − 3
4 : The new pole is seen, in addition to the two poles of R(λ̂).

• − 3
4 ≤ λ̂H : The new pole at λ̂ = λ̂H ‘replaces’ the pole of R(λ̂) that is located

at λ̂ = − 3
4 .

All three cases lead to different forms for the right-hand side of (3.3.12) – see Figure 3.8.
Now that we understand the right-hand side, we can determine the eigenvalues for

our problem with a simple procedure. For this we compute the (current) value of the
left-hand side of (3.3.12) and then we see which values of λ̂ lead to the same value
on the right-hand side. Note that the value for u01 is thus crucial in our stability
problem. In section 3.2.3 and section 3.2.4 we determined u01 and thus how it changes
in time. When we let the rainfall parameter a decrease over time, we typically see
that u01

a increases. From this observation it is natural to study what happens to the
eigenvalues when the left-hand side of (3.3.12) increases.

4Be aware though, that the R in this article has a different factor in front of it and is defined in
terms of λ̂, whereas the cited articles define it as function of P := 2

√
1 + λ̂.
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Figure 3.8 – The right-hand side of (3.3.12) for different possible values of λ̂H : in (a)
λ̂H = −20/9 < −1, in (b) λ̂H = −5/6 ∈ (−1,−3/4) and in (c) λ̂H = −1/10 > −3/4.The
location of the poles are indicated with dashed red lines. Additionally we show the
complex λ̂ that lead to real values in green and the value of K∗(m,H), see (3.3.20).

The left-hand side of (3.3.12) is always real-valued and positive. Therefore the
right-hand side needs to be as well. Thus for given H and m only a specific set of λ̂
are possible eigenvalues of the eigenvalue problem (3.3.12) – precisely those λ̂ that lead
to a real-valued and positive right-hand side in (3.3.12). This leads to a skeleton in
C on which all eigenvalues necessarily lie. These skeletons come in three qualitatively
different forms, which we show in Figure 3.9. The difference between those skeletons
is the place where the complex eigenvalues land on the real axis. For a critical value
mc(H) they land precisely on λ̂ = 0. For m > mc(H) they land to the right of the
imaginary axis and for m < mc(H) they land to the left of it.

The point where the complex eigenvalues land on the real axis, needs to be a local
minimum5 of the right-hand side of (3.3.12). Therefore the critical value mc(H) must
be such that this minimum is attained at λ̂ = 0. Differentiating (3.3.12) and setting
the result to zero then indicates that mc(H) must satisfy

2R′(0) H
2 + 4

4mc(H)
−R(0) + 3 = 0.

Substitution of (3.3.14) and (3.3.16) then yields the critical value

mc(H) = 3

(
1 +

H2

4

)
. (3.3.19)

The eigenvalues of (3.3.12) can now simple be read of, and depend on the value of the
left-hand side. For small values the eigenvalues approach the points A1,2 in Figure 3.9.
When the left-hand side is increased, we follow the skeletons and see that the pair
of complex eigenvalues changes into two real eigenvalues, points B1,2 in Figure 3.9.
Increasing the value even further we end up close to the poles, points C1,2 in Figure 3.9.

Somewhere along this trajectory a bifurcation has occurred, when an eigenvalue λ̂
gets a positive real part. For m < mc(H) this happens for one eigenvalue that has
no imaginary part. Thus here we find a saddle-node bifurcation; the corresponding

5Otherwise there is a range of left-hand side values that have four eigenvalues, which is impossible
as indicated by a winding number argument.

64



3.3 Linear Stability

-1 1 2

-1

-0.5

0.5

1

A1

A2 C1 C2

B1,2 λ̂∗

Reλ̂

Imλ̂

(a) H = 0, m = 0.45 (m < mc)

-1 1 2

-1

-0.5

0.5

1

A1

A2

C1 C2

B1,2

λ̂∗ Reλ̂

Imλ̂

(b) H = 0, m = 3 (m = mc)

-1 1 2

-1

-0.5

0.5

1

A1

A2

C1 C2

B1,2

λ̂∗

λ̂∗

Reλ̂

Imλ̂

(c) H = 0, m = 10 (m > mc)

Figure 3.9 – Plots of the skeletons on which eigenvalues of (3.3.12) necessarily lie. In
(a) H = 0, m = 0.45 (m < mc), in (b) H = 0, m = 3 (m = mc) and in (c) H = 0,
m = 10 (m > mc). When the right-hand side of (3.3.12) is small – e.g. for a high
rainfall parameter a – the eigenvalues are located at A1,2 and when the right-hand side
is big – e.g. for a low rainfall parameter a – the eigenvalues are located at C1,2. In
between they follow the pictured skeleton, changing from a pair of complex eigenvalues
to two real eigenvalues at B1,2. The critical, destabilizing eigenvalue λ̂∗ is also depicted
in these figures. Note that in (a) eigenvalues cross the imaginary axis by a saddle-node
bifurcation and in (c) by a Hopf bifurcation; (b) corresponds to a Bogdanov-Takens
bifurcation.

eigenfunction is shown in Figure 3.10a. For m > mC(H) a pair of complex eigenvalues
enters the right-half plane and we thus have a Hopf bifurcation; the corresponding
eigenfunction is shown in Figure 3.10b. Finally for m = mC(H) a codimension 2
Bogdanov-Takens bifurcation occurs. In all of these situations we find that there is a
critical value K∗(m,H) of the right-hand side. For values below K∗(m,H) the pulse
is stable and for values above it the pulse is unstable. This critical value is given by

K∗(m,H) :=
R(λ̂∗)− 3√
λ̂∗ + H2+4

4m

. (3.3.20)

For m ≤ mC(H) the critical eigenvalue is λ̂∗ = 0 and therefore K∗(m,H) = 6
√

m
H2+4 .

Also note that K∗(mc(H),H) = 3
√
3. For m > mC(H) there is no explicit expression,

but for given parameters m and H it is not hard to obtain it by numerical evaluation.
Note that this value necessarily needs to be smaller than 6

√
m

H2+4 .

Asymptotic considerations

Although we now understand the eigenvalue problem (3.3.12) completely for any set
of parameters, it is useful to still study the asymptotic cases. There are two parameter
regimes that will play a role in the analysis of multi-pulse solutions, (1) H2+4

4m ≫ 1 (i.e.
m≪ 1 +H2/4) and (2) H2+4

4m ≪ 1 (i.e. m≫ 1 +H2/4).
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Figure 3.10 – Approximation of an analytically obtained eigenfunction of a (single)
pulse when we encounter a saddle-node bifurcation (a) or a Hopf bifurcation (b). The
real part of the U -value is given in blue, the imaginary part in green, the real part of
the V -pulse in red and its imaginary part in pink. Parameter values H = 0, D = 0.01,
L = 10 and m = 0.45, a = 0.19032 (in a) and m = 10, a = 2.1065 (in b).

(1) In the first case, we see that (3.3.12) reduces to

m2D

a2
u201 =

R(λ̂)− 3√
H2+4
4m

.

Rewriting this gives the condition

√
1 +H2/4

m
√
mD

a2
u201 = R(λ̂)− 3.

From our previous analysis we know that the eigenvalues λ̂ have negative real
parts, when the left-hand side is small enough. Thus assumptions (A3) and (A5)
now guarantee that the left-hand side is (asymptotically) small and therefore
that the pulse solution is stable. Only when these size assumptions are vio-
lated is it possible for the pulse to become unstable, in this regime. Moreover,
destabilisation happens through a saddle-node bifurcation in this regime.

(2) In the second case, equation (3.3.12) reduces to

m2D

a2
u201 =

R(λ̂)− 3√
λ̂

.

This time we see that assumptions (A4) and (A6) indicate that the left-hand side
is (asymptotically) small and therefore that the pulse is stable. When these size
assumptions are violated the pulse may become unstable, via a Hopf bifurcation.

3.3.2 Stability of N -pulse solutions
This section is devoted to the stability of multi-pulse solutions and pulse-solutions
on bounded domains. The pulses in these solutions interact with each other and the
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boundary and are therefore moving in space, see section 3.2. In the stability problem
these interactions can show up as well, leading to a more involved stability problem
than in the previous section. We consider N -pulse solutions, with pulses located at
P1(t) < . . . < PN (t). Similar to the existence problem of these solutions, we again
have an inner region, Iinj , near each pulse and outer regions Ioutj between each pulses
and between the first/last pulse and the boundary.

The stability problem in the outer region is again described by equation (3.3.2).
Here we again see an important distinction between the m ≫ 1 + H2/4 and the
m ≪ 1 + H2/4 situations. In the former case the eigenvalue λ̂ has a leading order
role in the outer problem, whereas in the latter case it only has a higher order role.
Moreover, in the situation with m≫ 1+H2/4 the pulses are far apart in the stability
problem. As a result the background state (Ū , V̄ ) = (0, 0) is approached in between
pulses (to leading order). Therefore there is no direct interaction between the pulses
in the stability problem in this regime. This leads to a decoupled stability problem in
which we can treat the stability of each pulse separately. In the other situations, when
m ≤ O(1 +H2/4), this effect does not occur and the stability problem of all pulses is
coupled. We will consider these situations separately.

m≫ 1 +H2/4 - decoupled stability problem

Solving the homogeneous ODE in the outer regions, equation (3.3.2), for Ũ gives the
following solution in the outer region between the j-th and the j + 1-th pulse as

Ūj(x) = S1j e
1
2

[
−H−

√
H2+4(1+mλ̂)

]
(x−Pj) + S2j e

1
2

[
−H+

√
H2+4(1+mλ̂)

]
(x−Pj+1),

(3.3.21)
where S1 and S2 are constants. We can also define the solution in the outer regions
with x < P1 and x > PN in a consistent manner with the definition of P0 and PN+1 as
described in section 3.2.3. Sincem≫ 1+H2/4, we see that −H±

√
H2 + 4(1 +mλ̂) ≫

1, regardless of the size of H compared to m. Therefore Ūj(Pj) = S1j and Ūj(Pj+1) =
S2j to leading order. Thus we can approximate the outer solutions by setting the
constants S1j and S2j as follows:

S1j = ρj ; S2j = ρj+1; S10 = 0; S2N = 0, (3.3.22)

where ρj is (an approximation of) the value Ūj(Pj). Note that the thus constructed
outer solution Ū automatically is continuous in each pulse location, again to leading
order. Similar to the 1-pulse case, we need to impose jump conditions on the derivative
Ūx at each pulse location. In the outer regions this jump is approximated by

∆outŨx(Pj) := Ũx(P
+
j )− Ũx(P

−
j ) = −ρj

√
H2 + 4(1 +mλ̂). (3.3.23)

Note the similarities with equation (3.3.3). The jump in the inner region can be
computed at each pulse. This computation is identical as for the homoclinic pulse in
section 3.3.1. Hence we obtain (see equation (3.3.10)):

∆inŪx(Pj) =
a2

m
√
mD

ρj
u20j

Ĉ(λ̂). (3.3.24)
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where C(λ̂) is defined in equation (3.3.9). Equating both descriptions of the jump
gives us N equation that a solution of the stability problem should satisfy:

a2

m
√
mD

ρj
u20j

Ĉ(λ̂) = −ρj
√
H2 + 4(1 +mλ̂). (3.3.25)

This condition is immediately satisfied when ρj = 0. After division by ρj it is clear
that the left-hand side depends on the pulse number j, whereas the right side does
not. Therefore, we know the eigenfunctions of the linear stability problem generically
have one n ∈ {1, . . . , N} such that ρn ̸= 0 and ρj = 0 for all j ̸= n. Thus the pulses
are decoupled in the stability problem and eigenfunctions are always localised near a
single pulse. A solution with ρn ̸= 0 is only a solution to the stability problem if the
jump condition is satisfied, i.e. if it satisfies

a2

m
√
mD

1

u20n

∫ ∞
−∞

(ω2 − 2ωVin)ds = −
√
H2 + 4(1 +mλ̂). (3.3.26)

Note that this is precisely the same condition as we found for the stability of a ho-
moclinic pulse in equation (3.3.11). Thus we can use the conclusions from that case
here. That is, eigenvalues necessarily need to lie on the skeleton given in Figure 3.9c.
Moreover, the n-th eigenfunction has an eigenvalue with positive real part when
Kn := m2D

a2 u20n > K∗(m,H). Therefore when Kj < K∗(m,H) for all j ∈ {1, . . . , N}
we know that the solution is stable. However, if Kk > K∗(m,H) for some k, we know
that the N -pulse solution is unstable. More specifically we know that the correspond-
ing eigenfunction has ρk ̸= 0 and consists of a localised pulse, located at x = Pk. This
linear reasoning now suggests that, as the pattern is destabilised, the k-th pulse should
disappear.

In degenerate cases, it is possible that multiple pulses have the same Kj-value, say
the value K̄. If that happens, then there exist eigenfunctions that have more than
one non-zero ρj-value. That is, the eigenspace corresponding to the corresponding
eigenvalue λ̂ is multidimensional. To really get a grip on what’s happening at a
bifurcation in these cases, we need to zoom in on the corresponding eigenvalues λ̂,
where the stability problem becomes a coupled stability problem once again. This has
already been done in the case of spatially periodic pulse configurations [53], where
Floquet theory has been used to find the form of the possible eigenfunctions. From
this we know that in these situations – when there are multiple pulses with the same
Kj-value – the eigenvalues are asymptotically close together, though still separated.
Moreover, the eigenfunctions become combinations of the single-pulse eigenfunctions
that we have already encountered. In fact, in [53], it is found that the most unstable
eigenfunction will always be a period-doubling Hopf bifurcation (when γ = −1) or a
full desertification bifurcation (when γ = 1). At present, it is not clear how we get from
the simple, one-pulse eigenfunctions to these more involved (periodic) eigenfunctions as
patterns evolve towards regularity. These two types of destabilisations are intertwined
in an involved way, which is explained by the appearance of ‘Hopf dances’ [52, 53]. We
refrain from going in the details here.

m ≤ O(1 +H2/4) - coupled stability problem

As before, we can use the outer solution (3.3.21). However, we can no longer use the
approximations in (3.3.22), which leads to more involved eigenfunctions that have lo-
calised structures at all pulse locations. To find eigenfunctions, we need to understand
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when a function is an eigenfunction of this (now) coupled stability problem. Foremost,
we need to have continuity of Ū at each pulse location, i.e. Ūj(Pj) = Ūj−1(Pj). Sec-
ondly at each pulse location there will be – as before – a jump in the derivative Ūx, of
size ∆inŪx(Pj) =

a2

m
√
mD

ρj

u2
0j
Ĉ(λ̂), where ρj := Ū(Pj) and Ĉ as in (3.3.9).

With these two conditions it is possible to find the value for the constants S1j+1

and S2j+1 when we are given the values of S1j and S2j and the eigenvalue λ̂. Thus,
when given the value S10 and S20 that satisfy the left boundary condition, it is possible
to deduce the constants S1N and S2N by using the algebraic relations coming from the
continuity of Ū and the jump in Ūx at each pulse location. The concept of finding the
eigenfunctions is now simple: the eigenvalues λ̂ are precisely those values that lead to
constants S1N and S2N that satisfy the right boundary conditions. Note that when
we are using periodic boundary conditions things get a bit more involved. In this case
we can only fix either S10 or S20. Say we have fixed S10. This time we must then find
a combination of S20 and λ̂ that lead to S1N and S2N that are identical to S10 and
S20 respectively.

We recall that Vin can be found explicitly, as function of λ̂ with the use of hyper-
geometric functions [47, 48], as we have seen before in section 3.3.1. Therefore it is
possible to find good approximations of the eigenfunctions – and the corresponding
eigenvalues – using this outlined method. Depending on the precise configuration of
the N pulses and the parameters of the model, the form of the eigenfunctions changes.
Because these eigenfunctions have localised structures at all of the pulse locations –
unlike in the case m ≫ 1 + H2/4 – it is in general hard to draw strong conclusions
about the dynamics of the pattern beyond the linear destabilisation, i.e. what happens
when an eigenvalue crosses the imaginary axis and the solution ‘falls’ off the manifold
MN . In section 3.4 we will see that there essentially are two distinct possibilities:
when pulses are irregularly arranged and when the pulses form a regular pattern.

Eigenvalues when m≪ 1 +H2/4

Even for the most simple N -pulse configurations it is hard to find the correct values for
S1j and S2j by hand. It is, however, possible to say something about the eigenvalues
in the asymptotic case m≪ 1+H2/4. When m≪ 1+H2/4 we see that the exponents
in (3.3.21) become independent of λ̂. To be more precise we find Ūj is given up to
exponentially small errors by

Ūj(x) = S1je
1
2 [−H+

√
H2+4] + S2je

1
2 [−H−

√
H2+4].

Therefore the jump of the derivative Ūx at each pulse location, as dictated by the
stability problem in the outer regions, becomes independent of λ̂ as well:

∆outŪx(Pj) =
1

2

(
H(S2j−1 − S1j)−

√
H2 + 4(S1j + S2j−1)

)
+

1

2
H
(
S1j−1e

1
2 [−H−

√
H2+4]∆Pj−1 − S2je

− 1
2 [−H+

√
H2+4]∆Pj

)
+

1

2

√
H2 + 4

(
S1j−1e

1
2 [−H−

√
H2+4]∆Pj−1 + S2je

− 1
2 [−H+

√
H2+4]∆Pj

)
.

As always we need this jump to be equal to the jump as indicated by the fast, inner
regions. That is, we need to have

∆outŪx(Pj) = ∆inŪx(Pj) =
a2

m
√
mD

ρj
u20j

Ĉ(λ̂),
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where – as before in (3.3.22) – ρj = Ū(Pj); however this time ρj does not (implicitly)
depend on λ̂. Note that the only place where λ̂ comes into play is in the term Ĉ(λ̂).
This enables us to rearrange the terms such that we find the eigenvalue condition

m
√
mD

a2
u20j
ρj

∆outŪx(Pj) = Ĉ(λ̂).

Now we note that the right-hand side of this expression does depend only on λ̂ and
not on the pulse j and the left-hand side does only depend on the pulse j and not on
λ̂. Since we have a similar jump condition at all of the pulse locations, we know that
the constants S1j and S2j of an eigenfunction must be chosen such that the left-hand
side of this equation is the same for all N pulses. That is, we can define

Ĉ∗ =
u20j
ρj

∆outŪx(Pj). (3.3.27)

An eigenvalue must now satisfy the equation

−m
√
mD

a2
Ĉ∗

2
= R(λ̂)− 3. (3.3.28)

The right-hand side of this equation is similar to the condition (3.3.12) that we studied
for the stability of homoclinic pulses in the limit m≪ 1 +H2/4. Therefore the right-
hand side of (3.3.28) is represented by Figure 3.8a up to a multiplicative constant and
eigenvalues necessarily need to lie on a skeleton, see Figure 3.9a. The reasoning of said
section can be applied here immediately as well: if −m

√
mD

a2
Ĉ∗

2 is small enough the
pulse configuration is stable and when it is too big the configuration becomes unstable.
The destabilisation now occurs via a saddle-node bifurcation.

Finally we notice that the left-hand side of (3.3.28) is of order O
(

m
√
mD

a2

)
. There-

fore if m
√
mD

a2 ≪ 1 we know that the configuration necessarily is stable and if m
√
mD

a2 ≫
1 it is unstable. When m

√
mD

a2 = O(1) the stability can change and a (saddle-node)
bifurcation occurs. A precise computation of the value C∗ is necessary to establish
stability.

3.4 Numerical Simulations
In this section, we study the behaviour of pulse solutions using the methods developed
in the previous sections. We employ our method – in the form of a Matlab code – to
determine the dynamics of pulses via the ODE as explained in section 3.2.4 – note that
this thus does not assume U(Pj) = 0. Simultaneously, we determine the evolution of
the quasi-steady spectrum associated to the evolving multi-pulse configuration. Thus
we check whether the pulse configuration approaches the boundary of the N -pulse
manifold MN beyond which it is no longer attracting in the PDE flow – see section 3.3.
When this happens, we deduce from the eigenfunction analysis which specific pulse – or
pulses – of the multi-pulse configuration destabilises and in our method we then simply
cut out these pulses. This essentially means that we have to assume that the associated
quasi-steady bifurcation is subcritical, and thus that the pulse/pulses annihilate at a
fast time scale. Note that this is based on numerical observation in all literature
on pulse dynamics in Gray-Scott and Gierer-Meinhardt type models, see [174] for
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a mathematical analysis of this bifurcation in the homoclinic 1-pulse context (that
establishes the subcritical nature of the bifurcation in the Gierer-Meinhardt setting)
and [174, 175] for a more thorough discussion and examples of systems that do not
satisfy this condition.

In our code, the determination of the quasi-steady spectrum can be done in two
different ways:

(DSP) We treat the quasi-steady spectral problem as if it were a decoupled stability
problem, see section 3.3.2;

(CSP) We treat the quasi-steady spectral problem as if it were a coupled stability prob-
lem, see section 3.3.2.

There are pros and cons to both methods. The main benefit of (DSP) is that is easy
to determine which pulse disappears when a bifurcation happens. On the other hand,
this simplification is only valid in the asymptotic region in which m≫ 1+H2/4 (and
when pulses are distinguishable, see section 3.3.2). However, we will see in this section
that it also provides useful information when m ≤ O(1 +H2/4). The other method,
(CSP), does hold true for all m (and all configurations). However, the eigenfunctions
are no longer restricted to a single pulse and can become quite involved. This makes it
significantly harder to determine which – and especially how many – pulses annihilate
as we will see later in this section. Moreover, the (CSP) approach becomes unreliable
when the eigenfunctions get large spikes at one pulse location (i.e. for m≫ 1+H2/4)
and when eigenvalues are close, as the underlying root-finding Newton scheme cannot
easily distinguish these closely packed eigenvalues.

In our numerical studies in this section we employ our aforementioned approach
and test it against direct simulations of the full PDE. We will show that our method
is in general good – even in situations for which our analysis should normally not hold
– but we will also point out its limitations. The outcome of these endeavours will
be captured in several conjectures throughout the text. Our numerical study starts
with pulse solutions on flat terrains (h(x) ≡ 0) in section 3.4.1. We focus here on the
difference between irregular and regular configurations. Subsequently, in section 3.4.2,
we investigate the effect of topography. Here we encounter downhill movement –
which a priori is counter intuitive from the ecological point of view – and we study the
infiltration of vegetation into bare soil among other things.

In all of our simulations – both the simulations using our method and the simula-
tions of the full PDE – we found Hopf bifurcations when m was large and saddle-node
bifurcations when m was small. In cases of a Hopf bifurcation, the PDE simulations
show a (fast) vibration of the pulses height. In cases of saddle-node bifurcation this
vibration was absent. Moreover, the computation of the u0j-values, as explained in
section 3.2.4 was slower. This indicates that the Jacobian determinant is very small,
which happens near a (existence) bifurcation – precisely as expected with a saddle-node
bifurcation.

3.4.1 Flat terrains
On flat terrains on a bounded domain [0, L] our asymptotic analysis in section 3.2.3
– valid for m

√
mD

a2 ≪ 1 – indicates that a regularly spaced configuration is a stable
fixed point of the pulse-location ODE (3.2.17). Both the direct PDE simulation as
simulations using our method suggest that these regular patterns are still fixed points
and that, typically, N -pulse solutions evolve to these regular configurations – even
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(a) ODE (b) PDE

Figure 3.11 – Plot of the vegetation V obtained from simulations using the pulse-
location ODE (in a) and the full PDE (in b). In these plots the shade of red indicates
the concentration of vegetation, with darker meaning more vegetation is located at that
position. In both simulations we have used a constant height function h(x) ≡ 0 and
parameters m = 0.45 and a = 0.5, D = 0.01 and L = 10 (ecological relevant parameter
values [95, 158]), and the starting configurations are the same. From these plots it is
clear that the ODE and the PDE simulation agree to a great extent, and that the seven
pulses evolve to a equally distributed seven pulse solution.

when m
√
mD

a2 = O(1) – see however the results and simulations of [103]. In Figure 3.11
we give an example of this for the situation of a 7-pulse solution starting from an
irregular configuration. So the dynamical movement drives pulse solutions to a reg-
ularly spaced configuration (on flat terrains). At the same moment, the flow of the
PDE determines the boundaries of the manifold MN , where N -pulse solutions stop to
exist and pulses may disappear. We want to understand the bifurcations that occur
when a pulse configuration becomes unstable. For this we took the rainfall parameter
a as our main bifurcation parameter. In our simulations we let the rainfall parame-
ter decrease slowly6 such that a bifurcation occurs7. Our study shows a significant
difference between destabilisations of irregular patterns and regular patterns.

Irregular patterns - irregularly arranged pulses

Two typical configurations with irregularly placed pulses are shown in Figures 3.12a
and 3.13a. In these configurations we see that the V -pulses have varying heights. Con-
sequently the values for u0j differ, with the highest V -pulses having the lowest values
u0j . We have determined the eigenfunction near the bifurcation point for these situa-
tions, using the (CSP) method. In all our studies of similar irregular configurations, we
have found that the eigenfunctions always look the same (see Figures 3.12b and 3.13b):
there is a big V̄ -peak at the location of the pulse with the highest u0j-value and the
neighbouring pulses have a smaller V̄ -pulse in the opposite direction. If we – for a
moment – assume that the pulses are not coupled (like was the case in section 3.3.2),
it is clear that the pulse with the highest u0j-value is the most unstable one. Indeed,
this pulse has the highest value Kj = m2D

u2
0j

a2 , indicating that it is the most unsta-
ble one. The corresponding eigenfunction has a single V̄ -pulse located at this pulse’s

6When a(t) changes with time, delayed bifurcation effects can occur, which fall outside the scope
of this article. We refer the interested reader to [30, 141, 166] for analysis of these effects in related
systems.

7For irregular patterns we need to make sure that the bifurcation occurs fast enough that the
pulses have not moved to form a regular pattern yet.
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Figure 3.12 – Sideview (a) of a 5-pulse configuration near a bifurcation and the desta-
bilising eigenfunction (b) for this bifurcation (on a bounded domain with Neumann
boundary conditions) and a simulation of the full PDE (c) with m = 0.45, h(x) ≡ 0,
D = 0.01, L = 10 and abif = 0.296. The analytically determined quasi-steady eigen-
value is λ̂ ≈ 0, suggesting a saddle-node bifurcation (in agreement with our theory for
m < mc(H), see (3.3.19) and the surrounding text). Here we can clearly see that the
most unstable pulse is the pulse with the lowest V -peak. This is also found in the eigen-
function plot where this pulse has the highest peak. In the simulation of the PDE we
see that our prediction was correct: the third pulse is the first to become unstable. In
the PDE simulation we let the rainfall parameter a decrease starting from a = 0.5.
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Figure 3.13 – Sideview (a) of a 5-pulse configuration near a bifurcation and the destabil-
ising eigenfunction (b) for this bifurcation (on a bounded domain with Neumann bound-
ary conditions) and a simulation of the full PDE (c) with m = 10, H = 0, D = 0.01,
L = 10 and abif = 2.96. The quasi-steady eigenvalue here is λ̂ ≈ 0.018 ± 0.472i, sug-
gesting a Hopf bifurcation (in agreement with our theory for m > mc(H), see (3.3.19)
and the surrounding text). Here we again see that the most unstable pulse is the pulse
with the lowest V -peak, as is also shown in the eigenfunction plot where this pulse has
the highest peak. The simulation of the full PDE shows that the third pulse is indeed
the first one to become unstable, as was predicted by the linear stability analysis. In
the PDE simulation we let the rainfall parameter a decrease starting from a = 5.

location. When the pulses in the stability problem are coupled, they are relatively
close-packed. Consequently, we find (relatively small) V̄ -pulses for the neighbouring
pulses as well. Nevertheless this suggests that such kind of eigenfunctions leads to the
death of the pulse with the highest u0j-value. Note that linear stability theory does
not guarantee this (at all): a priori it cannot be excluded that the neighbouring pulses
(also) disappear.
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Figure 3.14 – Sideview (a) of a specifically constructed 5-pulse configuration near a
bifurcation and the corresponding destabilising eigenfunction (b) for this bifurcation
(on a bounded domain with Neumann boundary conditions) and a simulation of the full
PDE (c) with m = 0.45, h(x) ≡ 0, D = 0.01, L = 15 and abif = 0.36. The quasi-steady
eigenvalue is λ̂ ≈ 0, suggesting a saddle-node bifurcation. Here we can see that the most
unstable pulse is still the pulse with the lowest V -peak (pulse 2), although this cannot
be seen easily from the eigenfunction here. In the PDE simulation we let the rainfall
parameter a decrease starting from a = 0.75. Note that another bifurcation, in which
pulse 4 dies follows quickly after the disappearing of pulse 2 in the PDE simulation
(which can be hard to see in the figures, but is clear from the raw data).

In numerous PDE simulations we have only ever seen the pulses disappear that
have the highest u0j-values (i.e. lowest V ). We have tried to find situations for which
this reasoning does not hold, but were unable to find those. Interestingly enough this
rule of thumb is good, even when the destabilising eigenfunction does not have an
easily recognisable biggest peak. In Figure 3.14 we encounter such a case. Here one
could think from the eigenfunction that pulse 3 should annihilate. However pulse 2
– the one with the lowest peak in V – is the one to disappear (and pulse 4 quickly
follows).

This all give rise to the following conjecture on the stability of (irregular) N -pulse
configurations.

Conjecture/Observation 3.4.1 (Generalised Ni). When a multi-pulse pattern is
sufficiently irregular, the localised V -pulse with the lowest maximum (highest u0j-value)
is the most unstable pulse, and thus the one to disappear first.

This conjecture can be seen as a generalisation of Ni’s conjecture [121]. The value
of u0j is determined through the distance between pulses. When pulses are far apart
the value of u0j decreases. Consequently the homoclinic pulse, the solitary V -pulse, is
furthest away from any other pulses and has the lowest u0j-value. It should therefore
be the most stable configuration, as stated by Ni [52, 53, 121].

This conjecture also helps in the search for the most stable N -pulse configuration.
Judging from our conjecture, the quasi-steady stability (in the PDE sense) of a N -pulse
configuration is determined by the maximum of all u0j-values, i.e. by maxj∈{1,...,N} u0j .
Therefore the most stable N -pulse configuration is the configuration in which all pulses
have the same value for u0j . Put differently, as long as the manifold MN exist, it
contains the regularly spaced configuration – which only becomes unstable under the
PDE flow the moment that MN is no longer a hyperbolic invariant manifold.
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Regular patterns - regularly spaced pulses

Understanding the stability and bifurcations of these regular patterns (see Figure 3.15a)
is more difficult. In these configurations all V -pulses have the same height and also
the values for u0j are equal. Therefore we can no longer speak of the most unstable
pulse. We have determined the eigenfunctions and found two different cases depend-
ing on the value of m. A precise distinction between these two cases – similar to the
critical value mc(H) in the homoclinic pulse stability study in section 3.3.1 – could
not be found; it seems this critical value of m might even depend on the number and
precise location of all pulses. However, in the asymptotic cases m ≪ 1 + H2/4 and
m≫ 1 +H2/4, the parameter m definitely is ‘small’ respectively ‘large’.

m small

When m is small, we only found critical eigenfunctions with alternating one pulse
upwards and one pulse downwards8, like the example depicted in Figure 3.15b. This
type of eigenfunctions suggests that adjacent pulses evolve differently when the con-
figuration becomes unstable: one of the pulses grows and the other shrinks. PDE
simulations back this idea in general. However it is not clear at all from the eigen-
function which pulses disappear: the odd ones or the even ones. PDE simulations
indicate that both possibilities can happen; it seems to be very sensitive to the initial
conditions.

Moreover, it can happen that a (naive) PDE simulation does not follow the critical
destabilising eigenfunction but the next most unstable one, see Figure 3.15d. This
has to do with the symmetry breaking that is necessary to follow the most unsta-
ble eigenfunction. Since the PDE (simulation) preserves symmetry, it only follows
eigenfunctions that satisfy the same symmetry – though that eigenfunction still does
resemble a period doubling as much as possible. This issue is easily solved when we
apply a non-symmetric perturbation to the initial condition of the PDE.

We also observed that the eigenvalues, corresponding to these destabilizing eigen-
functions, always have λ ≈ 0 (i.e. no imaginary part). This would suggest a saddle-
node bifurcation. It was proven in [148] that there are two periodic N -pulse solutions
in the Gray-Scott system. One of these is stable and the other unstable, which un-
derpins the possibility of a saddle-node bifurcation [148]. Moreover, studies of similar
models indicates that such kind of saddle-node bifurcations generally are preceded
by a period-doubling bifurcation or a sideband bifurcation [38, 134]. Our numerical
observations are thus in agreement with these recent discoveries.

This gives rise to another conjecture

Conjecture/Observation 3.4.2 (Regular Patterns I). When vegetation V -pulses
form a regular pattern and m is sufficiently small, destabilisation happens via a period
doubling bifurcation and the critical eigenvalue crosses λ̂ = 0.

m large

When m is large, we have encountered two sorts of eigenfunctions in our numerical
simulations. Both are Hopf bifurcations; one of them suggests a period doubling bifur-
cation and the second a full collapsing bifurcation (an example of the latter is shown in

8Or a configuration that is closest to this: for instance with an odd number of pulses and periodic
boundary conditions there necessarily are two pulses pointing in the same direction next to each
other.
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Figure 3.15 – Sideview (a) of a 10-pulse configuration near a bifurcation and the
destabilising eigenfunction (b) for this bifurcation (on a bounded domain with Neumann
boundary conditions) for parameters m = 0.45, H = 0, L = 20, D = 0.01 and abif =
0.226. The eigenvalue here is λ̂ ≈ 0, suggesting a saddle-node bifurcation. The PDE
simulations (c-d) ran with a decreasing from a = 0.3 to a = 0, but the initial condition
was chosen to be perfectly symmetric in (d). The PDE simulation in (d) does not follow
the destabilising eigenfunction from (b), because the solution maintains its symmetry.
Therefore the regular 10-pulse configuration persists for longer time (lower a) as well.

Figure 3.16b). As stated in section 3.3.2, this backs the idea of Hopf dances near the
tip of the Busse Balloon [52, 53]. However in this situation our linear predictions have
only limited value. When the eigenfunction point to a period doubling, it is possible
that the PDE simulation shows a full collapse and vice versa. The faster we decrease
our bifurcation parameter, the more likely it is that this happens – see Figure 3.16 for
an example. Recalling the asymptotic analysis in section 3.3.2, this can be understood
as follows: when m ≫ 1 +H2/4 the eigenvalues for the period doubling and the full
collapse have the same value to leading order. They only differ in higher order. Hence,
one cannot expect a priori that the linear stability analysis provides a good grip on
the non-linear stability and thus the numerically observed behaviour cannot be too
surprising.

From this all we come to the following conjecture

Conjecture/Observation 3.4.3 (Regular Patterns II). When vegetation V -pulses
form a regular pattern and m is sufficiently large, destabilisation happens either via a
period doubling Hopf bifurcation or a full collapse Hopf bifurcation. In these cases the
critical eigenvalue has a non-zero imaginary part.
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Figure 3.16 – Sideview (a) of a 5-pulse configuration near a full collapse (Hopf) bifur-
cation and the destabilising eigenfunction (b) for parameter values m = 10, h(x) ≡ 0,
L = 10, D = 0.01 and abif = 2.622. The eigenvalue here is λ̂ ≈ ±0.48i indicating a Hopf
bifurcation. The PDE simulations ran with a decreasing from a = 3 to a = 0. The PDE
simulation in (d) does not follow the destabilising eigenfunction from (b), possibly be-
cause the decrease in the bifurcation parameter was too fast, or because the eigenvalues
are close together in this situation (see main text).

3.4.2 The effect of sloped terrains
When the terrain is no longer flat, new phenomena occur. To illustrate this, we first
consider a constantly sloped terrain, i.e. h(x) = Hx on a domain with periodic bound-
ary conditions (section 3.4.2) and on a bounded domain with Neumann boundary
conditions (section 3.4.2). Subsequently, we present preliminary results on a terrain
that has a slope that varies in x in section 3.4.2.

Periodic domains

Our study of N -pulse solutions on domains with periodic boundary conditions, indi-
cates that these solutions always converge to a configuration in which all pulses are
equidistant; i.e. to a regular pattern. This is in agreement with our proofs for the
situation m

√
mD

a2 ≪ 1 in section 3.2.3 and forms a natural extension of our findings in
the flat terrain setting of section 3.4.1. Moreover, the story about eigenfunctions and
eigenvalues is also similar to the flat terrain setting: bifurcations of irregular config-
urations favour single-pulse extinction, whereas regular configurations bifurcate with
either a period doubling or a full desertification (depending on the magnitude of m
– see section 3.4.1). These regular patterns are again the most stable configuration
possible for a N -pulse solution.

Not everything is the same though: pulses tend to move uphill and therefore solu-
tions are never stationary. Since pulses also try to repel each other this not necessarily
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means that all pulses always migrate uphill – this depends on the precise location of
all pulses and the size of the slope H. However, for regular patterns – the attracting
configuration of the pulse location ODE (3.2.17) – all pulses move uphill. Moreover,
we can explicitly determine their migration speed.

Uphill migration speed of regular patterns

We consider a regular pattern with N pulses on a domain with size L. For these regular
patterns, all pulses are equally far apart from each other. We define this separation
distance – i.e. the wavelength of the pattern – as d := ∆Pj = L/N . Substitution of
this separation distance in equation (3.2.22) – that is derived under assumption (A3)
– gives the speed ĉ0 of these regularly spaced pulse configurations as

ĉ0(d) =
Da2

m
√
m

√
H2 + 4

6

cosh(Hd/2)− cosh(
√
H2 + 4 d/2)

sinh(
√
H2 + 4 d/2)

×(
−H +

√
H2 + 4

sinh(Hd/2)
sinh(

√
H2 + 4 d/2)

)
. (3.4.1)

Under the weaker assumption (A3’), the value U(Pj) =
m
√
mD

a2 u0j is not necessarily
approximately 0, though the value is the same for all pulses. So we define this value as
u0 := u0j . Therefore we may use equation (3.2.26) to find the speed ĉ in this situation
as

ĉ(d) =

(
1− m

√
mD

a2
u0(d)

)2

ĉ0(d). (3.4.2)

with ĉ0(d) as in (3.4.1). Note that u0 is not determined in this form and that its value
depends on d and H. To find this value we need to solve F⃗ (u⃗0) = 0, as explained
in section 3.2.4. Although the algebraic equation that needs to be solved is only
quadratic in this case, we use a numerical approximation to find the value of u0. In
general one sees that the larger the value of m

√
mD

a2 u0, the slower a (regular) pattern
moves – though it will always move uphill.

In Figure 3.17 we have plotted the movement speed ĉ0(d) and ĉ(d) for several
values of H. From this it is clear that the farther the pulses are apart, the faster they
move. In the limit d→ ∞ we expect them to move at the speed at which a (solitary)
homoclinic pulse would move. It follows from equation (3.2.29) that these homoclinic
pulses move at the speed ĉh given by

ĉh =

(
1− m

√
mD

a2
u0

)2
Da2

m
√
m

H
√
H2 + 4

6
, (3.4.3)

which indeed is also the limit of equation (3.4.2) when we take d → ∞. Note that
u0 is known in this case, see equation (3.2.28). To find the homoclinic speed under
assumption (A3) we can simply set m

√
mD

a2 u0 = 0.
Note that for d ↓ 0 the pulses get closer together. When these pulses get too close

together, the linear stability theory of section 3.3 indicates that the configuration
is unstable under the PDE flow. Therefore there is a minimum wavelength dmin

corresponding to a pattern that is marginally stable. Only if d ≥ dmin we expect to
see (stable) periodic patterns. Because the speed of a pattern is a monotonic function
of its wavelength – as directly follows from equation (3.4.1), see also Appendix 3.B –
we also know that stable periodic configurations can only have speed that is between
ĉ(dmin) and ĉh. This agrees with previous theoretical results on the speed of homoclinic
pulse solutions [148, Equation (5.3)].
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Figure 3.17 – Rescaled speed c as a function of d in (a), where ĉ(d) = Da2

m
√
m
c(d). In

(b) we show the (rescaled) speed of a homoclinic pulse as a function of the slope H. In
these plots the green line is a plot of the corresponding parameter-independent equation
that are valid under assumption (A3) (i.e. equation (3.4.1) for a and equation (3.4.3)
for b). The red and blue lines show the evaluations under assumption (A3), when the
equations become parameter-dependent (via u0j), for D = 0.01, m = 0.45, a = 0.5 (red
line) and for D = 0.01, m = 10, a = 10 (blue line).

Bounded domains

Next, we consider N -pulse solutions with a constantly sloped terrain on a bounded
domain with Neumann boundary conditions. Once again, the fixed point analysis of
section 3.2.3 – that was valid under assumption (A3) – is verified by PDE simula-
tions. Moreover, the results again carry over to the situation in which (A3’) holds (i.e.
U(Pj) ≈ 0 does not hold); both simulations of the pulse-location ODE (3.2.26) as direct
PDE simulations always show that all N -pulse configurations that start on manifold
MN evolve to a specific configuration that depends on the parameters of the model
(but not on the initial conditions). This specific configuration is the (stable) fixed
point of the pulse-location ODE (3.2.26). In Figure 3.18 we have plotted these fixed
points as function of the slope H and different number of pulses. These fixed points
are obtained as the outcome of simulations of the pulse-interaction ODE (3.2.26), with
the method as explained in section 3.2.4. From these plots we see an increase in the
terrain’s slope leads to fixed points that get closer to the boundary of the domain.
Moreover, it shows that a simplification of assumption (A3’) to (A3) generally leads
to the same fixed points, unless the system is close to a saddle-node bifurcation.

It should be noted that these (stable) fixed points of the ODE do not need to be
stable fixed points of the full PDE. In fact, it can happen that an N -pulse configuration
evolves under the ODE-flow to another N -pulse configuration that is unstable under
the flow of the complete PDE – even in the case of fixed parameter values. That is,
a N -pulse configuration crosses the boundary of manifold MN . In Figure 3.19 we
show a simulation in which this happens. Here we see that the pulses move uphill – as
indicated by the ODE flow – and then annihilate – by the PDE flow. This could also
be predicted from Figure 3.18, since the ODE does not have a fixed point for these
parameters. These simulations also back our generalised-Ni conjecture 1: once again
the pulse with the lowest V -peak disappears at the bifurcation.

Moreover, we also see that the decoupled stability check (DSP) also captures the
PDE behaviour very well. This is remarkable here, since the corresponding asymptotic
analysis in section 3.3.2 is only valid for m≫ 1+H2/4, whereas here m = 0.45 < 1. At
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Figure 3.18 – Stable fixed points of the pulse position ODE on a bounded domain
of length L = 10 with Neumann boundary conditions for various number of pulses
N . The green lines (generally laying below the other lines) indicate the fixed point
of equation (3.2.22), which is valid under assumption (A3). The blue and red lines
indicate the fixed points of equation (3.2.26), which is valid under assumption (A3’),
for parameters D = 0.01, m = 0.45 and a = 0.5 (blue) or a = 5 (red). These lines
are only plotted when the numerical solver could solve F⃗ (u⃗0) = 0; when it could not,
a stationary pulse solution does not exist and a saddle-node bifurcation has happened,
see section 3.2.4.

first glance the two simulations seem identical. However a better look reveals that the
(DSP) ODE simulation gets rid of pulse slightly too early – though it does give a good
prediction on the pulse that is going to disappear. This effect gets exaggerated when
more pulses are added to the simulation. In Figure 3.20 we have done a simulation
with N = 10 pulses. Here the mismatch between ODE and PDE simulation can be
seen more easily.

Varying Terrain

In the previous sections we have studied the extended Klausmeier model on terrains
with a constant slope, i.e. h(x) = Hx. In these situations it was possible to find an
exact form of the solution in the outer regions. When we inspect a terrain with non-
constant slope, it is in general not possible to find an exact solution in the outer region
because these terms make the outer problem a non-autonomous problem, see (3.2.18).
It is therefore more complicated to study a varying terrain problem. In this section
we briefly consider some cases, in which we use assumption (A3), i.e. Ũ(Pj) = 0. We
use a numerical boundary value problem solver, to find numerical approximations of
the solution Ũ for the ODE (3.2.18) in the outer regions, between the pulses. In these
situations we – again – see that the reduction gives a very good description of the
movement of the pulses (see Figure 3.21). In the simulation of Figure 3.21, we have
used a Gaussian function for the terrain, i.e. h(x) = e−0.75(x−

L
2 )

2

, which resembles a
hill with a top at x = L/2.

In section 3.4.2 we saw that pulses on a constantly sloped terrain want to move
uphill. Therefore one might be inclined to conclude that all pulses want to move uphill.
Additional simulations with a single pulse reveal that it is also possible for a pulse to
move downhill. In Figure 3.22 we show two simulations of the full PDE on a Gaussian
terrain of the form h(x) = exp[−B

(
x− L

2

)2
]. Here we see that the pulse moves uphill

when B is small and downhill when B is bigger. This not necessarily contradicts the
ecological intuition: we know that the movement of a pulse is determined through the
water availability, see equation (3.2.17). When the curvature of the terrain gets too
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Figure 3.19 – Simulations of the extended Klausmeier model in which the fixed point
of the ODE is unstable under the PDE flow, leading to annihilation of the most uphill
pulse. The ODE simulation in (a) uses the decoupled stability approximation (DSP). In
these simulations, the pulses start as a regular pattern and we have used the parameters
a = 0.5, H = 1, D = 0.01, m = 0.45, L = 10. Moreover we show the location of
the eigenvalues close to the moment the first pulse dies out in (c) and the destabilising
eigenfunction (corresponding to λ̂ ≈ 0) at the same moment is given in (d) – both are
determined using the coupled stability approach (CSP). The first destabilization in these
simulations occurs at t ≈ 7.1 · 103 (a,ODE) and t ≈ 7.9 · 103 (b,PDE). Note that (a) and
(b) are also shown in Figure 3.3.

big, it might happen that water streams downhill so fast that water builds up at the
base of the hill. This would make this point, at the basis of the hill, the preferred
spot for a pulse, because of the abundance of water and therefore the pulse moves
downhill towards this point. The extended Klausmeier model with a more general
varying terrain term is studied more in-depth in [7].

Infiltration of vegetation in bare soil

Finally, as an illustration of the applicability of our pulse-location ODE, we turn our
attention to the phenomenon of colonisation. Observations of vegetation in semi-arid
regions in the Sahel showed an inverse relation between the wavelength of vegetation
patterns and the slope of the terrain [58]: when the slope increased, the wavelength
decreased. Recently, using numerical methods, it was shown that colonization of bare
ground leads to the same inverse relationship, suggesting that those regions in the Sahel
may once have been deserts [153]. With our ODE description (3.2.22) it is possible to
derive an analytic (approximate) expression for this inverse wavelength-slope relation.
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(a) ODE (DSP) (b) PDE

Figure 3.20 – Simulations of the extended Klausmeier model with 10 pulses in which
the fixed point of the pulse-location ODE is unstable under the PDE flow. The ODE
simulation in (a) uses the decoupled stability approximation (DSP). In these simulations
pulses start as a regular patterns. The mismatch between the ODE simulation in (a) and
the direct PDE simulation in (b) can be seen from comparing these plots. Specifically,
the first destabilization occurs at t ≈ 3.9 · 103 (a, ODE) and t ≈ 4.3 · 103 (b, PDE). The
parameters used are a = 0.5, H = 1, D = 0.01, m = 0.45, L = 10.

(a) ODE (b) PDE

Figure 3.21 – The evolution of 5 pulses in simulations of the extended Klausmeier
model with non-constantly sloped terrain h(x) = exp

[
−0.75

(
x− L

2

)2], for the reduced
pulse-location ODE (a) and the full PDE (b). In both simulations we have taken a = 20,
m = 20, D = 0.01 and L = 10 and the starting configurations are the same, i.e. 5
pulses distributed equally over the domain. From these plots we again see that the ODE
reduction agrees with the full PDE dynamics to a great extend.

The critical wavelength dc (i.e. the distance between the pulses), for a given terrain
with constant slope H, is the wavelength for which the uphill moving effect due to the
slope of the terrain is negated by the repulsive behaviour of the pulses uphill. If d > dc
the lowest pulse moves uphill and colonization is argued to be unfeasible; if d < dc
the lowest pulse moves downhill and colonization is possible. In our analysis we use
assumption (A3), i.e. Ũ(Pj) = 0. Therefore we can find the speed of the lowest pulse
by only considering the distance to its neighbour pulse. Because the whole problem
is symmetric in H = 0, we can assume for simplicity that H ≥ 0. We let the lowest
pulse be located at position P1 and we let the distance to the neighbouring pulse uphill
be denoted by d. We assume that there are no pulses further downhill (i.e. we put
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(a) B=0.25: uphill movement (b) B=1: downhill movement
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Figure 3.22 – PDE Simulations of the full extended Klausmeier PDE model with a
terrain with non-constants slope, h(x) = exp[−B

(
x− L

2

)2
] for B = 0.25 (a) and B = 1

(b). Here we see that pulses can move downhill when the width of the hill becomes
small. In both simulations we have taken a = 0.5, m = 0.45, D = 0.01, L = 10 and used
Neumann boundary conditions. The form of the terrains h(x) is plotted in Figures (c)
and (d). The pulse-location ODE simulations show similar results (not shown).

P0 = −∞). From equation (3.2.22) we then derive the speed of the first pulse as

dP1

dt
=

Da2

m
√
m

1

6

(H
2

−
√
H2 + 4

2

eHd/2 − cosh(
√
H2 + 4 d/2)

sinh(
√
H2 + 4 d/2)

)2

−

(
H

2
−

√
H2 + 4

2

)2
 . (3.4.4)

To find the critical values for the wavelength dc, we need to find the value d for which
dP1

dt = 0. That is, we need to find the roots of the terms between the brackets in
equation (3.4.4). In Figure 3.23 the resulting plot is shown. This indeed gives the
inverse relationship between the slope H and dc as reported in [153]. It should be
noted that these results match up very good when the slope H is large, but start
to differ when the slope H is small9; Unsurprisingly, precisely for these small slopes
assumption (A3) is no longer valid.

9According to [153, Figure 5.c] the critical rainfall value ac increases when the slope H increases.
Therefore small slopes lead to small critical rainfall parameters, which in turn lead to a violation of
assumption (A3).
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Figure 3.23 – Inverse relationship between the slope H and the critical wavelength dc
for which colonization of bare ground becomes possible. This plot consists of the roots
of equation (3.4.4). This graphic agrees with plot 5D in [153]. Because we use a different
scaling both the wavelength and the slope should be divided by

√
D in [153] to obtain

the same qualitative plot. One can see that the plots indeed are in good agreement for
steeper slopes, i.e. for higher H. For less steep slopes, the plots differ. Here the system
is closer to the saddle-node bifurcation, which means that assumption (A3) is no longer
valid.

3.5 Discussion and Outlook

In this paper, we extended existing approaches and developed novel methods to
study the dynamics of interacting pulse solutions in singularly perturbed 2-component
reaction-diffusion systems with parameters that may vary in time and/or space, focus-
ing on the extended Klausmeier – or generalized Klausmeier-Gray-Scott – model (3.1.1)
as prototypical subject of study. We have (formally) shown that the PDE evolution of
N -pulse patterns can be described by an N -dimensional dynamical system and that
the solutions of this system live on an (approximate) N -dimensional invariant mani-
fold MN . The stability – and thus attractivity – of this manifold is determined by the
quasi-steady spectrum that we have determined by Evans function techniques. This
analysis also provides insight in the location and nature of the (various components of
the) boundary ∂MN of MN , and in the nature of the (linear) destabilization mech-
anisms associated to N -pulse configurations crossing through ∂MN . Thus, we have
found that the dynamics of N -pulse patterns can be split in two. Firstly, there is the
(slow) dynamics on the manifold MN – we captured this behaviour in an ODE (3.2.17)
that describes the evolution of the pulse locations. Secondly, there is (fast) dynamics
off of MN , towards a lower-dimensional (approximate, attracting invariant) manifold
MM (with M < N). We have determined the linearized nature of this fall; the hy-
brid numerical-asymptotic method developed in this paper predicts the value of M ,
describes the evolution of the resulting M pulses on MM , and the cascade of jumps
towards subsequent manifolds MM̃ .

Our formal approach triggers various themes of further research. The validity of the
very first step – the reduction of the PDE dynamics to MN – is so far only established
rigorously for a restricted region in parameter space – see [12]. Moreover, the analysis
of [12] is in the classical setting of non-varying parameters. Some of the numerical
experiments presented in this article were conducted under similar conditions for which
the results of [12] can be expected to hold; others, however, used parameters way
beyond the regions considered in [12]. Nevertheless even in those cases the (formally)
reduced system usually captures the dynamical movement of the pulses remarkably
well. More surprisingly, the ODE reduction even is correct when the prime small
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parameter of our asymptotic analysis, i.e. a
m , is in fact not small, but order O(1). All

in all, the reduction method seems to be valid for settings way beyond the reaches of
current validity proofs. It would be extremely valuable to further develop the rigorous
theory to understand why the reduction method is so successful.

The behaviour of N -pulse patterns on manifold MN was studied using the reduced
pulse-location ODE (3.2.17). Under the assumption that the coefficients related to
h(x) in (3.1.1) do not explicitly vary in x – h′(x) ≡ H, a constantly sloped terrain
– we found on bounded domains with Neumann boundary conditions that N -pulse
configurations always evolve towards a specific stable fixed point of the ODE; on do-
mains with periodic boundary conditions, the configurations always evolve towards a
uniformly traveling solution in which all pulses are equally far apart. Some of these
results were proven for the derived ODE approximation under assumption (A3) in
Appendix 3.B and numerics indicate that these still hold under the less restrictive
assumption (A3’). Moreover, when h′(x) is allowed to vary – i.e. for more realistic
topographies – simulations indicate that the pulse-location ODE still has stable fixed
points (though there can be multiple fixed points, including unstable ones). A better
understanding of the dynamics generated by reduced systems (3.2.17) is necessary, es-
pecially from the ecological point of view. For instance, intuitively, pulses are expected
to always move uphill (towards the downhill flowing water). However this mechanism
only seems to be valid for terrains with constant slope (h′(x) ≡ H); on more realistic
terrains pulses can move both uphill and downhill – depending on the terrain’s cur-
vature. This may explain observations of vegetation patterns, that indeed sometimes
evolve counter-intuitively (i.e. not uphill) [41, 57]. As a first step towards these goals
– rigorous validation of MN and understanding the dynamics on MN - one first needs
to rigorously establish existence and stability of stationary pulse solutions of (3.1.1)
with non-trivial h(x) - this is the subject of [7].

The biggest ‘leap of faith’ our method takes is the assumption that insights ob-
tained from the asymptotic analysis of the quasi-steady spectrum can be extrapolated
to capture the nonlinear, fast, PDE dynamics of an N -pulse configuration crossing
through ∂MN and jumping from MN to MM (with M < N). Our analysis showed
that ∂MN corresponds to ‘quasi-steady bifurcations’ – i.e. bifurcations induced by the
intrinsic dynamics of the evolving multi-pulse pattern – of several types: saddle node
bifurcations for small values of m (in (3.1.1)) and Hopf bifurcations and decoupled
eigenfunctions for large values of m. In fact, our linear analysis only yielded informa-
tion on the appearance of quasi-steady Hopf destabilisations; since all observations of
Hopf bifurcations in singularly perturbed reaction-diffusion systems of slowly linear
type are subcritical – see [174] and the references therein – we have assumed that
all quasi-steady Hopf bifurcations are subcritical. Numerical simulations indicated
the correctness of these assumptions in a wide variety of situations; the linear desta-
bilisation arguments predict the fast nonlinear jump mechanisms surprisingly well.
Moreover, we found that approximating the stability problem as a decoupled stability
problem works convincingly well, even when the leading order asymptotic analysis
implied that eigenfunctions are coupled: this a priori oversimplified approximation
typically correctly predicts which pulses disappear – i.e. towards which manifold MM

an N -pulse configuration jumps as it crosses through ∂MN ; it does underestimate
the stability slightly, leading to pulses that disappear/jump too early. To obtain a
fundamental understanding of the ‘desertification dynamics’ of N -pulse patterns in
singularly perturbed reaction-diffusion systems – i.e. the dynamics of pulse patterns
jumping from manifolds Mk to Mℓ (with 0 ≤ ℓ < k ≤ N) – it is crucial to develop an-
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alytical insights in the relative locations of the invariant manifolds Mn, n = 1, 2, ..., N
within function space, and the nature of the PDE flow between these manifolds. In
general, this is a formidable challenge, but such a multi-scale analysis is expected to
be possible in specially constructed settings.

Finally, we found that there is a striking difference between the dynamics of regu-
lar and irregular patterns. We found that irregular configurations always destabilise
gradually – with pulses disappearing one by one – whereas for regular configuration
either half or all pulses disappear ‘catastrophically’ when ∂MN is crossed10. On the
other hand, we also deduced that regularly spaced N -pulse configurations are more sta-
ble than any other N -pulse configuration – in fact, irregular patterns typically evolve
toward regularity on domains with periodic boundary (under specified conditions on
h(x) and the nature of the domain and associated boundary conditions). Thus, in
situations in which parameters change (slowly) in time – as a(t) in (3.1.1) – there is
a competition between two ‘desertification scenarios’: the gradual one for ‘sufficiently
irregular’ patterns in which the pattern step by step jumps down from Mk to Mk−1,
and the catastrophic one in which a ‘sufficiently regular’ N -pulse pattern loses half
or all pulses. The relative time scales of the variation of a(t) versus the intrinsic rate
of change of the N -pulse pattern as it evolves over MN is a decisive ingredient that
shapes this competition. A more subtle, but at least as important, ingredient is the –
at present not understood – (slow) dynamics of the quasi-steady eigenfunctions as they
evolve from the irregular setting of being localized around one pulse location to the
global Floquet-type eigenfunctions – see [39] and the references therein – associated
with regular spatially periodic patterns.
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10for small m there always is a period doubling; for large m both a period doubling and a full
collapse can happen.
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3.A The movement of water on a varying terrain

Appendices

3.A The movement of water on a varying terrain
Previous versions of the extended Klausmeier model only considered terrains with
a constant slope. The model studied in this article, however, is suitable for more
generic terrains by the addition of the term hxxu. In this appendix, we explain how
this new term originates from a shallow water approximation. Here, we denote the
concentration/height of water by U(t, x, y), the height of the terrain by H(x, y) and
the speed of water by v⃗(t, x, y, z). By the principles of mass conservation, a physical
model should obey the continuity equation,

dU

dt
(t, x⃗) = −∇⃗ · j⃗(t, x⃗) + q(t, x⃗), (3.A.1)

where j⃗(t, x⃗) denotes the flux (of water) and q includes all the sources and sinks of the
model. In this situation, the flux constitutes of diffusion j⃗diff = −D∇⃗U and advection
j⃗adv = v⃗U . Since we want to understand the effect of a terrain, we focus only on the
effect of advection. To describe the flow due to advection, we need to determine the
velocity v⃗ of the water. The starting point for this are the momentum equations,

ρ
Dv⃗

Dt
= −∇⃗p+ f⃗gravity + f⃗friction. (3.A.2)

Here, ρ is the density of water, p is the pressure, f⃗ denotes the forces that act on the
water and D

Dt is the material derivative. In this formulation friction is included as a
force. Because the height of water (i.e. U) is small in semi-arid climates, a shallow
water approximation can be made. Thus we assume that there is no movement in the
z-direction, and that v⃗ and ρ are constant as function of z. In addition, we assume
that the pressure p only depends on the z-coordinate, and that ρ does not depend on
x or y. Therefore the x- and y-momentum equations simplify to

ρ
Dv⃗

Dt
= f⃗gravity + f⃗friction. (3.A.3)

For the force due to friction we assume Rayleigh friction, i.e. f⃗friction = −Kv⃗, where
K is a (Rayleigh) constant. The force due to gravity comes into play because of the
sloped terrain. Ultimately, the computation of the contribution of f⃗gravity boils down
to the ‘mass on incline’ problem (see Figure 3.24). In the continuum limit, this leads
to f⃗gravity = −ρg tan(θ⃗) = −ρg∇⃗Z, where Z is the relevant height. There are several
choices possible for this height. In this article we have chosen Z = H, the height of
the terrain. Another often used choice is Z = H + U , the height of the terrain plus
the height of the water; see [67].

As a final step, we neglect fluid accelerations as a further approximation (i.e. Dv⃗
Dt =

0). Combining everything yields the velocity

v⃗ = −ρg
K

∇⃗Z = −C∇⃗Z, (3.A.4)

where C = ρg
K is a constant. Therefore the advective flux is j⃗adv = −CU∇⃗Z. Substi-

tution in the continuity equation gives
dU

dt
= C∇⃗ ·

(
U∇⃗Z

)
(3.A.5)
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Figure 3.24 – Sketch of the classic ‘mass on incline’ problem (a). A mass M is posi-
tioned on a slope. Gravity has its effect on this mass and – due to the normal force – the
box starts to move downwards. For water, the mass M can be replaced by the density
ρ. A sketch of the relevant forces and angles of the problem are given in (b).

where we have suppressed the diffusive and reaction terms for clarity of presentation.
The choice, Z = H, which we have made throughout this article, leads to

dU

dt
= C∇⃗ ·

(
U∇⃗H

)
= C∇⃗U · ∇⃗H + CU∆H. (3.A.6)

The alternative choice, Z = H + U , leads to the expression that is used in e.g. [67],

dU

dt
= C∇⃗ ·

(
U∇⃗(H + U)

)
=
C

2
∆U2 + CU∆H + C∇⃗U · ∇⃗Z (3.A.7)

3.B Fixed Points of the pulse-location ODE - Proofs

In this appendix we give proofs of the claims in section 3.2.3 about the fixed points
of the pulse-location ODE (3.2.22). Crucial in all these proofs is the fact that Ũx(P

±
k )

is strictly increasing/decreasing as function of the distance to the neighbouring pulse.
For notational simplicity we define the functions R± as

R+(k) :=

(
H

2
−

√
H2 + 4

2

eHk/2 − cosh
(√
H2 + 4k/2

)
sinh

(√
H2 + 4k/2

) )
,

R−(k) :=

(
H

2
+

√
H2 + 4

2

e−Hk/2 − cosh
(√
H2 + 4k/2

)
sinh

(√
H2 + 4k/2

) )
.

The pulse-location ODE (3.2.22) can then be written as

dPj

dt
=

Da2

m
√
m

1

6

[
R+(∆Pj)

2 −R−(∆Pj−1)
2
]
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3.B.1 Properties of R±

Before we give the proofs for the existence of fixed points, we first need to study the
functions R±. First of all, straightforward limit computations reveal that

lim
k↓0

R±(k) = 0, lim
k→∞

R±(k) =
H ±

√
H2 + 4

2
.

The derivative of R± is given by

R′±(k) = ∓
√
H2 + 4

2

S±(k)

sinh(
√
H2 + 4k/2)2

,

where

S±(k) =

[
±H

2
e±Hk/2 −

√
H2 + 4

2
sinh(

√
H2 + 4)

]
sinh(

√
H2 + 4k/2)

−
√
H2 + 4

2
cosh(

√
H2 + 4k/2)

[
e±Hk/2 − cosh(

√
H2 + 4k/2)

]
=

√
H2 + 4

2
+ e±Hk/2

[
±H

2
sinh(

√
H2 + 4k/2)−

√
H2 + 4

2
cosh(

√
H2 + 4k/2)

]
=

√
H2 + 4

2
+

±H −
√
H2 + 4

4
e(±H+

√
H2+4)k/2 +

∓H −
√
H2 + 4

4
e(±H−

√
H2+4)k/2.

That means that R′±(k) has a zero at k only when S±(k) = 0. With straightforward
limit computations we can check that S±(0) = 0 and that limk→∞ |S±(k)| = ∞. Now,
the derivative of S± is easy to compute:

S′±(k) =
(±H −

√
H2 + 4)(±H +

√
H2 + 4)

8
e(±H+

√
H2+4)k/2

+
(∓H −

√
H2 + 4)(±H −

√
H2 + 4)

8
e(±H−

√
H2+4)k/2

= − 1

2
e(±H+

√
H2+4)k/2 +

1

2
e(±H−

√
H2+4)k/2

= − e±Hk/2 sinh(
√
H2 + 4k/2).

Hence S′±(k) = 0 if and only if k = 0. Thus S+ and S− are strictly decreasing in
k. Since S±(0) = 0 this means that S± has the same sign for all k > 0. Therefore
R′+(k) > 0 and R′−(k) < 0 for all k > 0.

Finally we also need to know which function increases faster in absolute value. For
that we can suffice to determine the sign of R′+ + R′−, since R+ is increasing from 0
and R− is decreasing from 0. That means we need to look at the sign of −(S+ − S−).
A direct computation reveals

− [S+(k)− S−(k)] = −H cosh
(
Hk

2

)
sinh

(√
H2 + 4k

2

)

+
√
H2 + 4 sinh

(
Hk

2

)
cosh

(√
H2 + 4k

2

)
. (3.B.1)

Taking the derivative of this expression gives

S′−(k)− S′+(k) = 2 sinh(Hk/2) sinh(
√
H2 + 4k/2)
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Unless H = 0 this expression is never zero for any k > 0. Combined with the fact
that R′+(0) + R′−(0) = 0 this reveals that R′+ + R′− does not change sign. We might
now compute the limit for k → ∞ to determine which grows faster. Taking the limit
of (3.B.1) as k → ∞ indicates sgn(R′++R′−) = sgn(H). Thus if H > 0 we see that R+

increases faster and if H < 0 R− increases faster in size; when H = 0 both increase at
the same rate.

Summarizing everything from this section, we do know the following:

• R+(k) is strictly increasing from 0 to H+
√
H2+4
2 and R−(k) is strictly decreasing

from 0 to H−
√
H2+4
2 .

• If H > 0 |R+(k)| increases faster than |R−(k)|; if H < 0 it is |R−(k)| that
increases faster; if H = 0 they increase at the same rate.

3.B.2 Unbounded domains
Theorem 3.B.1. On unbounded domains the pulse-location ODE (3.2.22) does not
have any fixed points, unless N = 1 and H = 0.

Proof. Without loss of generality we assume H ≥ 0.
To have a fixed point, we need to have dPj

dt = 0 for all j ∈ {1, . . . , N}. In particular
we need dPN

dt = 0. That is, R+(∆PN )2 = R−(∆PN−1)
2. Since ∆PN → ∞ on

unbounded domains we know that R+(∆PN )2 =
(

H+
√
H2+4
2

)2
. However, we know

that R−(k)2 ∈
[
0,
(

H−
√
H2+4
2

)2]
and that this function is strictly increasing. To have

equality we therefore need H = 0 and ∆PN−1 → ∞. That is only possible if we only
have one pulse, i.e. N = 1.

Theorem 3.B.2. On unbounded domains the pulse-location ODE (3.2.22) does not
have a uniformly traveling solution in which all pulses move with the same speed, unless
N = 1. The distance between the first and last pulse is always increasing.

Proof. The situation in which N = 1 is trivially true. So we restrict ourselves to the
cases N > 1.

Now, if a solution with all pulses moving with the same speed would exist, then
the distance between the first and last pulse needs to be constant, i.e. the following
expression needs to hold true

0 =
d

dt
(PN − P1) = R+(∆PN )2 +R−(∆P0)

2 −R+(∆P1)
2 −R−(∆PN−1)

2

On unbounded domains we have ∆PN → ∞ and ∆P0 → ∞. Thus both R+(∆PN )2

and R−(∆P0)
2 take on their maximum values. Since R±(k)2 are strictly increasing,

the equality above can only hold true if ∆P1 → ∞ and ∆PN−1 → ∞. That is not
possible when N > 1. In particular we see that d

dt (PN − P1) > 0.

3.B.3 Bounded domains with periodic boundaries
Theorem 3.B.3. On bounded domains with periodic boundaries, the pulse-location
ODE (3.2.22) does not have any fixed points, unless H = 0.
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Proof. In the situation where H = 0 one can easily verify that a continuous family of
pulse solutions exist by setting ∆Pj = L/N for all j.

For all H ̸= 0 we see that if such a fixed point exists, then the sum of the movement
of all pulses needs to be zero, i.e. it is required that the following equality holds true

0 =

N∑
j=1

dPj

dt
=

N∑
j=1

[
R+(∆Pj)

2 −R−(∆Pj)
2
]
.

However, because the terms R+(k)
2 and R−(k)

2 increase with a different rate, the
terms R+(∆Pj)

2 − R−(∆Pj)
2 are non-zero and carry the same sign for all j. Hence

the equality does not hold and therefore the ODE does not have a fixed point.

Theorem 3.B.4. On bounded domains with periodic boundaries the pulse-location
ODE (3.2.22) has a continuous family of uniformly traveling solutions in which all
pulses move with the same speed. The distance between pulses for those solutions is
always given by ∆Pj = L/N for all j.

Proof. In the situation where H = 0, we know that
∑N

j=1
dPj

dt = 0. Therefore each
pulse needs to be stationary. That is, R+(∆Pj)

2 = R−(∆Pj−1)
2. Because R+(k)

2

and R−(k)
2 increase at the same rate (when H = 0) this means that ∆Pj = ∆Pj−1

for all j. As we need that
∑N

j=1 ∆Pj = N this indicates that ∆Pj = L/N .
Without loss of generality we now assume H > 0. To find a solution that has the

desired property we need dPj

dt = dPk

dt for all j, k. In particular we thus need to have

R+(∆Pj)
2 −R−(∆Pj−1)

2 = R+(∆Pj+1)
2 −R−(∆Pj)

2 for all j.

Since R+(k)
2 and R−(k)

2 are strictly increasing, we can deduce the following: if
∆Pj > ∆Pj−1 then we also need ∆Pj+1 > ∆Pj . Repeating this argument reveals
∆P1 > ∆PN > . . . > ∆P1. This obviously cannot hold true and therefore a solution
cannot have ∆Pj > ∆Pj−1 for any pulse j. Similarly we can exclude the possibility
that ∆Pj < ∆Pj−1 for any j.

Therefore the only possibility left indicates that ∆Pj = ∆Pk for all j, k. Since∑N
j=1 ∆Pj = N that means that ∆Pj = L/N . It is straightforward to check that this

indeed gives a solution with the desired property.

Theorem 3.B.5. On bounded domains with periodic boundary conditions, the contin-
uous family of regularly spaced solutions, with ∆Pj = L/N , is stable under the flow of
the ODE.

Proof. By Theorem 3.B.4 the regularly spaced solutions are fixed points of the related
ODE

d

dt
∆Pj =

dPj+1

dt
− dPj

dt
. (3.B.2)

We denote the fixed points of this equation by ∆P ∗j and we linearise around them by
setting ∆Pj = ∆P ∗j + rj , where

∑N
j=1 rj = 0 because of the bounded domain. We

then obtain

drj
dt

=
Da2

m
√
m

1

3

[
R+(∆P

∗
j+1)R

′
+(∆P

∗
j+1)rj+1 +R−(∆P

∗
j−1)R

′
−(∆P

∗
j−1)rj−1

−
(
R+(∆P

∗
j )R

′
+(∆P

∗
j ) +R−(∆P

∗
j )R

′
−(∆P

∗
j )
)
rj

]
.
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Because ∆P ∗j = L/N for all j ∈ {1, . . . , N}, we may define

α := R+(∆P
∗
j )R

′
+(∆P

∗
j ) β := R−(∆P

∗
j )R

′
−(∆P

∗
j ) C :=

Da2

m
√
m

1

3
.

Because R+ is positive and increasing, and R− is negative and decreasing, we know
that α > 0 and β > 0.

We then define r⃗ := (r1, . . . , rN )
T and rewrite the linearised equation as

d

dt
r⃗ = CMr⃗,

where

M :=



−(α+ β) α 0 · · · 0 β
β −(α+ β) α 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

0
. . . . . . . . . α

α 0 · · · 0 β −(α+ β)


The matrix M , with the additional constraint

∑N
j=1 rj = 0 is negative definite, as a

straight-forward computation yields (here r0 = rN and rN+1 = r1)

f(r⃗) := r⃗TMr⃗ = −(α+ β)

N∑
j=1

r2j + α

N∑
j=1

rjrj+1 + β

N∑
j=1

rjrj−1

= −α+ β

2

N∑
j=1

(rj − rj+1)
2

Thus f(r⃗) < 0 unless rj = rj+1 for all j – which is excluded by the condition
∑N

j=1 rj =
0. Thus the matrix associated with the linearisation is negative definite and therefore
possesses only negative eigenvalues, proving that the regularly spaced configuration
are stable under the flow of the ODE.

Theorem 3.B.6. On bounded domains with periodic boundary conditions, the contin-
uous family of regularly spaced solutions, with ∆Pj = L/N , is globally exponentially
stable under the flow of the ODE.

Proof. Inspired by [132, Corollary 6] we show that the pulse-distance ODE (3.B.2) has
a Lyapunov function given by L(∆P1, . . . ,∆PN ) = maxj∈{1,...,N}∆Pj . To that end,
we prove that dL

dt ≤ 0. For that, let k ∈ {1, . . . , N} be such that L(∆P1, . . . ,∆PN ) =
∆Pk. Now,

d∆Pk

dt
=

Da2

m
√
m

1

6

{[
R+(∆Pk+1)

2 +R−(∆Pk−1)
2
]
−
[
R+(∆Pk)

2 +R−(∆Pk)
2
]}
.

Since, per definition, ∆Pk = maxj∈{1,...,N}∆Pj ≥ ∆Pk−1,∆Pk+1, by monotonicity
of R± it follows that R+(∆Pk+1)

2 + R−(∆Pk−1)
2 ≤ R+(∆Pk)

2 + R−(∆Pk)
2. Hence

d∆Pk

dt ≤ 0, thus proving dL
dt ≤ 0. So L is a (weak) Lyapunov function. By LaSalle’s

invariance principle and theorem 3.B.5 this shows that regularly spaced configurations
are globally exponentially stable.
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3.B.4 Bounded domains with Neumann boundary conditions

Theorem 3.B.7. On bounded domains with Neumann boundary conditions the pulse-
location ODE (3.2.22) does always have precisely one fixed point.

Proof. Without loss of generality we assume H ≥ 0. For all H ≥ 0 we have R+(k)
2 ≥

R−(k)
2 for all k > 0. Thus for all x ≥ 0 there is a y = y(x) ≥ 0 such that R+(y(x))

2 =
R−(x)

2. Since R±(k)2 is strictly increasing, we know that y is strictly increasing in x
as well.

Now, to have a fixed point P ∗1 , . . . , P ∗N we need

R−(∆Pj−1)
2 = R+(∆Pj)

2 for all j. (3.B.3)

Because of our reasoning above there are strictly increasing functions yj such that

R−(∆Pj−1)
2 = R+(yj(∆Pj−1))

2 for all j. (3.B.4)

So we should choose P1, . . . , PN such that ∆Pj = yj(∆Pj−1). That is,

∆Pj = (yj ◦ . . . ◦ y1) (∆P0). (3.B.5)

In particular we have ∆PN = (yN ◦ . . . ◦ y1) (∆P0). Because ∆P0 is strictly increasing
in P1, we know that this expression for ∆PN is strictly increasing in P1.

At the same time our solution should fit in the domain and therefore we know that
∆PN is strictly decreasing in

PN = P1 + y1(∆P0) + . . .+ (yN ◦ . . . y1) (∆P0).

Therefore this expression for ∆PN is also strictly decreasing in P1.
So we now have two descriptions of ∆PN which should be equal. One of these

is strictly increasing in P1 starting from 0 and the other is strictly decreasing in P1

starting from L. Therefore there is precisely one location P1 = P ∗1 that leads to
equality of these descriptions. The other locations follow from equation (3.B.5). This
leads to a unique fixed point of (3.2.22).

Theorem 3.B.8. On bounded domains with Neumann boundary conditions, the unique
fixed point solution of (3.2.22) is stable under the flow of the ODE.

Proof. We denote the fixed point as P ∗1 , . . . , P ∗N . Then we linearise by setting Pj =
P ∗j + rj , which results in

d

dt
r1 =

Da2

m
√
m

1

3
[α1r2 − (αj + βj)r1 − βjγ1r1] ;

d

dt
rj =

Da2

m
√
m

1

3
[αjrj+1 − (αj + βj)rj + βjrj−1] ; (j = 2, . . . , N1)

d

dt
rN =

Da2

m
√
m

1

3
[−αNγNrN − (αN + βN )rN + βNrN−1] ,
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where
αj := R+(P

∗
j+1 − P ∗j )R

′
+(P

∗
j+1 − P ∗j )

βj := R−(P
∗
j − P ∗j−1)R

′
−(P

∗
j − P ∗j−1)

C :=
Da2

m
√
m

1

3

γ1 := − d

dP1
P0(P

∗
1 )

γN := − d

dPN
PN+1(P

∗
N )

Note that the function R+ is positive and increasing, R− is negative and decreasing,
P0 is decreasing and PN+1 is decreasing. Therefore αj > 0, βj > 0, γ1 > 0 and γN > 0.
We then define r⃗ := (r1, . . . , rN )

T and rewrite the linearised equation as
d

dt
r⃗ = CMr⃗,

where

M =



−(α1 + β1)− γ1β1 α1 · · · · · · 0

β2 −(α2 + β2)
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

... βN−1 −(αN−1 + βN−1) αN−1

0 · · · · · · βN −(αN + βN )− γNαN


Because of the structure of M , the Gerschgorin circle theorem [66] immediately in-
dicates that all eigenvalues lie in a Gerschgorin disc. Because M is weak diagonal
dominant, the only non-negative eigenvalue that is not yet excluded is λ = 0. The
rest of this proof consists of proving that λ = 0 cannot be an eigenvalue.

If λ = 0 would be an eigenvalue, there is an eigenvector x⃗ = (x1, . . . , xN )
T ̸= 0

such that Mx⃗ = 0. This vector needs to satisfy
−(α1 + β1 + γ1β1)x1 + α1x2 = 0 (3.B.6)

βjxj−1 − (αj + βj)xj + αjxj+1 = 0 (j = 2, . . . , N1) (3.B.7)
βNxN−1 − (αN + βN + γNαN )xN = 0 (3.B.8)

From the first N − 1 of these expressions one can formulate each xj in terms of x1.
We find xj = δjx1, with

δj+1 = δj +
βj
αj

(δj − δj−1), δ1 = 1, δ2 = 1 +
β1
α1

(1 + γ1) > δ1.

One might easily verify that δj > δj−1 for all j.
Finally, if x⃗ is an eigenvector it should also satisfy the N -th expression (3.B.8).

Substitution of the found expressions results in the condition
[βN (δN−1 − δN )− (1 + γN )αNδN ] = 0.

Because δN > δN−1 the left-hand side of this equation is always negative. Therefore
this condition can never be fulfilled and hence λ = 0 cannot be an eigenvalue of M .
Thus all eigenvalues of M need to be negative and the fixed point is thus stable under
the flow of the ODE.
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4| Pulse solutions for an extended Klausmeier
model with spatially varying coefficients

Motivated by its application in ecology, we consider an extended Klausmeier
model, a singularly perturbed reaction-advection-diffusion equation with spa-
tially varying coefficients. We rigorously establish existence of stationary pulse
solutions by blending techniques from geometric singular perturbation theory
with bounds derived from the theory of exponential dichotomies. Moreover, the
spectral stability of these solutions is determined, using similar methods. It is
found that, due to the break-down of translation invariance, the presence of spa-
tially varying terms can stabilize or destabilize a pulse solution. In particular,
this leads to the discovery of a pitchfork bifurcation and existence of stationary
multi-pulse solutions.

4.1 Introduction
Since Alan Turing’s revolutionary insight that patterns can emerge spontaneously
in systems with multiple species if these diffuse at different rates [165], systems of
reaction-diffusion equations have served as prototypical pattern forming models. Sci-
entists have been using these reaction-diffusion models successfully to describe for
instance animal markings [98], embryo development [115] and the faceted eye of
Drosophila [113]. Special interest has been given to localized solutions (e.g. pulses,
fronts), that arise when the diffusivity of species involved is very different. The pro-
totypical (two-component) model (in one spatial dimension) is a singularly perturbed
equation of the (scaled) form{

∂tU = ∂2xU + H1 (x, u, ux, v, vx; ε̃) ,
∂tV = ε̃2∂2xV + H2 (x, u, ux, v, vx; ε̃) ,

(4.1.1)

where 0 < ε̃ ≪ 1 is a measure for the ratio of diffusion constants, and H1, H2 are
sufficiently smooth functions. Because of the singular perturbed nature of (4.1.1),
it is possible to establish existence and determine (linear) stability of localized pat-
terns in these models. In the past, this has been done successfully for the Gray-Scott
model [28, 46, 47, 49, 99, 160], the Gierer-Meinhardt model [48, 49, 160, 175], and
in several other settings [39, 56, 120, 141, 178]. However, these studies are usually
limited to models with constant coefficients. Some research has focused on the intro-
duction of localized spatial inhomogeneities [55, 122, 123, 171, 183, 184]; also (often
formal) research has been done on reaction-diffusion equations with (less restricted)
spatially varying coefficients [3, 13, 15, 16, 179, 180]. In this article, we aim to expand
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the knowledge of such systems, by studying a reaction-diffusion system with fairly
generic spatially varying coefficients rigorously; motivated by its use in ecology (see
Remark 4.1.2), we consider the following extended Klausmeier model with spatially
varying coefficients [8, 95]:{

∂tU = ∂2xU +f(x)∂xU + g(x)U + a− U − UV 2 ,

∂tV = D2∂2xV − mV + UV 2 ,
(4.1.2)

with x ∈ R, t ≥ 0, U = U(x, t), V = V (x, t) ∈ R, parameters D, a,m > 0 and functions
f, g ∈ C1

b (R). Certain conditions are imposed on the parameters and functions f and
g – these will be explained in section 4.1.1.

Remark 4.1.1. The model (4.1.2) can be brought into the form of (4.1.1) by a series
of scalings – see section 4.2 and [49].

Remark 4.1.2 (Application of the extended Klausmeier model). This system of equa-
tions is used as a model in ecology to describe the dynamics of vegetation (U) and water
(V ). The extended Klausmeier model (4.1.2) takes into account the amount of rainfall
(a > 0) and mortality rate of the vegetation (m > 0) and goes beyond its classical
version by modeling a smooth, spatially varying terrain h = h(x) which then enters
(4.1.2) as f(x) = h′(x), g(x) = h′′(x) (see [8]). Variants of the Klausmeier model have
been studied in various articles ranging from ecological studies [9, 95] to mathematical
analysis [8, 151, 153, 158]. The focus of all these studies are vegetation patterns,
which have been found to play a crucial role in the process of desertification. A start-
ing point for the analysis of more complicated patterns is a thorough understanding
of their building blocks, namely, localized solutions. The present paper is motivated
by observations – both in numerical simulations and in real ecosystems [8, 9] – of the
impact of nontrivial topographies on the dynamics of localized vegetation patterns.

The focus of this article is to analyze existence, stability and (some) bifurcations
of stationary pulse solutions to (4.1.2). The presence of spatially varying coefficients,
however, alters the approach that usually is taken in the case of constant coefficients
models. For one, with spatially constant coefficients, (4.1.2) possesses a uniform sta-
tionary state, with V ≡ 0, to which pulse solutions converge for x → ±∞. In the
case of spatially varying coefficients, however, typically such uniform stationary state
does not exist; instead, a bounded solution (u, v) = (ub, 0) exists and pulse solutions
converge to this bounded solution for x → ±∞ – see Figure 4.1. Moreover, standard
proofs using geometric singular perturbation theory typically rely on the availability
of closed form expressions for orbits of subsystems of (4.1.2) – see below. These are
no longer available in case of generic spatially varying coefficients, and only bounds
can be found. Indeed, the core contribution of the present work is to overcome these
difficulties, which we do by blending geometric singular perturbation theory [62] with
the theory of exponential dichotomies [31] in a new way.

In this article, we initially follow the ‘standard’ approach of geometric singular
perturbation theory. That is, we introduce a small parameter ε := a

m – see assumption
(A1) in section 4.1.1– and construct a stationary pulse solution to (4.1.2) in the limit
ε = 0, which present itself as a homoclinic orbit in the related stationary fast-slow
ODE system – in case of spatially varying coefficients it is homoclinic to the bounded
solution. For this construction, the full system is split into a fast subsystem, and a
(super)slow subsystem on a so-called slow manifold M that consists of fixed points of
the fast subsystem. We establish fast connections to and from M that take off from
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(c) h(x) = 0.1 cos(2x)

Figure 4.1 – Numerical simulation resulting in a stationary pulse solution for (4.1.2)
with f(x) = h′(x), g(x) = h′′(x), where h(x) = 0 (a), h(x) = exp(−x2/2) (b) and
h(x) = 0.1 cos(2x) (c). U, V components are blue and red respectively, while the orange
curve depicts the bounded solution ub to which the U -component converges for |x| → ∞.
Parameters used are a = 0.5, m = 0.45 and D = 0.01.

submanifold To ⊂ M and touch down on submanifold Td ⊂ M. On M, we construct
stable and unstable submanifolds W s/u(ub) ⊂ M that consists of points on M that
converge to the bounded solution for x → ∞ respectively x → −∞. Intersections
between these unstable/stable manifolds and take-off/touch-down submanifolds (and
a symmetry assumption) then establish the existence of pulse solutions to (4.1.2).
Finally, persistence of these pulse solutions for ε > 0 is guaranteed by geometric
singular perturbation theory [62].

Specifically, stationary solutions (U(x, t), V (x, t)) = (ũ(x), ṽ(x)) of (4.1.2) fulfill
the system of ODEs{

0 = ũxx +f(x)ũx + g(x)ũ+ a− ũ− ũṽ2 ,

0 = D2

m ṽxx −ṽ + 1
m ũṽ

2 .
(4.1.3)

After a sequence of (re)scalings, it can be seen that the associated fast subsystem is not
affected by the spatially varying terms and can be studied using standard methods.
However, the slow subsystem, on the slow manifold M, is affected by the spatially
varying terms. This subsystem is given (when rescaling û = aũ) by{

∂xû = p̂,
∂xp̂ = −f(x)p̂− g(x)û− 1 + û.

(4.1.4)

For f and g constant, (4.1.4) can be solved explicitly and the stable and unstable man-
ifolds W s,u(ub) are known explicitly. In case of (spatially) varying f and g, typically
no closed form solutions are available; however, when these varying coefficients are
sufficiently small – specifically, when δ := supx∈R

√
f(x)2 + g(x)2 < 1

4 (so δ can be
O(1) with respect to ε); see section 4.2.3 – the dynamics of (4.1.4) can be related to
the constant coefficient case f, g ≡ 0 using the theory of exponential dichotomies.

In particular, the saddle structure – present for f, g ≡ 0 – persists as exponential
dichotomy. Therefore, (4.1.4) possesses a 1D family of solutions that converge to
the (unique) bounded solution to (4.1.4) for x → ∞ and a 1D family of solutions
that converge to the bounded solution for x → −∞. These families of solutions
essentially form the stable and unstable manifolds W s,u(ub). Due to the linear nature
of (4.1.4), these (un)stable manifolds are made up of straight lines, i.e. W s,u(ub) =
∪x∈R(x, l

s,u(x)) where ls,u(x) describes a straight line in R2. An important difference
now arises between the cases of constant and varying coefficients: when f, g ≡ 0, the
lines ls,u(x) do not depend on x; when f and g are spatially varying, they do. Hence,
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Figure 4.2 – Sketches of the bounded solution (blue) and its stable (green) respectively
unstable (red) manifolds in case of constant coefficients (left) and varying coefficients
(center and right).

W s,u(ub) appears wiggly in case of varying coefficients – see Figure 4.2. The theory
of exponential dichotomies enables us to bound the variation of the lines ls,u(x); if δ
is small enough (i.e. δ < δc(a,m,D), where δc ≤ 1/4 is O(1) with respect to ε), these
bounds are strict enough that a non-empty intersection (0, lu(0))∩ To is guaranteed –
thus establishing existence of a (symmetric) pulse solution to (4.1.2). See Figure 4.3
for a sketch.

Next, the spectral stability of the thus created pulse solutions is studied. Using
similar bounds as in the existence problem, it is shown that eigenvalues are δ-close
to their counterparts in case of constant coefficients – see Figure 4.4. That is, under
several conditions, typical for these systems, the ‘large’ eigenvalues can be bounded
to the stable half-plane {λ ∈ C : Reλ < 0}. For the ‘small’ eigenvalue – located close
to the origin – it is more subtle. In case of f, g ≡ 0 this small eigenvalue is located
precisely at the origin due to the translation invariance of (4.1.2). The introduction of
spatially varying coefficients to the system breaks this invariance and as a result the
small eigenvalue moves to the stable or the unstable half-plane.

Tracking of this eigenvalue indicates that it can, indeed, move to either half-plane,
depending on the form of the functions f and g. In particular, when taking f = h′,
g = h′′, the location of the small eigenvalue is related to the curvature g = h′′ of
h: when the curvature is weak, the pulse solution is stable if g(0) = h′′(0) < 0 and
unstable if g(0) = h′′(0) > 0; for strong curvature, this is flipped, due to a pitchfork
bifurcation.

Finally, the break-down of the translation invariance in (4.1.2) has another novel
effect. In case of constant coefficients, stationary multi-pulse solutions – solutions
with multiple fast excursions – do not exist, due to the presence of the translation
invariance. If this invariance is broken, they can exist; the introduction of functions
f and g now allows for these stationary multi-pulse solutions (under some conditions
on f and g) and their existence can be established (although we refrain from going in
the details).

The set-up for the rest of this paper is as follows. In section 4.2, we establish
existence of stationary pulse solutions to (4.1.2); here we first consider the classical
case f, g ≡ 0 to illustrate the typical arguments used. Subsequently, we consider the
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p̃

ũ

(a) Constant coefficient case

p̃

ũ

(b) Strong enough bounds

p̃

ũ

(c) Too weak bounds

Figure 4.3 – Sketches of a cross section of M that illustrate the heart of the existence
proof. In green the takeoff and touchdown curves are shown, the solid blue lines indicate
(possible) ls/u(0), the dashed blue lines ls/u(0) for the constant coefficient case f = 0, g =
0. The shaded blue area indicates all possible locations of ls/u(0); the shaded red region
the possible locations of the bounded solution. The existence proof works when bounds
on ub and ls/u(0) are strong enough such that lu(0) necessarily intersects with To(0) –
this happens when all straight lines that start from the red region and stay within the
blue region intersect the green curves. If bounds are strong enough this is the case –
as illustrated in (b) – but when bounds are too weak this is not the case and existence
is not guaranteed by this method – as illustrated in (c). In (a) the situation for the
constant coefficient case is shown.

-1 1

-1

-0.5

0.5

1

Reλ

Imλ

Figure 4.4 – Sketch of the spectral bounds obtained in this paper. The shaded areas
indicate the possible locations of spectra in the case of varying coefficients. The solid
lines and crosses indicate the location of the essential and point spectra in the case of
constant coefficients: the essential spectrum (orange), the ‘large’ eigenvalues (red) and
the ‘small’ eigenvalue (green).
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Pulse solutions for an extended Klausmeier model with spatially varying coefficients

case of generic (bounded) f and g. Then, using the theory of exponential dichotomies,
both cases are related to each other, resulting in bounds for the generic case that
allow us to prove existence. In section 4.3 we study the spectral stability of found
pulse solutions, again by relating the generic case to the constant coefficient case of
f, g ≡ 0. Then, in section 4.4 we consider the small eigenvalues more in-depth using
formal and numerical techniques, focusing on the possible occurrence of bifurcations;
we also present stationary multi-pulse solutions. We conclude with a discussion of the
results in section 4.5.

4.1.1 Assumptions

The analysis presented in this paper does not hold for all (magnitudes of) parameter
values, and all functions f and g. Hence, we will make several assumptions throughout
the manuscript on the relative sizes of the model parameters. Some of these are essen-
tial, while some serve to simplify exposition; here and throughout the text remarks
are made about violations of these.

Since this work builds upon decades of studies on Klausmeier/Gray-Scott type
models, i.e. (4.1.2), we first list the typical assumptions on the relative sizes of the
parameters D, a and m [8, 28, 46, 47, 148]; we also denote in brackets the type of
bifurcation that occurs when these assumptions are violated with references for more
information about these bifurcations.

(A1) : ε :=
a

m
≪ 1 [Pulse splitting bifurcation, [46, 51, 101]] (4.1.5)

(A2) : µ :=
Dm

√
m

a2
≤ O(1) [Saddle-node bifurcation, [8, 46, 51, 100]] (4.1.6)

(A3) : τ :=
Da2

m
√
m

≤ O(1) [Traveling wave bifurcation, [46]] (4.1.7)

(A4) : ν :=
m2D

a2
≤ O(1) [Hopf bifurcation, [8, 28, 47, 148]] (4.1.8)

where O(1) is to be interpreted with respect to ε = a
m . We thus explicitly assume

µ, τ and ν are no larger than O(1). Throughout the manuscript we will find O(1)
critical values µ∗, τ∗ and ν∗ (µ∗ in Theorem 4.2.19, τ∗ in Theorem 4.3.5, and ν∗ in
Theorem4.3.2). In the classical studies of similar systems ε := a

m is used as the primary
singular perturbation parameters – as will be done in this paper. Then, assumptions
(A1)-(A3) can be used to show existence of stationary pulse solutions if µ < µ∗ and
τ < τ∗, and together with assumption (A4) it can be established that these solutions
are spectrally stable if additionally ν < ν∗ [8, 28, 148]. See also [148] for a more
extended introduction to the above scalings, and a discussion of the relation between
the present scaling and (equivalent) alternative scalings in the literature.

The novelty of current work is the inclusion of non-trivial heterogeneities to this
already existing framework. To facilitate that, in addition to the classical assumptions
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4.2 Analysis of stationary pulse solutions

(A1)-(A4), we also need the following assumptions on functions f and g.

(A5) : f(−x) = −f(x) , g(−x) = g(x) , for all x ∈ R; (4.1.9)

(A6) : sup
x∈R

√
f(x)2 + g(x)2 <

1

4
; (4.1.10)

(A7) : lim
x→±∞

f(x), g(x) = 0 ; (4.1.11)

(A8) : ||f ||Cb
= O(1) , ||g||Cb

= O(1)
(
w.r.t.

a

m

)
(4.1.12)

(A5) is a symmetry assumption, that ensures (4.1.2) possesses a (point) symmetry
in x = 0; this technicality significantly simplifies our rigorous proof; pulse solutions
can also be found formally and/or numerically when (A5) does not hold (and we
expect that their existence can be established rigorously by extending our methods).
Then, assumption (A6) stems from the theory of exponential dichotomies: when this
holds, solutions to (4.1.4) for generic f and g can be linked to solutions of (4.1.4)
with f, g ≡ 0; when (A6) does not hold, this link is not provided by the theory of
exponential dichotomies. Assumption (A7) is a technicality that is only needed in the
stability section (specifically for the elephant-trunk method to work); for the existence
theorems it is not necessary; in fact, it is suspected that even stability results continue
to hold when (A7) is violated – see also Remarks 4.3.18 and 4.3.19. Finally, assumption
(A8) is needed to pass limits in the treatment of the fast-slow system.
Remark 4.1.3. In this article we use geometric singular perturbation theory to es-
tablish existence of stationary pulse solutions to (4.1.2) for ε ‘sufficiently small’; hence
assumption (A1) stipulates ε ≪ 1 for clarity. However, typical results of this kind
seem to hold, at least numerically, for relatively large values of the singular perturba-
tion parameter, i.e. ε [8]. This is illustrated by our numerical results which are made
for not-so-small values of ε, following previous studies [8, 9, 47, 51, 148, 158].

4.2 Analysis of stationary pulse solutions
A crucial step for making the stationary ODE (4.1.3) amenable to analytic consider-
ations is to find a parameter regime convenient for rigorous perturbation techniques.
While there are various choices, we pick a specific one for clarity, since our focus is
on novel phenomena due to the non-autonomous character of the system and not to
classify all possible dynamics across parameter regimes.

Following [8, 28, 46], we rescale the spatial coordinate (motivated by the diffusivity
of the v-component) and the amplitudes of the unknowns by

ξ :=

√
m

D
x , ũ =

m
√
mD

a
u , ṽ =

a√
mD

v , (4.2.1)

to get{
uξξ = a2

m2

[
D2m
a2 u− Dm

√
m

a2 f
(

D√
m
ξ
)
uξ − D2m

a2 g
(

D√
m
ξ
)
u− D√

m
+ uv2

]
,

vξξ = v − uv2 .

(4.2.2)

It is now convenient to introduce

0 < ε :=
a

m
, 0 < µ :=

m
√
mD

a2
, (4.2.3)
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Pulse solutions for an extended Klausmeier model with spatially varying coefficients

and write the above ODEs as the first order system of ODEs
u̇ = εp ,

ṗ = ε
[
ε2µ2u− εµf

(
ε2µξ

)
p− ε2µ2g

(
ε2µξ

)
u− ε2µ+ uv2

]
,

v̇ = q ,

q̇ = v − uv2 .

(4.2.4)

In order to use geometric singular perturbation theory, we make the customary as-
sumption (A1), that is,

0 < ε≪ 1 , (4.2.5)

and stipulate assumption (A2) and (A8) so we can pass to limits.
In the autonomous case f ≡ 0 and g ≡ 0, system (4.2.4) has a fixed point

(1/µ, 0, 0, 0) and stationary pulse solutions of (4.1.2) correspond to orbits that are
homoclinic to (1/µ, 0, 0, 0); see Figure 4.1a for an example. In the non-autonomous
case f ̸= 0, g ̸= 0 there is no fixed point, but instead a unique bounded solution
(ub, pb, 0, 0). In this case, stationary pulse solutions of (4.1.2) correspond to orbits
that are homoclinic to this bounded solution; see Figures 4.1b and 4.1c for exam-
ples. The existence of said unique bounded solution (ub, pb, 0, 0) is established in the
following proposition proven later in section 4.2.3 (in the proof of Proposition 4.2.14).

Proposition 4.2.1 (Existence of a bounded solution for (4.2.4)). Let assumptions (A6)
and (A8) be fulfilled. Then (4.2.4) has a unique bounded solution (ub, pb, 0, 0) that sat-
isfies

lim
ξ←±∞

(ub, pb, 0, 0) = (1/µ, 0, 0, 0) . (4.2.6)

Remark 4.2.2 (Orbits homoclinic to bounded solutions). Note that the asymptotic
assumption limx→±∞ f(x), g(x) = 0 in (A7) is not necessary for the existence proof, but
will be used in the stability analysis. In case f, g are only bounded without approaching
a constant state when |x| → ∞, the corresponding constructed pulse solution is also
a homoclinic to the respective bounded solution. An illustration of such a case is
given in Figure 4.1c, where, due to the periodicity of the coefficients f, g, the bounded
background solution is periodic and so is the pulse solution in its tails.

To highlight the novelty of the presented approach, we first briefly explain how the
construction is carried out in the constant coefficient case f = g = 0, to then proceed
to the non-autonomous case.

4.2.1 Stationary pulse solutions for f = 0 and g = 0

The fast system reads 
u̇ = εp ,

ṗ = ε
[
ε2µ2u− ε2µ+ uv2

]
,

v̇ = q ,

q̇ = v − uv2 .

(4.2.7)
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4.2 Analysis of stationary pulse solutions

Note that this system possesses the symmetry (ξ, u, p, v, q) → (−ξ, u,−p, v,−q).
The corresponding slow system in the slow scaling η = εξ is given by

u′ = p ,

p′ = ε2µ2u− ε2µ+ uv2 ,

εv′ = q ,

εq′ = v − uv2 .

(4.2.8)

Restricted to the invariant manifold

M̃ := {(u, p, 0, 0) | u, p ∈ R} (4.2.9)

it reads {
u′ = p ,

p′ = ε2µ2u− ε2µ ,
(4.2.10)

which has a saddle structure around the fixed point
(

1
µ , 0
)

with stable and unstable
manifolds given by

l̃u/s :=

{
(u, p) | p = ±εµ(u− 1

µ
)

}
. (4.2.11)

Remark 4.2.3. Note that this step is much more intricate in the case of varying
coefficients f, g where explicit solutions are possible only for very specific choices of
coefficients. Therefore, one must resort to estimation techniques for the general case.
Overcoming this difficulty using exponential dichotomies is the core contribution of the
present work.

The reduced fast system has the form
u̇ = 0 , ṗ = 0 ,

v̇ = q ,

q̇ = v − uv2 .

(4.2.12)

A sketch of its planar subsystem v̇ = q, q̇ = v− uv2 can be found in Figures 4.5a; this
planar subsystem is a Hamiltonian system with Hamiltonian

H(v, q;u) =
1

2
q2 − 1

2
v2 +

1

3
uv3 . (4.2.13)

Its fixed point (v, q) = (0, 0) features a saddle structure and a family of homoclinic
orbits{

v
(0)
hom(ξ;u0) = 1

u0
ω(ξ) ω(ξ) := 3

2 sech2(ξ/2) ,

q
(0)
hom(ξ;u0) = v̇hom(ξ;u0) = − 1

u0

3
2 sech2(ξ/2)tanh(ξ/2) , u0 ∈ R\{0} ,

(4.2.14)

connecting its stable and unstable manifolds. Hence, (4.2.12) is a Hamiltonian system
with Hamiltonian

K̃(u, p, v, q) = H(v, q;u) . (4.2.15)
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The invariant manifold M̃ from (4.2.9) is the collection of saddle points (u, p, 0, 0), u, p ∈
R, for (4.2.12) and is, hence, normally hyperbolic. For its stable and unstable manifolds
W

s/u
0 (M̃) it holds true that dim[W

s/u
0 (M̃)] = 3 and, in fact, W s

0 (M̃) and Wu
0 (M̃)

(partly) coincide, where the intersection is simply given by the family of homoclinic
orbits. Moreover, we have that K̃(u, p, v, q)|

(u,p,v,q)∈M̃ = 0.
For ε > 0, we note that M̃ is still an invariant manifold of the full system (4.2.7).

It is a standard result in geometric singular perturbation theory (see, e.g. the classic
articles [62, 86, 164] or, more recent, [105]) that, for ε sufficiently small, its stable
and unstable manifolds persist as W s/u

ε (M̃) with dim[W
s/u
ε (M̃)] = 3, but do not

necessarily coincide anymore. In fact, they generically meet in a 2D intersection in
R4.

In order to analyze the persistence of homoclinic orbits we measure the distance of
W s

ε (M̃) and Wu
ε (M̃) in the hyperplane R̃ = {(u, p, v, q) | q = 0}, that is, we fix an even

homoclinic orbit (uhom, phom, vhom, qhom) with (uhom(0), phom(0), vhom(0), qhom(0)) =

(u0, p0, vmax, 0). To this end we use the Hamiltonian K̃ and analyze its difference
during the jump of the orbit through the fast field, which is defined – following e.g. [48,
148] – as

If :=

(
− 1√

ε
,
1√
ε

)
, (4.2.16)

by setting up

∆If K̃ = K̃(1/
√
ε)− K̃(−1/

√
ε) =

∫
If

d

dξ
K̃(ξ) dξ =

1

3
ε

∫
If

p(ξ)vhom(ξ)3 dξ + h.o.t.

(4.2.17)

where we used that d
dξ K̃ = ∂

∂uH(v, q;u)(dudξ )+
d
dξH(v, q;u) = 1

3v
3(dudξ )+0 = 1

3εv
3p. We

may set (using the fact that p is constant to leading order) p(ξ) = p(0)+εp(1)(ξ)+h.o.t.
Therefore, in order to make this difference vanish to leading order, we evidently need
that p(0) = 0 and p(1)(0) = 0.

Now that a departure and return mechanism from and back to M̃ is established
through the intersection W s

ε (M̃) ∩Wu
ε (M̃) ∩ R, the remaining task is to determine

possible take-off and touch-down points on M̃ and investigate if these intersect the
stable and unstable eigenspaces ls/u appropriately to form a homoclinic. To this end
we observe that

∆Ifu = u(1/
√
ε)− u(−1/

√
ε) =

∫
If

d

dξ
u(ξ) dξ = ε2

∫
If

p(1)(ξ) dξ = O(ε3/2) ,

(4.2.18)

∆If p = p(1/
√
ε)− p(−1/

√
ε) =

∫
If

d

dξ
p(ξ) dξ = εu0

∫
If

v
(0)
hom(ξ)2 dξ =

6

u0
ε+ h.o.t. ,

(4.2.19)

so, to leading order, only the p-variable changes during the fast jump, and therefore,
the take-off and touch-down curves on M̃ are to leading order given by

T̃o/d :=

{
(u, p, 0, 0) | p = ∓3ε

u
, u ̸= 0

}
, (4.2.20)
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v

q

1
u0

(
v
(0)
hom, q

(0)
hom

)

(a) Sketch of fast reduced system

M
l sl u

(b) Sketch of homoclinic solution

Figure 4.5 – Sketches of the fast reduced system (4.2.12) (a) and the dynamics on the
slow manifold M along with, in red, the excursion through the fast field (b).

where we used that, by symmetry, to leading order

p(±1/
√
ε) = p(0)± 1

2
∆If p = ε

(
p(1)(0)± 3

u0

)
. (4.2.21)

Finally, a straightforward computation of the intersection points of these with the
stable and unstable eigenspaces ls/u gives two possible homoclinics when µ ≤ 1

12 , with

u±0 =
1±

√
1− 12µ

2µ

(
for µ ≤ 1

12

)
. (4.2.22)

Remark 4.2.4. When µ ≪ 1, the expression for u±0 , (4.2.22), can be expanded in
terms of µ; this yields for u±0 the following expansions

u−0 = 3 + 9µ + O(µ2)
u+0 = 1

µ − 3 − 9µ + O(µ2)
(4.2.23)

A conceptual sketch of the dynamics on M̃, along with an excursion through the
fast field, is given in Figure 4.5b. Moreover, in Figures 4.6a and 4.6b, the evolution of
a homoclinic solution is projected onto manifold M̃.

4.2.2 Stationary pulse solutions for varying f and g

First, we convert the non-autonomous system into an autonomous one by setting

s(ξ) :=
D√
m
ξ = ε2µξ , (4.2.24)

which gives the extended (autonomous) fast system

ṡ = ε2µ ,

u̇ = εp ,

ṗ = ε
[
ε2µ2u− εµf (s) p− ε2µ2g (s)u− ε2µ+ uv2

]
,

v̇ = q ,

q̇ = v − uv2 .

(4.2.25)
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Figure 4.6 – Numerical simulations resulting in a stationary pulse solution for (4.1.2)
with f(x) = h′(x), g(x) = h′′(x), where h(x) = 0 (a,b), h(x) = exp(−x2/2) (c,d) and
h(x) = 0.1 cos(2x) (e,f). Shown are projections to the (x, U, Ux)-plane (a,c,e) and the
(U,Ux)-plane (b,d,f) of a stationary pulse solution (blue) and the bounded solution ub

(orange) to which the U -component converges for |x| → ∞. Parts of the take-off and
touch-down curves (To/d) along with stable and unstable manifolds at x = 0 are also
sketched in green respectively red. Parameters used are a = 0.5, m = 0.45 and D = 0.01.
Note that the plots in this figure correspond to the plots in Figure 4.1.
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It is important to note that the symmetry assumptions (A5) on f and g translate
directly into a symmetry for (4.2.25) which is crucial for the construction of a homo-
clinic.

Lemma 4.2.5 (Symmetry of (4.2.25)). Let the symmetry assumptions (A5) be ful-
filled, that is, let f be an odd function and g be an even function. Then we have for
(4.2.25) the symmetry (s, u, p, v, q) → (−s, u,−p, v,−q), ξ → −ξ.

The slow system corresponding to (4.2.25) in the slow variable η = εξ is given by

s′ = εµ ,

u′ = p ,

p′ = ε2µ2u− εµf (s) p− ε2µ2g (s)u− ε2µ+ uv2 ,

εv′ = q ,

εq′ = v − uv2 .

(4.2.26)

It possesses a three-dimensional invariant manifold

M := {(s, u, p, 0, 0) | u, s, p ∈ R} ⊂ R5 , (4.2.27)

on which it takes the form
s′ = εµ ,

u′ = p ,

p′ = ε2µ2u− εµf (s) p− ε2µ2g (s)u− ε2µ .

(4.2.28)

which is an extension of the non-autonomous system{
u′ = p ,

p′ = ε2µ2u− εµf (εµη) p− ε2µ2g (εµη)u− ε2µ .
(4.2.29)

It is now convenient to introduce (or, actually, return to) the super-slow variable
x = εµη. We set u(η) = 1

µ û(εµη) = 1
µ û(x) and return to the second order non-

autonomous setting {
d
dx û = p̂ ,
d
dx p̂ = û− f (x) p̂− g (x) û− 1 .

(4.2.30)

Lemma 4.2.6 (Symmetry of (4.2.30)). Let the symmetry assumptions (A5) be ful-
filled, that is, let f be an odd function and g be an even function. Then we have for
(4.2.30) the symmetry (x, û, p̂) → (−x, û,−p̂), ξ → −ξ.

Remark 4.2.7. For conciseness, we note that we have three different scales:

fast scale ξ , slow scale η = εξ , super-slow scale x = εµη = ε2µξ

The construction that we illustrate in this article therefore relies heavily on assumption
(A1). The specific definition of the small parameter is convenient since the fast reduced
system is an ODE which is known to have homoclinic solutions and the slow system
on the critical manifold M is a linear planar system.
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Remark 4.2.8. Note the difference between p = du
dη and p̂ = dû

dx . Hence, p = εp̂.

Proposition 4.2.9 (Dynamics on M). Consider the slow system on M (4.2.28) with
f, g fulfilling (A6). Then there exists a unique bounded solution (ûb, p̂b) of (4.2.30)
and corresponding connected set Γ ⊂ R ∪ {∞} such that the following holds true: For
each fixed x ∈ R there exists Cs/u(x) ∈ Γ and lines

ls/u(x) := {(û, p̂) | p̂− û′b(x) = Cs/u(x)(û− ûb(x))} , (4.2.31)

such that the solution to the initial value problem (4.2.30) with (û(x), p̂(x)) = (û0, p̂0) ∈
ls(x) converges to (ûb, p̂b) for x → ∞, while with (û(x), p̂(x)) = (û0, p̂0) ∈ lu(x) it
converges to (ûb, p̂b) for x→ −∞. Moreover, if f and g fulfill the symmetry assumption
(A5), Cs/u possess the symmetry Cs(x) = −Cu(−x) for all x ∈ R. In particular,
Cs(0) = −Cu(0).

The proof of Proposition 4.2.9 constitutes the contents of section 4.2.4. Also note
the similarities with Proposition 4.2.1, since the bounded solutions mentioned in both
Propositions are identical up to the scaling ûb(x) = µub(ξ).

Remark 4.2.10. When limx→±∞ f(x), g(x) = 0 (i.e. assumption (A7)), the unique
bounded solution (ûb, p̂b) limits to the fixed point of the autonomous equation (4.1.4).
That is,

lim
x→±∞

(ûb(x), p̂b(x)) = (1, 0) . (4.2.32)

This result implies that there are trajectories on M that lead to and away from
the bounded solution (ûb, p̂b). Hence, the only remaining construction steps are the
analysis of persistence of orbits biasymptotic to M and their touch-down/take-off
locations. We therefore switch back to the fast system and examine the dynamics
during the jump of an orbit through the fast field. In order to pass to the reduced fast
system, we use the assumption (A8) so, in the limit ε → 0, we get the reduced fast
system 

ṡ = 0 , u̇ = 0 , ṗ = 0 ,

v̇ = q ,

q̇ = v − uv2 .

(4.2.33)

Note that in the reduced fast system the non-autonomous character of our problem is
not visible. The only difference is the added trivial equation ṡ = 0. As alluded to in
the constant coefficient case in section 4.2.1, the planar subsystem v̇ = q, q̇ = v−uv2 is
known to be Hamiltonian and features a homoclinic to the saddle point (v, q) = (0, 0)
which can be specified explicitly (see (4.2.14)). As a result, also (4.2.33) is Hamiltonian
with

K(s, u, p, v, q) = H(v, q;u) . (4.2.34)

The invariant manifold M from (4.2.27) is the collection of saddle points (s, u, p, 0, 0),
u, s, p ∈ R, for (4.2.33) and is, hence, normally hyperbolic. For its stable and unstable
manifolds W s/u

0 (M) it holds true that dim[W
s/u
0 (M)] = 4 and, in fact, W s

0 (M) and
Wu

0 (M) (partly) coincide, where the intersection is simply given by the family of
homoclinic orbits. Moreover, we have that K(s, u, p, v, q)|(s,u,p,v,q)∈M = 0.
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The analogy with the constant coefficient case continues for ε > 0 sufficiently small;
we still have that M is an invariant manifold of the full system (4.2.25) and that its
stable and unstable manifolds persist as W s/u

ε (M) with dim[W
s/u
ε (M)] = 4, but do

not necessarily coincide anymore. In fact, they generically meet in a 3-D intersection
in R5.

Proposition 4.2.11 (Persistence of a homoclinic connection). Let ε be sufficiently
small, and let assumptions (A2),(A3), (A5) and (A8) be satisfied.

1. Define the hyperplane R = {(s, u, p, v, q) | q = 0}. Then dim[W s
ε (M)∩Wu

ε (M)∩
R] = 2 and orbits in this intersection fulfill p(ξ) = εp(1)(ξ) + h.o.t., that is, the
leading order constant term p(0) vanishes.

2. The take-off and touch-down surfaces on M of orbits in the intersection W s
ε (M)∩

Wu
ε (M) ∩R are to leading order given by

To/d(s) :=

{
(s, u, p, 0, 0) | p = ∓3ε

u
, u ̸= 0

}
. (4.2.35)

3. For orbits in the intersection W s
ε (M)∩Wu

ε (M)∩R the touch-down curve Td(0)
and stable line ls(0) from (4.2.31) intersect in at most two points

u±0 =
ub(0)±

√
ub(0)2 + 12/(µCs(0))

2
, (4.2.36)

where Cs(0) is the slope of the stable line ls(0) from (4.2.31) and ûb = µub is the
(rescaled) bounded background solution from Proposition 4.2.9. By symmetry,
the analogous is true for the take-off curve To(0) and unstable line lu(0) from
(4.2.31). In particular, the thus computed u±0 -values coincide by the aforemen-
tioned symmetry Cu(0) = −Cs(0) – see Proposition 4.2.9.

4. There are two even homoclinic orbits for (4.1.3) with u±0 > 0 in case ub(0)2 +
12/(µCs(0)) > 0 and ub(0)−

√
ub(0)2 + 12/(µCs(0)) > 0.

Remark 4.2.12. If we set ub(0) = 1
µ and Cs(0) = −1 in (4.2.36), we recover (4.2.22).

Proof. Measuring the distance of W s
ε (M) and Wu

ε (M) in the hyperplane R can again
be accomplished using the difference of the Hamiltonian K during the fast the jump
of the orbit through the fast field (4.2.16). Exactly as in the constant coefficient case,
we obtain (4.2.17) where (using that p is constant to leading order) we have set p(ξ) =
p(0)+εp(1)(ξ)+h.o.t. , and used that d

dξK = ∂
∂sK(s, u, p, v, q)( dsdξ )+

∂
∂uH(v, q;u)(dudξ )+

d
dξH(v, q;u) = 0 + 1

3v
3(dudξ ) + 0 = 1

3εv
3p. In order to make this difference vanish to

leading order, we evidently need that p(0) = 0 and p(1)(0) = 0. This proves the first
statement.

In order to construct the take-off and touch-down curves, we again investigate the
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change of the fast variables during the jump through the fast field:

∆If s = s(1/
√
ε)− s(−(1/

√
ε)) =

∫
If

d

dξ
s(ξ) dξ =

2√
ε
ε2µ = O(ε3/2) , (4.2.37)

∆Ifu = u(1/
√
ε)− u(−(1/

√
ε)) =

∫
If

d

dξ
u(ξ) dξ = ε2

∫
If

p(1)(ξ) dξ = O(ε3/2) ,

(4.2.38)

∆If p = p(1/
√
ε)− p(−(1/

√
ε)) =

∫
If

d

dξ
p(ξ) dξ = εu0

∫
If

v
(0)
hom(ξ)2 dξ =

6

u0
ε+ h.o.t. ,

(4.2.39)

Hence, to leading order, only the p-variable changes during the fast jump, and there-
fore, the take-off and touch-down curves on M are to leading order given by (4.2.35)
where we used that, by symmetry, p(±1/

√
ε) = p(0)± 1

2∆If p . This proves the second
statement.

Equating (4.2.35) and (4.2.31) (where we used that p = εp̂ – see Remark 4.2.8)
gives the equality

εµCs(0) (u0 − ub(0)) =
3ε

u0
; (4.2.40)

the solutions of which give the claimed expression (4.2.36) in the third statement.
Finally, the fourth statement follows from inspecting (4.2.36).

Two examples of homoclinic solutions for varying f and g can be found in Fig-
ures 4.6c–4.6f. In these figures the evolution of a homoclinic solution is projected onto
the manifold M, which shows the essence of Proposition 4.2.11.

Proposition 4.2.11 thus establishes existence of homoclinic solutions for (4.1.3) un-
der the conditions stated in Proposition 4.2.11(4). However, in the case of varying
coefficients, there typically are no explicit expressions available for the bounded solu-
tion ub(0) and the constant Cs(0). To circumvent this, in the next section we derive
bounds on these using the theory of exponential dichotomy, which simultaneously
forms the proof of Proposition 4.2.9.

4.2.3 Some basic results from the theory of exponential dichotomies
When f and/or g are non-constant, generically it is not possible to capture the dynam-
ics on manifold M in explicit expressions. Instead, our main tools for constructing
a saddle-like structure on M are from the theory of exponential dichotomies. To fix
notation and keep the exposition self-contained, we state (following [31]) the definition
of exponential dichotomies along with a selection of results that we use here.

Definition 4.2.13 (Exponential Dichotomy). Consider the planar differential equa-
tion d

dxY = B(x)Y for the unknown Y : R → R2 and with B : R → R2×2 a matrix-
valued function which is continuous on R. Let Φ = Φ(x) be the associated canonical
solution operator. This ODE is said to have an exponential dichotomy if there is a
projection matrix P and positive constants K and ρ such that

∥Φ(x) P Φ−1(x̃)∥ ≤ Ke−ρ(x−x̃) , x ≥ x̃ ,

∥Φ(x) (I − P ) Φ−1(x̃)∥ ≤ Ke+ρ(x−x̃) , x ≤ x̃ .
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In the next section we will be interested in first order ODEs of the form

d

dx
Y = [A0 +A(x)]Y + F , (4.2.41)

with x ∈ R, Y : R → R2, A0 ∈ R2×2, A : R → R2×2, F ∈ R2. In particular, we would
like to corroborate knowledge of the autonomous version (which is often available in
terms of explicit solutions) to deduce qualitative results for the full non-autonomous
one. For the sake of clarity, we assemble first all auxiliary systems in one place:

First, we have the homogeneous, autonomous system

d

dx
Zh = A0Zh. (4.2.42)

Then, there is the homogeneous, non-autonomous system

d

dx
Yh = [A0 +A(x)]Yh. (4.2.43)

Finally, we have the inhomogeneous, autonomous system

d

dx
Z = A0Z + F. (4.2.44)

Proposition 4.2.14 (Roughness and closeness of bounded solutions). Let Kaut > 0
and ρaut > 0 be the exponential dichotomy constants of the homogeneous, autonomous
ODE (4.2.42) and Φaut, Paut the corresponding solution and projection operators. If

δ := sup
x∈R

|||A(x)||| < ρaut
4K2

aut

, (4.2.45)

the non-autonomous ODE (4.2.43) has an exponential dichotomy for which the follow-
ing holds true.

1. (Roughness) The exponential dichotomy constants of the homogeneous, non-
autonomous ODE (4.2.43) are K = 5

2K
2
aut and ρ = ρaut−2Kautδ, and concerning

the solution and projection operators Φ, P of (4.2.43) we have upon defining

Q(x) := Φ(x)PΦ−1(x) , Qaut(x) := Φaut(x)PautΦaut
−1(x) (4.2.46)

the estimate

|||Q(x)−Qaut(x)||| ≤
4K3

autδ

ρaut
, x ∈ R . (4.2.47)

2. (Closeness of bounded solutions) There exist unique bounded solutions Zb,aut, Yb
of the inhomogeneous, autonomous and non-autonomous ODEs (4.2.44) and
(4.2.41). In particular, they satisfy

sup
x∈R

|||Yb(x)− Zb,aut(x)||| ≤
4δKautK

ρautρ
∥F∥ . (4.2.48)
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Proof. The first statement is the persistence of exponential dichotomies, known as
“roughness”, and is a standard result (see [31, Ch.4, Prop.1]). Moreover, another
standard result from the theory of exponential dichotomies stipulates that inhomo-
geneous equations have unique bounded solutions, when the homogeneous equations
have an exponential dichotomy and the inhomogeneous terms are bounded (see [31,
Ch.8, Prop.2]). Then, to demonstrate the rest of the second statement, we define
W (x) = Yb(x)−Zb,aut(x) which gives W ′(x) = A0W (x)+G(x) with G(x) = A(x)Yb(x).
The unique bounded solution Wb of this ODE satisfies the estimate supx∈R ∥Wb(x)∥ ≤
2Kaut

ρaut
supx∈R ∥G(x)∥ ≤ 4δKautK

ρautρ
∥F∥ , where we used that supx∈R ∥Yb(x)∥ ≤ 2K

ρ ∥F∥ .

4.2.4 Dynamics on M (Proof of Proposition 4.2.9)

Let us introduce the more concise notation Y =
(
û, d

dx û
)T such that (4.2.30) has the

form of (4.2.41) from the previous section; that is,

d

dx
Y = [A0 +A(x)]Y + F , (4.2.49)

with

A0 =

(
0 1
1 0

)
, A(x) =

(
0 0

−g(x) −f(x)

)
, F =

(
0
−1

)
. (4.2.50)

Lemma 4.2.15 (Exponential Dichotomy Constants and Roughness). With the nota-
tion of Proposition 4.2.14, let

δ = sup
x∈R

√
f(x)2 + g(x)2 <

1

4
. (4.2.51)

Then we have ρaut = Kaut = 1, ρ = 1− 2δ,K = 5/2 and

|||Q(x)−Qaut(x)||| ≤ 4δ , x ∈ R . (4.2.52)

Proof. We have the canonical solution operator Φ(x) = eA0x. The eigenvalues of the
matrix A0 are ±1 and the corresponding normed eigenvectors are v = 1√

2
(1, 1)T , w =

1√
2
(1,−1)T . Thus the fixed point Y = (0, 0)T is a saddle. From this it is clear that

we can choose
P = wwT =

1

2

(
1 −1
−1 1

)
.

With the basis transformation matrix B = (v | w) and the diagonal matrix D =
diag(1,−1) we then get

∥Φ(x)PΦ−1(s)∥ = ∥BeDxB−1PBe−DsB−1∥ =

∥∥∥∥( 1 −1
−1 1

)∥∥∥∥ e−(x−s)2
= e−(x−s) .

A similar reasoning – where one can use that I − P = vvT – gives

∥Φ(x)(I − P )Φ−1(s)∥ = e(x−s) .

Thus we have the estimate for exponential dichotomies from Definition 4.2.13 with
ρaut = 1 and Kaut = 1. The remaining statements can now be read off Proposi-
tion 4.2.14.
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The roughness of exponential dichotomies established in Lemma 4.2.15 provides
a bound on the projection operator Q(x) of the non-autonomous system. However,
this bound cannot be used directly to prove existence of homoclinic solutions using
geometric singular perturbation theory, as geometric properties need to be derived. In
particular, we need to find the stable and unstable manifolds for the unique bounded
solution Yb = (ûb, ûb)

T of (4.2.49). These can be defined as

W s(Yb) :=
{
(x, Y s(x)) | Y s(x) = Yb(x) + Φ(x)PΦ−1(x)r , r ∈ R2

}
, (4.2.53)

Wu(Yb) :=
{
(x, Y u(x)) | Y u(x) = Yb(x) + Φ(x)(Id− P )Φ−1(x)r , r ∈ R2

}
, (4.2.54)

where Φ, P are the solution and projection operator for (4.2.49). For the construction
that we have in mind, it is convenient to notice that

W s/u(Yb) =
∪
x∈R

(x, ls/u(x)) , (4.2.55)

with lines

ls(x) =
{
Y s(x) | Y s(x) = Yb(x) + Φ(x)PΦ−1(x)r , r ∈ R2

}
, (4.2.56)

lu(x) =
{
Y u(x) | Y u(x) = Yb(x) + Φ(x)(I − P )Φ−1(x)r , r ∈ R2

}
. (4.2.57)

Remark 4.2.16. If (4.2.49) possesses the symmetry (x, u, p) → (−x, u,−p) this sym-
metry carries over to the lines ls,u(x). That is, for given x ∈ R, a point (u◦, p◦) ∈ ls(x)
if and only if (u◦,−p◦) ∈ lu(−x). The symmetry statement in Proposition 4.2.9 is a
direct consequence of this.

While, in general, it is not possible to find explicit expressions for these objects,
we can derive estimates for their locations. For this we first observe that the line ls
can be written equivalently as

ls(x) = {(û, p̂) | p̂− û′b(x) = C(x)(û− ûb(x))} , (4.2.58)

where C(x) is the slope of the line. Starting from the bound on the projection operator
Q(x) = Φ(x)PΦ−1(x) derived in Lemma 4.2.15, a bound on the projection lines will
be established in Lemma 4.2.17, which is then subsequently used to find a bound on
the slope C(x) via the angle θ(x) of the line in Lemma 4.2.18.

In particular, for the case of (4.2.30), we thus obtain

ls(x) =
{
(û, p̂) | p̂− û′b(x) = (−1 + C̃(x))(û− ûb(x))

}
, (4.2.59)

with C̃(x) as in Lemma (4.2.18) taking into account that the projection operator
depends on x, that is, Q = Q(x) and so does the angle θ = θ(x), which defines
C = C(x) and, hence, also C̃ = C̃(x).

The rest of this section consists of the two technical lemmas that ultimately derive
a bound for C̃.

Lemma 4.2.17 (Closeness of projection lines). Let Q and Qaut be the projection ma-
trices with rank 1 as defined in Proposition 4.2.14(i), i.e. there are unit vectors q and
qaut such that Q = qqT and Qaut = qautq

T
aut, and ∥Q−Qaut∥ < 4δ holds true. Then

either ∥q − qaut∥ <
√
8δ or ∥q + qaut∥ <

√
8δ.
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Proof. We prove the equivalent statement that from ∥q−qaut∥ ≥
√
8δ and ∥q+qaut∥ ≥√

8δ it follows that ∥Q−Qaut∥ ≥ 4δ. First we observe that

(q − qaut)(q
T + qTaut)(q + qaut)

= (qqT − qautq
T
aut)(q + qaut) + (qqTaut − qautq

T )(q + qaut)

= 2(qqT − qautq
T
aut)(q + qaut) = 2(Q−Qaut)(q + qaut) . (4.2.60)

Therefore, by assumption

∥Q−Qaut∥ ∥q + qaut∥ ≥ ∥(Q−Qaut)(q + qaut)∥

=
1

2
∥(q − qaut)(q

T + qTaut)(q + qaut)∥

=
1

2
∥q + qaut∥2∥q − qaut∥

≥ 4δ∥q + qaut∥ ,

from which it follows that ∥Q−Qaut∥ ≥ 4δ.

The previous lemma establishes closeness of projection lines of the autonomous and
the non-autonomous case. The thus obtained bounds on norms can be transferred
to bounds on the slope C by use of elementary geometry. Note that transforming
the norm bounds in this way leads to singularities when a projection line passes the
vertical axis (which also leads to a seemingly disjoint set of admittable slopes). A
visualisation of the results of Lemma 4.2.18 are given in Figure 4.7. In particular, the
resulting bounds for the slope are shown.

Lemma 4.2.18 (Closeness of slopes). Let Q and Qaut be projection matrices with
rank 1, i.e. there are unit vectors q and qaut such that Q = qqT and Qaut = qautq

T
aut,

and ∥Q−Qaut∥ < 4δ holds true. Furthermore, let θ, θaut ∈ [−π, π) be defined by q =:
(cos(θ), sin(θ)), qaut = (cos(θaut), sin(θaut)) such that the slopes of the lines spanned by
q and qaut are given by

C := tan(θ) , Caut := tan(θaut) . (4.2.61)

Then there exist constants Cmin/max(δ, Caut) defined by

Cmin(δ, Caut) :=


−(1 + C2

aut)
2
√
2
√
δ
√
1−2δ

(1−4δ)+2Caut

√
2
√
δ
√
1−2δ , if δ ̸= 1

4

(
1 + Caut√

1+C2
aut

)
−∞, if δ = 1

4

(
1 + Caut√

1+C2
aut

)
(4.2.62)

Cmax(δ, Caut) :=


+(1 + C2

aut)
2
√
2
√
δ
√
1−2δ

(1−4δ)−2Caut

√
2
√
δ
√
1−2δ , if δ ̸= 1

4

(
1− Caut√

1+C2
aut

)
;

+∞, if δ = 1
4

(
1− Caut√

1+C2
aut

)
,

(4.2.63)

such that C − Caut ∈ Γ (δ, Caut), where

Γ (δ, Caut) :=

{(
Cmin (δ, Caut) , Cmax (δ, Caut)

)
, if Cmin (δ, Caut) < Cmax (δ, Caut) ;(

−∞, Cmax (δ, Caut)
)
∪

(
Cmin (δ, Caut) ,+∞

)
, if Cmax (δ, Caut) < Cmin (δ, Caut) .

(4.2.64)
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In particular, for qaut = 1√
2
(1,−1)T we have Caut = −1 and, hence,

C = −1 + C̃ , C̃ ∈ Γ(δ,−1) . (4.2.65)

Proof. For technical reasons we assume that ∥q− qaut∥ ≤ ∥q+ qaut∥; if this inequality
does not hold, we can scale q → −q without changing the projection matrix Q. Then,
with

∆θ := θ − θaut , (4.2.66)

we have

C − Caut = tan(θ)− tan(θaut)

= tan(∆θ + θaut)− tan(θaut) = (1 + C2
aut)

(
tan(∆θ)

1− Caut tan(∆θ)

)
. (4.2.67)

From ∥Q − Qaut∥ < 4δ we know by the previous lemma that ∥q − qaut∥ <
√
8δ and,

hence, since q and qaut are unit vectors, we have

0 ≤ 2(1− qT qaut) = ∥q − qaut∥2 < 8δ =⇒ 1− 4δ < qT qaut . (4.2.68)

Since arccos(z) is monotonically decreasing, we hence get from |∆θ| = arccos(qT qaut)
that

−arccos(1− 4δ) < ∆θ < arccos(1− 4δ) . (4.2.69)

Furthermore, since tan(z)
1−Caut tan(z) is monotonically increasing in z, we have the claimed

result by using

tan(±arccos(z)) = ±
√
1− z2

z

and some simplifications in (4.2.67).

4.2.5 Existence results
Here, we first state our main existence results in detail. Their proofs are given in
section 4.2.6.

Theorem 4.2.19 (Existence for general f, g). Let assumptions (A1)-(A3), (A5), (A6)
and (A8) be satisfied. Then there is a µ∗ with 0 < µ∗ < 1

12 and corresponding
ε∗ = ε∗(µ) > 0, 0 < δ∗ = δ∗(µ) < 2−

√
2

8 such that the following holds true: For any
ε, µ, δ with

0 < µ < µ∗ , 0 < ε < ε∗ = ε∗(µ) , δ = sup
x∈R

√
f(x)2 + g(x)2 < δ∗ = δ∗(µ) ,

(4.2.70)

the stationary wave ODE (4.2.25) has (two) orbits (sp(ξ), up(ξ), pp(ξ), vp(ξ), qp(ξ)),
that are homoclinic to the bounded solution

(
ξ, ûb(ε

2µξ)
µ , εû′b(ε

2µξ), 0, 0
)

, with (up(ξ), vp(ξ))

to leading order given by
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2−
√
2

8

1
8

1
4

−10
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δ

C̃

(a) Plots of Cmin (blue) in (4.2.62) and
Cmax (red) in (4.2.63) as functions of δ for
Caut = −1.

p̂

û

(b) Bounds on slope for
Caut = −1 and some δ <
2−

√
2

8
.

p̂

û

(c) Bounds on slope for
Caut = −1 and some δ >
2−

√
2

8
.

Figure 4.7 – Visualisation of the results of Lemma 4.2.18. In (a) plots of Cmin (blue)
and Cmax (red) are shown as function of δ for Caut = −1, i.e. the set Γ(δ,−1). The
green region indicates all possible values for the difference between slopes, C −Caut. In
(b) and (c) plots of the possible slopes C are shown for some δ < 2−

√
2

8
(b) and δ > 2−

√
2

8

(c). The green line indicates the slope value Caut = −1.

[
(ûb(ε

2µξ)−(ûb(0)−µu0) û−(ε2µξ))
µ

0

]
χ−s (ξ) +

[
u0

3
2u0

sech
(

ξ
2

)2 ]χf (ξ)

+

[
(ûb(ε

2µξ)−(ûb(0)−µu0) û+(ε2µξ))
µ

0

]
χ+
s (ξ) (4.2.71)

with u0 = u−0 or u0 = u+0 from (4.2.36), i.e.

u0 =
ûb(0)−

√
ûb(0)2 + 12µ/Cs(0)

2µ
; (4.2.72)

ûb the bounded solution from Proposition 4.2.9 and where the indicator functions

χ−s (ξ) = χ(−∞,−1/
√
ε) , χf (ξ) = χ(−1/

√
ε,1/
√
ε) , χ+

s (ξ) = χ(1/
√
ε,∞) (4.2.73)

distinguishes the behavior of the solution in the fast and super-slow fields. Furthermore,
for û± we have the estimates

|û±(x)| ≤ Ce−(1−2δ)|x| , x ≷ 0 ,

for some C > 0, the bounded solution ub obeys

sup
x∈R

√
(ûb(x)− 1)2 + û′b(x)

2 ≤ 10δ

1− 2δ
.

Finally, this homoclinic orbit gives rise to a stationary pulse solution[
Up(x, t)

Vp(x, t)

]
=

 m
√
mD
a u

(√
m
D x

)
a

D
√
m
v
(√

m
D x

)
 (4.2.74)

for the Klausmeier model (4.1.2); this pulse solution is biasymptotic to the bounded
state

(
aûb

(√
m
D x

)
, 0
)

.
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4.2 Analysis of stationary pulse solutions

Corollary 4.2.20 (Existence for f, g = 0). Let f, g = 0, and the conditions from
Theorem 4.2.19 be fulfilled. Then

û±(x) = e∓x , ûb ≡ 1 .

Corollary 4.2.21 (Existence for small f, g). Let the conditions from Theorem 4.2.19
be fulfilled and assume f = δf̃ , g = δg̃ where f̃ , g̃ = O(1), 0 < δ ≪ 1 (that is,
supx∈R

√
f̃(x)2 + g̃(x)2 = 1). Then

û+(x) = e−x +
δ

2

[
−ex

∫ ∞
x

(f̃(z)− g̃(z))e−2zdz

+e−x
(∫ ∞

0

(f̃(z)− g̃(z))e−2zdz +

∫ x

0

(f̃(z)− g̃(z))ds

)]
+ h.o.t.

û−(x) = ex +
δ

2

[
e−x

∫ x

−∞
(f̃(z) + g̃(z))e−2zds

−e−x
(∫ 0

−∞
(f̃(z) + g̃(z))e−2zdz +

∫ x

0

(f̃(z) + g̃(z))dz

)]
+ h.o.t. ,

ûb(x) = 1 +
δ

2

[
ex
∫ ∞
x

g̃(z)e−z dz + e−x
∫ x

−∞
g̃(z)ez dz

]
+ h.o.t. .

Moreover, u0 as in (4.2.72) can be expressed in terms of δ as

u0 = u00 + δu01 + h.o.t., (4.2.75)

where u00 corresponds to the u0-value for the autonomous case, i.e. u00 is given
by (4.2.22).

Corollary 4.2.22 (Existence for h(x) = −2 ln cosh(βx)). Let the conditions from The-
orem 4.2.19 be fulfilled and let h(x) = −2 ln cosh(βx), β > 0, f = h′, g = h′′. Then

û±(x) = e∓
√

1+β2x cosh(βx) ,

ûb(x) =
u−(x)

2
√
1 + β2

∫ ∞
x

e−
√

1+β2z sech(βz) dz

+
u+(x)

2
√
1 + β2

∫ x

−∞
e
√

1+β2z sech(βz) dz .

Remark 4.2.23. Pulses solutions as in Corollary 4.2.22 exist for any β > 0 without
the need of the general assumption on δ as in Theorem 4.2.19; since the flow on M
can be solved explicitly for these functions f and g, no condition on δ is needed.

Remark 4.2.24. Since the flow on M can be solved explicitly for the functions f and
g as in Corollary 4.2.22, it is also possible to prove existence of symmetric, stationary
2-pulse solutions (and, in fact, any symmetric, stationary N -pulse solution). Note that
normally, for f, g ≡ 0, these do not exist, since pulses in (4.1.2) repel each other [8, 45];
this repulsive force can only be overcome by driving forces due to the spatially varying
functions f and g. We come back to these multi-pulse solutions in section 4.4.5.
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4.2.6 Proof of existence results
The proofs of the existence results in section 4.2.5 follow from the theory developed
in the preceding sections. The heart of these proofs is formed by Proposition 4.2.11
and the bounds on the bounded solution ub and the slopes Cs/u as found in Proposi-
tion 4.2.9. Ultimately, it boils down to taking δ small enough such that an intersection
between ls(0) and To(0) is guaranteed. A sketch of this idea is given in Figure 4.3; the
rest of this section is devoted to the rigorous proof of the existence theorem and the
corollaries in section 4.2.5.

Proof of Theorem 4.2.19. Existence of the homoclinic orbits is established by Propo-
sition 4.2.11 if the conditions in Proposition 4.2.11(4) are satisfied. Since ub(0) =
ûb(0)/µ, these hold if and only if the following three bounds hold true:

(i) ûb(0) > 0;

(ii) Cs(0) < 0;

(iii) ûb(0)
2 + 12µ/Cs(0) > 0.

By Proposition 4.2.14 and Lemma 4.2.15, we have

ûb(0) >
1− 12δ

1− 2δ
, (4.2.76)

and by Lemma 4.2.18 we have

Cs(0) = −1 + C̃, C̃ ∈ Γ(δ,−1), (4.2.77)

where Γ is as in (4.2.64). Using these, bound (i) is satisfied when δ < 1
12 and bound (ii)

when δ < 2−
√
2

8 . Since the bound (iii) holds true when δ = 0 and µ < 1
12 , continuity

of mentioned bounds on ûb(0) and Cs(0) guarantees the existence of the critical value
0 < δ∗(µ) < 2−

√
2

8 .

Proof of Corollary 4.2.20. This follows immediately from solving (4.2.30) with f, g ≡
0, and is also carried out in more detail in section 4.2.1.

Proof of Corollary 4.2.21. The super-slow system on M in (4.2.30) can be solved
using a regular expansion in 0 < δ ≪ 1. By requiring that limx→∞ û+(x) and
limx→−∞ û−(x) exist, the results follow by a straightforward calculation.

Proof of Corollary 4.2.22. One can easily verify that û± solve (4.2.30), and that we
have limx→±∞ û±(x) = 0. The bounded solution ûb follows from a standard variation
of constants method.

4.3 Linear stability analysis
In the previous section, we proved the existence of stationary 1-pulse solutions to (4.1.2).
In this section we study the linear stability of these solutions. For (Up, Vp) a pulse
solution from Theorem 4.2.19 we define the linear operator

L
(
Ū
V̄

)
=

(
∂2xŪ + f(x)∂xŪ + g(x)Ū − Ū − V 2

p Ū − 2UpVpV̄
D2∂2xV̄ −mV̄ + V 2

p Ū + 2UpVpV̄ .

)
, (4.3.1)
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4.3 Linear stability analysis

with L : H2(R)×H2(R) ⊂ L2(R)×L2(R) → L2(R)×L2(R) and its spectrum by Σ(L),
where we distinguish between the point spectrum Σpt(L) and the essential spectrum
Σess(L) = Σ(L) \ Σpt(L) – we denote the elements of Σess(L) by λ. As customary,
we say that (Up, Vp) is linearly stable if there is no spectrum in the right half plane.
In order to keep the exposition at reasonable length, we will concentrate here on
characterizing parameter regimes where the only instability that can occur is through
the (translational) zero eigenvalue which starts moving due to the introduction of
spatially varying f and/or g. In particular, there are no essential instabilities:

Lemma 4.3.1 (Essential spectrum). Let the conditions of Theorem 4.2.19 and as-
sumption (A7) be fulfilled, and let (Up, Vp) be a pulse solution to (4.1.2) as in Theo-
rem 4.2.19. Then the essential spectrum of L from (4.3.1) is

Σess(L) = (−∞,max{−m,−1}] , (4.3.2)

and, hence, lies in the left half-plane.

Proof. The limiting operator of L at x→ ±∞ is L∞ := diag[∂2x − 1, D2∂2x −m] (note
that we thus explicitly use assumption (A7)). Therefore, we have that the boundaries
of the essential spectrum are λ1(k) = −(k2 + 1), λ2(k) = −(D2k2 +m), k ∈ R, which
immediately gives the claimed result.

The assumptions on f, g allow (again through the use of exponential dichotomies)
the derivation of bounds on the location of the point spectrum, which, under the
assumption that f, g are chosen ‘small’, can be further refined to track the one small
eigenvalue that can possibly lead to bifurcations. The proof of the following statements
will be the subject of the next sections.

Theorem 4.3.2 (Point spectrum). Let the conditions of Theorem 4.2.19 and assump-
tions (A4) and (A7) be fulfilled, and let (Up, Vp) be a pulse solution to (4.1.2) with
u0 = u−0 as in (4.2.72). Then there exist constants mc, µ

∗, ν∗ > 0 such that if either
(i) m < mc and µ < µ∗ or (ii) m > mc and µ

√
m < ν∗, then there exists a δc > 0

such that if 0 ≤ δ < δc precisely one eigenvalue λ0 is O(ε)-close to 0 and all other
eigenvalues of L lie in the left-half plane.

Proof. The statement is demonstrated in section 4.3.1 by combining the setup of an
Evans function and the theory of exponential dichotomies.

Remark 4.3.3. Note that Theorem 4.3.2 only holds for pulse solutions with u0 = u−0 ;
pulse solutions with u0 = u+0 are always unstable. See also Remark 4.3.16.

Remark 4.3.4. The constants mc, µ∗ and ν∗ in Theorem 4.3.2 can be computed
explicitly (see Lemma 4.3.14).

Theorem 4.3.5 (Small eigenvalue close to λ = 0 for small f , g). Assuming that f =

δf̃ , g = δg̃ with 0 < δ ≪ 1, f̃ , g̃ = O(1) (i.e. supx∈R

√
f̃(x)2 + g̃(x)2 = 1), there

exists a constant τ∗ > 0 such that if τ := ε4µm < τ∗ the small eigenvalue λ0 close to
λ = 0 is located, to leading order, at

λ0 =
2τδ

u0 − τ(1− µu0)

∫ +∞

0

e−2x
(
f̃ ′(x)(1− µu0) + g̃′(x)[ex + µu0 − 1]

)
dx, (4.3.3)

where u0 is as in (4.2.72) and Corollary 4.2.21.
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Pulse solutions for an extended Klausmeier model with spatially varying coefficients

Proof. This statement is derived in section 4.3.2 by employing a regular expansion in
δ.

Corollary 4.3.6. Let the conditions of Theorem 4.3.5 be fulfilled. Then, in the double
asymptotic limit µ≪ 1 and τ := ε4µm≪ 1 the leading order expression for λ0 becomes

λ0 =
2

3
τδ

∫ ∞
0

e−2x
(
f̃ ′(x) + g̃′(x)[ex − 1]

)
dx. (4.3.4)

Remark 4.3.7. When the term τ = ε4µm = a2D
m
√
m

in (4.3.3) becomes too large
(larger than τ∗), the pulse becomes unstable due to a traveling wave bifurcation/drift
instability [28, 46].

4.3.1 Qualitative description of the point spectrum location (Proof of
Theorem 4.3.2)

This section is devoted to finding the point spectrum of the operator L. For that,
we use a decomposition method for the Evans function, first developed in [1, 48],
which is supplemented by the theory of exponential dichotomies to treat the varying
coefficients in (4.1.2). As before, the following computations will again heavily rely on
the singularly perturbed structure. Therefore, we introduce for the eigenvalue problem
(L − λI)(Ū , V̄ )T = 0, that is, λŪ = d2

dx2 Ū + f(x) d
dx Ū + g(x)Ū − Ū − V 2

p Ū − 2UpVP V̄ ,

1
mλV̄ = D2

m
d2

dx2 V̄ − V̄ + 1
mV

2
p Ū + 2

mUpVpV̄ ,
(4.3.5)

and the scalings (analogous to (4.2.1) and (4.2.3))

ξ =
D√
m

= ε2µx , Ū = mεµū , Up = mεµup , V̄ =
1

εµ
v̄ , Vp =

1

εµ
vp, (4.3.6)

to get the fast eigenvalue problem{
ε4µ2λū = ¨̄u− ε2[2upvpv̄ + v2pū]− ε4µ2ū+ ε2µf(ε2µξ) ˙̄u+ ε4µ2g(ε2µξ)ū ,

1
mλv̄ = ¨̄v − v̄ + [2upvpv̄ + v2pū] ,

(4.3.7)
which suggests (just as in [8, 28, 46]) the introduction of the scaled eigenvalue param-
eter

λ = mλ , (4.3.8)

so, finally,{
ε4µ2mλū = ¨̄u− ε2[2upvpv̄ + v2pū]− ε4µ2ū+ ε2µf(ε2µξ) ˙̄u+ ε4µ2g(ε2µξ)ū ,

λv̄ = ¨̄v − v̄ + [2upvpv̄ + v2pū] .
(4.3.9)

It is convenient to introduce ϕ :=
(
ū, ˙̄u/(ε2µ), v̄, ˙̄v

)
and to write the above ODEs as

the system of first order ODEs

ϕ̇ = A(ξ;λ, ε, µ,m)ϕ, (4.3.10)
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where

A(ξ;λ, ε, µ,m) =

 0 ε2µ 0 0
v2p/µ+ ε2µ

[
1 +mλ− g(ε2µξ)

]
−ε2µf(ε2µξ) 2upvp/µ 0

0 0 0 1
−v2p 0 1 + λ− 2upvp 0

 .

(4.3.11)
From the existence analysis in section 4.2, we have seen that the real line R can be
split in one fast region, If , near the pulse location and two super slow fields I±s to
both sides of the fast field:

I−s :=

(
−∞,− 1√

ε

)
, If :=

[
− 1√

ε
,
1√
ε

]
, I+s :=

(
1√
ε
,∞
)
.

Since we know that vp vanished to leading order in the slow fields, we have in those
regions the system matrix

As(ξ;λ, ε, µ,m) :=


0 ε2µ 0 0

ε2µ
[
1 +mλ− g(ε2µξ)

]
−ε2µf(ε2µξ) 0 0

0 0 0 1
0 0 1 + λ 0

 ,

(4.3.12)
that is, the dynamics for slow and fast variables are decoupled. Any value λ ∈ C for
which this system of ODEs has a non-trivial solution in L2(R) × L2(R) corresponds
to an eigenvalue λ = mλ of L. A mechanism (that is by now standard) for detecting
eigenvalues is the construction of an Evans function, whose roots coincide with the
eigenvalues of L. Although the Evans function can also be extended into the essential
spectrum, we do not need this in the present work and rather restrict λ to

Ce := C \ {λ ∈ R : λ ≤ max{−1,−1/m}} =

{
λ =

λ

m
: λ /∈ Σess(L)

}
, (4.3.13)

on which the Evans function is analytic.

Evans function construction

By (conditions and results of) Theorem 4.2.19 and assumption (A7), we know that
the limiting matrix for |ξ| → ∞ is given by

A∞(λ, ε, µ,m) :=


0 ε2µ 0 0

ε2µ [1 +mλ] 0 0 0
0 0 0 1
0 0 1 + λ 0

 . (4.3.14)

Its eigenvalues Λ1,2,3,4 and eigenvectors E1,2,3,4 are

Λ1,4(λ) = ±
√
1 + λ, Λ2,3(λ) = ±ε2µ

√
1 +mλ

E1,4(λ) = (0, 0, 1,Λ1,4)
T
, E2,3(λ) =

(
1,±

√
1 +mλ, 0, 0

)T
.

(4.3.15)

where Re (Λ1(λ)) < Re (Λ2(λ)) < 0 < Re (Λ3(λ)) < Re (Λ4(λ)) for λ ∈ Ce.
The system ϕ̇∞ = A∞(λ, ε, µ,m)ϕ∞ admits exponential dichotomies on Ce. Since

A∞ is exponentially close to A for large |ξ|, the stable and unstable subspaces of
ϕ̇ = A(ξ;λ, ε, µ,m)ϕ and ϕ̇∞ = A∞(λ, ε, µ,m)ϕ∞ are similar when |ξ| → ∞. In
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particular, for all λ ∈ Ce there is a two-dimensional family of solutions, Φ−∞(λ),
to ϕ̇∞ = A∞(λ, ε, µ,m)ϕ∞ such that limξ→−∞ ϕ−∞(ξ) = 0 for all ϕ−∞ ∈ Φ−∞(λ),
and a two-dimensional family of solutions, Φ+

∞(λ), to ϕ̇∞ = A∞(λ, ε, µ,m)ϕ∞ such
that limξ→∞ ϕ+∞(ξ) = 0 for all ϕ+∞ ∈ Φ+

∞(λ), which implies that the system ϕ̇ =
A(ξ;λ, ε, µ,m)ϕ also possesses two two-dimensional families of solutions, Φ−(λ) and
Φ+(λ) with the same properties.

For the system ϕ̇ = A(ξ;λ, ε, µ,m)ϕ, however, it is possible that the intersection
Φ+(λ) ∩ Φ−(λ) is nonempty. The values λ ∈ Ce for which this happens correspond to
λ = mλ in the point spectrum Σpt. To find these, we use a Evans function [1, 48],
which is defined as

D(λ) = det [ϕ1(0;λ), ϕ2(0;λ), ϕ3(0;λ), ϕ4(0;λ)] , (4.3.16)

where {ϕ1(·;λ), ϕ2(·;λ)} spans the space Φ−(λ) and {ϕ3(·;λ), ϕ4(·;λ)} spans the space
Φ+(λ). For notational clarity we have suppressed the dependence on the other param-
eters. Essentially, the Evans function D(λ) measures the linear independence of the
solution functions ϕ1,...,4. Therefore, zeros of D(λ) correspond to values of λ for which
Φ+(λ) ∩ Φ−(λ) ̸= ∅, and thus to eigenvalues in the point spectrum [1].

In (4.3.16) the solutions ϕ1,...,4 are not uniquely defined, and any choice leads to
the same eigenvalues. However, for singularly perturbed partial differential equations
a specific choice enables the use of the scale separation in these equations, which in
turn makes it possible to determine the eigenvalues.

Lemma 4.3.8. Let the conditions of Theorem 4.2.19 be fulfilled and let (Up, Vp) be a
pulse solution to (4.1.2) as in Theorem 4.2.19. Then all eigenvalues λ ∈ Σpt associated
to (4.3.9) are roots of the Evans function

D(λ) = t11(λ)t22(λ)(1 +mλ)(1 + λ) exp
(∫ ∞

0

f(x) dx

)
, (4.3.17)

where t11 and t22 are analytic (transmission) functions of λ, defined by

lim
ξ→∞

ϕ1(ξ;λ)e
−Λ1(λ)ξ = t11E1; (4.3.18)

lim
ξ→∞

ϕ2(ξ;λ)e
−Λ2(λ)ξ = t22E2, (4.3.19)

where ϕ1 is the (unique) solution to (4.3.10) for which

lim
t→−∞

ϕ1(ξ;λ)e
−Λ1(λ)ξ = E1; (4.3.20)

and ϕ2 is the (unique) solution to (4.3.10) (if t11(λ) ̸= 0) for which

lim
t→−∞

ϕ2(ξ;λ)e
−Λ2(λ)ξ = E2; (4.3.21)

lim
t→∞

ϕ2(ξ;λ)e
Λ1(λ)ξ = 0 (4.3.22)

Proof. The proof is heavily based on [48, section 3.2]. Therefore, we present here only
an outline of the proof and refer the interested reader to [48] for more details.

The heart of the proof is based on choosing ϕ1,...,4 in such way that the scale
separation of (4.1.2) can be exploited. Because A and A∞ are exponentially close when
ξ → −∞, there is a unique solution ϕ1 such that ϕ1 closely follows E1(λ)e

Λ1(λ)ξ as
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ξ → −∞. More precisely, we define ϕ1 uniquely such that limξ→−∞ ϕ1(ξ;λ)e
−Λ1(λ)ξ =

E1(λ). For ξ → ∞, we do not know the precise form of ϕ1, but we do know that,
asymptotically, it is a combination of the eigenfunctions of the system ϕ̇∞ = A∞ϕ∞.
That is, ϕ1(ξ;λ) → t11(λ)E1e

Λ1(λ)ξ+ t12(λ)E2e
Λ2(λ)ξ+ t13(λ)E3e

Λ3(λ)ξ+ t14(λ)e
Λ4(λ)ξ

as ξ → ∞, where t11, . . . , t14 are analytic transmission functions.
Next, ϕ2 must be chosen such that {ϕ1(·, λ), ϕ2(·, λ)} spans Φ−(λ). As this does

not determine ϕ2 uniquely, we may, additionally, require that ϕ2 grows, at most, as
E2(λ)e

Λ2(λ)ξ for ξ → ∞. More precisely, we define ϕ2 uniquely such that we have
limξ→−∞ ϕ2(ξ;λ)e

−Λ2(λ)ξ = E2 and limξ→+∞ ϕ2(ξ;λ)e
−Λ1(λ)ξ = 0 (note that this

construction is based on insight in t11 – that may not be 0 – that is obtained by
the ‘elephant trunk procedure’, see [48, 65] and Remark 4.3.18). For ξ → ∞, ϕ2
is then asymptotically given by ϕ2(ξ;λ) → t22(λ)E2(λ)e

Λ2(λ)ξ + t23(λ)E3(λ)e
Λ3(λ)ξ +

t24(λ)e
Λ4(λ)ξ as ξ → ∞, where t21, t23, t24 are analytical transmission functions.

In a similar vein the solutions ϕ3 and ϕ4 can be defined in such a way that
limξ→∞ ϕ4(ξ;λ)e

−Λ4(λ) = E4(λ) and limξ→∞ ϕ3(ξ;λ)e
−Λ3(λ) = E3(λ).

Then, using that
∑4

j=1 Λj(λ) = 0 and by Liouville’s formula, the Evans func-
tion (4.3.16) can be rewritten:

D(λ) = lim
ξ→∞

det [ϕ1(ξ;λ), ϕ2(ξ;λ), ϕ3(ξ;λ), ϕ4(ξ;λ)] exp
(
−
∫ ξ

0

TrA(z) dz
)

= lim
ξ→∞

det
[
ϕ1(ξ;λ)e

−Λ1(λ)ξ, ϕ2(ξ;λ)e
−Λ2(λ)ξ, ϕ3(ξ;λ)e

−Λ3(λ)ξ, ϕ4(ξ;λ)e
−Λ4(λ)ξ

]
× exp

(
−
∫ ξ

0

TrA(z) dz
)

= det [t11(λ)E1(λ), t22(λ)E2(λ), E3(λ), E4(λ)] exp
(∫ ∞

0

f(x) dx

)
= t11(λ)t22(λ)(1 +mλ)(1 + λ) exp

(∫ ∞
0

f(x) dx

)
.

The roots λ ∈ Ce of D(λ) thus correspond to the roots of t11(λ)t22(λ). The next
goal, therefore, is to determine the roots of these transmission functions.

Fast transmission function t11

The transmission function t11 is closely related to the linearization around the pulse
in the fast field,

(Lr − λ)v = 0, Lrv := ∂2ξv − [1− 3 sech(ξ/2)2]v. (4.3.23)

The eigenvalues of Lr are well-known to be λr
0 = 5/4, λr

1 = 0 and λr
2 = −3/4. By a

standard winding number argument, it follows that roots of t11 lie O(ε)-close to these
eigenvalues λr

0, λr
1 and λr

2.

Lemma 4.3.9 (Properties of t11). Let the conditions of Proposition 4.3.8 be fulfilled.
The roots of t11 lie O(ε) close to the eigenvalues (counting multiplicity) of Lr, i.e.
close to λr

0 = 5/4, λr
1 = 0 and λr

2 = −3/4.
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Proof. See [48, Lemma 4.1].

Although t11 has a root (with multiplicity 1) close to λr0 = 5/4, this does not mean
that D(λ) has a root for the same value of λ, since – as will be discussed in the next
section – the transmission function t22 has a pole of order 1 for the same λ, thus
preventing it from being an eigenvalue of L – in the literature, this is known as the
‘NLEP paradox’.

In studies of autonomous systems, the root of t11 close to λ = 0 is actually located
precisely at λ = 0 because of the translation invariance of those autonomous systems.
However, (4.1.2) is non-autonomous and therefore this reasoning no longer holds and
the eigenvalue close to λr1 = 0 can have negative or positive real part. As t22 does
not have a pole for this λ – as will be discussed in the next section – the Evans
function D(λ) has a root for this value; it thus corresponds to an eigenvalue of L. To
our best knowledge, it is, in general, not possible to determine the precise location
of this eigenvalue; in section 4.3.2 we compute its location using standard regular
perturbation techniques when the non-autonomous terms are small.

Slow transmission function t22

To determine the transmission function t22, we focus on the function ϕ2, as defined
in Proposition 4.3.8. Per construction, we know that ϕ2(ξ;λ) → t22(λ)E2(λ)e

Λ2(λ)ξ +
t23(λ)E3(λ)e

Λ3(λ)ξ + t24(λ)e
Λ4(λ)ξ as ξ → ∞. As |Λ4(λ)| ≫ |Λ2,3(λ)| for λ ∈ Ce,

the term eΛ4(λ)ξ is exponentially small in the slow fields I±s . Therefore, we have
that ϕ2(ξ;λ) ≈ t22(λ)E2(λ)e

Λ2(λ)ξ + t23(λ)E3(λ)e
Λ3(λ)ξ for ξ ∈ I+s sufficiently large.

In this way, ϕ2 in the slow fields is related to the properties of the exponentially
asymptotic constant-coefficient system ϕ̇∞ = A∞(λ, ε, µ,m)ϕ∞. However, we need to
relate ϕ2 in the slow fields to the exponentially asymptotic non-autonomous system
ϕ̇s = As(ξ;λ, ε, µ,m)ϕs to determine t22.

In the slow fields the system ϕ̇s = As(ξ;λ, ε, µ,m)ϕs has the dynamics for the
(ū, p̄) part completely separated from the dynamics of the (v̄, q̄) part. The (ū, p̄) part
is governed by the non-autonomous ODE(

˙̄u
˙̄p

)
= ε2µ [B0(λ) +B1(ξ)]

(
ū
p̄

)
, (4.3.24)

where

B0(λ) =

(
0 1

1 +mλ 0

)
; B1(ξ) =

(
0 0

−g(ε2µξ) −f(ε2µξ)

)
.

Here, only the matrix B1 carries the non-autonomous part of the differential equa-
tion and the system without B1 corresponds to the (ū, p̄) part of the system ϕ̇∞ =
A∞(λ, ε, µ,m)ϕ∞, which has spatial eigenvalues Λ2,3 = ±ε2µ

√
1 +mλ. When λ ∈ Ce

this autonomous system admits an exponential dichotomy on R and, therefore, by
roughness the non-autonomous system (4.3.24) does so as well, provided that δ =
supx∈R

√
f(x)2 + g(x)2 = supx∈R ∥B1(x)∥ is sufficiently small. Under these conditions,

there exist ψ̃2(ξ;λ) = (u2(ξ;λ), p2(ξ;λ), 0, 0)
T and ψ̃3(ξ;λ) = (u3(ξ;λ), p3(ξ;λ), 0, 0)

T

such that ψ̃2(ξ;λ) → E2(λ)e
Λ2(λ)ξ and ψ̃3(ξ;λ) → E3(λ)e

Λ3(λ)ξ as |ξ| → ∞. The same
reasoning as before can now be used to deduce that ϕ2(ξ;λ) ≈ ψ̃2(ξ;λ) for ξ ∈ I−s and
ϕ2(ξ;λ) ≈ t22(λ)ψ̃2(ξ;λ) + t23(λ)ψ̃3(ξ;λ) for ξ ∈ I+s .
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4.3 Linear stability analysis

To compute t22 we need to track the changes of ū and p̄ during the fast transition
when ξ ∈ If . From (4.3.9), it follows that ū stays constant to leading order. Hence,
matching ϕ2 at the ends of both super-slow fields I±s gives the leading order matching
condition

u2(0;λ) = t22(λ)u2(0;λ) + t23(λ)u3(0;λ). (4.3.25)
The p̄ component changes in the fast field. On the one hand, this change is given by
the difference of p̄ values at both ends of the slow fields I±s , i.e.

∆s p̄ = t22(λ)p2(0;λ) + t23(λ)p3(0;λ)− p2(0;λ). (4.3.26)

On the other hand, the accumulated jump over the fast field is

∆f p̄ =
1

µ

∫
If

(
vp(ξ)

2u2(0;λ) + 2up(ξ)vp(ξ)v̄(ξ;λ)
)
dξ, (4.3.27)

where v̄ satisfies (Lr − λ) v̄ = −u2(0;λ)vp(ξ)2. We recall that, in the fast field, to
leading order, up = u0 and vp = ω

u0
, where ω(ξ) = 3

2 sech(ξ/2)2. We rescale v̄(ξ;λ) =
−u2(0;λ)

u2
0

Vin(ξ;λ). Then (4.3.27) becomes

∆f p̄ =
1

µ

u2(0;λ)

u20

∫
If

(
ω(ξ)2 − 2ω(ξ)Vin(ξ;λ)

)
dξ =

1

µ

u2(0;λ)

u20
(6− 2R(λ)) + h.o.t.

(4.3.28)
where

R(λ) :=

∫ ∞
−∞

ω(ξ)Vin(ξ;λ) dξ (4.3.29)

and Vin satisfies
(Lr − λ)Vin(ξ;λ) = ω(ξ)2. (4.3.30)

Equating ∆s p̄ = ∆f p̄ and by (4.3.25) one readily derives (at leading order in ε)

t22(λ) = 1 +
1

µ

1

u20

6− 2R(λ)
p2(0;λ)
u2(0;λ)

− p3(0;λ)
u3(0;λ)

. (4.3.31)

Because of the symmetry f(x) = f(−x), g(x) = −g(−x), it follows that u2(0;λ) =
u3(0;λ) and p2(0;λ) = −p3(0;λ). Hence

t22(λ) = 1 +
1

µ

1

u20

3−R(λ)
p2(0;λ)
u2(0;λ)

. (4.3.32)

The inhomogeneous ODE (Lr − λ)Vin = ω2 admits bounded solutions for all λ that
are not eigenvalues of Lr. When λ is an eigenvalue, though, a bounded solution only
exists if the following Fredholm condition is satisfied:∫ ∞

−∞
ω2v∗dξ = 0, (4.3.33)

where v∗ is the corresponding eigenfunction. Therefore, by Sturm-Liouville theory, it
is clear that there is a bounded solution for λr1 = 0, but not for λr0 = 5/4 or λr2 = −3/4.
That is, R(λ), and therefore t22, has poles of order 1 at λr0 and λr2.

We have, hence, demonstrated the following:
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Pulse solutions for an extended Klausmeier model with spatially varying coefficients

Lemma 4.3.10 (Evans function). Let the conditions of Theorem 4.2.19 and assump-
tion (A7) be fulfilled, and let (Up, Vp) be a pulse solution to (4.1.2) as described in
Theorem 4.2.19. It then holds true that the eigenvalues of the operator L in (4.3.1)
arising from linearization around the pulse solution (Up, Vp) coincide on Ce with the
roots of the Evans function

D(λ) = t11(λ)t22(λ)D̃(λ) , (4.3.34)

with D̃(λ) ̸= 0, λ ∈ Ce and where the so-called fast transmission function is given by

t11(λ) = C1

(
λ− λf0

)(
λ− λf1

)(
λ− λf2

)
, (4.3.35)

with λf1 = O(ε), while the so-called slow transmission function is given by

t22(λ) = C2
t̃22(λ)(

λ− λf0

)(
λ− λf2

) , (4.3.36)

with some C1, C2, λ
f
0 , λ

f
2 ∈ R \ {0} and t̃22 an analytic function on Ce. In particular,

t22(λ) = 1 +
1

u20µ

(
3−R(λ)

p2(0;λ)/u2(0;λ)

)
, (4.3.37)

where p2(0;λ)/u2(0;λ) is the slope of the unstable manifold of the trivial solution
to (4.3.24) at x = 0, and R is given (at leading order in ε) by

R(λ) =

∫ ∞
−∞

3

2
sech(ξ/2)2Vin(ξ;λ) dξ , (4.3.38)

where Vin satisfies (Lr − λ)Vin = 9
4 sech(ξ/2)4.

Remark 4.3.11. The function R has been extensively studied in [8, section 3.1.1], [54,
section 4.1] and [53, section 5]. We would like to stress, however, that R in this article
has a different factor in front of it and is defined in terms of λ, whereas in [53, 54] it
is defined as function of P := 2

√
1 + λ. A plot of R has been included in Figure 4.8.

Remark 4.3.12. The eigenvalue problem is often written as a nonlocal eigenvalue
problem (NLEP). This can be achieved via the transformation

Vin(ξ;λ) =
3− µu20

p2(0;λ)
u2(0;λ)∫∞

−∞ ω(ξ)f(ξ;λ) dξ
z(ξ;λ),

which results in the NLEP

(Lr − λ) z =
ω2
∫∞
−∞ ωz dξ

3− µu20
p2(0;λ)
u2(0;λ)

.

Roots of transmission function t22

In the constant coefficient case f, g ≡ 0, we have that p2(0;λ)/u2(0;λ) =
√
1 +mλ

and so t22(λ) = 0 reduces to

µu20 =
R(λ)− 3√
1 +mλ

, (4.3.39)
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Figure 4.8 – A plot of the function R(λ). The red lines show the form of R(λ) for real-
valued λ, whereas the blue lines also show the complex λ for which R(λ) is real-valued;
the green, dashed lines indicate the poles of the R(λ).

with u0 as in (4.2.72), and eigenvalues can be readily extracted from this condition
– see [8]; in Figure 4.9, we show plots of the right-hand side for various m. With
additional asymptotic approximations, m ≪ 1 and m ≫ 1, this can be reduced even
further, to leading order to,

µu20 = R(λ)− 3, when m≪ 1;
νu20 = R(λ)−3√

λ
, when m≫ 1; (4.3.40)

where

ν =
m2D

a2
= µ

√
m. (4.3.41)

Now, when µ≪ 1, respectively ν ≪ 1, the left-hand side of these expressions becomes
asymptotically small (since u0 = u−0 = O(1), see (4.2.72) and Remark 4.2.4), but
stays positive. Hence solutions λ accumulate at points for which R(λ)− 3 ≈ 0, which
happens to be at the tip of the essential spectrum, i.e. λ = λ/m ≈ −1, see Figure 4.9
and [8]. Certainly, no eigenvalues with positive real parts are found.

This idea can be expanded to include the non-autonomous cases. For this, as in
the existence problem, we relate the non-autonomous equation to the autonomous
equation. Here, it is useful to rescale (4.3.24) such that it has the form of (4.2.49).
Specifically, we set x̃ = ε2µ|

√
1 +mλ|ξ and p̄ = |

√
1 +mλ|p̃, under which (4.3.24)

turns into the system(
ū′

p̃′

)
=

[(
0 1
1 0

)
+

(
0 0

− g(x̃/|
√
1+mλ|)

|1+mλ| − f(x̃/|
√
1+mλ|)

|
√
1+mλ|

)](
ū
p̃

)
. (4.3.42)

The autonomous part of this equation corresponds to the autonomous part for the
existence problem – see section 4.2.4 – and thus possesses an exponential dichotomy
with constants K = 1 and ρ = 1. Therefore, for a given λ ∈ Ce, by roughness (Propo-
sition 4.2.14) it follows that the full non-autonomous equation has an exponential
dichotomy as well when

sup
x∈R

1

|
√
1 +mλ|

√
g(x)2

|1 +mλ|
+ f(x)2 <

1

4
. (4.3.43)
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Figure 4.9 – Plots of the right-hand side of (4.3.39) for various m. The red lines
indicate the values for real-valued λ, whereas the blue lines indicate complex λ for
which the right-hand side of (4.3.39) is real-valued; in green the poles are shown; see [8]
for more details.

It is easily verified that this condition is satisfied when

δ = sup
x∈R

√
f(x)2 + g(x)2 < δc(λ) :=

1

4
|
√
1 +mλ|

∣∣∣∣∣
√

1 +mλ

2 +mλ

∣∣∣∣∣ . (4.3.44)

Thus, for all λ ∈ Ce, we obtain a (different) bound δc(λ). Since δc(λ) ↓ 0 as |
√
1 +mλ| ↓

0 – i.e. when λ approaches −1/m – we cannot take the infimum over the region Ce.
Instead, we further restrict λ to λ ∈ C̃e := Ce ∩

{
λ ∈ C : |λ+ 1

m | > 1
2m

}
. Note that

C+ ⊂ C̃e. Then the infimum of δc(λ) over this region exists, and we define it as
δc := infλ∈C̃e

δc(λ) =
√
6

24 ≈ 0.102. Thus, if δ < δc, (4.3.42) possesses an exponential
dichotomy for all λ ∈ C̃e.

Moreover, for all λ ∈ C̃e and δ < δc, the slope p2(0;λ)/u2(0;λ) of the non-
autonomous case can be related to that of the autonomous case, along the same
lines as in the existence proof in section 4.2.4 (specifically, as in Lemma 4.2.18). That
is, there are O(1) constants 0 < C−(δ) ≤ 1 ≤ C+(δ) such that p̃(0;λ) = Cū(0;λ)
for some C ∈ (C−(δ), C+(δ)). Rescaling back to the original variables then yields
p2(0;λ)/u2(0;λ) = C

√
1 +mλ. Therefore t22(λ) = 0 reduces to

Cµu20 =
R(λ)− 3√
1 +mλ

. (4.3.45)

The asymptotic arguments for the autonomous case can now be repeated and it readily
follows that no solutions are found with λ ∈ C̃e. In particular t22(λ) = 0 does not
have solutions with Reλ > 0. We, hence, have the following result.
Proposition 4.3.13 (Roots of the slow transmission function). Let t22 be the slow
transmission function from Lemma 4.3.10. Then, for λ ∈

{
λ ∈ Ce : ∥λ+ 1

m∥ > 1
2m

}
,

t22(λ) = 1 +
1

u20µ

(
3−R(λ)

C
√
1 +mλ

)
, (4.3.46)

with u0 = u−0 as in (4.2.72) and for some C ∈ R with

0 < Cmin(δ) < C < Cmax(δ) <∞ (4.3.47)
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and Cmin/max(δ) defined as in Lemma 4.2.18.
Moreover, if either of the following two asymptotic approximations hold true,

(i) m≪ 1 and µ≪ 1;

(ii) m≫ 1 and ν ≪ 1,

then t22(λ) = 0 does not have any solution λ ∈ Ce with Reλ > 0.

Combining Lemma 4.3.10 with Proposition 4.3.13 readily demonstrates Theorem 4.3.2.

Further remarks

If the asymptotic conditions on m, µ and ν from Proposition 4.3.13 do not hold,
equation (4.3.45) still holds. By restricting δ further (i.e. taking a lower bound δc)
stronger bounds on the constant C+ can be enforced that guarantee all roots of t22 lie
to the left of the imaginary axis. The proof of this heavily relies on the proof for the
autonomous case (see e.g. [8]) and a careful estimation of the constant C+. Specifically,
the following lemma can be established:

Lemma 4.3.14. Let the conditions of Proposition 4.3.8 be fulfilled. Then there exists
critical values mc = 3, 0 < µ∗(m) < 1

12 (see Theorem 4.2.19) and ν∗(m) > 0 such that
if either of the following holds

(i) m < mc and µ < µ∗(m);

(ii) m > mc and ν < ν∗(m);

(iii) m = mc and µ < µ∗(m) and ν < ν∗(m),

then there exists a δc > 0 such that if δ < δc the condition (4.3.45) has no solutions
with Reλ > 0; that is, t22 has no roots with positive real part.

Remark 4.3.15. In (4.3.45), the left-hand side is always real-valued. Hence, only
λ ∈ C for which the right-hand side is real-valued can satisfy (4.3.45). Due to this,
eigenvalues can only appear on a skeleton in C, of which the form only depends on m.
In Figure 4.10 we show several skeletons for different m. Note that this is the reason
for (the shape of) the bounds on the ‘large’ eigenvalues shown in Figure 4.4 (in red).

Remark 4.3.16. The arguments in this section have been applied to pulse solutions
with u0 = u−0 (see (4.2.72); u−0 as in (4.2.36) and (4.2.22)). There also exist pulse
solutions with u0 = u+0 (with u+0 as in (4.2.36) and (4.2.22)) and the reasoning also
holds for these, up to equation (4.3.45). However, u+0 = O

(
1
µ

)
for these solutions (see

Remark 4.2.4) and as an effect the left-hand side of (4.3.45) thus is asymptotically
large (for µ≪ 1). As result, eigenvalues accumulate around the poles of the right-hand
side. In particular, because of this, these alternative pulse solution necessarily have an
eigenvalue close to λ = 5/4 > 0, making these pulse solutions unstable.

Remark 4.3.17. If δ ≪ 1, a direct application of roughness of exponential dichotomies
can be used to directly prove that eigenvalues of (4.3.10) necessarily lie O(δ) close to
eigenvalues of the problem with f ≡ 0, g ≡ 0.

Remark 4.3.18. If limx→±∞ f(x), g(x) exist but are not (all) equal to zero, a similar
result can be found with minor changes to the proof – provided that the essential
spectrum lies to the left of the imaginary axis.
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Figure 4.10 – Plots of skeletons on which λ that satisfy (4.3.45) necessarily need to lie.

Remark 4.3.19. If limx→±∞ f(x), g(x) do not exist, the outlined proof fails because
the ‘elephant trunk’ procedure used in the proof of Lemma 4.3.8 does no longer work.
If f and g approach (possibly different) period functions for x → ∞ a variant of this
proof using a Ricatti transformation such as in [39] seems possible.

4.3.2 Small eigenvalue close to λ = 0 (Proof of Theorem 4.3.5)
In this section we assume that

f(x) = δf̃(x), g(x) = δg̃(x), 0 < δ ≪ 1 , f̃ , g̃ = O(1), sup
x∈R

√
f̃(x)2 + g̃(x)2 = 1,

(4.3.48)

which will ease the derivation of a more detailed estimate (as given in Theorem 4.3.5)
of the location of the small eigenvalue around λ = 0 (in terms of δ), so we set

λ = δλ̃ . (4.3.49)

The strategy to derive such an estimate is to relate the eigenvalue and existence prob-
lems in an appropriate way and then use the Fredholm alternative. To this end, let us
write the eigenvalue problem in the fast field (4.3.9) in the more concise form

δλ̃

(
ε4µ2m 0

0 1

)(
ū
v̄

)
= Lup,vp

(
ū
v̄

)
, (4.3.50)

and the existence problem in the fast field (4.2.2) as

0 = Lh

(
up
vp

)
+ δLin(ξ)

(
up
vp

)
+N

(
up
vp

)
+

(
a
0

)
, (4.3.51)

with (the linear part with constant coefficients)

Lh =

(
∂2ξ − ε4µ2 0

0 ∂2ξ − 1

)
, (4.3.52)

and

Lin(ξ) =

(
ε2µ f̃(ε2µξ)∂ξ + ε4µ2 g̃(ε2µξ) 0

0 0

)
, (4.3.53)
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and N the nonlinear terms. Recall that in the autonomous case the derivative of the
pulse solution is an eigenfunction for the zero eigenvalue. Motivated by this, we take
a derivative w.r.t. ξ of the non-autonomous existence problem which gives

0 = [Lh + δLin(ξ) +DN(up, vp)]︸ ︷︷ ︸
=Lup,vp

(
u̇p
v̇p

)
+ δ

(
d

dξ
Lin(ξ)

)(
up
vp

)
, (4.3.54)

and plug into the above eigenvalue problem (4.3.50) the ansatz(
ū
v̄

)
=

(
u̇p
u̇p

)
+ δ

(
ũ
ṽ

)
, (4.3.55)

which results in

δλ̃

(
ε4µ2m 0

0 1

)(
u̇p
u̇p

)
+ δ2λ̃

(
ε4µ2m 0

0 1

)(
ũ
ṽ

)
= Lup,vp

(
u̇p
u̇p

)
+ δLup,vp

(
ũ
ṽ

)
. (4.3.56)

Upon using (4.3.54) to replace the term featuring Lup,vp(u̇p, v̇p)
T , we get

δλ̃

(
ε4µ2m 0

0 1

)(
u̇p
v̇p

)
+ δ2λ̃

(
ε4µ2m 0

0 1

)(
ũ
ṽ

)
(4.3.57)

= −δ
(
d

dξ
Lin(ξ)

)(
up
vp

)
+ δLup,vp

(
ũ
ṽ

)
(4.3.58)

For the perturbation analysis to follow we will use the notation up,0, vp,0, ū0, v̄0 to
indicate the leading order in δ of the corresponding terms. In particular, up,0, vp,0 are
the pulse solutions for the homogeneous case f = g = 0 as described in Corollary 4.2.20.
We, hence, arrive at the leading order in δ of the previous equation

L
(
ũ0
ṽ0

)
=

(
α
β

)
(4.3.59)

with

L := Lup,0,vp,0
=

(
∂2ξ − ε4µ2 − ε2v2p,0 −2ε2up,0vp,0

v2p,0 ∂2ξ − 1 + 2up,0vp,0

)
, (4.3.60)

and (
α
β

)
:= λ̃

(
ε4µ2m 0

0 1

)(
u̇p,0
v̇p,0

)
+

(
d

dξ
Lin(ξ)

)(
up,0
vp,0

)
(4.3.61)

=

(
ε4µ2mλ̃u̇p,0 + ε4µ2f̃ ′(ε2µξ)u̇p,0 + ε6µ3g̃′(ε2µξ)up,0

λ̃v̇p,0

)
. (4.3.62)

In order to find an expression for the eigenvalue correction λ̃, we will make use of
the Fredholm alternative for (4.3.59). Hence, we first need to study the kernel of the
adjoint operator

L∗ =
(
∂2ξ − ε4µ2 − ε2v2p,0 v2p,0

−2ε2up,0vp,0 ∂2ξ − 1 + 2up,0vp,0

)
,
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that is, to find (u∗, v∗)T with

L∗
(
u∗

v∗

)
= 0 , (4.3.63)

and rearrange the solvability condition⟨(
u∗

v∗

)
,

(
α
β

)⟩
L2×L2

= 0, (4.3.64)

to get an expression for λ̃. Since (4.3.63) is again a singularly perturbed problem (in
ε), we split this problem into three regions: two slow regions, I±s , and one fast region,
If . As described in Theorem 4.2.19 and Corollary 4.2.20, we have

up,0,0(ξ) =


1
µ

[
1− (1− µu0)e

+ε2µξ
]
, ξ ∈ I−s ;

u0, ξ ∈ If ;
1
µ

[
1− (1− µu0)e

−ε2µξ
]
, ξ ∈ I+s ,

vp,0,0(ξ) =


0, ξ ∈ I−s ;
1
u0
ω(ξ), ξ ∈ If ;

0, ξ ∈ I+s ,

,

(4.3.65)
where ω(ξ) = 3

2 sech(ξ/2)2 and the notation “p, 0, 0” indicates that this the leading
order in both, δ and ε. In the slow regions we have vp,0,0 = 0 to leading order and
therefore (again to leading order)

u∗(ξ) =

{
C−eε

2µξ, ξ ∈ I−s ;

C+e−ε
2µξ, ξ ∈ I+s ;

v∗(ξ) =

{
D−eξ, ξ ∈ I−s ;

D+e−ξ, ξ ∈ I+s ,
(4.3.66)

where C± and D± are constants that need to be found via matching with the fast field
at ξ = ±1/

√
ε. In the fast region, the adjoint problem is to leading order given by{

0 = ü∗ + 1
u2
0
ω2v∗ ,

0 = v̈∗ − v∗ + 2ωv∗ .

Up to a multiplicative constant, the only bounded solution to the v∗-equation is v∗ =
1
u0
ω′. Matching with the slow fields indicates D± = 0. The expression for u∗ in If

can be found by integrating twice, which reveals

σ(ξ) := u∗(ξ) = − 1

3u30

∫ ξ

ω3(z) dz + C2

= − 1

3u30

9

20
[6 cosh(ξ) + cosh(2ξ) + 8] tanh(ξ/2) sech(ξ/2)4 + C2.

The value of C2 turns out to be irrelevant and therefore we choose C2 = 0 for simplicity
of presentation. Matching with the slow fields then gives C− = 6

5u3
0

and C+ = − 6
5u3

0
.

In summary, we have to leading order in ε

u∗(ξ) =


+ 6

5u3
0
e+ε2µξ , ξ ∈ I−s ;

σ(ξ) , ξ ∈ If ;

− 6
5u3

0
e−ε

2µξ , ξ ∈ I+s ,

v∗(ξ) =


0 , ξ ∈ I−s ;
1
u0
ω′(ξ) , ξ ∈ If ;

0 , ξ ∈ I+s ,

, (4.3.67)

and

α(ξ) =

ε6µ2 e+ε2µξ
[
−mλ̃(1− µu0)− f̃ ′(ε2µξ)(1− µu0) + g̃′(ε2µξ)

(
e−ε2µξ + µu0 − 1

)]
, ξ ∈ I−

s ;

ε6µ3g̃′(ε2µξ)u0 , ξ ∈ If ;

ε6µ2 e−ε2µξ
[

mλ̃(1− µu0) + f̃ ′(ε2µξ)(1− µu0) + g̃′(ε2µξ)
(
e+ε2µξ + µu0 − 1

)]
, ξ ∈ I+

s ,

(4.3.68)
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β(ξ) =


0 , ξ ∈ I−s ;
λ̃
u0
ω′(ξ) , ξ ∈ If ;

0 , ξ ∈ I+s ; .

, (4.3.69)

We can now assemble the different terms for the solvability condition

⟨(
u∗

v∗

)
,

(
α
β

)⟩
L2×L2

=

∫
I−
s ∪If∪I+

s

u∗(ξ)α(ξ) dξ +

∫
I−
s ∪If∪I+

s

v∗(ξ)β(ξ) dξ

(4.3.70)

Using that f is odd and g is even, which makes f ′ even and g′ odd, we get to leading
order

∫
I−
s

u∗(ξ)α(ξ)dξ = +ε6µ2

(
6

5u30

)∫
I−
s

e+2ε2µξ
(
−mλ̃(1− µu0)− f̃ ′(ε2µξ)(1− µu0)

−g̃′(ε2µξ)[e−ε
2µξ + µu0 − 1]

)
dξ

= +ε4µ

(
6

5u30

)∫ +∞

0

e−2x
(
−mλ̃(1− µu0)− f̃ ′(x)(1− µu0)

− g̃′(x)[ex + µu0 − 1]
)
dx+ h.o.t.

= −ε4µ
(

6

5u30

)∫ +∞

0

e−2x
(
mλ̃(1− µu0) + f̃ ′(x)(1− µu0)

+ g̃′(x)[ex + µu0 − 1]
)
dx+ h.o.t.

= −ε4µ
(

6

5u30

)(
1

2
m(1− µu0)λ̃+

∫ +∞

0

e−2x
(
f̃ ′(x)(1− µu0)

+ g̃′(x)[ex + µu0 − 1]
)
dx
)
+ h.o.t.∫

I+
s

u∗(ξ)α(ξ)dξ = −ε6µ2

(
6

5u30

)∫
I+
s

e−2ε
2µξ
(
mλ̃(1− µu0) + f̃ ′(ε2µξ)(1− µu0)

+g̃′(ε2µξ)[e+ε2µξ + µu0 − 1]
)
dξ

= −ε4µ
(

6

5u30

)(
1

2
m(1− µu0)λ̃+

∫ +∞

0

e−2x
(
f̃ ′(x)(1− µu0)

+ g̃′(x)[ex + µu0 − 1]
)
dx
)
+ h.o.t.∫

If

u∗(ξ)α(ξ) dξ =

∫
If

ε6µ2g̃′(ε2µξ)u0dξ = O(ε6−1/2µ2)∫
I±
s

v∗(ξ)β(ξ)dξ = h.o.t∫
If

v∗(ξ)β(ξ)dξ =

∫
If

λ̃
1

u20
ω′(ξ)2dξ = λ̃u0

(
6

5u30

)
+ h.o.t. .
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Putting all pieces together, the solvability condition reads⟨(
u∗

v∗

)
,

(
α
β

)⟩
L2×L2

=

(
6

5u30

)[
λ̃u0 − ε4µ

(
mλ̃(1− µu0)

+2

∫ +∞

0

e−2x
(
f̃ ′(x)(1− µu0) + g̃′(x)[ex + µu0 − 1]

)
dx

)]
+ h.o.t. = 0 ,

which can be rearranged to

λ̃ =
2ε4µ

u0 − ε4µm(1− µu0)

∫ +∞

0

e−2x
(
f̃ ′(x)(1− µu0) + g̃′(x)[ex + µu0 − 1]

)
dx+ h.o.t.

(4.3.71)
Since the problem is solved by a regular perturbation approach, the asymptotic

analysis may be validated rigorously by classical methods (i.e. by rigorously controlling
the higher order terms); alternatively a geometrical approach based on Lin’s method
may be employed (see e.g. [6]).

To show Corollary 4.3.6, we observe that in the double asymptotic limit τ :=
ε4µm≪ 1 and µ≪ 1, the leading order expression for λ̃ becomes

λ̃ =
2ε4µ

3

∫ ∞
0

e−2x
(
f̃ ′(x) + g̃′(x)[ex − 1]

)
dx+ h.o.t. (4.3.72)

where we used that u0 = u−0 (µ) → 3 for µ→ 0 (see Corollary 4.2.21 and (4.2.23)).

Interpretation of results for ecological applications

Going back to the ecological application, we set f(x) = h′(x) and g(x) = h′′(x).
Depending on the rate of topographical variation, several different simplifications can
be made to Theorem 4.3.5, that allow us to make generic statements about stability
of pulse solutions on these terrains.

First, if the topographical changes are small, i.e. when h = O(δ), we can write
h(x) = δh̃(x) and then (4.3.3) can be simplified (via integration by parts):
Corollary 4.3.20 (small eigenvalue for height function h). Let the conditions of The-
orem 4.3.5 be fulfilled. If f̃(x) = h̃′(x) and g̃(x) = h̃′′(x), then (4.3.3) becomes

λ0 =
2δτ

u0 − τ(1− µu0)

[
−µu0h̃

′′(0) + h̃(0)(1− 2µu0) +

∫ ∞

0
h̃(x)

(
e−x − 4(1− µu0)e

−2x
)
dx

]
;

(4.3.73)
additionally, in the double asymptotic limit τ := ε4µm≪ 1, µ≪ 1 this further reduces
to

λ0 =
2

3
δτ

[
h̃(0) +

∫ ∞
0

h̃(x)
(
e−x − 4e−2x

)
dx.

]
+ h.o.t. (4.3.74)

Remark 4.3.21. Note that h̃ appears in (4.3.73), while it does not appear in the
original PDE (4.1.2), where only its derivatives appear. Thus, increasing h̃ by an
additive constant does not affect the system, and in particular should not affect (4.3.73).
Since

∫∞
0

(
e−x − 4(1− µu0)e

−2x) dx = −(1 − 2µu0) the result in (4.3.73) is indeed
not changed when adding a constant to the height function h̃.

Second, if topographical variation happens only over long spatial scales (i.e. for
terrains with weak curvature), we can write h̃(x) = ĥ(σx), where 0 < σ ≪ 1 to
indicate the large-scale spatial variability. Hence, f̃(x) = σĥ′(σx) = O(σ) and g̃(x) =
σ2ĥ′′(σx) = O(σ2). Because of the difference in size of f̃ and g̃, the sign of λ0 can be
related to the sign of ĥ′′(0), i.e. to the local curvature at the location of the pulse.
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4.3 Linear stability analysis

Corollary 4.3.22 (small eigenvalue for terrains with weak curvature). Let the condi-
tions of Theorem 4.3.5 be fulfilled. If f̃(x) = σĥ′(σx) and g̃(x) = σ2ĥ′′(σx) with
0 < σ ≪ 1, the leading order expansion of (4.3.3) becomes

λ0 =
τδσ2(1− µu0)

u0 − τ(1− µu0)
ĥ′′(0); (4.3.75)

additionally, in the double asymptotic limit τ := ε4µm≪ 1, µ≪ 1, this further reduces
to

λ0 =
1

3
τδσ2ĥ′′(0) + h.o.t. (4.3.76)

Furthermore, it follows that sgn λ0 = sgn ĥ′′(0), i.e. (vegetation) pulses on hilltops
are stable and in valleys are unstable.

Proof. Since |f̃ ′(x)| ≫ |g̃′(x)| we can neglect the terms with g̃′(x) in (4.3.3), thus
obtaining

λ0 =
2τδ(1− µu0)

u0 − τ(1− µu0)

∫ ∞
0

f̃ ′(x)e−2x dx. (4.3.77)

Substitution of f̃ ′(x) = σ2ĥ′′(σx) and Taylor expanding ĥ′′ as ĥ′′(x) = ĥ′′(0) +O(σ3)
immediately yields (4.3.75); the rest of the statement follows straightforwardly.

Third, if topographical variation happens over short spatial scales (i.e. for terrains
with strong curvature), we can write h̃(x) = h̆ (x/σ), where 0 < σ ≪ 1 to indicate the
short spatial scales. Hence, f̃(x) = h̆′ (x/σ) /σ = O(1/σ) and g̃(x) = h̆′′ (x/σ) /σ2 =

O(1/σ2). Again, the sign of λ0 can be related to the sign of h̆′′(0), though the results
are now flipped:

Corollary 4.3.23 (small eigenvalue for terrains with strong curvature). Let the con-
ditions of Theorem 4.3.5 be fulfilled. If f̃(x) = h̆′ (x/σ) /σ and g̃(x) = h̆′′ (x/σ) /σ2

with 0 < σ ≪ 1 and h̆(y), h̆′(y), h̆′′(y) → 0 exponentially fast for |y| → ∞, the leading
(and next-leading) order expansion of (4.3.3) becomes

λ0 =
2τδ

u0 − τ(1− µu0)

[
−µu0
σ2

h̆′′(0) + (1− 2µu0) h̆(0)

]
; (4.3.78)

additionally, in the double asymptotic limit τ := ε4µm≪ 1, µ≪ 1, this further reduces
to

λ0 =
2

3
τδh̆(0). (4.3.79)

Furthermore, it follows that sgn λ0 = −sgn h̆′′(0) when µ ̸= 0, i.e. (vegetation) pulses
on hilltops are unstable and in valleys are stable; and sgn λ0 = sgn h̆(0) when µ = 0.

Proof. Substitution of h̃(x) = h̆(x/σ) and the use of the transformation y = x/σ in
(4.3.73) yields

λ0 =
2δτ

u0 − τ(1− µu0)

[
− µu0

σ2
h̆′′(0) + (1− 2µu0) h̆(0)

+ σ

∫ ∞
0

h̆(y)
(
e−σy − 4(1− µu0)e

−2σy) dy]. (4.3.80)

Taylor expanding the exponential functions then indicates the integral contributes only
at order O(δτσ). Hence the claimed results follow.
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Thus, the corollaries in this section indicate that – under certain assumptions on
the limiting behavior of the topography function h – vegetation patterns concentrated
on hilltops are stable if the terrain has weak curvature and unstable if the terrain has
strong curvature; similarly, patterns concentrated in valleys are unstable for terrains
with weak curvature, but they become stable if the terrain has strong curvature. A
more in-depth inspection of this phenomena can be found in section 4.4.4, where a few
explicit terrain functions h are studied numerically.

4.4 The effect of the small eigenvalue: movement of pulse
In the previous section we found that, under certain ‘standard’ assumptions on the
system’s parameters, all large eigenvalues of a homoclinic pulse solution reside to the
left of the imaginary axis. Only one small eigenvalue can lead to destabilization of
the pulse solution. Since this small eigenvalue is closely related to the translation
invariance of the system without spatially varying coefficients, it is possible to study
its effects by projecting the whole system unto the corresponding eigenspace.

This derivation enables us to reduce the full PDE dynamics of (4.1.2) to a simpler
ODE that describes the movement of the pulse’s location. Concretely, let P denote
the location of the center of the pulse. Then the time-evolution of P is given by

dP

dt
= τ

1

6

[
ũx(P

+)2 − ũx(P
−)2
]
, (4.4.1)

where the superscripts ± denote taking the upper respectively lower limit, τ :=

ε4µm = Da2

m
√
m

and ũ solves the differential-algebraic equation
ũxx + f(x)ũx + g(x)ũ+ 1− ũ = 0

ũ(P ) = µu0
ũx(P

+)− ũx(P
−) = 6

u0

(4.4.2)

We follow [8] and only give a short formal derivation of this PDE-to-ODE reduction,
in section 4.4.1. We refrain from going into the details of (proving) the validity of this
reduction. Although the renormalization group approach of [12, 50] for semi-strong
pulse interactions has not yet been applied to systems with inhomogeneous terms, it
can naturally be extended to include these effects. However, it should be noted that,
so far, the results and techniques of [12, 50] only cover a strongly restricted region
in parameter space: the general issue of validity of the reduction of semi-strong pulse
interactions to finite dimensional settings still largely remains an open question in the
field – see also [8]. As a consequence, we formulate the main results of this section as
Propositions and only provide their formal derivations.

Using the pulse location ODE (4.4.1) we use formal analysis in section 4.4.2 to
present a scheme by which we can determine the stability of the homoclinic pulse
patterns of Theorem 4.2.5 for any functions f and g, i.e. without the restriction
on their size by which we obtained Theorem 4.3.5; in section 4.4.3 we (formally)
validate this scheme by reducing it to the setting of Theorem 4.3.5, i.e. by assuming
that f, g = O(δ) (with δ ≪ 1), and showing that this indeed confirms the results of
Theorem 4.3.5. Next, we study a few explicit functions in section 4.4.4 – focusing
on what happens when the pulse solution changes stability type. Finally, we briefly
consider multi-pulse dynamics in section 4.4.5.
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4.4.1 Formal derivation of pulse location ODE
In this section we formally derive the pulse location ODE (4.4.1). Mathematically,
this amounts to tracking perturbations along translational eigenvalues; this approach
is sometimes called the ‘collective coordinate method’. Specifically, in this section, we
show

Proposition 4.4.1. Let ε = a
m ≪ 1, τ = Da2

m
√
m

≪ 1 and µ = Dm
√
m

a2 ≤ O(1) (w.r.t.
ε). Let P denote the location of the homoclinic pulse’s center. Then the evolution of
P is described by the pulse location ODE (4.4.1).

Formal derivation, cf. [8]. We introduce the stretched travelling-wave coordinate

ξ =

√
m

D
(x− P (t)) =

√
m

D

(
x− P (0)−

∫ t

0

dP

dt
(s)ds

)
,

scale dP
dt = Da2

m
√
m
c(t) and use scalings (4.2.1) to transform (4.1.2) to get

− a2

m2
Dm
√
m

a2
Da2

m
√
m
c(t)uξ = uξξ − a2

m2

[
D2m
a2 u− D√

m
+ uv2

−Dm
√
m

a2 f
(

D√
m
ξ
)
uξ − D2m

a2 g
(

D√
m
ξ
)
u
]

− a2

m2 c(t)vξ = vξξ − v + uv2

(4.4.3)
To find the solution in the fast region If = [−1/

√
ε, 1/

√
ε], close to the pulse location,

we expand u and v in terms of ε and look for solution of the form{
u = u0 + ε2u1 + . . .

v = v0 + ε2v1 + . . .
(4.4.4)

To leading order (4.4.3) is given by{
0 = u′′0 ,
0 = v′′0 − v0 + u0v

2
0 .

(4.4.5)

Hence we find u0 to be constant and

v0(ξ) =
3

2

1

u0
sech(ξ/2)2. (4.4.6)

The next order of (4.4.3) is{
u′′1 = u0v

2
0 ,

v′′1 − v1 + 2u0v0v1 = −c(t)v′0 − v20u1.
(4.4.7)

It is not a priori clear whether the v-equation is solvable; the self-adjoint operator L :=
∂2ξ−1+2u0v0 has a non-empty kernel, since Lv′0 = 0, and therefore the inhomogeneous
v-equation is only solvable when the following Fredholm condition holds∫

If

c(t)v′0(η)
2dη = −

∫
If

v0(η)
2u1(η)v

′
0(η)dη. (4.4.8)

Upon integrating by parts twice on the right-hand side we obtain∫
If

c(t)v′0(η)
2dη = −1

3

[
u′
1(η)

∫ η

0

v0(y)
3dy

]η=+1/
√
ε

η=−1/
√
ε

+
1

3

∫
If

u′′
1 (η)

∫ η

0

v0(y)
3dydη + h.o.t.

(4.4.9)
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Since v0 is an even function, u′′1 is an even function and η 7→
∫ η

0
v0(y)

3dy is an odd
function. Therefore the last integral vanishes and we obtain

c(t)

∫
If

v′0(η)
2dη =

1

6

[
u′1

(
1√
ε

)
+ u′1

(
− 1√

ε

)]∫
If

v0(η)
3dη. (4.4.10)

The integrals over the fast field If can be approximated by integrals over R, since v0
decays exponentially within fast field. Hence we find

c(t) =
1

u0

[
u′1

(
1√
ε

)
+ u′1

(
− 1√

ε

)]
. (4.4.11)

Finally, it follows from the u-equation in (4.4.7) that

u′1

(
1√
ε

)
− u′1

(
− 1√

ε

)
=

∫
If

u′′1(η)dη =

∫
If

u0v0(η)
2dη =

6

u0
+ h.o.t. (4.4.12)

Combining this with (4.4.11) we obtain

c(t) =
1

6

[
u′1

(
1√
ε

)2

− u′1

(
− 1√

ε

)2
]

(4.4.13)

The values of u′1(±1/
√
ε) can be matched to the solutions û in the slow fields. Careful

inspection of the scalings involved reveals u′1(±1/
√
ε) = ûx(P

±), where û satisfies the
differential-algebraic equation (4.4.2). Since dP

dt = τc(t) this concludes the proof.
Remark 4.4.2. Note the link with the notation in section 4.2: u′1 = p̂. See also
Remark 4.2.8.

4.4.2 Stability of fixed points of pulse location ODE (4.4.1)
The pulse location ODE (4.4.1) describes the movement of a pulse over time. In
general, for generic functions f and g, it is not possible to solve (4.4.2) in closed form,
and therefore the pulse location ODE (4.4.1) cannot be expressed more explicitly for
generic functions f and g. Thus, in general, (4.4.1) can only be solved numerically –
for instance using the numerical scheme developed in [8]. Moreover, for generic f and g
fixed points of (4.4.1) can only be obtained numerically. However, when f and g obey
the symmetry assumptions (A5), one can readily obtain that P∗ = 0 is a fixed point.
It is possible to determine the stability of fixed points using (4.4.1) via direct numerics,
but this can be rather time-intensive and is prone to errors close to bifurcation points.
Instead, it is better to first use asymptotic expansions to derive a stability condition
that can be checked (numerically) more easily.
Proposition 4.4.3. Let the conditions of Proposition 4.4.1 be satisfied, let µ≪ 1 and
let P∗ be a fixed point of (4.4.1). Then, the eigenvalue λ – where λ = mλ, see (4.3.8)
– corresponding to the pulse solution with a pulse located at the fixed point P∗ is given
by

λ =
τ

6

{
2ũ′(P+

∗ )
[
ũ′′(P+

∗ ) + w̃′(P+
∗ )
]
− 2ũ′(P−∗ )

[
ũ′′(P−∗ ) + w̃′(P−∗ )

]}
. (4.4.14)

Here ũ and w̃ solve the coupled ODE system
0 = ũ′′ + fũ′ + gũ− ũ+ 1,
0 = w̃′′ + fw̃′ + gw̃ − w̃,

ũ(P∗) = 0,
w̃(P±∗ ) = −ũ′(P±∗ ).

(4.4.15)
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Remark 4.4.4. If f and g satisfy the symmetry assumption (A5) and P∗ is located
at the point of symmetry, i.e. P∗ = 0, then symmetry forces ũ′(P+

∗ ) = −ũ′(P−∗ ),
ũ′′(P+

∗ ) = ũ′′(P−∗ ) and w̃′(P+
∗ ) = w̃(P−∗ ). Therefore, (4.4.14) reduces to

λ =
2τ

3
ũ′(P+

∗ )
[
ũ′′(P+

∗ ) + w̃′(P+
∗ )
]
. (4.4.16)

Remark 4.4.5. The condition µ ≪ 1 in Theorem (4.4.3) is not strictly necessary.
When this condition holds, the differential-algebraic system (4.4.2) simplifies to a nor-
mal boundary value problem, since ũ(P ) = 0 to leading order. However, when µ = O(1)
(w.r.t. ε) the procedure explained below is still applicable and one can derive a similar
result; only this time, u0 in (4.4.2) needs to be expanded as well and ũ and w̃ satisfy
the coupled differential-algebraic system

0 = ũ′′ + fũ′ + gũ− ũ+ 1,
0 = w̃′′ + fw̃′ + gw̃ − w̃,

ũ(P∗) = µu0,
w̃(P±∗ ) = −ũ′(P±∗ ) + µw0,

ũ′(P+
∗ )− ũ′(P−∗ ) = 6

u0
,

w̃′(P+
∗ )− w̃′(P−∗ ) = 6w0

u2
0
+ ũ′′(P−∗ )− ũ′′(P+

∗ ).

(4.4.17)

Formal derivation. To find the eigenvalue λ we need to evaluate the derivative of
the right-hand side of (4.4.1) at the fixed point P∗. That is,

λ =
d

dP

[τ
6

(
ũ′(P+)2 − ũ′(P−)2

)]
P=P∗

=
τ

6

[
2ũ′(P+

∗ )

(
d

dP
ũ′(P+)

)
P=P∗

− 2ũ′(P−∗ )

(
d

dP
ũ′(P−)

)
P=P∗

]
. (4.4.18)

By definition of the derivative

d

dP

[
ũ′(P±)

]
= lim

ϕ→0

ũ′ϕ((P + ϕ)±)− ũ′(P±)

ϕ
, (4.4.19)

where ũϕ solves (4.4.2) with every P replaced by P + ϕ. For small ϕ, ũϕ can be
related to ũ via a regular expansion. Specifically, let |ϕ| ≪ 1, and expand ũϕ =
ũ+ ϕw̃. Substitution in (4.4.2) and careful bookkeeping readiliy shows that ũ and w̃
satisfy (4.4.15). Finally, upon substituting the expansion for ũϕ into (4.4.19) and the
use of a Taylor expansion we obtain

d

dP

[
ũ′(P±)

]
= lim

ϕ→0

ũ′((P + ϕ)±) + ϕw̃′((P + ϕ)±)− ũ(P±)

ϕ

= lim
ϕ→0

ũ′(P±) + ϕũ′′(P±) + ϕw̃′(P±)− ũ′(P±)

ϕ

= ũ′′(P±) + w̃′(P±).

Finally, substitution into (4.4.18) gives (4.4.14).

4.4.3 Small eigenvalue in case of small spatially varying coefficients
As an example of the use of Proposition 4.4.3, in this section we use Proposition 4.4.3
to give another proof for Theorem 4.3.5 in the limit µ ≪ 1. This not only shows
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the applicability of Proposition 4.4.3 but especially the relevance of the pulse location
ODE (4.4.1). Moreover, it also provides a confirmation of the validity of the formal
results in this section.

Alternative formal derivation of Theorem 4.3.5 for µ ≪ 1. Since f and g satisfy
the symmetry assumption (A5), the eigenvalue λ is given by (4.4.16). Therefore, it
suffices to only look at the solutions ũ and w̃ to (4.4.15) for x > 0. Since f, g = O(δ)
with δ ≪ 1, we use regular expansions for ũ and w̃; that is, we set

ũ = ũ0 + δũ1 + . . . ,

w̃ = w̃0 + δw̃1 + . . . .

Substitution in (4.4.15) gives at leading order
0 = ũ′′0 − ũ0 + 1,
0 = w̃′′0 − ũ1,

ũ0(0) = 0,
w̃0(0

+) = −w̃′0(0+);

(4.4.20)

and at the next order, O(δ), we find
ũ′′1 − ũ1 = −f̃ ũ′0 − g̃ũ0,

w̃′′1 − w̃1 = −f̃ w̃′0 − g̃w̃0,
ũ1(0) = 0,

w̃1(0
+) = −ũ′1(0+).

(4.4.21)

Using the usual techniques to solve these ODEs, one can verify that
ũ0(x) = 1− e−x (4.4.22)

ũ1(x) =
1

2
ex
∫ ∞
x

F (z)e−zdz − 1

2

∫ ∞
0

F (z)e−zdz +
1

2
e−x

∫ x

0

F (z)ezdz (4.4.23)

w̃0(x) = −e−x (4.4.24)

w̃1(x) =
1

2
ex
∫ ∞
x

G(z)e−zdz − 1

2
e−x

∫ ∞
0

G(z)e−zdz +
1

2
e−x

∫ x

0

G(z)ezdz

− e−x
∫ ∞
0

F (z)e−zdz (4.4.25)

where
F (z) := f̃(z)e−z + g̃(z)(1− e−z), (4.4.26)
G(z) := f̃(z)e−z − g̃(z)e−z. (4.4.27)

Substitution of these expansions in (4.4.16) then yields

λ =
2

3
τ [ũ′0(0) + δũ′1(0)] [ũ

′′
0(0) + δũ′′1(0) + w̃′0(0) + δw̃′1(0)] +O(δ2)

=
2

3
τ

[
1 + δ

∫ ∞
0

F (z)e−ze−z
] [

−1 + 1 + δ

∫ ∞
0

(F (z) +G(z)) e−zdz

]
+O(δ2)

=
2

3
δτ

∫ ∞
0

(F (z) +G(z)) e−zdz +O(δ2)

=
2

3
δτ

∫ ∞
0

(
2f̃(z)e−2z + g̃(z)[1− 2e−z]e−z

)
dz +O(δ2)

=
2

3
δτ

∫ ∞
0

(
f̃ ′(z)e−2z + g̃′(z)(1− e−z)e−z

)
dz +O(δ2).
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Finally, we note that the eigenvalue has been rescaled as λ = mλ in Theorem 4.3.2.
Since τ/m = ε4µ and u0 = 3 in the limit µ ≪ 1, we have indeed recovered (4.3.72),
i.e. Theorem 4.3.5, in the case µ≪ 1.

4.4.4 Examples of stationary single-pulse solutions
In this section, we study a few explicit functions f and g; in all examples we specify
a function h and take f = h′, g = h′′. Not all functions we consider here limit to 0 as
|x| → ∞; that is, some violate assumption (A5). Therefore, these examples also form
an outlook, illustrating how the results in this paper are expected to extend beyond
the imposed assumptions on functions f and g. Specifically, we consider the following
four examples:

(i) h(x) = Ae−Bx2 , (A ∈ R, B > 0);

(ii) h(x) = A sech(Bx), (A ∈ R, B > 0);

(iii) h(x) = A cos(Bx), (A ∈ R, B > 0);

(iv) h(x) = −2 ln(cosh(βx)), (β > 0).

Note that lim|x|→∞ f(x), g(x) = 0 in cases (i)–(ii), which therefore satisfy assumption
(A5). In case (iii) f and g are periodic when |x| ≫ 1; in case (iv) f and g do have
well-defined (though non-zero) limits for |x| → ∞.

Remark 4.4.6. Note that A > 0 in (i)–(ii) corresponds to ‘hill-like’ topographies and
A < 0 to ‘valley-like’ topographies. The value of B in (i)–(iii) is a measure of the
curvature of the terrain; the higher the value of B, the stronger the curvature of the
terrain modeled by the function h.

Using the pulse location ODE (4.4.1) and Proposition 4.4.3, we have tracked the
fixed points and their stability for these examples in the limit µ ≪ 1, using numer-
ical continuation methods. The resulting bifurcation diagrams for (i) are shown in
Figure 4.11(a-b), for (ii) in Figure 4.12(a-b) and for (iii) in Figure 4.13(a). In all of
these cases, we find fixed points at the point of symmetry, corroborating the results in
section 4.2. For small B values – i.e. for weak curvature topographies – the stability of
these fixed points is determined by the sign of A: A > 0 leads to stable and A < 0 to
unstable fixed points – corroborating previous intuition indicating that pulses migrate
in uphill direction [8, 148, 158]. However, for sufficiently large values of B –i.e. to-
pographies with strong curvature– the stability of those fixed points changes through
a pitchfork bifurcation and new behavior is observed. In case (iii) this even leads to
the possibility that both the tops (BP = 0) as well as the valleys (BP = ±π) form
stable fixed points of (4.4.1). The bifurcation value of the pitchfork bifurcation, Bc(A),
depends on the value of A. Using numerical continuation methods we also tracked
this value; the results are in Figures 4.11(c), 4.12(c) and 4.13(b) (for topographies (i),
(ii) and (iii)).

Remark 4.4.7. Theorem 4.3.5, and in particular (4.3.72) and (4.3.74), provide a
leading order analytic expression for Bc(0). Evaluating these yields Bc(0) ≈ 0.75
(i), Bc(0) ≈ 1.23 (ii) and Bc(0) =

√
2 (iii), which is confirmed by the numerical

continuation that indicate Bc(0) ≈ 0.75 (i), Bc(0) ≈ 1.24 (ii) and Bc(0) = 1.43 (iii).
Note that A = 0 is, indeed, just the flat terrain h(x) ≡ 0; however, these results for
A = 0 should be interpreted to apply to ‘small’ topographical functions only, where A
is asymptotically small.
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(g) A = −1, B = 1.5

Figure 4.11 – Numerical results for h(x) = Ae−Bx2 . Shown are bifurcation diagrams
for A = 1 (a) and A = −1 (b), the bifurcation value Bc(A) of the pitchfork bifurcation
(c), and (parts of) various simulations of the full PDE illustrating the change of stability
along with a plot of the function h(x) (d-g). The green areas in (c) indicate the parameter
region in which the fixed point P∗ = 0 is stable. In the PDE simulations we have used
parameters a = 0.5, m = 0.45, D = 0.01 and taken x ∈ [−30, 30].
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Figure 4.12 – Numerical results for h(x) = A sech(Bx). Shown are bifurcation dia-
grams (solid for stable; dashed for unstable fixed points) for A = 1 (a) and A = −1
(b), the bifurcation value Bc(A) of the pitchfork bifurcation (c), and (parts of) various
simulations of the full PDE illustrating the change of stability along with a plot of the
function h(x) (d-g). The green areas in (c) indicate the parameter region in which the
fixed point P∗ = 0 is stable. In the PDE simulations we have used parameters a = 0.5,
m = 0.45, D = 0.01 and taken x ∈ [−30, 30].
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Figure 4.13 – Numerical results for h(x) = A cos(Bx). Shown are the bifurcation
diagram (solid for stable; dashed for unstable fixed points) for A = 1 (a), the bifurcation
value Bc(A) of the pitchfork bifurcation at x = 0 (b), and (parts of) various simulations
of the full PDE illustrating the change of stability along with a plot of the function
h(x) (c-f). The green areas in (b) indicate the parameter region in which the fixed point
P∗ = 0 is stable. In the PDE simulations we have used parameters a = 0.4, m = 0.45,
D = 0.002 and taken x ∈ [−30, 30].
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Moreover, these observations are validated by numerical simulation of the full PDE
– see Figure 4.11(d-g) for (i), Figure 4.12(d-g) for (ii) and Figure 4.13(c-f) for (iii). Here,
we observe the change in stability of the fixed points and, for well-chosen parameter
values, these simulations show convergence to fixed points not located at the point of
symmetry. Note also that in the case of periodic topography (i.e. case (iii)), there
indeed is a region of B-values for which both a pulse at the top of a hill and one at the
bottom of a valley can be stable (for the same B value). Thus, we are led to conclude
that a pitchfork bifurcation occurs at the critical values Bc(0). Simulations indicate
that these exist also when the asymptotic limit µ≪ 1 does not hold.

For the last function, (iv), it is possible to derive the pulse location ODE (4.4.1)
explicitly, since (4.4.2) can be solved explicitly – see Corollary 4.2.22. Using the
expressions given in Corollary 4.2.22, a straightforward computation reduces (4.4.1)
to

dP

dt
=
τ

6

[
(cosh(βP )I1(P ))2 − (cosh(βP )I2(P ))2

]
, (4.4.28)

where

I1(P ) :=
∫ ∞
P

er(P−z) sech(βz) dz; I2(P ) :=
∫ P

−∞
e−r(P−z) sech(βz) dz. (4.4.29)

Thus, a point P∗ is a fixed point if and only if I1(P∗) = I2(P∗). Straightforward
inspection reveals that P∗ = 0 therefore is the unique fixed point in case (iv) for all
values of β > 0. By Proposition 4.4.3 and equation (4.4.16) the corresponding (small)
eigenvalue λ can be approximated by

λ =
2τ

3
I1(0) (rI1(0)− 1) . (4.4.30)

Upon noting that

rI1(0)− 1 = −β
∫ ∞
0

sech(βz) tanh(βz)e−rz dz < 0, (4.4.31)

it is clear that λ < 0. Hence, P∗ = 0 is the only fixed point of (4.4.28) in case (iv),
which is (globally) stable – for all β > 0. Direct PDE simulations verify this – even
when the asymptotic limit µ≪ 1 does not hold – see Figure 4.14.
Remark 4.4.8 (Interpretation of downhill movement). Previous studies have shown
that (homoclinic) pulses move uphill [8, 148, 158]. However, this intuition is primarily
based on model studies with infinitely large domains. In this setting, for a pulse, the
uphill direction is infinitely large, which – in combination with downhill flow of water
– guarantees a pulse can always find more water on its uphill side compared to its
downhill side. Hence, this causes pulses to move in the uphill direction indefinitely.
However, when the uphill direction is only finitely large – such as in this article – this
intuition is flawed; that is, in this setting, it can happen that the downhill side of a
pulse provides more water, causing the pulse to move downhill instead. Moreover, a
pulse located at a top is only stable if it has access to enough water; as more water
flows downhill, away from it – as caused by increasing B in our examples – at some
point the pulse at the top loses stability.

4.4.5 Stationary multi-pulse solutions
The focus in this article has been on single pulse solutions to (4.1.2). As a short encore
we briefly discuss the possibility of stationary multi-pulse solutions – i.e. solutions with
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Figure 4.14 – Direct numerical PDE simulation for h(x) = −2 ln(cosh(βx) for β =
1 along with a plot of the function h(x). In the PDE simulation we have used the
parameters a = 0.5,m = 0.45, D = 0.01 and taken x ∈ [−30, 30].

multiple fast excursions. The movement of these solutions can be captured in an ODE
much akin to 4.4.1. Specifically, let P1, . . . , PN denote the location of N pulses. Then
their movement is described by the ODE

dPj

dt
=
τ

6

[
ũx(P

+
j )2 − ũx(P

−
j )2

]
, (j = 1, . . . , N) (4.4.32)

where ũ satisfies the differential-algebraic system
ũxx + f(x)ũx + g(x)ũ+ 1− ũ = 0

ũ(Pj) = µu0j (j = 1, . . . , N)
ũx(P

+
j )− ũx(P

−
j ) = 6

u0j
(j = 1, . . . , N)

(4.4.33)

The derivation is similar to that of Proposition 4.4.3; we omit the details here and
refer the interested reader to [8] for a full coverage.

In case of constant coefficients f, g ≡ 0, it is well-known that stationary multi-
pulse solutions do not exist [8, 45]. In fact, from (4.4.32) one can verify that in 2-pulse
solutions the pulses typically move away from each other with a speed proportional to
e−∆P , where ∆P := P2 − P1 is the distance between the pulses – see [8, 45].

However, the non-autonomous terms f and g affect the movement speed and can
cancel this repulsive movement. Therefore stationary pulse solutions do exist in (4.1.2)
for well-chosen f and g. In Figure 4.15 we show several numerical examples of (stable)
stationary multi-pulse solutions for various choices of f and g.

Remark 4.4.9. The spatially varying f and g have a order O(f, g) effect on the
movement speed of the pulses. Finding fixed points of (4.4.32) – i.e. finding sta-
tionary multi-pulse solutions to (4.1.2) – thus boils down to balancing two effects of
different size. In particular, if f, g = O(δ), only multi-pulse solutions exist with
∆P = O (− ln(δ)) ≫ 1. In this case, existence of stationary multi-pulse solutions can
be established rigorously by asymptotic analysis and the methods of geometric singular
perturbation theory.

Remark 4.4.10. We do not present a full analysis of the spectrum of (evolving)
multi-pulse solutions here; they can be stable and unstable depending on the parameter
values – similar to the one-pulse variants. A description of how to find the spectrum
of multi-pulse solutions can be found in [8].
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(b) h(x) = −2 ln cosh(x)
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(c) h(x) = e−x2/2

0

20,000

40,000

60,000

80,000

100,000

x

t

0

5

10

15

20

25

v

−5 −2.5 0 2.5 5
0

0.5

1

x

h
(x
)

(d) h(x) = sech(x/2)

Figure 4.15 – Numerical simulation of several multi-pulse solutions to (4.1.2) for various
h, with f = h′ and g = h′′. (a) h(x) = 0: no stable stationary multi-pulse solution
is found; (b) h(x) = −2 ln cosh(x): the existence of a stable two-pulse solution; (c)
h(x) = e−x2/2: a stable three-pulse solution; (d) h(x) = sech(x/2): a stable four-pulse
solution. In blue the form of the terrain is plotted. Note that only part of x-domain is
shown for clarity. Also note that, using (4.4.35), it is found that P∗ ≈ 0.51 in (b). In
the PDE simulations we have used parameters a = 0.5, m = 0.45, D = 0.01.
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For generic functions f and g it is, at the moment, not possible to prove existence
of stationary multi-pulse solutions (however, see Remark 4.4.9 for the case of small f ,
g). We do remark however that stationary multi-pulse solutions can be constructed
for f and g such that (4.4.33) can be solved explicitly, as illustrated by the following
proposition.

Proposition 4.4.11. Let h(x) = −2 ln cosh(βx), β > 0, f = h′, g = h′′ and let
µ ≪ 1. Then there exists a P∗ > 0 such that (4.1.2) admits a stationary symmetric
two-pulse solution with pulses at P1 = −P∗ and P2 = P∗.

Formal derivation. By symmetry of the desired two-pulse solution, we may set
P2 = P , P1 = −P . Moreover, necessarily ũ′(0) = 0. Since µ≪ 1, to leading order we
have ũ(P ) = ũ(−P ) = 0. Therefore ũ is given to leading order by

ũ(x) =


ûb(x)− ûb(−P )

û−(−P ) û−(x), x < −P,
ûb(x)− ûb(P )

û+(P )+û−(P ) (û+(x) + û−(x)) , −P < x < P ;

ûb(x)− ûb(P )
û+(P ) û+(x), x > P ;

(4.4.34)

where ũ± and ũb are as in Corollary 4.2.22. To have stationary pulse solutions,
by (4.4.32) we need to have

T (P ) := û′b(P )− ûb(P )

[√
1 + β2

2

(
tanh(

√
1 + β2P )− 1

)
+ β tanh(βP )

]
= 0,

(4.4.35)
Upon noting that

T (0) =
1

2

∫ ∞
0

e−
√

1+β2z sech(βz) dz > 0, (4.4.36)

and, since limP→∞ ûb(P ) = 1 and limP→∞ û′b(P ) = 0,

lim
P→∞

T (P ) = −β < 0, (4.4.37)

continuity of T guarantees the existence of P∗ > 0 as claimed.

Remark 4.4.12. This result can be established rigorously by geometric singular per-
turbation theory, using the methods detailed in section 4.2. We refrain from giving the
details of this procedure.

4.5 Discussion
In this paper, we studied pulse solutions in a reaction-advection-diffusion system with
spatially varying coefficients. The existence of stationary (one) pulse solutions at a
point of symmetry was established by combining the usual techniques from geometric
singular perturbation theory with the tools from the theory of exponential dichotomies.
The latter has been used to generate a saddle-like structure in the slow subsystem, and
to obtain bounds on the stable/unstable manifolds of this subsystem. These techniques
have also been used to determine the spectral stability of these pulse solutions. None
of these concepts or ideas are model-dependent and therefore could be used in a wider
variety of models, including Gierer-Meinhardt type models.
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4.5 Discussion

Analysis of the spectrum associated to these pulse solutions showed that ‘large’
eigenvalues can be bounded to the stable half-plane {λ ∈ C : Reλ < 0}, under condi-
tions similar to the usual, constant coefficient case. Although we did not focus on the
dynamics of solutions when a large eigenvalue crosses the imaginary axis, simulations
show the usual pulse annihilation and pulse splitting phenomena. However, the intro-
duction of spatially varying coefficients does have a significant effect on the so-called
‘small’ eigenvalues (close to λ = 0) because of the break-down of the translation invari-
ance in the system. Therefore, well-chosen f and g can either stabilize or destabilize
solutions. When the small eigenvalue is in the unstable half-plane {λ ∈ C : Reλ > 0},
the pulse solution is unstable and as an effect its position changes. In some cases,
this in turn can subsequently lead to a pulse annihilation or a pulse splitting [8]. We
expect that a careful tuning of f and g can either prevent or force these subsequent
bifurcations, which may have a relevance in the maintenance of vegetation patterns in
semi-arid climates.

The small eigenvalues were studied more in-depth in the case of f = h′, g = h′′

(where h is used to model the topography of a dryland ecosystem). Here, we were
able to link the stability of (stationary) pulse solution to the curvature of h. If the
curvature is weak, the pulse is stable if h′′(0) < 0 and unstable if h′′(0) > 0; for strong
curvature the opposite is true: the pulse is stable if h′′(0) > 0 and unstable if h′′(0) < 0.
We found that this change in stability typically happens via a pitchfork bifurcation,
and showed that the associated parameter combinations can be obtained numerically.
However, we did not consider a fully general class of functions f and g, and we do not
know in which way these results generalize to other functions f and g – although for
choices f and g for which (4.1.2) does not posses the symmetry (x, u) → (−x, u) (i.e.
when assumption (A5) does not hold), the pitchfork bifurcation will break down. A
precise treatment of such generic functions could be the topic of subsequent work.

Moreover, in case of spatially varying coefficients, the system (4.1.2) can also posses
stationary multi-pulse solutions – i.e. solutions that have multiple fast excursions.
When f, g ≡ 0, these solutions do not exist. Because the spatially varying coefficients
break the translation invariance of the system, these multi-pulse solutions can exist –
for well-chosen functions f and g. In this article we gave numerical evidence for this and
showed their existence for a specific choice of functions. We do not think their existence
can be proven in as much generality as the existence of stationary one pulse solutions
– certainly, the bounds used in this paper, provided by the theory of exponential
dichotomies, are not sufficient in the regions between pulses. For sufficiently small f
and g, an asymptotic analysis can be developed to overcome this issue, although the
distance between subsequent pulses then becomes asymptotically large and asymptotic
analysis needs to be done with great care to keep track of the right scalings; this is
topic of ongoing research.

Finally, the extended Klausmeier model studied in this paper has its application
in ecology, where it is used to model dryland ecosystems. The studied pulse solutions
in this model correspond to vegetation ‘patches’ that are typically found in those
ecosystems. Naturally, the results in this paper can therefore be used for this ap-
plication. Specifically, the treatment of a spatially varying height function h is new
and is inherently more realistic than taking a constant topography (or a constantly
sloped topography) as has been done in the past (see e.g. [6, 9, 95, 158]). Typically,
the constant coefficient models exhibit pulses that only move uphill. However, as il-
lustrated with numerics, we have shown that a varying topography can lead to both
uphill and downhill movement of pulses. This aligns better with measurements, where
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also both uphill and downhill movement can be observed – even within the same gen-
eral region [9, 57] – and also refutes claims, based on these measurements, stating the
invalidity of ecosystem models of reaction-diffusion type based on the vegetation-water
feedback [57]. In this regard, the study in this paper can be seen as a first step to
better understand the role of topographic variability in pattern formation.

Acknowledgments
We like to thank Marco Wolters for his exploratory (bachelor) research on the migra-
tion of vegetation pulses on periodic topographies.

150



5| Stable planar vegetation stripe patterns on
sloped terrain in dryland ecosystems

In water-limited regions, competition for water resources results in the forma-
tion of vegetation patterns; on sloped terrain, one finds that the vegetation typ-
ically aligns in stripes or arcs. We consider a two-component reaction-diffusion-
advection model of Klausmeier type describing the interplay of vegetation and
water resources and the resulting dynamics of these patterns. We focus on the
large advection limit on constantly sloped terrain, in which the diffusion of water
is neglected in favor of advection of water downslope. Planar vegetation pattern
solutions are shown to satisfy an associated singularly perturbed traveling wave
equation, and we construct a variety of traveling stripe and front solutions using
methods of geometric singular perturbation theory. In contrast to prior stud-
ies of similar models, we show that the resulting patterns are spectrally stable
to perturbations in two spatial dimensions using exponential dichotomies and
Lin’s method. We also discuss implications for the appearance of curved stripe
patterns on slopes in the absence of terrain curvature.

5.1 Introduction

Large parts of earth have an arid climate (deserts) with low mean annual precipitation
and little to no vegetation; even larger parts of earth have a semi-arid climate with
somewhat more precipitation, which allows (some) vegetation to grow. However, hu-
man pressure and global climate change have been turning semi-arid climates into arid
climates, with severe consequences for life in these areas [68, 167]. This so-called de-
sertification process has been studied extensively over the years, from both ecological
and mathematical perspectives. These studies have shown the importance and om-
nipresence of spatial patterning of vegetation, which is widely recognized as the first
step in the desertification process [9, 68, 69, 114, 124, 137, 138, 139]. On flat ground,
the reported patterns are gaps, labyrinths and spots, while on sloped terrain, (curved)
banded or striped patterns can form [42, 64, 136, 176]; this article is focused on the
latter, and in particular the stabilizing effect of terrain slope on striped vegetation
patterns.

To understand the formation and dynamics of vegetation patterns in semi-arid
climates, many conceptual models have been formulated [67, 95, 136, 176]. All of these
dryland models describe the interplay between the available water and the density of
vegetation, in different levels of detail. The simplest models only have two components:
U , the water in the system and V , the vegetation. These two-component models
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Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems

V

R(V )G(U, V )

Figure 5.1 – The qualitative form of R(V )G(U, V ) for fixed U based on ecological
intuition of dryland ecosystems.

generally have the following (rescaled) form:{
Ut = D∆U + SUx + a− U −G(U, V )V,

Vt = ∆V −mV +R(V )G(U, V )V.
(5.1.1)

In (5.1.1), the movement of water is modeled as a combined effect of diffusion (D∆U)
and advection (SUx), where D is the diffusion constant and S is a measure for the slope
of the terrain. We assume the terrain is constantly sloped, so that uphill corresponds
to the positive x direction. The dispersal of plants is described by diffusion (∆V ).
The reaction terms describe the change in water due to rainfall (+a), evaporation of
water (−U) and uptake by plants (−G(U, V )V ). Simultaneously, the change of plant
biomass is due to mortality (−mV ) and plant growth (R(V )G(U, V )V ).

In this formulation, G and R are functions that describe, respectively, the amount
of water that is taken up by the plant’s roots and the density-dependent growth rate
of the vegetation. Because the presence of vegetation increases the soil’s permeability,
G is typically assumed to increase with both U and V . The conversion rate R is
decreasing with V and for a specific V ∗ > 0 we have R(V ∗) = 0. This value, V ∗,
is called the carrying capacity of the system and describes the total concentration
of vegetation that can be supported at a certain location. In light of these ecological
intuitions, one expects that the function R(V )G(U, V ) should take the form as depicted
in Figure 5.1 (for fixed U). A simple choice which satisfies these constraints is given
by R(V ) = 1 − bV and G(U, V ) = UV , where 1/b is the carrying capacity. For
clarity of presentation, we fix this choice for the remainder of this paper; however, we
emphasize that, with minor modifications, the following analysis can be shown to hold
for a different choice of the functions R and/or G which take the same qualitative
form.

Finally, in (5.1.1), the displacement of water is modeled as a combined effect of
diffusion and advection. However, in reality banded patterns are mainly observed on
sloping grounds, where movement of water is dominated by the downhill flow and
diffusive motion is of lesser importance [42, 64, 136, 176]. Note that this agrees with
recent studies on ecosystem models that show banded vegetation is unstable against
lateral perturbations of sufficiently small wavenumber when diffusion is large enough
(i.e. D large enough compared to S) [148, 155]. Therefore, as a first step, we ignore
the diffusion of water completely (as in [95]) and set D = 0. Moreover, due to the
separation of scales between movement of water and dispersion of vegetation, we take
S = 1

ε , where 0 < ε≪ 1 is a small parameter.
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5.1 Introduction

To summarize, the dryland model we consider in this article is given by{
Ut = 1

εUx + a− U −G(U, V )V,

Vt = ∆V −mV +R(V )G(U, V )V,
(5.1.2)

where a,m, b > 0, 0 < ε≪ 1 and the functions R and G are given by

G(U, V ) = UV, R(V ) = 1− bV (5.1.3)

Remark 5.1.1. Notably, one of the first dryland ecosystem models, by Klausmeier [95],
takes G(U, V ) = UV and R(V ) = 1. This corresponds to the assumption that vegetation
growth in drylands is always water-limited, and hence to the assumption of infinite
carrying capacity, i.e. taking b = 0, in our formulation. Therefore in the limit b ↓ 0
our model is the original Klausmeier model, and our model can thus be seen as a
modified Klausmeier model. We emphasize, however, that the results in this article
hold only for b > 0. The limiting case b = 0 turns out to be highly degenerate (see
Remark 5.2.12) and requires additional technical considerations; this is analyzed in
detail in [23].

The model (5.1.2) admits a spatially homogeneous steady state

(U, V ) = (U0, V0) = (a, 0), (5.1.4)

corresponding to the desert-state of the system. When a
m > 2

(
b+

√
1 + b2

)
there are

also two additional vegetated steady state solutions, (U1, V1) and (U2, V2), where

U1,2 = m

(
a

m
− V1,2

1− bV1,2

)
= m

a
m + 2 a

mb
2 + 2b±

√
( a
m )2 − 4

(
1 + a

mb
)

2(1 + b2)
;

V1,2 =

a
m ∓

√
( a
m )2 − 4

(
1 + a

mb
)

2
(
1 + a

mb
) .

(5.1.5)

For a
m = 2

(
b+

√
1 + b2

)
these two steady states coincide. The desert state, (U0, V0),

is stable against all homogeneous perturbations; the first vegetated state, (U1, V1), is
unstable against these perturbations and the last steady state, (U2, V2), is stable if V2 >
1
2b – see Appendix 5.A. The condition V2 >

1
2b , corresponding to a

m > 4b + 1
b , is not

strict; however in the following analysis of banded vegetation patterns we nonetheless
restrict our results to this region.

Remark 5.1.2. Ecologically, the parameter a is a measure for the rainfall and m for
the mortality of plants. Therefore, a

m is a natural measure for the amount of resources
needed for vegetation (patterns) to exist: if m is large, vegetation dies faster and
more water is needed to maintain vegetation; when m is small, plants die slowly and
less water is needed. Hence, a

m is a natural bifurcation parameter. Also note that a
m

usually is taken as a small bifurcation parameter in studies of the extended-Klausmeier
or generalized Klausmeier-Gray-Scott systems [8, 45, 148, 170].

In this article we aim to study patterned solutions to (5.1.2), which arise as traveling
wave solutions to (5.1.2).We define the traveling wave coordinate ξ := x−ct, where c is
the movement speed. Here, c < 0 corresponds to downhill movement of the traveling
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Figure 5.2 – Shown are the different patterned solutions of (5.1.2) that are studied
in this paper. Presented figures show cross-sections of the water, u(x), (blue) and the
vegetation, v(x), (red) of direct numerical simulations with ε = 0.01, m = 0.45, b = 0.5
and a = 1.2 (a) or a = 2.0 (b-d). The 2D pattern is a trivial extension of these patterns
in the y-direction, visualization of which is shown in Figure 5.19.

wave and c > 0 to uphill movement. Moreover, we set (U, V )(x, y, t) = (u, v)(ξ, y, t),
which results in the equation{

ut = 1
εuξ + cuξ + a− u−G(u, v)v,

vt = (∂2ξ + ∂2y)v + cvξ −mv +R(v)G(u, v)v.
(5.1.6)

Stationary solutions to (5.1.6) which are constant in y correspond to traveling wave
solutions of (5.1.2); these solutions satisfy the first order traveling wave ODE

uξ = ε
1+εc (u− a+G(u, v)v) ,

vξ = q,

qξ = mv −R(v)G(u, v)v − cq.

(5.1.7)

This equation has an equilibrium at (u, v, q) = (a, 0, 0) which represents the homoge-
neous desert state (U0, V0) of (5.1.2). There are two additional equilibrium points
at (u, v, q) = (u1,2, v1,2, 0) corresponding to the other homogeneous steady states
(U1,2, V1,2) of (5.1.2).

Based on the parameters of the model, several different patterned solutions to (5.1.2)
can emerge that correspond to homoclinic or heteroclinic orbits of (5.1.7). Single veg-
etation stripe patterns occur as orbits that are homoclinic to the desert state. Sim-
ilarly, vegetation gap patterns occur as orbits that are homoclinic to the vegetated
state (u2, v2, 0). Besides these, there are also heteroclinic connections between the
vegetated state and the desert state (and vice-versa) that represent transitions, or
infiltration waves, between these uniform stationary states. Plots of these patterned
solutions are shown in Figure 5.2.

In this article, we first establish existence of the aforementioned patterns rigorously.
To that end, we exploit the scale separation in (5.1.7) using the methods of geometric
singular perturbation theory [62]. Using a fast-slow decomposition, these patterns are
shown to correspond to the union of trajectories on so-called invariant slow manifolds
of (5.1.7) and fast connections between these slow manifolds. Specifically, (5.1.7)
has three slow manifolds: one manifold, Mℓ (ℓ for left), consists of states without
vegetation and the two others, Mm (middle) and Mr (right), consist of states with
vegetation. Fast front-type solutions ϕ† exist which connect Mℓ to Mr, and likewise
there exist fast front solutions ϕ⋄ which connect Mr to Mℓ. Using these, stripes,
gaps and fronts can be constructed for various parameter values. Pulse solutions
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to (5.1.2) consist of trajectories on Mℓ and Mr and two fast front-type connections;
front solutions to (5.1.2) only possess one fast front-type connection. In Figure 5.3
these patterns are shown in the ε = 0 limit, where they are characterized by their
speed in a sample bifurcation diagram.

The main theme of this paper is the spectral stability of the patterns. Because the
main building blocks of all of the patterns are normally hyperbolic slow manifolds and
fast front-type connections between these, we argue that destabilization can, a priori,
only be caused by a ‘small’ eigenvalue, one of which is created by every front-type con-
nection. However, using formal asymptotic computations this possibility is excluded:
all described patterns to (5.1.2) – stripes, gaps and fronts – are thus (always) stable
against two-dimensional perturbations. These formal arguments are also verified rig-
orously by carefully constructing eigenfunctions using techniques previously employed
to prove stability of traveling pulses in the FitzHugh–Nagumo system in [22]; similar
arguments were also used in [83, 84]. However, in those previous works, only stability
with respect to perturbations in one spatial dimension was considered. By performing
a Fourier decomposition in the transverse (y) direction, we show that these methods
can also be used to obtain 2D spectral stability of the full planar traveling waves.

Furthermore, in this paper we show that the 2D stability of the (straight) planar
vegetation patterns implies that slightly curved variants of the same patterns, some-
times called corner defect solutions, are also solutions to (5.1.2) that are – again – 2D
stable. An example of one of these solutions is given in Figure 5.4. Existing techniques
developed in [76, 77] can be applied to infer that the orientation of these patterns is
related to the speed c of their associated straight patterns; in particular we predict
that when c > 0 the corresponding corners are oriented convex upslope, and when
c < 0 they are convex downslope.

Besides these mathematical findings, this paper also provides novel insights in the
context of ecology – and the study of desertification in particular. In simple dryland
ecosystem models, typically vegetation patterns are found where the vegetation stripes
(or gaps) have only a (very) small width, which is not very realistic [42, 64, 136, 176].
In this article, however, patterns are found that do have a more sizable width, that can
even be expressed in terms of the model parameters. These larger widths are caused
by the addition of a carrying capacity in (5.1.2) which limits the amount of vegetation
at one place and forces the patterns to become wider instead. Moreover, this study
indicates the kind of (striped) patterns that are possible based on the values of the
model parameters; see Figure 5.3. Vegetation stripe patterns only exist in relatively
dry conditions (i.e. when a

m is small). For ever so slightly more humid conditions, it
is possible to find vegetation gap patterns and invading front patterns (both invading
vegetation and invading desert fronts). For even more humid conditions, only invading
vegetation fronts can be found. Finally, we also found slightly curved variants of the
aforementioned planar vegetation patterns, an example of which is given in Figure 5.4.
In this paper, we show that these curved vegetation patterns can be formed through
the internal dynamics of (5.1.2), and provide a possible explanation for the observed
vegetation arcs – even in the absence of topographic mechanisms [64].

Remark 5.1.3. In an ecological context, traveling (spatially) periodic orbits are per-
haps more relevant than the traveling pulse solutions constructed in this paper. How-
ever, once these pulse solutions are found, the periodic ones typically follow natu-
rally [148] – as is the case here. Furthermore, properties of these periodic orbits are
closely related to those of the pulse solutions. See also section 5.2.4.

The set-up for the rest of this article is as follows. In section 5.2, we study (5.1.7)
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Figure 5.3 – A sample singular ε = 0 bifurcation diagram in (a/m, c) parameter space.
The solid green line indicates stripe solutions, while the solid purple line denotes the
gap solutions. Vegetation-to-desert fronts are indicated by the dashed green line. Fi-
nally, desert-to-vegetation front solutions are given by the dashed and solid purple lines.
Schematic depictions of the associated singular limit geometries are depicted in the
insets, where the labels D and V denote the locations of the desert and vegetated equi-
librium states, respectively. The precise bifurcation structure depends on the value of
the parameter b; see section 5.2.4.

156



5.2 Slow-fast analysis of traveling wave equation

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

0.2

0.4

0.6

0.8

1

1.2

(a) Straight vegetation stripe

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

0.2

0.4

0.6

0.8

1

1.2

(b) Curved vegetation ‘corner’

Figure 5.4 – A snapsthot of a straight (a) and slightly bent (b) traveling vegetation
stripe solution (with c > 0), obtained via direct numerical simulation of (5.1.2) with
ε = 0.01, m = 0.45, b = 0.5 and a = 1.2.

as a slow/fast system in the context of geometric singular perturbation theory. We de-
termine the slow manifolds Mℓ, Mm and Mr and the fast connections ϕ† and ϕ⋄ that
connect the manifolds Mℓ and Mr, which are then used to construct singular stripe,
gap and front solutions to (5.1.7). In section 5.3, we prove the persistence of these so-
lutions for sufficiently small ε > 0. Next, in section 5.4, we compute the essential and
point spectra of all these patterns using (formal) asymptotic computations, and show
that all patterns are stable against all two dimensional perturbations. Subsequently,
in section 5.5 these stability statements are made rigorous by carefully constructing
eigenfunctions. In section 5.6 we inspect existence and stability of weakly bent (cor-
ner) solutions to (5.1.7). Then, in section 5.7 we present the results of numerical
computations on closely related spatially periodic patterns and numerical simulations
of both straight and bent patterns. We conclude with a brief discussion of the results
in section 5.8.

5.2 Slow-fast analysis of traveling wave equation
In this section, we study the traveling wave equation (5.1.7) as a slow-fast system in
the singular limit ε = 0. A discussion of the critical manifolds is given in section 5.2.1.
In section 5.2.2, we describe the singular layer problem, and we construct families
of singular front solutions. We describe the reduced flow on the critical manifolds
in section 5.2.3, and we construct singular traveling front and stripe solutions in section
5.2.4, which consists of fast segments that are heteroclinic solutions to the singular
layer problem and of slow segments that are solutions of the reduced flow on the critical
manifolds.. Finally, section 5.2.5 contains statements of our main existence results.

5.2.1 Critical manifolds
The traveling wave ODE (5.1.7) is a two-fast-one-slow system. We obtain the fast
subsystem or layer problem by setting ε = 0 in (5.1.7), which results in the system

u′ = 0,

v′ = q,

q′ = mv −R(v)G(u, v)v − cq,

(5.2.1)
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or, equivalently, the collection of planar ODEs{
v′ = q,

q′ = mv −R(v)G(u, v)v − cq,
(5.2.2)

parameterized by u. We note that (v, q) = (0, 0) =: p0(u) is always an equilibrium
of (5.2.2); there are additional equilibria (v, 0) whenever v satisfies R(v)G(u, v) = m.
Thus we see that there are additional equilibria p±(u) := (v±(u), 0), where

v±(u) =
1±

√
1− 4bm/u

2b
, (5.2.3)

provided u ≥ 4bm. We see that (5.2.2) admits three equilibria for u > 4bm, two
equilibria for u = 4bm, and a single equilibrium for u < 4bm.

Denoting the right-hand-side of (5.2.2) by

F (v, q;u) :=

(
q

mv −R(v)G(u, v)v − cq

)
, (5.2.4)

we consider the linearization of (5.2.2) about each of the three equilibria p0, p± that
is given by

D(v,q)F (0, 0;u) =

(
0 1
m −c

)
, (5.2.5)

D(v,q)F (v±(u), 0;u) =

(
0 1

u−4mb±
√
u2−4mbu

2b −c

)
. (5.2.6)

For c > 0, we deduce that the equilibrium p0(u) is always a saddle. When u > 4bm,
the equilibrium p−(u) is a stable node or spiral, and the equilibrium p+(u) is a saddle.
When u = 4bm, the equilibrium p+(4bm) = p−(4bm) is not hyperbolic.

In the full system, the equilibria of the layer problem (5.2.2) form critical manifolds,
given by three normally hyperbolic branches

Mℓ
0 = {v = q = 0},

Mm
0 = {p−(u) : u > 4bm},

Mr
0 = {p+(u) : u > 4bm},

(5.2.7)

with the branches Mm
0 ,Mr

0 meeting at a nonhyperbolic fold point F = p+(4bm) =
p−(4bm); see Figure 5.5. For u1, u2 ∈ R, we will use the notation

Mj
0[u1, u2] := Mj

0 ∩ {u1 ≤ u ≤ u2} (5.2.8)

to refer to a compact segment of one of the critical manifolds Mj
0, j = ℓ,m, r.

We recall that there are (up to) three equilibria of the full system, given by
(u, v, q) = (a, 0, 0) and (u, v, q) = (u1,2, v1,2, 0); see Figures 5.5 and 5.6. The equilib-
rium at (u, v, q) = (a, 0, 0) lies on the left branch Mℓ

0 and corresponds to p0(a), while
that at (u, v, q) = (u1, v1, 0) corresponds to p−(u1) and lies on the middle branch
Mm

0 . The location of the equilibrium (u, v, q) = (u2, v2, 0) depends on the parameter
values: if a/m < 4b + 1/b, then it lies on the middle branch Mm

0 at p−(u2), while if
a/m > 4b+1/b, then it lies on the right branch Mr

0 at p+(u2). When a/m = 4b+1/b,
the equilibrium (u, v, q) = (u2, v2, 0) coincides with the fold F .
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(u, v, q) = (uj , vj , 0), j = 1, 2. The equilibrium (u, v, q) = (u1, v1, 0) corresponds
to p−(u1) and lies on the middle branch Mm

0 . If a
m

< 4b + 1/b, the equilibrium
(u, v, q) = (u2, v2, 0) lies on the middle branch Mm

0 and corresponds to p−(u2), while if
a
m

> 4b+ 1/b, it lies on the right branch Mr
0 at p+(u2).
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5.2.2 Layer fronts

In the previous section we have constructed the critical manifolds Mℓ
0, Mm

0 and Mr
0,

and determined the location of the desert state p0(a) on Mℓ
0 and the vegetation state

p+(u2) on Mr
0 – under certain conditions on the parameters. In this section, we study

the connections between the outer manifolds Mℓ
0 and Mr

0 – which present themselves
as fronts in the fast layer problem (5.2.2) for certain values of u and c. Ultimately, the
goal is to construct homoclinic and heteroclinic solutions to the equilibrium states p0(a)
and/or p+(u2). Therefore, it is necessary to find front solutions that land on these
states (because of the instability of these points on their respective critical manifolds).
As these fronts are characterized by a specific speed c, a homoclinic connection can
then only be constructed if a front connection going the other way can also be found for
the same speed c (but possibly different value of u). In this section, we first catalogue
the possible front connections between Mℓ

0 and Mr
0, and give the corresponding speeds.

Subsequently, we determine wether we can find a pair of fast front connections – one
from Mr

0 to Mℓ
0, and one from Mℓ

0 to Mr
0 – that exist for the same speed c, such that

one lands precisely at an equilibrium state and a singular homoclinic connection can
be found. We first find those relevant pairs that land on p0(a) and then those that
land on p+(u2).

Front connections between Mℓ
0 and Mr

0

We are interested in fronts between the two saddle equilibria p0(u) = (0, 0) and p+(u) =
(v+(u), 0); equivalently, we search for connections between the outer branches Mℓ

0,Mr
0.

For each value of u > 4mb, there are two such fronts, ϕ⋄(ξ;u) = (v⋄(ξ;u), q⋄(ξ;u))
T

and ϕ†(ξ;u) = (v†(ξ;u), q†(ξ;u))
T , with explicit v profiles given by

v⋄(ξ;u) =
v+(u)

2

(
1− tanh

(
v+

√
ub

2
√
2
ξ

))
,

v†(ξ;u) =
v+(u)

2

(
1 + tanh

(
v+

√
ub

2
√
2
ξ

))
,

(5.2.9)

and wave speeds

c∗⋄(u) =

√
2bu

2
(v+(u)− 2v−(u))

c∗†(u) = −
√
2bu

2
(v+(u)− 2v−(u)) .

(5.2.10)

The ⋄-fronts connect p+ to p0, while the †-fronts connect p0 to p+; see Figure 5.7.
When u = 4mb, the situation is slightly different as the equilibria p±(u) collide in

a saddle-node bifurcation at the fold point F , and the equilibrium p+(u) is no longer a
saddle. However, it is still possible to find fronts between p0 and p+(4bm) = p−(4bm).
In particular, there exists a front connecting p+(4bm) to p0(4bm) for any

c ≤ c⋄,crit = b
√
2m (v+(4bm)− 2v−(4bm))

= −
√
m

2
.

(5.2.11)
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�⇧
v

q

0
v+(u)v�(u)

(a) c = c⋄(u)

�†

v

q

0
v+(u)v�(u)

(b) c = c†(u)

Figure 5.7 – Shown are the singular fronts fronts ϕ⋄(ξ;u), ϕ†(ξ;u) of the layer prob-
lem (5.2.2).

When c = c⋄,crit this front decays exponentially in backwards time, while for lesser
speeds it decays only algebraically. Similarly, there exists a front connecting p0(4bm)
to p+(4bm) for any

c ≥ c†,crit = −b
√
2m (v+(4bm)− 2v−(4bm))

=

√
m

2
.

(5.2.12)

When c = c†,crit this front decays exponentially in forwards time, while for greater
speeds it decays only algebraically.

Fronts asymptotic to p0(a)

In particular, provided a > 4bm, the fronts (5.2.9) exist when u = a. Therefore we have
a front connecting p+(a) to p0(a) – the equilibrium (a, 0, 0) of the full system (5.1.7)
– when

c = c∗⋄(a)

=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
.

(5.2.13)

We now search for fronts which exist simultaneously for the same speed but different
value of u, in particular for u ≤ a. We have the following.

Lemma 5.2.1. For each a
m ≥ 9

2b, there exists a pair of fronts ϕ⋄(ξ; a), ϕ†(ξ;u∗(a))
with speed

c = c∗(a) :=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
. (5.2.14)

The front ϕ⋄(ξ; a) connects p+(a) to p0(a) in the layer system (5.2.2) for u = a, while
the front ϕ†(ξ;u∗(a)) connects p0(u∗(a)) to p+(u

∗(a)) in the layer system (5.2.2) for
u = u∗(a) ≤ a, where

u∗(a) :=

{
1
8

(
17a− 18bm− 15

√
a2 − 4abm

)
, 9

2b ≤
a
m < 25

4 b;
4bm, a

m ≥ 25
4 b.

(5.2.15)

Proof. When a
m = 9

2b, we have c∗⋄(a) = 0 = c∗†(a). Thus, the layer problem is Hamil-
tonian and therefore both heteroclinic orbits lie simultaneously in the plane u = a,
forming a heteroclinic loop. For values of 9

2b <
a
m < 25

4 b, the second heteroclinic orbit

161



Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems

exists for a value of 4bm < u∗ < a given by (5.2.15), which can be obtained by solving
the relation c∗⋄(a) = c∗†(u) for u = u∗(a).

For a ≥ 25bm
4 , the second heteroclinic orbit occurs when u = u∗(a) = 4bm; the

decay is exponential in forward time when a = 25bm
4 , and algebraic for a > 25bm

4 .

Remark 5.2.2. In the case 4b ≤ a
m ≤ 9

2b, there (also) exists a second front ϕ†(ξ;u∗(a))
with speed c = c∗(a) that connects p0(u∗(a)) to p+(u

∗(a)) in the layer system (5.2.2)
for u = u∗(a), where

u∗(a) =
1

8

(
17a− 18bm− 15

√
a2 − 4abm

)
.

However, in this case u∗(a) > a, which – because of the flow on Mr
0 (see section 5.2.3)

– prevents the existence of a homoclinic connection in the full system.

Fronts asymptotic to p+(u2)

We recall that for a/m > 4b + 1/b, the equilibrium p+(u2) on the right branch Mr
0

corresponds to the equilibrium (u2, v2, 0) of the full system (5.1.7). For a/m = 4b+1/b,
this equilibrium lies precisely on the fold F . We now search for singular fronts to this
equilibrium for values of a/m ≥ 4b+1/b, and the argument is similar as above. When
a/m > 4b+ 1/b, there exists a front connecting p0(u2) to p+(u2) when

c = c∗†(u2)

= − 1

2
√
2b

(
−
√
u2 + 3

√
u2 − 4bm

)
,

(5.2.16)

and when a/m = 4b+ 1/b this front exists for each c ≥ c†,crit, with exponential decay
in forward time for c = c†,crit and algebraic decay when c > c†,crit. We again search
for fronts which exist simultaneously for the same speed but different value of u, and
we have the following lemma, analogous to Lemma 5.2.1.

Lemma 5.2.3. Concerning the layer problem (5.2.2), the following hold.

(i) For each 4b+ 1
b <

a
m ≤ 9

2b+
2
b , there exists a pair of fronts ϕ⋄(ξ; û2(a)), ϕ†(ξ;u2)

with speed ĉ(a) = c∗†(u2). The front ϕ†(ξ;u2) connects p0(u2) to p+(u2) in the
layer system (5.2.2) for u = u2, while the front ϕ⋄(ξ; û2(a)) connects p+(û2(a))
to p0(û2(a)) in the layer system (5.2.2) for u = û2(a), where

û2(a) :=
1

8

(
17u2 − 18bm− 15

√
u22 − 4u2bm

)
. (5.2.17)

(ii) When a/m = 4b + 1/b, for each c ≥ c†,crit, there exists a pair of fronts
ϕ†(ξ;u2), ϕ⋄(ξ; û(c)), where û(c) is an increasing function of c which satisfies
û(c†,crit) = û2(4mb+m/b).

Proof. For (i), when a
m = 9

2b +
2
b , we have c∗⋄(u2) = 0 = c∗†(u2), and therefore both

heteroclinic orbits lie simultaneously in the plane u = u2, forming a heteroclinic loop.
For values of 4b + 1

b <
a
m < 9

2b +
2
b , the second heteroclinic orbit exists for a value

of û2 > u2 given by the solution of (5.2.17), which can be obtained by solving the
relation c∗⋄(u) = c∗†(u2) for u = û2.
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5.2 Slow-fast analysis of traveling wave equation

For (ii), when a/m = 4b+ 1/b, the equilibrium p+(u2) lies precisely on the fold F
and hence we obtain the fronts ϕ†(ξ;u2) for each c ≥ c†,crit. The facts regarding û(c)
follow by noticing that the relation

c∗⋄(u) =

√
2bu

2
(v+(u)− 2v−(u))

=
1

2
√
2b

(
−
√
u+ 3

√
u− 4bm

) (5.2.18)

defines c∗⋄(u) as a strictly increasing function of u, and that u2 = 4bm when a/m =
4b+ 1/b, so that û2(4mb+m/b) = 25bm/4, and c∗⋄(25bm/4) = c†,crit.

5.2.3 Slow flow
We now examine the slow flow restricted to the critical manifolds Mℓ

0 and Mr
0. We

rescale τ = εξ and obtain the corresponding slow system
uτ = 1

1+εc (u− a+G(u, v)v)

εvτ = q

εqτ = mv −R(v)G(u, v)v − cq.

(5.2.19)

By setting ε = 0, we obtain the reduced flow on Mℓ
0 as

uτ = u− a, (5.2.20)

on Mm
0 as

uτ = u− a+G(u, v−(u))v−(u), (5.2.21)

and on Mr
0 as

uτ = u− a+G(u, v+(u))v+(u). (5.2.22)

See Figures 5.5 and 5.6 for depictions of the reduced flow, depending on the value of
a/m. We see that for u < a, under the reduced flow on Mℓ

0, u is always decreasing,
while on Mr

0, u is always increasing, provided a/m < 4b+1/b. When a/m = 4b+1/b,
there exists an equilibrium of the full system (u2, v2, 0) which coincides with the fold
F , which thus takes the form of a canard point [104]. As a increases through this
value, this equilibrium moves up along the right branch Mr

0. In that case, the flow is
away from this equilibrium point; that is, u is decreasing when u < u2 and increasing
when u > u2.

5.2.4 Singular orbits
In the previous sections we have studied the slow flow on the manifolds Mℓ

0 and Mr
0

and the dynamics of fast transitions between these manifolds. In this section, we use
this knowledge to construct families of singular orbits, which will serve as the basis
for constructing traveling front and pulse solutions to (5.1.2). These singular orbits
are constructed for open regions in (a, b,m) parameter space, with the wavespeed c in
general determined uniquely by the value of (a, b,m). The bifurcation structure, as
well as the singular limit geometry of the associated solution orbits, is depicted in the
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bifurcation diagrams in Figures 5.8a and 5.8b. These diagrams show the dependence
of the wave speed c on the value of the quantity a/m, in the regions b < 2/3 and
b > 2/3, as the bifurcation structure changes qualitatively as b crosses through the
critical value 2/3.

We first consider traveling pulse solutions, which can be thought of as two front-
type solutions glued together to create a profile which is bi-asymptotic to one of the
equilibrium states with a plateau in between. These come in two varieties: vegetation
stripe solutions, considered first in this section, which manifest as homoclinic orbits
to the desert equilibrium state p0(a), and vegetation gap solutions, considered second
in this section, which arise as homoclinic orbits to the equilibrium p+(u2). In both
cases, the corresponding homoclinic orbits are composed of two portions of the slow
manifolds Mℓ

0 and Mr
0 concatenated with two fast jumps in between, which exist

for the same value of c. The singular limit geometry for these solutions is shown in
the bifurcation diagrams Figures 5.8a and 5.8b (see also Figure 5.9 for more details),
in which the stripe solutions are defined along the upper solid green, and the gap
solutions are defined along the upper solid purple curve. The distinction between the
cases b < 2/3 and b > 2/3 is related to the manner in which these two curves interact.

Next, we consider singular front solutions, characterized by a sharp transition
from the uniform desert state to the uniformly vegetated state or vica versa. In the
slow/fast framework of the traveling wave equation (5.1.7), these solutions manifest
as heteroclinic orbits between the equilibria p0(a) and p+(u2), and are composed of
a single slow segment along one of the manifolds Mℓ

0 and Mr
0 concatenated with a

fast jump to the opposite slow manifold. In the diagrams Figures 5.8a and 5.8b, these
singular front solutions are defined along the upper solid and dashed green and purple
curves in the region a/m > 4b + 1/b. The green curves correspond to front solutions
in which the vegetated state is downslope of the desert state, while the desert state is
downslope of the vegetated state along the purple curves.

We briefly discuss periodic orbits at the end of this section, and in the following
section, section 5.2.5, we state our main existence results regarding traveling front,
stripe, and gap solutions to (5.1.2).

Homoclinic orbits to the desert state p0(a)

By Lemma 5.2.1, for each a
m ≥ 9b

2 , there exists a pair of fronts ϕ⋄(ξ; a), ϕ†(ξ;u∗(a))
with the same speed

c = c∗(a) :=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
. (5.2.23)

We can concatenate these fronts with portions of the critical manifolds Mℓ,r
0 in order

to construct singular homoclinic solutions to the equilibrium p0(a). However, when
a/m > 4b + 1/b, the equilibrium p+(u2) lies on Mr

0 and can block these orbits. For
each a

m ≥ 9b
2 , we have a candidate singular homoclinic orbit to the desert state p0(a)

given by

Hd(a) := Mℓ
0[u
∗(a), a] ∪ ϕ†(u∗(a)) ∪Mr

0[u
∗(a), a] ∪ ϕ⋄(a), (5.2.24)

corresponding to a vegetation stripe solution (see Figure 5.9), where the notation
Mj

0[u1, u2] was defined in (5.2.8). This orbit will be blocked if the equilibrium p+(u2)
lies on Mr

0 with u∗(a) ≤ u2. There are two cases based on the expression for u∗(a)
in (5.2.15). If a/m ≥ 25b/4, then this orbit is blocked whenever p+(u2) lies on Mr

0,
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a

m

b <
2

3

9b

2

25b

4
4b+

1

b

9b

2
+

2

b

homoclinic to
desert state

homoclinic to
vegetated state

c

c = c⇤(a, b,m)

c = ĉ(a, b,m)

(a)
c

a

m

9b

2
4b+

1

b

9b

2
+

2

b

homoclinic to
desert state

homoclinic to
vegetated state

adh
m

b > 2/3

c = ĉ(a, b,m)

c = c⇤(a, b,m)

(b)

Figure 5.8 – Shown are the singular ε = 0 bifurcation diagrams in (a, c) parameter
space in the cases b < 2/3 (a) and b > 2/3 (b).
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that is, for any value of a/m ≥ 4b+ 1/b. If a/m < 25b/4, then this orbit is blocked if
u2 ≥ u∗(a), which occurs when

a

m
≥ ādh := 2b+

5
√
3b2

2
√
4 + 3b2

+
8√

12 + 9b2
. (5.2.25)

We therefore expect a different singular bifurcation diagram for the cases 4b + 1/b >
25b/4 or 4b+ 1/b < 25b/4 (i.e. b < 2/3 respectively b > 2/3). In the former case the
singular front ϕ†(ξ;u∗(a)) can jump precisely onto the fold point F ; in the latter case
this is not possible. Equivalently, the structure changes depending on whether b < 2/3
or b > 2/3 (see Figures 5.8a and 5.8b). We define the quantity

ā(b) :=

{
4b+ 1/b b ≤ 2/3

ādh b > 2/3
. (5.2.26)

Then for each b,m > 0, we can construct the singular homoclinic orbits Hd(a) for
9
2b ≤ a

m ≤ ā(b). We note that when b ≤ 2/3 and a
m ∈ [4b + 1/b, 25b/4], the front

ϕ†(u
∗(a)) jumps precisely onto the nonhyperbolic fold point F . While it is possible

to construct homoclinic orbits in this regime as well as determine the stability of the
underlying traveling wave solution [10, 22, 25] using geometric blow-up methods, we
do not consider this case here. Rather we restrict our attention to orbits which jump
on/off normally hyperbolic portions of the critical manifold. To that end, we define
the quantity

āhyp(b) :=

{
25b/4 b ≤ 2/3

ādh b > 2/3
, (5.2.27)

and consider only the singular homoclinic orbits Hd(a) for 9
2b ≤

a
m < āhyp(b).

Remark 5.2.4. In addition to the class of homoclinic orbits described above, there
also exist singular homoclinic orbits to the equilibrium p0(a) lying entirely in the plane
u = a. These orbits in fact correspond to solutions of the layer problem (5.2.2) for
u = a and c = 0, and they are depicted along the lower green curves in the bifurcation
diagrams in Figures 5.8a and 5.8b. As with the singular homoclinic orbits Hd(a)
constructed in this section, it is possible to show that these layer homoclinic orbits also
persist for sufficiently small ε > 0 using geometric singular perturbation arguments,
and in fact they lie on the same continuation branch; see Figure 5.16. Furthermore,
the bifurcation structure near these orbits is surprisingly rich; a detailed analysis is
carried out in [24]. However, unlike the orbits Hd(a), the resulting traveling wave
solutions are typically unstable as solutions to (5.1.2), and we therefore refrain from
analyzing these solutions in this work.

Homoclinic orbits to the vegetated state p+(u2)

Similarly, we can construct singular homoclinic orbits to the vegetated state p+(u2)
using the fronts from Lemma (5.2.3). By similar arguments as above, we obtain
singular homoclinic orbits

Hv(a) := Mr
0[u2, û2(a)] ∪ ϕ⋄(û2(a)) ∪Mℓ

0[u2, û2(a)] ∪ ϕ†(u2), (5.2.28)

corresponding to vegetation gap solutions. For each b,m > 0, these orbits can be
constructed for parameters ā(b) ≤ a

m ≤ 9
2b+ 2/b.
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Figure 5.9 – Shown is the singular orbit Hd(a) homoclinic to the desert state p0(a).
The orbit first traverses a portion of the manifold Mℓ

0, then the front ϕ†(u
∗(a)), followed

by a portion of the critical manifold Mr
0, and finally the front ϕ⋄(a).

Remark 5.2.5. Additionally, in the case b < 2/3, using Lemma 5.2.3 (ii), when
a = 4bm+m/b, we also obtain homoclinic orbits

Ĥv(c) := Mr
0[u2, û(c)] ∪ ϕ⋄(û(c)) ∪Mℓ

0[u2, û(c)] ∪ ϕ†(u2) (5.2.29)

for each c†,crit ≤ c ≤ c∗(4bm+m/b).
Remark 5.2.6. Similarly as in section 5.2.4, there exist singular homoclinic orbits
p+(u2) lying entirely in the plane u = u2 for c = 0; see Remark 5.2.4. These orbits
are depicted in Figures 5.8a and 5.8b along the lower purple curves. We remark on
their presence here, but we refer to [24] for a detailed singular bifurcation analysis.

Heteroclinic orbits connecting desert state p0(a) and vegetated state p+(u2)

To construct singular heteroclinic solutions that connect the steady state p0(a) to the
steady state p+(u2), we can concatenate Mℓ

0 with a front ϕ† that limits onto the
fixed point p+(u2). The latter fronts only exist when p+(u2) lies on Mr

0, i.e. when
a
m > 4b + 1

b . Hence, a singular heteroclinic orbit connecting p0(a) to p+(u2) is given
by

Hdv(a) := Mℓ
0[u2, a] ∪ ϕ†(u2), (5.2.30)

the speed of which is c = ĉ(a).
Similarly, a heteroclinic orbit connecting p+(u2) to p0(a) can be found by concate-

nating Mr
0 with a front ϕ⋄ that limits onto the fixed point p0(a). Again, this can only

happen when a
m > 4b+ 1

b ; a candidate orbit is given by

Hvd(a) := Mr
0[u2, a] ∪ ϕ⋄(a), (5.2.31)

the speed of which is c = c∗(a).
Remark 5.2.7. We note that there exist additional heteroclinic orbits for values of
2(b +

√
1 + b2) < a

m < 4b + 1
b . However, in this parameter regime, the steady state

(U2, V2) corresponding to the equilibrium p+(u2) is unstable (against some non-uniform
perturbations) in the original PDE (5.1.2). Hence a heteroclinic orbit in this regime
corresponds to a front which invades the unstable vegetated state. We do not analyze
such invasion fronts in this work; rather, we focus on the bistable regime, corresponding
to the singular heteroclinic orbits Hvd(a) described above.
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Periodic orbits

In this section, we comment briefly on periodic orbits. Following the construction as
for singular homoclinic orbits in section 5.2.4, it is also possible to construct singu-
lar periodic orbits by concatenating portions of the critical manifolds Mℓ

0,Mr
0 with

fast layer transitions in between, provided the relevant segments of Mℓ
0,Mr

0 do not
contain either of the equilibria p0(a) or p+(u2). Hence, one expects to find singular
periodic orbits for any value of 9b

2 < a
m < 9b

2 + 2
b , and any value of the wavespeed

0 < c < min{c∗(a, b,m), ĉ(a, b,m)}. Further, general theory predicts that such pe-
riodic orbits persist for small ε > 0 [159]; these solutions correspond to wavetrain
solutions of (5.1.2), or periodic vegetation stripes. While such solutions are perhaps
more ecologically relevant, in the following we focus on traveling pulse solutions as
the question of stability, particularly in two spatial dimensions, is more analytically
tractable.

We remark that periodic wavetrain solutions have been found in a similar slow-fast
context in the FitzHugh–Nagumo equation [21, 79], and furthermore, their spectral
stability (in one spatial dimension) has been studied in [60].

5.2.5 Main existence results
In this section, we have studied (5.1.2) in the singular limit ε ↓ 0. Here, we have found
several singular homoclinic and heteroclinic orbits. These orbits persist for ε > 0, as
we will prove in section 5.3. To summarize our findings, we end this section with our
main existence results.

Theorem 5.2.8 (Vegetation stripe solution). Fix b,m > 0 and a such that a/m ∈(
9
2b, āhyp(b)

)
. There exists ε0 > 0 such that for ε ∈ (0, ε0), (5.1.2) admits a traveling

pulse solution ϕd(ξ; a, ε) = (ud, vd)(ξ; a, ε) with speed

cd(a, ε) = c∗(a) +O(ε) (5.2.32)

and satisfying lim|ξ|→∞(ud, vd)(ξ; a, ε) = (U0, V0). The length of the vegetation stripe
is given to leading order by

εLd :=

∫ a

u∗(a)

du

u− a+ uv+(u)2
. (5.2.33)

Theorem 5.2.9 (Vegetation gap solution). Fix b,m > 0 and a such that a/m ∈(
ā(b), 92b+

2
b

)
. There exists ε0 > 0 such that for ε ∈ (0, ε0), (5.1.2) admits a traveling

pulse solution ϕv(ξ; a, ε) = (uv, vv)(ξ; a, ε) with speed

cv(a, ε) = ĉ(a) +O(ε) (5.2.34)

and satisfying lim|ξ|→∞(uv, vv)(ξ; a, ε) = (U2, V2). The length of the vegetation gap is
given to leading order by

εLv :=

∫ u2

û2

du

u− a
= log

(
u2(a)− a

û2 − a

)
. (5.2.35)

Theorem 5.2.10 (Desert front solution). Fix b,m > 0 and a such that a/m > 4b+ 1
b .

There exists ε0 > 0 such that for ε ∈ (0, ε0), (5.1.2) admits a traveling front solution
ϕdv(ξ; a, ε) = (udv, vdv)(ξ; a, ε) with speed

cdv(a, ε) = c∗(a) +O(ε) (5.2.36)
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and satisfying limξ→−∞(udv, vdv)(ξ; a, ε) = (U0, V0) and limξ→∞(udv, vdv)(ξ; a, ε) =
(U2, V2).

Theorem 5.2.11 (Vegetation front solution). Fix b,m > 0 and a such that a/m >
4b + 1

b . There exists ε0 > 0 such that for ε ∈ (0, ε0), (5.1.2) admits a traveling front
solution ϕvd(ξ; a, ε) = (uvd, vvd)(ξ; a, ε) with speed

cvd(a, ε) = ĉ(a) +O(ε) (5.2.37)

and satisfying limξ→−∞(uvd, vvd)(ξ; a, ε) = (U2, V2) and limξ→∞(uvd, vvd)(ξ; a, ε) =
(U0, V0).

Remark 5.2.12. We recall that the case b = 0 corresponds to the original Klausmeier
model [95]; see Remark 5.1.1. From the geometry of the critical manifold (see Fig-
ure 5.5), the degeneracy of the limit b→ 0 becomes apparent. In particular, the branch
Mr

0 of the critical manifold is sent to infinity, and the left branch Mℓ
0 coincides with

the hyperbola v = m/u in the plane q = 0. In the current analysis, we consider only
the case b > 0. However, we note that under appropriate rescalings, it is possible to
unfold the degenerate case b = 0 and construct traveling wave solutions. Additional
complications arise in the singular perturbation analysis due to loss of normal hyper-
bolicity along the critical manifold, for which blow up desingularization techniques are
needed. We refer to [23] for the details.

5.3 Persistence of solutions for 0 < ε ≪ 1

In this section, we prove that the singular orbits constructed in section 5.2.4 perturb
to solutions of (5.1.7) for sufficiently small ε > 0 using methods of geometric singu-
lar perturbation theory. In section 5.3.1, we prove technical lemmata regarding the
transversality of the fast connections ϕ†,⋄, and we discuss the proofs of Theorems 5.2.8–
5.2.11 in section 5.3.2.

5.3.1 Transversality along singular orbits
We consider the layer system (5.2.1)

u′ = 0

v′ = q

q′ = mv − (1− bv)uv2 − cq.

(5.3.1)

As outlined in section 5.2.2, this system possesses heteroclinic connections ϕ⋄,† =

(v⋄,†, q⋄,†) between the left and right critical manifolds Mℓ,r
0 , where the speed c for a

given heteroclinic orbit depends on the value of u (as well as the other parameters).
We define the stable and unstable manifolds, Ws(Mj

0) and Wu(Mj
0), of a critical

manifold Mj
0, j = ℓ, r, as the union of the stable and unstable manifolds, respectively,

of the corresponding equilibria of the layer problem (5.3.1).
Then an orbit ϕ† lies in the intersection of Wu(Mℓ

0) and Ws(Mr
0), while an orbit

ϕ⋄ lies in the intersection of Wu(Mr
0) and Ws(Mℓ

0). For a given orbit ϕ†, which
we suppose exists for some values of (c, u) = (c0, u0), we aim to determine how this
connection breaks as (c, u) varies near (c0, u0); that is, we determine the transversality
of the intersection of Wu(Mℓ

0) and Ws(Mr
0) with respect to (c, u). We find the

following.
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Lemma 5.3.1. Consider a heteroclinic orbit ϕ† which lies in the intersection of
Wu(Mℓ

0) and Ws(Mr
0) for some (c, u) = (c0, u0). Then this intersection is transverse

in (c, u), and we compute the splitting of Wu(Mℓ
0) and Ws(Mr

0) along ϕ† via the
distance function

D†(c̃, ũ) =M c
† c̃+Mu

† ũ+O(c̃2 + ũ2) (5.3.2)

where c̃ := c− c0, ũ := u− u0, and

M c
† =

∫ ∞
−∞

ec0ξq†(ξ)
2dξ > 0,

Mu
† =

∫ ∞
−∞

ec0ξ(1− bv†(ξ))v†(ξ)
2q†(ξ)dξ > 0.

(5.3.3)

Proof. We use Melnikov theory to compute the distance between the unstable manifold
Wu(Mℓ

0) and the stable manifold Ws(Mr
0) to first order in |c− c0| and |u− u0|. We

consider the adjoint equation of the linearization of (5.3.1) about the front ϕ† given
by

ψ′ =

 0 −m+ uv†(ξ)(2− 3bv†(ξ))

−1 c

ψ. (5.3.4)

The space of bounded solutions is one-dimensional and spanned by

ψ†(ξ) := ec0ξ
(
q′†(ξ)

−v′†(ξ)

)
= ec0ξ

(
q′†(ξ)

−q†(ξ)

) (5.3.5)

Let F0 denote the right hand side of (5.3.1), and define the Melnikov integrals

Mν
† :=

∫ ∞
−∞

DνF0(ϕ†(ξ)) · ψ†(ξ)dξ, (5.3.6)

for ν = c, u. The quantities M c
† ,M

u
† measure the distance between Wu(Mℓ

0) and
Ws(Mr

0) to first order in |c− c0| and |u− u0|, respectively. We compute

M c
† =

∫ ∞
−∞

ec0ξq†(ξ)
2dξ > 0,

Mu
† =

∫ ∞
−∞

ec0ξ(1− bv†(ξ))v†(ξ)
2q†(ξ)dξ > 0.

As these are nonzero, we deduce that the intersection of Wu(Mℓ
0) and Ws(Mr

0) along
ϕ† is transverse in both c and u, and we arrive at the distance function (5.3.2).

Analogously, we can determine the transversality of the intersection of Wu(Mr
0)

and Ws(Mℓ
0) along an orbit ϕ⋄. We have the following lemma, which follows from a

similar computation as in the proof Lemma 5.3.1
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M`
0 Mm

0 Mr
0

v

0

q

u

Figure 5.10 – The traveling pulse solution of Theorem 5.2.8 is obtained for 0 < ε ≪ 1
as a perturbation of the singular homoclinic orbit Hd(a).

Lemma 5.3.2. Consider a heteroclinic orbit ϕ⋄ which lies in the intersection of
Wu(Mr

0) and Ws(Mℓ
0) for some (c, u) = (c0, u0). Then this intersection is transverse

in (c, u), and we compute the splitting of Wu(Mr
0) and Ws(Mℓ

0) along ϕ⋄ via the
distance function

D⋄(c̃, ũ) =M c
⋄ c̃+Mu

⋄ ũ+O(c̃2 + ũ2), (5.3.7)

where c̃ := c− c0, ũ := u− u0, and

M c
⋄ =

∫ ∞
−∞

ec0ξq⋄(ξ)
2dξ > 0,

Mu
⋄ =

∫ ∞
−∞

ec0ξ(1− bv⋄(ξ))v⋄(ξ)
2q⋄(ξ)dξ < 0.

(5.3.8)

5.3.2 Proof of existence results
In this section, we conclude the proof of Theorem 5.2.8. The proof of Theorem 5.2.9
is similar. The proofs of Theorems 5.2.10 and 5.2.11 also follow a similar argument –
albeit less involved – and we omit the details.

Proof of Theorem 5.2.8. Based on the analysis in section 5.2, we obtain a traveling
pulse solution of (5.1.2) as a perturbation from the singular homoclinic orbit Hd(a)
(see (5.2.24) and Figure 5.10) within the traveling wave ODE (5.1.7) for a speed
c ≈ c∗(a). We will construct a homoclinic orbit for 0 < ε ≪ 1 as an intersection of
the stable and unstable manifolds Ws(p0(a)) and Wu(p0(a)) of the equilibrium p0(a)
corresponding to the desert state.

For ε0 > 0 sufficiently small, from standard methods of geometric singular pertur-
bation theory, as the left branch Mℓ

0 of the critical manifold is normally hyperbolic, it
persists for ε ∈ (0, ε0) as a one-dimensional locally invariant slow manifold Mℓ

ε. Simi-
larly, away from the fold F , the right branch Mr

0 of the critical manifold is normally
hyperbolic and persists for ε ∈ (0, ε0) as a one-dimensional locally invariant slow man-
ifold Mr

ε. The two-dimensional (un)stable manifolds Wu(Mj
0) and Ws(Mj

0), j = ℓ, r,
persist for ε ∈ (0, ε0) as two-dimensional locally invariant manifolds Wu(Mj

ε) and
Ws(Mj

ε), j = ℓ, r.
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As the equilibrium p0(a) is repelling with respect to the reduced flow on Mℓ
0

(see section 5.2.3), for sufficiently small ε > 0, the two-dimensional unstable manifold
Wu(p0(a)) of p0(a) coincides with Wu(Mℓ

ε). The equilibrium p0(a) also admits a one-
dimensional stable manifold Ws(p0(a)) which precisely corresponds the strong stable
fiber of Ws(Mℓ

ε) with basepoint p0(a). We note that for ε = 0 and c = c∗(a), the
manifold Ws(p0(a)) is precisely the singular front ϕ⋄(a).

Using the results of Lemma 5.3.1 for c0 = c∗(a), u0 = u∗(a), for each fixed c ≈ c∗(a)
the two-dimensional manifolds Wu(Mℓ

0) and Ws(Mr
0) intersect transversely along

the front ϕ†(u∗(a)). This transversality persists for sufficiently small ε > 0, and
using the fact that Wu(p0(a)) = Wu(Mℓ

ε), we deduce the transverse intersection of
Wu(p0(a)) and Ws(Mr

ε) for each c ≈ c∗(a) and each sufficiently small ε > 0. We
now track Wu(p0(a)) as it passes near Mr

ε; by the exchange lemma [87, 143], there
is a constant η > 0 such that Wu(p0(a)) aligns C1-O(e−η/ε)-close to Wu(Mr

ε) upon
exiting a neighborhood of Mr

ε near the front ϕ⋄(a).
Using Lemma 5.3.2 for c0 = c∗(a), u0 = a, we can compute the distance between

Wu(Mr
ε) and Ws(p0(a)) along the singular front ϕ⋄(a) using the distance function

(5.3.7). In order to find a homoclinic orbit, we are interested in intersections of
Wu(p0(a)) and Ws(p0(a)). By the C1-O(e−η/ε)-closeness of Wu(p0(a)) and Wu(Mr

ε),
the resulting distance function differs only by O(e−η/ε) terms. Hence we compute the
distance between Wu(p0(a)) and Ws(p0(a)) along ϕ⋄(a) as

D(c̃, ũ, ε) =M c
⋄ c̃+O(ε+ c̃2), (5.3.9)

where M c
⋄ ̸= 0 and c̃ = c− c∗(a). We solve for D(c̃, ũ, ε) = 0 when

c = cd(a, ε) = c∗(a) +O(ε), (5.3.10)

which corresponds to an intersection of Wu(p0(a)) and Ws(p0(a)) along a homoclinic
orbit of (5.1.7).

5.4 Stability
In the previous sections we have constructed several different localized solutions to the
model (5.1.6): homoclinics to the desert state (u, v) = (U0, V0) = (a, 0), homoclinics
to the vegetated state (u, v) = (U2, V2) – see (5.1.5) – and heteroclinics connecting
these states. In this section we study the linear stability of these solutions using formal
arguments; rigorous proofs follows in section 5.5. We denote a steady state solution
to (5.1.6) by (us, vs) – without specifying yet which steady state solution – and we
linearize around this state by setting (u, v)(ξ, t) = (us, vs)(ξ) + eλt+iℓy(ū, v̄)(ξ). The
linear stability problem then reads{

λū = 1+εcs
ε ūξ −

(
1 + v2s

)
ū− 2usvsv̄,

λv̄ = v̄ξξ + csv̄ξ +
(
−m− ℓ2 + (2− 3bvs)usvs

)
v̄ + (1− bvs)v

2
s ū.

(5.4.1)

Here, cs denotes the speed of the steady state under consideration. With the intro-
duction of q̄ := v̄ξ we can write this stability problem in matrix form as ūξ

v̄ξ
q̄ξ

 = A

 ū
v̄
q̄

 , (5.4.2)
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where

A =

 ε
1+εcs

[
1 + λ+ v2s

]
ε

1+εcs
2usvs 0

0 0 1
−(1− bvs)v

2
s m+ ℓ2 + λ− (2− 3bvs)usvs −cs

 . (5.4.3)

The rest of this section is devoted to finding the spectrum Σ of this eigenvalue
problem for the different stationary solutions to (5.1.6), using formal computations.
The spectrum consists of an essential spectrum Σess and a point spectrum Σpt, which
can each be interpreted in relation to the eigenvalue problem (4.3.10). The essential
spectrum, which we consider in section 5.4.1, can be determined from properties of the
asymptotic matrices obtained by taking the limit ξ → ±∞ in (4.3.10). We then study
the point spectrum in section 5.4.2, which consists of eigenvalues for which (4.3.10)
admits exponentially localized eigenfunctions. In section 5.4.4 we formulate theorems
based on our findings, the proofs of which are given in section 5.5.

5.4.1 Essential spectrum
The essential spectrum consists of all eigenvalues λ such that an asymptotic matrix
of (5.4.2) has a spatial eigenvalue with real part zero. Depending on the type of steady
state solution we are inspecting, the asymptotic matrix or matrices might be different.
However, since we are only considering steady state solutions that limit to either the
desert state (u, v) = (a, 0) or the vegetated state (u, v) = (U2, V2), there are only
two possible asymptotic matrices; when (us, vs) limits to (a, 0) (for either ξ → ∞ or
ξ → −∞) we have Ad as asymptotic matrix and when (us, vs) limits to (U2, V2) we
have Av, where these matrices are given by

Ad(λ; ℓ) =

 ε
1+εcs

[1 + λ] 0 0

0 0 1
0 m+ ℓ2 + λ −cs

 (5.4.4)

Av(λ; ℓ) =

 ε
1+εcs

[
1 + λ+ V 2

2

]
ε

1+εcs
2U2V2 0

0 0 1
−(1− bV2)V

2
2 m+ ℓ2 + λ− (2− 3bV2)U2V2 −cs

 , (5.4.5)

where the values for U2 and V2 are given in (5.1.5).

Lemma 5.4.1. Concerning the asymptotic matrices Ad, Av defined in (5.4.4)–(5.4.5),
we have the following.

(i) The matrix Ad is hyperbolic for all λ ∈ C satisfying

Reλ > −min{m+ ℓ2, 1}. (5.4.6)

(ii) For values of a,m, b > 0 satisfying a
m > 4b+ 1

b , the matrix Av is hyperbolic for
all λ ∈ C satisfying

Reλ > −min

1 +
1

4b2
,

2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

+ ℓ2

 < 0. (5.4.7)

Proof. For (i), a straightforward computation reveals that Ad is non-hyperbolic when
λ ∈ {λ ∈ C : Reλ = −1} ∪ {λ = −m− ℓ2 − k2 + icsk; k ∈ R}; see Figure 5.11.
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Figure 5.11 – Shown is the essential spectrum Σess associated with the desert state
(u, v) = (a, 0) in the case ℓ = 0.

For (ii), we compute that Av is non-hyperbolic when(
ε

1 + εcs

(
1 + λ+ V 2

2

)
− iν

)(
iνcs − ν2 −m− ℓ2 − λ+ (2− 3bV2)U2V2

)
− ε

1 + εcs
2U2V2(1− bV2)V

2
2 = 0, (5.4.8)

for some ν ∈ R. We note that

Re
(
iνcs − ν2 −m− ℓ2 − λ+ (2− 3bV2)U2V2

)
< 0 (5.4.9)

whenever

Reλ > −m− ℓ2 + (2− 3bV2)U2V2. (5.4.10)

Furthermore, using the expressions (5.1.5), when a
m > 4b + 1

b , we have that V2 > 1
2b

and

−m− ℓ2 + (2− 3bV2)U2V2 = −
2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

− ℓ2

< 0.

for all ℓ ∈ R. By rearranging (5.4.8), we deduce that Av is non-hyperbolic when

λ = −1− V 2
2 +

2U2V2(1− bV2)V
2
2

(iνc− ν2 −m− ℓ2 − λ+ (2− 3bV2)U2V2)
+ iν

1 + εcs
ε

. (5.4.11)

Taking real parts of (5.4.11) in the region

Reλ > −
2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

− ℓ2, (5.4.12)

we have that Reλ < −1− V 2
2 , and noting V2 > 1

2b , the result follows.

Thus, since both Ad and Av stay hyperbolic for all λ with Reλ ≥ 0 for the relevant
parameter values, the essential spectrum of all of the types of steady state solutions
found in Section 5.2 is located in the left half-plane.
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5.4.2 Point spectrum

In this section we study the point spectrum Σpt using formal perturbation theory.
Here we focus on 1D stability, that is ℓ = 0. Rigorous proofs of the statements in this
section, and the extension to all ℓ ∈ R, follow in section 5.5.

We observe that the slow manifolds Mℓ,r
0 are hyperbolic (away from the fold point

F) and consist entirely of saddle equilibria of the fast layer problem (5.2.1). Hence,
these slow manifolds should not contribute any eigenvalues; the only eigenvalues come
from the contribution of the fast fronts ϕ† and ϕ⋄. That is, eigenvalues in the point
spectrum lie close to the eigenvalues of the fast-reduced subsystem (5.2.1). Since ϕ†
and ϕ⋄ are fronts and (5.2.1) is translational invariant, standard Sturm-Liouville theory
indicates that they carry an eigenvalue λ = 0 and possibly several other eigenvalues
that are all real and negative. Therefore, if there are potentially unstable eigenvalues
in the point spectrum Σpt they need to lie close to λ = 0. Specifically, there are as
many eigenvalues close to 0 as there are fronts in the steady state solution (us, vs)
under consideration.

Because the full system (5.1.6) is translational invariant, λ = 0 is an eigenvalue of
the full system. When we study the stability of a heteroclinic connection (connecting
the desert state p0(a) to the vegetated state p+(u2) or vice-versa) this is the only
eigenvalue close to 0; in particular Σpt\{0} ⊂ {λ ∈ C : Reλ < 0}. On the other hand,
when we study the stability of a homoclinic connection (connecting either the desert
state p0(a) or the vegetated state p+(u2) to itself), there is an additional eigenvalue
close to 0. This eigenvalue – of the homoclinic steady state solutions – can, in principle,
move either to the left or to the right (making the steady state unstable). In this
section, we use perturbation theory to track this movement and pinpoint the location
of the second eigenvalue formally.

5.4.3 Formal computation of small eigenvalues

Let (us, vs) be an exact solution to (5.1.6). The linearized stability problem (5.4.1)
can be recast to the following form

L(ℓ)
(
ū
v̄

)
= λ

(
ū
v̄

)
, (5.4.13)

where

L(ℓ) :=
(
ε−1(1 + εcs)∂ξ − (1 + v2s) −2usvs

(1− bvs)v
2
s ∂2ξ + cs∂ξ −m− ℓ2 + (2− 3bvs)usvs

)
.

(5.4.14)
For simplicity, we focus on the operator L(0) corresponding to the case ℓ = 0; the case
of ℓ ∈ R is similar and is carried out in detail in section 5.5.

Since we are looking for a small (order O(ε)) eigenvalue closely related to the
derivatives of the fast fronts (u†, v†)

T and (u⋄, v⋄)
T , in particular at leading order,

(5.4.13) is satisfied in the fast ξ-fields by any linear combination of (u′†, v
′
†)

T and
(u′⋄, v

′
⋄). We denote the fast region with the front (u†, v†) by I† and the fast region with

the front (u⋄, v⋄) by I⋄. Then, to find the small eigenvalues we therefore use regular
expansion and determine the eigenvalues with a Fredholm solvability condition. In
particular, we first focus on the fast fields and we expand the eigenvalue and (ū, v̄)T
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in these fast regions as(
ū
v̄

)
= αjϕ

′
j + ε

(
ūj,1
v̄j,1

)
+O(ε2), (ξ ∈ Ij , j = †, ⋄) (5.4.15)

λ = 0 + ελ̃ +O(ε2), (5.4.16)

where α†,⋄ are constants to be determined. Moreover, we also need to expand the
exact solution (us, vs)

T as well as the speed cs:(
us
vs

)
=

(
uj
vj

)
+ ε

(
uj,1
vj,1

)
+O(ε2), (ξ ∈ Ij , j = †, ⋄) (5.4.17)

cs = c0 + εc1 +O(ε2), (5.4.18)

where (uj , vj)
T (j = †, ⋄) and c0 are the leading order approximations of the exact solu-

tions as constructed in section 5.2.5, Theorems 5.2.8 and 5.2.9. Substitution in (5.4.13)
leads at order O(ε) to the following equation (the O(1) equations are automatically
satisfied):{
ū′j,1 = 2αjujvjv

′
j ,

Lr
j v̄j,1 =

(
λ̃− c1∂ξ − [2− 6bvj ]ujvj,1 − [2− 3bvj ] vjuj,1

)
αjv
′
j − [1− bvj ] v

2
j ūj,1,

(5.4.19)
(for ξ ∈ Ij , j = †, ⋄), where

Lr
j := ∂2ξ + c0∂ξ −m+ (2− 3bvj)ujvj . (5.4.20)

In (5.4.19) terms with c1, vj,1 and uj,1 appear, and to determine these, we expand the
existence problem (5.1.7) in ε as well. In the fast fields the order O(ε) terms read{

u′j,1 = uj − a+ ujv
2
j ,

Lr
jvj,1 = −(1− bvj)vjuj,1 − c1v

′
j .

(ξ ∈ Ij , j = †, ⋄) (5.4.21)

Taking the derivative with respect to ξ of the second equation then yields

Lr
jv
′
j,1 = (−c1∂ξ − [2− 6bvj ]ujvj,1 − [2− 3bvj ] vjuj,1) v

′
j − [1− bvj ] v

2
ju
′
j,1 (5.4.22)

Substitution in (5.4.19) then reduces the core stability problem to{
ū′j,1 = 2αjujvjv

′
j ,

Lr
j v̄j,1 = αjLr

jv
′
j,1 + λ̃αjv

′
j + [1− bvj ] v

2
j

(
αju

′
j,1 − ūj,1

)
.

(ξ ∈ Ij , j = †, ⋄)

(5.4.23)
From this equation it is clear that ūj,1 can be found by integration (regardless of the
value of λ̃, α† and α⋄). However, since Lr

j has a non-trivial kernel, we have to impose
a solvability condition on v̄j,1. We define v∗j as a solution to the adjoint equation
(Lr

j)
∗v∗j = 0 and note that

v∗j (ξ) = ec0ξv′j(ξ), (ξ ∈ Ij , j = †, ⋄). (5.4.24)

Thus we obtain the following Fredholm solvability condition

0 = αj λ̃

∫ ∞
−∞

(v′j)
2ec0ξdξ +

∫ ∞
−∞

[1− bvj ] v
2
j e

c0ξv′j
(
αju

′
j,1 − ūj,1

)
dξ (j = †, ⋄)

(5.4.25)
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We observe from (5.4.19) and (5.4.21) that αju
′
j,1 − ūj,1 is constant in the fast fields

Ij (j = †, ⋄). Thus the Fredholm condition reduces to

0 = αj λ̃

∫ ∞
−∞

(v′j)
2ec0ξdξ +

(
αju

′
j,1 − ūj,1

) ∫ ∞
−∞

[1− bvj ] v
2
j e

c0ξv′j dξ (j = †, ⋄)

(5.4.26)
Note that we thus have two solvability conditions. Only when both are satisfied
simultaneously, it is possible to find (ū, v̄)T that solve (5.4.13). The terms in (5.4.26)
change depending on the type of steady state solution we are considering, and in
particular, to which equilibrium state these solutions are homoclinic, as this determines
the value of αju

′
j,1 − ūj,1.

Homoclinics to desert state In this situation, u′⋄,1(ξ) → 0 for ξ → ∞ in I⋄, since
the jump here is onto the fixed point. Moreover, ū⋄,1(ξ) → 0 for ξ → ∞ in I⋄ to ensure
integrability of the eigenfunction. Thus, the condition in I⋄ is

α⋄λ̃M
d
⋄,λ = 0, (5.4.27)

where

Md
⋄,λ :=

∫ ∞
−∞

v′⋄(ξ)
2ec

∗(a)ξ dξ > 0. (5.4.28)

Therefore, either λ̃ = 0 or α⋄ = 0. The former gives us back the translational invariant
eigenvalue (with eigenfunction (ū, v̄)T = (u′s, v

′
s)

T ), so we focus on the latter possibility.
Note that α⋄ = 0 implies that ū⋄,1 = 0 in the fast field I⋄. Thus, this provides a
matching condition for the equations in the slow field between the fast fields I† and
I⋄. By expanding the slow field equation in the slow variable, it immediately follows,
from this fact, that the eigenfunction must be 0 in the slow field between I† and I⋄
as well. Hence we conclude that ū†,1(ξ) → 0 for ξ → ∞ in I† as well. Moreover,
u†,1(ξ) → u† − a − u†v+(u†)

2 = u∗(a) − a + u∗(a)v+(u
∗(a))2 for ξ → ∞ in I† – see

equation (5.4.21) and Theorem 5.2.8. Thus the second solvability condition becomes

α†

[
λ̃Md
†,λ +Md

†,ε

]
= 0, (5.4.29)

where

Md
†,λ :=

∫ ∞
−∞

v′†(ξ)
2ec

∗(a)ξ dξ > 0, (5.4.30)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u

∗(a))2
] ∫ ∞
−∞

(1− bv†(ξ))v†(ξ)
2ec

∗(a)ξv′†(ξ) dξ > 0.

(5.4.31)

The signs of these expressions are positive, since v† is increasing with ξ, and the
quantity

(
u∗(a)− a+ u∗(a)v+(u

∗(a))2
)

is positive per construction. Because taking
α† = 0 leads to the trivial solution (on R), we therefore obtain the additional eigen-
value λ = ελ̃ = −εMd

†,ε
Md

†,λ
< 0, which indicates that the eigenvalue λ close to zero has

moved into the stable half-plane {λ ∈ C : Reλ < 0}. A plot of the corresponding
eigenfunction, computed numerically, is given in Figure 5.13b.
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Homoclinics to the vegetated state This case is very similar. However, now the
solution in I† limits to the fixed point of (5.1.7). Using similar arguments, we then
find the following condition in I†:

α†λ̃M
v
†,λ = 0, (5.4.32)

where
Mv
†,λ :=

∫ ∞
−∞

v′†(ξ)
2eĉ(a)ξ dξ > 0. (5.4.33)

This time we need to take α† = 0. Similar to before, matching through the slow field
yields ū†,1(ξ) → 0 and u⋄,1 → u⋄ − a = û2(a) − a for ξ → ∞ in I⋄. Therefore the
second condition for this steady state reads

α⋄

[
λ̃Mv
⋄,λ +Md

⋄,ε

]
= 0, (5.4.34)

where

Mv
⋄,λ :=

∫ ∞
−∞

v′⋄(ξ)
2eĉ(a)ξ dξ > 0, (5.4.35)

Mv
⋄,ε := [û2(a)− a]

∫ ∞
−∞

(1− bv⋄(ξ))v⋄(ξ)
2eĉ(a)ξv′⋄(ξ) dξ > 0. (5.4.36)

Because û2(a) − a < 0 and v⋄ is decreasing with ξ, the sign of all these terms are
positive again. Therefore we obtain the additional eigenvalue λ = ελ̃ = −εMv

⋄,ε
Mv

⋄,λ
< 0,

and again the eigenvalue has moved into the stable half-plane.

5.4.4 Main stability results
In the previous sections we have formally determined the spectrum of the various
steady state solutions to (5.1.6). The computations in these sections hold for 1D
perturbations of the steady state in question. We do, however, also want to understand
the stability of these steady states under 2D perturbations. For that, we linearize
around this state by setting (u, v)(ξ, y, t) = (us, vs)(ξ) + eλt+iℓy(ū, v̄)(ξ), where ℓ ∈ R
is the transverse wavenumber, which results in the family of linearized PDE operators

L(ℓ) :=
(
ε−1(1 + εcs)∂ξ − 1− v2s −2usvs

(1− bvs)v
2
s ∂2ξ + ℓ2 + cs∂ξ −m+ (2− 3bvs)usvs

)
.

(5.4.37)

Linear stability is then determined by the corresponding family of eigenvalue problems

L(ℓ)
(
U
V

)
= λ

(
U
V

)
, ℓ ∈ R. (5.4.38)

Introducing Ψ := (ū, v̄, v̄′)T we write the eigenvalue problem (5.4.38) as the first
order nonautonomous ODE

Ψ′ = A(ξ;λ, ℓ, ε)Ψ (5.4.39)

where

A(ξ;λ, ℓ, ε) =

 ε
1+εcs

[
1 + λ+ v2s

]
ε

1+εcs
2usvs 0

0 0 1
−(1− bvs)v

2
s m+ λ+ ℓ2 − (2− 3bvs)usvs −cs

 . (5.4.40)
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The essential spectrum associated with this problem was treated in section 5.4.1. By
introducing λ̂ = λ − ℓ2 the previous formal computations for the point spectrum in
section 5.4.2 still hold up to leading order by replacing λ with λ̂. To summarize our
findings, we formulate several stability theorems for the various types of steady state
solutions; these are proved rigorously in section 5.5.

Theorem 5.4.2 (Spectrum of traveling front solutions). Let a, b,m, ε as in Theo-
rem 5.2.10 or 5.2.11 and let ϕh denote a traveling front solution as in the same
theorem. Then, the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ <
0} ∪ {0}, and the spectrum of the operator L(ℓ), ℓ ̸= 0 is contained in the set
{λ ∈ C : Reλ < 0}.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of
L(ℓ), |ℓ| ≤ LM for some LM ≫ 1, satisfying λ′0(0) = 0 and

λ0(ℓ) = −ℓ2 +O(|ε log ε|2), λ′′0(ℓ) = −2 +O(|ε log ε|2), |ℓ| ≤ LM .
(5.4.41)

(iii) The remaining spectrum of L(ℓ) is bounded away from the imaginary axis uni-
formly in ε > 0 sufficiently small and ℓ ∈ R.

Theorem 5.4.3 (Spectrum of vegetation stripe solutions). Let a, b,m, ε as in Theo-
rem 5.2.8 and let ϕd be a traveling pulse ‘stripe’ solution as in Theorem 5.2.8. Then,
the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ <
0} ∪ {0}, and the spectrum of the operator L(ℓ), ℓ ̸= 0 is contained in the set
{λ ∈ C : Reλ < 0}.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of
L(ℓ), |ℓ| ≤ LM for some LM ≫ 1, satisfying λ′0(0) = 0 and

λ0(ℓ) = −ℓ2 +O(|ε log ε|2), λ′′0(ℓ) = −2 +O(|ε log ε|2), |ℓ| ≤ LM .
(5.4.42)

(iii) The operator L(ℓ), |ℓ| ≤ LM admits an additional critical eigenvalue

λc(ℓ) = −ℓ2 −
Md
†,ε

Md
†,λ
ε+O(|ε log ε|2), |ℓ| ≤ LM , (5.4.43)

where Md
†,λ and Md

†,ε are as defined in (5.4.30) and (5.4.31).

(iv) The remaining spectrum of L(ℓ) is bounded away from the imaginary axis uni-
formly in ε > 0 sufficiently small and ℓ ∈ R.

Theorem 5.4.4 (Spectrum of vegetation gap solutions). Let a, b,m, ε as in Theo-
rem 5.2.9 and let ϕv be a travelling pulse ‘gap’ solution as in Theorem 5.2.9. Then,
the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ <
0} ∪ {0}, and the spectrum of the operator L(ℓ), ℓ ̸= 0 is contained in the set
{λ ∈ C : Reλ < 0}.
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Figure 5.12 – Shown are the results of Theorem 5.4.3. The left panel depicts the
spectrum of the ℓ = 0 operator L(0), corresponding to 1D stability. The point spectrum
contains two critical eigenvalues λ0, λc close to the origin, while the remainder of the
spectrum is bounded away from the imaginary axis in the left half plane. The right
panel depicts a schematic of the continuation of the critical eigenvalue λ0 for |ℓ| > 0.
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Figure 5.13 – Shown is the numerically computed 1D spectrum (left panel) associated
with a traveling pulse solution of (5.1.2) found for a = 1.61, b = 0.6,m = 0.5, ε = 0.003.
The v profile of the solution is shown in the right panel, along with the eigenfunction
corresponding to the critical eigenvalue λc.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of
L(ℓ), |ℓ| ≤ LM for some LM ≫ 1, satisfying λ′0(0) = 0 and

λ0(ℓ) = −ℓ2 +O(|ε log ε|2), λ′′0(ℓ) = −2 +O(|ε log ε|2), |ℓ| ≤ LM .
(5.4.44)

(iii) The operator L(ℓ), |ℓ| ≤ LM admits an additional critical eigenvalue

λc(ℓ) = −ℓ2 −
Mv
⋄,ε

Mv
⋄,λ
ε+O(|ε log ε|2), |ℓ| ≤ LM , (5.4.45)

where Mv
⋄,λ and Mv

⋄,ε are as defined in (5.4.35) and (5.4.36).

(iv) The remaining spectrum of L(ℓ) is bounded away from the imaginary axis uni-
formly in ε > 0 sufficiently small and ℓ ∈ R.

180



5.5 Rigorous proof for stability theorems

5.5 Rigorous proof for stability theorems

The theorems in section 5.4.4 are based on computations of the essential spectrum in
section 5.4.1 and a formal computation of the point spectrum in section 5.4.2. The
former directly provides proof for the theorem statements concerning the essential
spectrum. The latter, however, does not provide a rigorous proof for the theorem
statements concerning the point spectrum; to that end, in this section we provide
the rigorous justification for the formal point spectrum computations in section 5.4.2.
We restrict ourselves to the study of the traveling pulse ‘stripe’ solution ϕd as in
Theorem 5.2.8 and Theorem 5.4.3. The setup and proof for the traveling ‘gap’ solution
ϕv as in Theorem 5.2.9 and Theorem 5.4.4 is similar; the setup and proofs for the
traveling heteroclinic orbits ϕvd and ϕdv as in Theorem 5.2.10, Theorem 5.2.11 and
Theorem 5.4.2 are also very similar, though less involved. Therefore, the details of
these are omitted.

To analyze the point spectrum, we search for exponentially localized solutions to
the family of eigenvalue problems (5.4.40) parametrized by the transverse wavenumber
ℓ ∈ R. To this end, we use exponential dichotomies/trichotomies and Lin’s method to
construct potential eigenfunctions, based on similar techniques used in the study of
stability of traveling pulses in the FitzHugh–Nagumo equation [22]. We briefly review
the notions of exponential dichotomies/trichotomies in section 5.5.1.

To determine eigenvalues of (5.4.40), it is useful to split the complex plane in
several regions. For M ≫ 1 and δ ≪ 1 fixed independent of ε, we define the following
regions (see Figure 5.14)

R1(δ) := {ζ ∈ C : |ζ| ≤ δ}
R2(δ,M) := {ζ ∈ C : δ < |ζ| < M,Reζ > −δ}
R3(M) := {ζ ∈ C : |ζ| > M, | arg(ζ)| < 2π/3}.

(5.5.1)

In section 5.5.2, we first show that large wavenumbers ℓ do not contribute eigenval-
ues, and hence it suffices to restrict to a region of bounded ℓ. We then set λ̃(ℓ) := λ−ℓ2
and study the behavior of solutions to (5.4.40) for λ̃ in the various regions (5.5.1). The
region R3 is considered in section 5.5.3. In section 5.5.4, we collect preliminary results
in order to set up the analysis for λ̃(ℓ) in the regions R1 and R2, which are analyzed
in section 5.5.5 and 5.5.6, respectively. We briefly conclude the proof of Theorem 5.4.3
in section 5.5.7.

5.5.1 Exponential dichotomies/trichotomies

Exponential dichotomies extend the notion of hyperbolicity to nonautonomous linear
systems such as (5.4.40) by separating the dynamics into subspaces of solutions which
satisfy exponential growth/decay estimates. Consider a linear system

Ψξ = A(ξ)Ψ, Ψ ∈ Cn (5.5.2)

and let T (ξ, ξ̂) denote the corresponding evolution operator. Let I ⊆ R denote an
interval. The system (5.5.2) is said to admit an exponential dichotomy on I with
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Re ζ

Im ζ

δ−δ M

R1(δ)

R2(δ,M)

R3(M)

Figure 5.14 – Sketch of the regions R1(δ), R2(δ,M) and R3(M) as considered in the
analysis of the point spectrum.

constants C, µ > 0 and projections P u,s(ξ), ξ ∈ I if the following hold for all ξ, ξ̂ ∈ I

P u(ξ) + P s(ξ) = 1

T (ξ, ξ̂)P u,s(ξ̂) = P u,s(ξ)T (ξ, ξ̂)

|T (ξ, ξ̂)P s(ξ̂)|, |T (ξ̂, ξ)P u(ξ)| ≤ Ce−µ(ξ−ξ̂), ξ ≥ ξ̂.

We will sometimes write T u,s(ξ, ξ̂) := T (ξ, ξ̂)P u,s(ξ̂) to denote the corresponding sta-
ble/unstable evolution operators.

Exponential trichotomies allow for a ‘center’ subspace which does not satisfy the
same exponential decay estimates required for an exponential dichotomy. The sys-
tem (5.5.2) is said to admit an exponential trichotomy on I with constants C > 0 and
µ1 > µ2 > 0 and projections P u,c,s(ξ), ξ ∈ I if the following hold for all ξ, ξ̂ ∈ I

P u(ξ) + P c(ξ) + P s(ξ) = 1

T (ξ, ξ̂)P u,c,s(ξ̂) = P u,c,s(ξ)T (ξ, ξ̂)

|T (ξ, ξ̂)P s(ξ̂)|, |T (ξ̂, ξ)P u(ξ)| ≤ Ce−µ1(ξ−ξ̂), if ξ ≥ ξ̂

|T (ξ, ξ̂)P c(ξ̂)| ≤ Ceµ2|ξ−ξ̂|.

Our analysis will make use of exponential di-/trichotomies in order to build ex-
ponentially localized eigenfunctions, and in particular we will make use roughness
properties, which guarantee that exponential di-/trichotomies persist under small per-
turbations of the linear system (5.5.2). For more information on dichotomies and their
properties, as well as their applications to stability analysis, see [31, 126, 142].

5.5.2 Reduction to region of bounded |ℓ|

In this section, we show that it suffices to consider bounded wavenumbers |ℓ| ≤ LM

for some LM ≫ 1.
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The region |ℓ| ≫ 1

We first consider the region of large transverse wavenumber, that is we consider
(λ, ℓ) such that λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) and |ℓ| ≥ LM for a fixed constant
1 ≪ LM ≪ M independent of ε. In this region, we perform a rescaling of the sta-
bility problem (5.4.40) and show that the rescaled problem is a small perturbation
of a constant coefficient problem which admits exponential di/trichotomies and no
exponentially localized solutions.

We rescale ξ̄ =
√
λ+ ℓ2ξ, q̄ = q/

√
λ+ ℓ2, which results in the system

dΨ

dξ̄
= Ā(ξ̄;λ, ℓ, ε)Ψ, Ā(ξ̄;λ, ℓ, ε) = Ā1(λ, ℓ, ε) + Ā2(ξ̄; ℓ, ε) (5.5.3)

where Ā1(λ, ℓ, ε) is the constant coefficient matrix

Ā1(λ, ℓ, ε) =


ε

1+εcs
λ√
λ+ℓ2

0 0

0 0 1

0 λ+ℓ2

|λ+ℓ2| 0


and

Ā2(ξ̄; ℓ, ε) = O
(

1√
λ+ ℓ2

)
uniformly in ξ̄, ε. We consider |ℓ| ≥ LM for some sufficiently large, fixed constant LM .
We can compute the eigenvalues of Ā1(λ, ℓ, ε) explicitly as

ν± = ±

√
λ+ ℓ2

|λ+ ℓ2|
, νε =

ε

1 + εcd

λ√
λ+ ℓ2

.

For λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) and for any δ ≪ 1 and M ≫ LM , we note
that the pair of eigenvalues ν± must have absolute real part greater than 1/2, since
| arg

√
(λ+ ℓ2)/|λ+ ℓ2|| < π/3. One of these eigenvalues has negative real part and

the other positive real part.
For the third eigenvalue, νε, there are three cases: Reνε > 1/4, |Reνε| ≤ 1/4,

and Reνε < −1/4. If Reνε > 1/4, then, by roughness, (5.5.3) admits exponential
dichotomies and hence no exponentially localized solutions. If |Reνε| ≤ 1/4, by rough-
ness (5.5.3) admits exponential trichotomies with one-dimensional center subspace.
Any bounded solution must lie entirely in this center subspace. By continuity, the
eigenvalues of the asymptotic matrix Ā±∞(λ, ℓ, ε) = limξ̄→±∞ Ā(ξ̄;λ, ℓ, ε) are sepa-
rated so that only the eigenvalue νε has absolute real part less than 1/4 + κ for some
small κ > 0. For λ to the right of the essential spectrum, we have that Reνε > 0.
Let Ψc be the corresponding eigenvector. Any solution Ψ(ξ) in the center subspace
satisfies limξ→±∞Ψ(ξ)e−νεξ = ζ±Ψc for some ζ± ∈ C \ {0}, which contradicts the
fact that Ψ(ξ) is bounded. Finally we note that the case Reνε < −1/4 cannot occur
for λ to the right of the essential spectrum since in this region the asymptotic matrix
Ā±∞(λ, ℓ, ε) has two eigenvalues of positive real part and one of negative real part.

Thus we conclude that for |ℓ| ≥ LM and any λ ∈ R1(δ)∪R2(δ,M)∪R3(M) to the
right of the essential spectrum, (5.4.40) admits no exponentially localized solutions.
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Setup for |ℓ| ≤ LM

In the following sections, we will consider the region where |ℓ| is bounded. We begin
by setting λ̃ = λ̃(ℓ) := λ+ ℓ2. Under this transformation, (5.4.40) becomes

Ψ′ = Ã(ξ; λ̃, ℓ, ε)Ψ, (5.5.4)

where

Ã(ξ; λ̃, ℓ, ε) := A(ξ; λ̃− ℓ2, ℓ, ε) (5.5.5)

=

 ε
1+εcs

[
1 + λ̃− ℓ2 + v2s

]
ε

1+εcs
2usvs 0

0 0 1

−(1− bvs)v
2
s m+ λ̃− (2− 3bvs)usvs −cs

 . (5.5.6)

In the following we characterize all eigenvalues λ ∈ C such that

(λ̃, ℓ) ∈ R1(δ) ∪R2(δ,M) ∪R3(M)× [−LM , LM ]. (5.5.7)

This characterizes all eigenvalues λ ∈ C with Reλ > −ℓ2 − δ and thus all eigenvalues
λ ∈ C with Reλ > −δ. In particular, all unstable eigenvalues with Reλ ≥ 0 are found
this way.

5.5.3 The region (λ̃(ℓ), ℓ) ∈ R3(M)× [−LM , LM ]

In this region, we follow a similar strategy to that in section 5.5.2 and perform the
rescaling ξ̂ =

√
|λ̃|ξ, q̂ = q/

√
|λ̃|, which results in the system

dΨ

dξ̂
= Â(ξ̂; λ̃, ℓ, ε)Ψ, Â(ξ̂; λ̃, ℓ, ε) = Â1(λ̃, ℓ, ε) + Â2(ξ̂; λ̃, ℓ, ε) (5.5.8)

where Â1(λ̃, ℓ, ε) is the constant coefficient matrix

Â1(λ̃, ℓ, ε) =


ε

1+εcs
λ̃√
|λ̃|

0 0

0 0 1

0 λ̃
|λ̃| 0


and

Â2(ξ̂; λ̃, ℓ, ε) = O

 1√
|λ̃|

 ,

uniformly in ξ̂, ε, and |ℓ| ≤ LM , where we recall that 1 ≪ LM ≪ M . The remainder
of the argument follows analogously as in section 5.5.2, and we conclude that for any
fixed LM , any sufficiently large M and any (λ̃(ℓ), ℓ) ∈ R3(M) × [−LM , LM ] with
λ = λ̃ − ℓ2 to the right of the essential spectrum, (5.4.40) admits no exponentially
localized solutions.

5.5.4 Setup for the region (λ̃(ℓ), ℓ) ∈ R1(δ) ∪R2(δ,M)× [−LM , LM ]

In the previous section we have deduced that all eigenvalues need to be located in
the region (λ̃(ℓ), ℓ) ∈ R1(δ) ∪ R2(δ,M) × [−Lm, Lm]. The analysis in this region is
more involved and we need a specific set-up for this region, the details of which are
explained in the next subsections.

184



5.5 Rigorous proof for stability theorems

Estimates from the existence analysis

To study the stability of the traveling pulse solution ϕd, we need to be able to ap-
proximate it pointwise by its singular limit, and bound the resulting error terms. The
following theorem establishes these estimates.

Theorem 5.5.1. For each ν > 0 sufficiently large, there exists ε0 > 0 such that the
following holds. Let ϕd(ξ) = (ud(ξ), vd(ξ))

t be a traveling-pulse solution as in Theo-
rem 5.2.8 for 0 < ε < ε0, and define Lε := −ν log ε and Φd(ξ) := (ud(ξ), vd(ξ), v

′
d(ξ))

T .
There exists 0 < Zε = O(1/ε) such that:

(i) For ξ ∈ Iℓ := (−∞,−Lε], Φd(ξ) is approximated by the left slow manifold Mℓ
0

with

d(Φd(ξ),Mℓ
0) = O(ε).

(ii) For ξ ∈ I† := [−Lε, Lε], Φd(ξ) is approximated by the front ϕ†(ξ) = (v†(ξ), q†(ξ))
T

with∣∣∣∣Φd(ξ)−
(
u∗(a)
ϕ†(ξ)

)∣∣∣∣ = O(εlog ε),
∣∣∣∣Φ′d(ξ)− ( 0

ϕ′†(ξ)

)∣∣∣∣ = O(εlog ε).

(iii) For ξ ∈ Ir := [Lε, Za,ε − Lε], Φd(ξ) is approximated by the right slow manifold
Mr

0 with

d(Φd(ξ),Mr
0) = O(ε).

(iv) For ξ ∈ I⋄ := [Za,ε − Lε,∞), Φd(ξ) is approximated by the front ϕ⋄(ξ) =
(v⋄(ξ), q⋄(ξ))

T with ∣∣∣∣Φd(ξ)−
(

a
ϕ⋄(ξ − Za,ε)

)∣∣∣∣ = O(εlog ε)

and ∣∣∣∣Φ′d(ξ)− ( 0
ϕ′⋄(ξ − Za,ε)

)∣∣∣∣ = O(εlog ε)

Proof. The proof is similar to Theorem 4.3 in [22]. The estimates are based on the
proximity of the solution to the singular limit; along each of the slow manifolds, and
along each of the fast jumps outside small neighborhoods of the slow manifolds, these
estimates follow directly from the existence analysis, and Φd(ξ) is within O(ε) of the
corresponding singular profile. The regions in between, i.e. where Φd(ξ) transitions
from a fast jump to a slow manifold or vice versa, are more delicate and require
corner-type estimates, which result in the O(ε log ε) errors; see, e.g. [22, Theorem 4.5]
or [60, 83].

Weighted eigenvalue problem

In this section we introduce a small exponential weight to the stability problem (5.5.4).
This weight is introduced to deal with the inconvenience that arises due to the fact
that when ε = 0, along the critical manifolds Mℓ

0,Mr
0 the matrix A admits three
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spatial eigenvalues: one negative, one positive, and a zero eigenvalue which corresponds
to the slow direction. On the other hand, for ε > 0 the asymptotic matrix Ad is
hyperbolic with two positive spatial eigenvalues and one negative eigenvalue. In the
following, we will construct exponential dichotomies for (5.5.4) along each of the slow
manifolds Mℓ

ε,Mr
ε and each of the fast jumps, and for the following computations

it will be convenient to preserve this dichotomy splitting at ε = 0 and preserve the
exponential decay in forward (resp. backward) time within the corresponding stable
(resp. unstable) dichotomy subspaces. To this end, for each η ≥ 0 we consider the
weighted eigenvalue problem

Ψ′ = Aη(ξ; λ̃, ℓ, ε)Ψ, (5.5.9)

where

Aη(ξ; λ̃, ℓ, ε) := Ã(ξ; λ̃, ℓ, ε) + ηI

=

 ε
1+εc

[
1 + λ̃− ℓ2 + v2d

]
+ η ε

1+εc2udvd 0

0 η 1

−(1− bvd)v
2
d m+ λ̃− (2− 3bvd)udvd η − c

 .

The effect of introducing the weight η is to shift the spectrum (i.e. the spatial eigen-
values) of the matrix Ã(ξ; λ̃, ℓ, ε) to the right. For any λ̃ chosen so that λ = λ̃ − ℓ2

lies to the right of the essential spectrum of L, the asymptotic matrix Ã±∞(λ̃, ℓ, ε) =
limξ→∞ Ã(ξ; λ̃, ℓ, ε) admits two eigenvalues of positive real part and one of negative
real part. Provided η is chosen so that A±∞η (λ̃, ℓ, ε) = limξ→∞Aη(ξ; λ̃, ℓ, ε) retains
this spectral splitting, the original eigenvalue problem (5.4.40) admits a nontrivial ex-
ponentially localized solution Ψ(ξ) if and only if the weighted problem (5.5.9) admits
a solution given by eηξΨ(ξ).

We proceed by determining η, ν > 0 such that the spectrum of the coefficient
matrix Aη(ξ; λ̃, ℓ, ε) of (5.5.9) has a consistent splitting into one unstable and two
stable eigenvalues for any λ̃ ∈ R1(δ) ∪R2(δ,M) such that λ = λ̃− ℓ2 lies to the right
of the essential spectrum of L and any ξ ∈ Iℓ∪Ir, where Iℓ, Ir are as in Theorem 5.5.1.
This consistent splitting will be used to construct exponential dichotomies for (5.5.9)
on the intervals Iℓ, Ir. This is the content of the following proposition.

Proposition 5.5.2. There exists C, µ, η, ε0 > 0 such that for ε ∈ (0, ε0), (5.5.9) admits
exponential dichotomies on the intervals Iℓ = (−∞,−Lε] and Ir = [Lε, Zε − Lε)
with constants C, µ > 0, and the associated projections Qu,s

ℓ,r(ξ; λ̃, ε) are analytic in
λ̃ ∈ R1(δ) ∪R2(δ,M) and satisfy∥∥∥[Qs

ℓ − P](−Lε; λ̃, ε)
∥∥∥ ≤ C|εlog ε|,∥∥∥[Qs

r − P](Lε; λ̃, ε)
∥∥∥ ≤ C|εlog ε|,∥∥∥[Qs

r − P](Zε − Lε; λ̃, ε)
∥∥∥ ≤ C|εlog ε|,

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of the coeffi-
cient matrix Aη(ξ; λ̃, ℓ, ε) in (5.5.9).

Proof. By Theorem 5.5.1, for ξ ∈ Iℓ ∪ Ir, the pulse solution is O(ε)-close to the slow
manifolds Mℓ

ε and Mr
ε, respectively. For |ℓ| ≤ LM bounded and any λ̃ ∈ R1(δ) ∪
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R2(δ,M), on Iℓ the matrix Aη(ξ; λ̃, ℓ, ε) has slowly varying coefficients and is an O(ε)
perturbation of the constant-coefficient matrix

Aℓ
η(ξ; λ̃, ℓ, ε) =

η 0 0
0 η 1

0 m+ λ̃ η − c∗(a)

 . (5.5.10)

For any sufficiently small η > 0 fixed independently of ε and λ̃ ∈ R1(δ)∪R2(δ,M), this
matrix is hyperbolic with two eigenvalues with positive real part and one with negative
real part and a spectral gap with lower bound independent of λ̃ ∈ R1(δ) ∪ R2(δ,M).
By continuity this also holds for Aη(ξ; λ̃, ℓ, ε) for ξ ∈ Iℓ, and since Aη(ξ; λ̃, ℓ, ε) has
slowly varying coefficients on this interval (see [31, Proposition 6.1]), as in the proof
of [22, Proposition 6.5], we can construct exponential dichotomies for (5.5.9) on Iℓ
with constants C, µ independent of λ̃ ∈ R1(δ) ∪R2(δ,M) and all sufficiently small ε.

We proceed similarly along Ir, noting that here the matrix Aη(ξ; λ̃, ℓ, ε) again has
slowly varying coefficients but is now an O(ε) perturbation of the matrix

Ar
η(ξ; λ̃, ℓ, ε) =

 η 0 0
0 η 1

−(1− bvd)vd m+ λ̃− (2− 3bvd)udvd η − c∗(a)

 . (5.5.11)

where (ud, vd) lies within O(ε) of the set {(u, v) = (u, v+(u)) : u ∈ [u∗(a), a]} where
v+ is as in (5.2.3). On this set, we note that since m = (1− bv+(u))uv+(u), u > 0 and
v+(u) ≥ 1

2b , we have that

m− (2− 3bv+(u))uv+(u) = (−1 + 2bv+(u))uv+(u) ≥ 0. (5.5.12)

Hence for δ > 0 sufficiently small Ar
η(ξ; λ̃, ℓ, ε) is hyperbolic with two eigenvalues with

positive real part and one with negative real part and a spectral gap with lower bound
independent of λ̃ ∈ R1(δ) ∪ R2(δ,M). The existence of exponential dichotomies for
Aη(ξ; λ̃, ℓ, ε) on Ir then proceeds similarly to the case of Iℓ above.

5.5.5 The region (λ̃(ℓ), ℓ) ∈ R1(δ)× [−LM , LM ]

The argument below is based on the analysis in [22] regarding the stability of trav-
eling pulse solutions in the FitzHugh–Nagumo equation. The fundamental idea is to
construct potential eigenfunctions as solutions to (5.4.40) using Lin’s method: the so-
lutions are constructed along three separate intervals which form a partition of the real
line and are matched at two locations corresponding to the two fast jumps in the layer
problem; see Figure 5.15. The resulting matching conditions give bifurcation equations
which can be solved using the eigenvalue λ as a free parameter, and to leading order
these conditions correspond to the Fredholm conditions (5.4.27) and (5.4.29).

Reduced eigenvalue problems along fast jumps

We consider the reduced eigenvalue problems

Ψ′ = Aj,η(ξ)Ψ, j = †, ⋄, (5.5.13)

where

Aj,η(ξ) :=

 η 0 0
0 η 1

−(1− bvj(ξ))vj(ξ)
2 m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

 ,

(5.5.14)
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M`
0 Mm

0 Mr
0

⇠ = 0

v

0

q

⇠ = Z"

u

Figure 5.15 – Shown is the geometric setup for the construction of potential eigen-
functions using Lin’s method. The solutions are constructed along the three intervals
(−∞, 0], [0, Zε], [Zε,∞) and are then matched at ξ = 0 and ξ = Zε corresponding to the
two fast jumps in the layer problem (5.2.2).

(for j = †, ⋄). These are obtained by considering (5.5.9) with ε = λ̃ = 0 and ap-
proximating ϕd by the fast front solutions ϕj , j = †, ⋄. We denote the corresponding
evolutions by Tj(ξ, ξ̂) for j = †, ⋄. In (5.5.13), vj(ξ) denotes the v-component of ϕj(ξ),
and u† = u∗(a), u⋄ = a. Hence, for ξ ∈ I† = [−Lε, Lε], (5.5.9) can be written as the
perturbation

Ψ′ =
(
A†,η(ξ) +B†(ξ; λ̃, ℓ, ε)

)
Ψ, B†(ξ; λ̃, ℓ, ε) := Aη(ξ; λ̃, ℓ, ε)−A†,η(ξ) (5.5.15)

and for ξ ∈ [−Lε,∞), (5.5.9) can be written as the perturbation

Ψ′ =
(
A⋄,η(ξ) +B⋄(ξ; λ̃, ℓ, ε)

)
Ψ, B⋄(ξ; λ̃, ℓ, ε) := Aη(ξ + Zε; λ̃, ℓ, ε)−A⋄,η(ξ).

(5.5.16)

We note by Theorem 5.5.1 (ii) and (iv) that the perturbation matrices B†, B⋄
satisfy

∥B†(ξ; λ̃, ℓ, ε)∥ ≤ C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε, Lε],

∥B⋄(ξ; λ̃, ℓ, ε)∥ ≤ C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε,∞).
(5.5.17)

Next, we note that (5.5.13) has a lower triangular block structure and leaves the
two-dimensional subspace {0} × C2 ⊂ C3 invariant, the dynamics on which are given
by

ψ′ = Cj,η(ξ)ψ, Cj,η(ξ) :=

(
η 1

m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, ⋄.

(5.5.18)

The space of bounded solutions of (5.5.18) is one-dimensional and spanned by

ψj(ξ) := eηξϕ′j(ξ), j = †, ⋄. (5.5.19)

Likewise, the associated adjoint system

ψ′ = −Cj,η(ξ)
∗ψ, j = †, ⋄, (5.5.20)
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has a one-dimensional space of bounded solutions spanned by

ψj,ad(ξ) :=

(
q′j(ξ)
−v′j(ξ)

)
e(c

∗(a)−η)ξ, j = †, ⋄. (5.5.21)

Note the similarities with (5.4.24) in the formal computation. The system (5.5.18)
admits exponential dichotomies on both half-lines, which can be extended to the full
system (5.5.13) by exploiting the lower triangular block structure and using variation
of constants formulae. This is the content of the following proposition.

Proposition 5.5.3. There exist C, µ > 0 such that the following hold.

(i) The system (5.5.18) admits exponential dichotomies on R± with constants C, µ >
0, projections Πu,s

j,±(ξ), and corresponding (un)stable evolutions Su,s
j,±, j = †, ⋄.

The projections can be chosen so that

R(Πs
j,+(0)) = Span(ψj(0)) = R(Πu

j,−(0)), (j = †, ⋄) (5.5.22)
R(Πu

j,+(0)) = Span(ψj,ad(0)) = R(Πs
j,−(0)), (j = †, ⋄). (5.5.23)

(ii) The system (5.5.13) admits exponential dichotomies on R± with constants C, µ >
0, projections Qu,s

j,±(ξ), (j = †, ⋄), and (un)stable evolution operators T u,s
j,±(ξ, ξ̂).

We have that for ξ ≥ 0,

Qs
j,+(ξ) =

(
0 0

−
∫ ξ

0
e−η(ξ−ξ̂)Ss

j,+(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs
j,+(ξ)

)
= 1−Qu

j,+(ξ),

(5.5.24)

and for ξ ≤ 0,

Qs
j,−(ξ) =

(
0 0

−
∫ ξ

−∞ e−η(ξ−ξ̂)Ss
j,−(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs

j,−(ξ)

)
= 1−Qu

j,−(ξ),

(5.5.25)

where Fj(ξ) :=
(
0,−(1− bvj(ξ))vj(ξ)

2
)T . Furthermore, the projections satisfy

R(Qu
j,+(0)) = Span(ωj,ad(0),Ψ0), R(Qs

j,+(0)) = Span(ωj(0)),

R(Qu
j,−(0)) = Span(ωj(0),Ψj,∞), R(Qs

j,−(0)) = Span(ωj,ad(0)),
(5.5.26)

where

ωj(ξ) :=

(
0

ψj(ξ)

)
, ωj,ad(ξ) :=

(
0

ψj,ad(ξ)

)
, j = †, ⋄, (5.5.27)

and

Ψ0 :=

 1
0
0

 , Ψj,∞ := Qu
j,−(0)Ψ0, j = †, ⋄, (5.5.28)

with ψj(ξ) and ψj,ad(ξ) defined in (5.5.19) and (5.5.21), respectively.

Proof. For (i), we refer to [22, Proposition 6.6]. The exponential dichotomies in (ii) can
be constructed from those in (i) using variation of constants formulae, by exploiting
the block triangular structure in (5.5.13); see [22, Corollary 6.7].
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Construction of eigenfunctions

In this section, we use the exponential dichotomies from Proposition 5.5.3, variation
of constants formulae, and the estimates from Theorem 5.5.1 to construct potential
eigenfunctions. These eigenfunctions are constructed in three pieces along the intervals
(−∞, 0], [0, Zε], [Zε,∞) (see Figure 5.15), and then matched together at ξ = 0, Zε; the
associated matching conditions can then be solved to find eigenvalues λ̃. We begin
with the following proposition, which describes potential eigenfunctions along each of
the three intervals.

Proposition 5.5.4. Let Bj be as in (5.5.15) and (5.5.16), and ωj ,Ψ0,Ψj,∞ as
in (5.5.27) and (5.5.28) for j = †, ⋄. There exists δ, ε0, C, q > 0 such that for λ̃ ∈ R1(δ)
and ε ∈ (0, ε0) the following hold.

(i) Any solution Ψ†,−(ξ, λ̃) to (5.5.9), which decays exponentially in backward time,
satisfies

Ψ†,−(0, λ̃) = β†,−ω†(0) + ζ†,−Ψ†,∞

+ β†,−

∫ 0

−Lε

T s
†,−(0, ξ̂)B†(ξ̂; λ̃, ℓ, ε)ω†(ξ̂)dξ̂ +H†,−(β†,−, ζ†,−), (5.5.29)

for some β†,−, ζ†,− ∈ C, where H†,− is a linear map satisfying

∥H†,−(β†,−, ζ†,−)∥ ≤ C
(
(ε|log ε|+ |λ̃|)|ζ†,−|+ (ε|log ε|+ |λ̃|)2|β†,−|

)
.

(ii) Any solution Ψsl(ξ, λ̃) to (5.5.9) which is bounded along the slow manifold Mr
ε

satisfies

Ψsl(0, λ̃) = β†ω†(0) + β†

∫ 0

Lε

T u
†,+(0, ξ̂)B†(ξ̂; λ̃, ℓ, ε)ω†(ξ̂)dξ̂ +H†(β†, β⋄, ζ⋄),

(5.5.30)

Ψsl(Zε, λ̃) = β⋄ω⋄(0) + ζ⋄Ψ⋄,∞

+ β⋄

∫ 0

−Lε

T s
⋄,−(0, ξ̂)B⋄(ξ̂; λ̃, ℓ, ε)ω⋄(ξ̂)dξ̂ +H⋄(β†, β⋄, ζ⋄), (5.5.31)

for some β†, β⋄, ζ⋄ ∈ C, where H† and H⋄ are linear maps satisfying

∥H†(β†, β⋄, ζ⋄)∥ ≤ C
(
(ε|log ε|+ |λ̃|)2|β†|+ e−q/ε(|β⋄|+ |ζ⋄|)

)
,

∥H⋄(β†, β⋄, ζ⋄)∥ ≤ C
(
(ε|log ε|+ |λ̃|)|ζ⋄|+ (ε|log ε|+ |λ̃|)2|β⋄|+ e−q/ε|β†|

)
.

(iii) Any solution Ψ⋄,+(ξ, λ̃) to (5.5.9) which decays exponentially in forward time
satisfies

Ψ⋄,+(Zε, λ̃) = β⋄,+ω⋄(0)

+ β⋄,+

∫ 0

∞
T u
⋄,+(0, ξ̂)B⋄(ξ̂; λ̃, ℓ, ε)ω⋄(ξ̂)dξ̂ +H⋄,+(β⋄,+), (5.5.32)

for some β⋄,+ ∈ C, where H⋄,+ is a linear map satisfying

∥H⋄,+(β⋄,+)∥ ≤ C(ε|log ε|+ |λ̃|)2|β⋄,+|,
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Moreover, the functions ψ†,−(ξ, λ̃), ψsl(ξ, λ̃), and ψ⋄,+(ξ, λ̃) are analytic in λ̃.

Proof. Using the exponential dichotomies from Propositions 5.5.2 and 5.5.3(ii), the
proof is nearly identical to the proofs of Propositions 6.8–6.10 in [22].

It remains to solve the matching conditions which arise when attempting to glue
together the three solutions from Proposition 5.5.4 (i)–(iii) at ξ = 0 and ξ = Zε, in
order to construct an exponentially localized eigenfunction.

Theorem 5.5.5. There exists δ, ε0 > 0 such that for ε ∈ (0, ε0) and |ℓ| ≤ LM , the
eigenvalue problem (5.5.9) has precisely two eigenvalues λ̃0(ℓ), λ̃c(ℓ) ∈ R1(δ) given by

λ̃0(ℓ) = O(|εlog ε|2), λ̃c(ℓ) = −
Md
†,ε

Md
†,λ̃

ε+O
(
|εlog ε|2

)
,

where

Md
†,λ̃ :=

∫ ∞
−∞

v′†(ξ; a)
2ec

∗(a)ξ dξ > 0, (5.5.33)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u

∗(a))2
] ∫ ∞
∞

(1− bv†(ξ))v†(ξ)
2ec

∗(a)ξv′†(ξ) dξ > 0.

(5.5.34)

The derivatives of λ̃0(ℓ) with respect to ℓ satisfy the same estimates, and λ̃0(0) =
λ̃′0(0) = 0.

Proof. We recall from Proposition 5.5.4 that any exponentially localized solution must
satisfy the conditions (5.5.29)–(5.5.32) at ξ = 0, Zε for some β†,−, ζ†,−, β†, β⋄, ζ⋄,
β⋄,+ ∈ C. Therefore, to obtain an exponentially localized solution to (5.5.9) we match
the solutions Ψ†,−,Ψsl at ξ = 0 and the solutions Ψsl,Ψ⋄,+ at ξ = Za,ε, which results
in matching conditions which must be satisfied by λ̃ and ε which can be solved to
find eigenfunctions. Since the projections Qu,s

j,+(0) associated with the exponential
dichotomy of (5.5.13) established in Proposition 5.5.3(ii) satisfy

Qu
j,+(0) +Qs

j,+(0) = I, j = †, ⋄,

this is equivalent to ensuring the differences Ψ†,−(0, λ̃) − Ψsl(0, λ̃) and Ψsl(Zε, λ̃) −
Ψ⋄,+(Zε, λ̃) vanish under the projections Qu,s

†,+(0) and Qu,s
⋄,+(0), respectively.

We first note that we must have β† = β†,− and β⋄ = β⋄,+. This can be seen by
applying Qs

j,+(0), j = †, ⋄, to the differences Ψ†,−(0, λ̃) − Ψsl(0, λ̃) and Ψsl(Zε, λ̃) −
Ψ⋄,+(Zε, λ̃), respectively, using the expressions (5.5.29)–(5.5.32).

We next recall the vectors ωj,ad(0) and Ψ0 defined in (5.5.27). By (5.5.26) the
vectors Ψ0 and

Ψj,⊥ := ωj,ad(0)−
(∫ 0

−∞
eηξ ⟨ψj,ad(ξ), Fj(ξ)⟩ dξ

)
Ψ0, j = †, ⋄,

Fj(ξ) =

(
0

−(1− bvj(ξ))vj(ξ)
2

)
, j = †, ⋄,

span R(Qu
j,+(0)). Hence we aim to show that the inner products of the differences

Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and Ψsl(Zε, λ̃)−Ψ⋄,+(Zε, λ̃) with Ψ0 and Ψj,⊥ vanish for j = †, ⋄,
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respectively. Using (5.5.29)–(5.5.32) we first project along along Ψ0, whereby

0 =
⟨
Ψ0,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)

⟩
= ζ†,− +O

((
ε|log ε|+ |λ̃|

)
(|β†|+ |ζ†,−|) + e−q/ε(|β⋄|+ |ζ⋄|)

)
,

0 =
⟨
Ψ0,Ψsl(Zε, λ̃)−Ψ⋄,+(Zε, λ̃)

⟩
= ζ⋄ +O

((
ε|log ε|+ |λ̃|

)
(|β⋄|+ |ζ⋄|) + e−q/ε|β†|

)
,

(5.5.35)

where we used Theorem 5.5.1 (ii) and (iv), and (5.5.17). Provided |λ̃|, ε > 0 are
sufficiently small, we can solve (5.5.35) for ζ†,− and ζ⋄ to obtain

ζ†,− = O
(
(ε|log ε|+ |λ̃|)|β†|+ e−q/ε|β⋄|

)
ζ⋄ = O

(
(ε|log ε|+ |λ̃|)|β⋄|+ e−q/ε|β†|

)
.

(5.5.36)

We substitute (5.5.36) into (5.5.29)–(5.5.32) and noting Ψj,⊥ ∈ ker(Qu
j,−(0)

∗) =
R(Qs

j,−(0)
∗) ⊂ R(Qu

j,+(0)
∗) for j = †, ⋄, we obtain the final conditions by project-

ing with Ψj,⊥, j = †, ⋄, whereby

0 =
⟨
Ψ†,⊥,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)

⟩
= β†

∫ Lε

−Lε

⟨
T†(0, ξ)

∗Ψ†,⊥, B†(ξ; λ̃, ℓ, ε)ω†(ξ)
⟩
dξ︸ ︷︷ ︸

=:I†

+O
((

ε|log ε|+ |λ̃|
)2

|β†|+ e−q/ε|β⋄|
)
,

(5.5.37)

0 =
⟨
Ψ⋄,⊥,Ψsl(Zε, λ̃)−Ψ⋄,+(Zε, λ̃)

⟩
= β⋄

∫ ∞
−Lε

⟨
T⋄(0, ξ)

∗Ψ⋄,⊥, B⋄(ξ; λ̃, ℓ, ε)ω⋄(ξ)
⟩
dξ︸ ︷︷ ︸

=:I⋄

+O
((

ε|log ε|+ |λ̃|
)2

|β⋄|+ e−q/ε|β†|
)
.

(5.5.38)

where we recall that Tj(ξ, ξ̂) denotes the evolution for the reduced system (5.5.13).
To estimate the integrals Ij for j = †, ⋄ appearing in (5.5.37)–(5.5.38), we note

that Tj(0, ξ)∗Ψj,⊥ is the solution to the adjoint equation

Ψ′ = −A∗j,ηΨ (5.5.39)

of (5.5.13) satisfying Ψ(0) = Ψj,⊥; hence we calculate

Tj(0, ξ)
∗Ψj,⊥ =

(
−
∫ ξ

−∞

⟨
ψj,ad(ξ̂), Fj(ξ̂)

⟩
dξ̂

ψj,ad(ξ)

)
(5.5.40)

=

 −
∫ ξ

−∞ e(c
∗(a)−η)ξ̂(1− bvj(ξ̂))vj(ξ̂)

2v′j(ξ̂)dξ̂

e(c
∗(a)−η)ξq′j(ξ)

−e(c∗(a)−η)ξv′j(ξ)

 , (5.5.41)
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for ξ ∈ R and j = †, ⋄. We now approximate Ij by first extracting the leading order
λ̃ contribution, whereby we obtain

I† =
∫ Lε

−Lε

⟨
eηξT†(0, ξ)

∗Ψ†,⊥, B†(ξ; 0, ℓ, ε)ϕ
′
d(ξ)

⟩
dξ︸ ︷︷ ︸

=:J†

−Md
†,λ̃λ̃

+O
(
|εlog ε|(|λ̃|+ |εlog ε|)

) (5.5.42)

I⋄ =
∫ ∞
−Lε

⟨
eηξT⋄(0, ξ)

∗Ψ⋄,⊥, B⋄(ξ; 0, ℓ, ε)ϕ
′
d(ξ + Zε)

⟩
dξ︸ ︷︷ ︸

=:J⋄

−Md
⋄,λ̃λ̃

+O
(
|εlog ε|(|λ̃|+ |εlog ε|)

)
,

(5.5.43)

where

Md
†,λ̃ :=

∫ ∞
−∞

ec
∗(a)ξ

(
v′†(ξ)

)2
dξ =

∫ Lε

−Lε

ec
∗(a)ξ

(
v′†(ξ)

)2
dξ +O(ε) (5.5.44)

Md
⋄,λ̃ :=

∫ ∞
−∞

ec
∗(a)ξ (v′⋄(ξ))

2
dξ =

∫ ∞
−Lε

ec
∗(a)ξ (v′⋄(ξ))

2
dξ +O(ε), (5.5.45)

where we used the fact that the integrands decay exponentially to estimate the tails of
the integrals. Finally, in order to obtain the leading order ε contribution, it remains to
estimate the integrals Jj for j = †, ⋄ which appear in the expressions (5.5.42)–(5.5.43).
To do this, we note that the derivative Φ′d(ξ) = (u′d(ξ), v

′
d(ξ), q

′
d(ξ))

T of the pulse
solution solves the linearized equations when ℓ = 0, and therefore satisfies

Φ′′d(ξ) = (A†,0(ξ) +B†(ξ; 0, 0, ε))Φ
′
d(ξ), ξ ∈ [−Lε, Lε] (5.5.46)

and

Φ′′d(ξ + Zε) = (A⋄,0(ξ) +B⋄(ξ; 0, 0, ε))Φ
′
d(ξ + Zε), ξ ∈ [−Lε,∞). (5.5.47)

In particular, for ξ ∈ [−Lε, Lε], we obtain

B†(ξ; 0, ℓ, ε)Φ
′
d(ξ) = [∂ξ −A†,0(ξ) +B†(ξ; 0, ℓ, ε)−B†(ξ; 0, 0, ε)] Φ

′
d(ξ)

=

 0

[∂ξ − C†,0(ξ)]

(
v′d(ξ)
q′d(ξ)

)+

 u′′d(ξ)− εℓ2

1+εcd
u′d(ξ)

0
(1− bv†(ξ))v†(ξ)

2u′d(ξ)


and similarly

B⋄(ξ; 0, ℓ, ε)Φ
′
d(ξ + Zε) = [∂ξ −A⋄,0(ξ) +B⋄(ξ; 0, ℓ, ε)−B⋄(ξ; 0, 0, ε)] Φ

′
d(ξ + Zε)

=

 0

[∂ξ − C⋄,0(ξ)]

(
v′d(ξ + Zε)
q′d(ξ + Zε)

)+

u′′d(ξ + Zε)− εℓ2

1+εcd
u′d(ξ + Zε)

0
(1− bv⋄(ξ))v⋄(ξ)

2u′d(ξ + Zε)


for ξ ∈ [−Lε,∞). Using the fact that ψj,ad(ξ) solves (5.5.20), we have

[∂ξ − Cj,0(ξ)]
∗ (
eηξψj,ad(ξ)

)
= 0, j = †, ⋄, (5.5.48)
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and we therefore obtain

J† =
∫ Lε

−Lε

⟨
eηξT†(0, ξ)

∗Ψ†,⊥,

 u′′d(ξ)− εℓ2

1+εcd
u′d(ξ)

0
(1− bv†(ξ))v†(ξ)

2u′d(ξ)

⟩ dξ
= −

∫ Lε

−Lε

(
ec

∗(a)ξv′†(ξ)(1− bv†(ξ))v†(ξ)
2u′d(ξ)

+u′′d(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)
2v′†(ξ̂)dξ̂

)
dξ

+
εℓ2

1 + εcd

∫ Lε

−Lε

(
u′d(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)
2v′†(ξ̂)dξ̂

)
dξ +O(ε2),

where we used the fact that the integrands decay exponentially. Integrating by parts,
we have that

J† = −
∫ Lε

−Lε

d

dξ

(
u′d(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)
2v′†(ξ̂)dξ̂

)
dξ

+
εℓ2

1 + εcd

[
ud(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)
2v′†(ξ̂)dξ̂

]Lε

−Lε

− εℓ2

1 + εcd

∫ Lε

−Lε

ud(ξ)e
c∗(a)ξ(1− bv†(ξ))v†(ξ)

2v′†(ξ)dξ +O(ε2)

= −u′d(Lε)

∫ Lε

−∞
ec

∗(a)ξ(1− bv†(ξ))v†(ξ)
2v′†(ξ)dξ +O(ε2|log ε|)

= −ε
[
u∗(a)− a+ u∗(a)v+(u

∗(a))2
] ∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)

2v′†(ξ)dξ

+O(ε2|log ε|),

where we again used the fact that the integrands decay exponentially, and we estimated
ud(ξ) = u∗(a) +O(ε log ε) for ξ ∈ [−Lε, Lε] and

u′d(Lε) = ε
[
ud(Lε)− a+ ud(Lε)v

′
d(Lε)

2
]

= ε
[
u∗(a)− a+ u∗(a)v+(u

∗(a))2 +O(|εlog ε|)
]
,

using Theorem 5.5.1. Hence we have that

J† = −Md
†,εε+O(ε2|log ε|), (5.5.49)

where

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u

∗(a))2
] ∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)

2v′†(ξ)dξ > 0.

(5.5.50)

Performing a similar computation for J⋄, we arrive at

J⋄ = − lim
ξ→∞

u′d(Zε + ξ)

∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)

2v′†(ξ)dξ +O(ε2) = O(ε2),

(5.5.51)
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5.5 Rigorous proof for stability theorems

due to the fact that u′d(Zε + ξ) → 0 as ξ → ∞.
Substituting the expressions for Ij ,Jj , j = †, ⋄, into the remaining conditions

(5.5.37)–(5.5.38), we find the following linear system of equations for (β†, β⋄), solu-
tions of which correspond to eigenfunctions of (5.5.9):

M(λ̃, ε)

(
β†
β⋄

)
= 0, (5.5.52)

where

M(λ̃, ε) :=

(
−λ̃Md

†,λ̃
−Md

†,εε+O
(
(ε|log ε|+ |λ̃|)2

)
O(e−q/ε)

O(e−q/ε) −λ̃Md
⋄,λ̃

+O
(
(ε|log ε|+ |λ̃|)2

)
)
.

(5.5.53)

Since the solutions Ψ†,−,Ψsl,Ψ⋄,+ from Proposition 5.5.4 and the matrices Bj are an-
alytic in λ̃, all entries in the matrix M(λ̃, ε) (5.5.53), and furthermore its determinant
D(λ̃, ε), are analytic in λ̃. Note that the quantities Md

†,ε and Md
j,λ̃
, j = †, ⋄ are nonzero

and independent of λ̃, ε. Hence, provided δ, ε > 0 are sufficiently small, we have

|D(λ̃, ε)− λ̃Md
⋄,λ̃(λ̃M

d
†,λ̃ + εMd

†,ε)| < |λ̃Md
⋄,λ̃(λ̃M

d
†,λ̃ + εMd

†,ε)|.

for λ̃ ∈ ∂R1(δ) = {λ̃ ∈ C : |λ̃| = δ}, and by Rouché’s Theorem D(λ̃, ε) has precisely
two roots λ̃0, λ̃1 in R1(δ) which are O(|εlog ε|2)-close to the roots

λ̃ = 0, λ̃ = −
Md
†,ε

Md
†,λ̃

ε

of λ̃Md
⋄,λ̃(λ̃M

d
†,λ̃+εM

d
†,ε). We deduce that (5.5.9) has two real eigenvalues in the region

R1(δ) given by

λ̃0(ℓ) = O(|εlog ε|2), λ̃c(ℓ) = −
Md
†,ε

Md
†,λ̃

ε+O(|εlog ε|2),

and by implicitly differentiating the characteristic equation of (5.5.53), we furthermore
obtain that the derivatives of λ̃0(ℓ) with respect to ℓ satisfy the same estimates. We
note that the derivative Φ′d of the pulse solution is an eigenfunction with eigenvalue 0
when ℓ = 0 due to translation invariance, hence λ0(0) = 0. Furthermore, since (5.5.53)
depends on ℓ only via the quantity ℓ2, we obtain that λ̃′0(0) = 0.

5.5.6 The region (λ̃(ℓ), ℓ) ∈ R2(δ,M)× [−LM , LM ]

We now consider the final remaining region, λ̃(ℓ) ∈ R2(δ,M) for |ℓ| bounded. The fun-
damental idea is the same as for the region R1(δ); using exponential dichotomies along
the fast jumps and the slow manifolds, we attempt to construct potential eigenfunc-
tions. However, in this region it is possible to construct exponential dichotomies along
each of the intervals Iℓ, I†, Ir, I⋄, and by comparing their projections at the endpoints
of these intervals we obtain estimates which preclude the existence of a nontrivial expo-
nentially localized eigenfunction. We note that the exponential dichotomies along Ir
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and Iℓ are guaranteed by Proposition 5.5.2. The existence of exponential dichotomies
along I† and I⋄ is due to the fact that the associated reduced problems along each of
the fast jumps admit no eigenvalues for λ̃(ℓ) ∈ R2(δ,M).

To see this, proceeding in a similar fashion as in section 5.5.5, we consider the
following reduced problems along I† and I⋄ obtained for ε = 0 and λ̃ ∈ R2(δ,M).

ψξ = Aj,η(ξ; λ̃)ψ, (5.5.54)

Aj,η(ξ; λ̃) :=

 η 0 0
0 η 1

−(1− bvj(ξ))vj(ξ)
2 m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

,
(5.5.55)

Here j = †, ⋄, where again vj(ξ) denotes the v-component of ϕj(ξ), and u† = u∗(a),
respectively u⋄ = a. As in section 5.5.5, the lower triangular structure allows us to
restrict to a two-dimensional invariant subspace with dynamics

ψ′ = Cj,η(ξ; λ̃)ψ, j = †, ⋄ (5.5.56)

Cj,η(ξ; λ̃) :=

(
η 1

m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, ⋄. (5.5.57)

We note that the front profiles v†(ξ) and v⋄(ξ) are solutions to the scalar equations

vt = vξξ + c∗(a)vξ −mv + (1− bv)ujv
2, j = †, ⋄,

and critically, the linear system (5.5.56) is precisely the (weighted) eigenvalue problem
one obtains by considering their stability with eigenvalue parameter λ̃. Since the
derivatives v′j(ξ), j = †, ⋄ define exponentially localized eigenfunctions with no zeros
when λ̃ = 0, Sturm-Liouville theory precludes the existence of eigenvalues in R2(δ,M),
provided δ is sufficiently small. Thus (5.5.56) admits exponential dichotomies, which
can be extended to the full system (5.5.54) using variation of constants formulae.
Finally, these exponential dichotomies can be extended to the stability problem (5.5.9)
on the intervals I† and I⋄ using roughness results.

Once exponential dichotomies are established along each of the intervals Iℓ, I†, Ir
and I⋄, it remains to compare their projections at the endpoints of each interval. Using
the estimates in Theorem 5.5.1 combined with repeated use of a technical lemma [83,
Lemma 6.10], it is possible to show that each pair of projections is sufficiently close at
each endpoint, and further that any exponentially localized solution to (5.5.9) must
be trivial. This is summarized in the following proposition.
Proposition 5.5.6. Fix M > 0. There exists δ > 0 such that for each sufficiently
small ε > 0 and each λ̃ ∈ R2(δ,M), the eigenvalue problem (5.5.9) admits no nontrivial
exponentially localized solution.

The proof of Proposition 5.5.6 follows the argument as outlined above, and is
similar to the proof of [22, Proposition 6.20]. For completeness, we include this in
Appendix 5.B.

5.5.7 Proof of Theorem 5.4.3
Proof of Theorem 5.4.3. This is a direct consequence of the analysis in section 5.4.1,
section 5.5.2, section 5.5.3, in cobmination with Theorem 5.5.5 and Proposition 5.5.6.
The fact that the translational eigenvalue λ̃0(0) = 0 is simple follows from a similar
argument as in [22, Proposition 6.14].
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5.6 Defects and curved vegetation pattern solutions

5.6 Defects and curved vegetation pattern solutions

In this section we consider (5.1.2) with a small diffusion term added to the water
component. {

ut = D∆u+ 1
εux + a− u−G(u, v)v,

vt = ∆v −mv +R(v)G(u, v)v,
(5.6.1)

where D ≪ 1. The reason for this is mainly technical, in order to draw on results
concerning planar interface propagation in parabolic equations. However, to accurately
describe water movement on flat terrains a diffusion term is necessary [170] – see also
the upcoming discussion section, section 5.8.

The results of Theorems 5.2.8–5.2.11 and Theorems 5.4.2–5.4.4 concern the ex-
istence and stability of straight stripe, gap, and front solutions; that is, the travel-
ing patterns are constant in the direction transverse to the slope and are essentially
one-dimensional patterns. We reiterate that these patterns are, however, stable to
perturbations in two spatial dimensions.

We now consider the system (5.6.1) for which, by a perturbation argument, the
results of Theorems 5.2.8–5.2.11, and furthermore the results of Theorems 5.4.2–5.4.4,
are expected to hold for sufficiently small D > 0. Within this system, we are able
to call on general results on the existence and stability of corner defects in planar
wave propagation [76, 77]. In essence, considering a straight vegetation stripe, gap, or
front solution satisfying certain hypotheses (see below), for nearby wave speeds there
exist stripe solutions at slightly offset angles. Two oppositely angled such stripes can
meet at a corner defect, forming a “curved” stripe solution, which can be oriented
convex upslope (exterior corner) or downslope (interior corner). Further, some of
these solutions can be shown to be stable. In particular, we will argue using the
results of [76, 77] that nearby vegetation stripe, gap, or front solutions of (5.6.1),
there exist stable interior corner defects, and in the case of certain front solutions,
there exist stable exterior corner defects.

Consider a traveling wave solution (u, v)(x, y, t) = (us, vs)(ξ) of (5.6.1) with speed
c = cs, and ξ = x− ct. An almost planar interface σ-close to (us, vs)(ξ) with speed c
is a solution of the form

(u, v)(x, y, t) = (us, vs)(ξ + h(y)) + (ũ, ṽ)(ξ, y), (5.6.2)

where h ∈ C2(R) and

sup
y∈R

|h′(y)| < σ, sup
y∈R

∥(ũ, ṽ)(·, y)∥H1(R,R2) < σ, |c− cs| < σ (5.6.3)

This solution is a planar interface if h′′ = 0 and a corner defect if h′′ ̸≡ 0, and
h′(y) → η± as y → ∞. A corner defect can be classified depending on the asymptotic
orientations η± as an (i) interior corner (η+ < η−), (ii) exterior corner (η− < η+), (iii)
step (η+ = η− ̸= 0), or (iv) hole (η+ = η− = 0).

Depending on the original traveling wave solution (us, vs)(ξ), it may be possible
to determine which type(s) of defects can arise. As stated above, a corner defect is
essentially composed of slightly angled stripe solutions meeting along an interface. An
angled stripe solution can be written as a traveling wave

(u, v)(x, y, t) = (u, v)(ξ), ξ = x cosφ+ y sinφ− ct (5.6.4)
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where the case φ = 0 corresponds to a solution which is constant in the direction
transverse to the slope as before. Substituting this ansatz into (5.6.1) results in the
traveling wave ODE{

−cuξ = Duξξ +
cos φ
ε uξ + a− u−G(u, v)v,

−cvξ = vξξ −mv +R(v)G(u, v)v.
(5.6.5)

By setting ε̃ = ε/ cosφ, we see that (5.6.5) is the same traveling wave equation one
obtains in the case of φ = 0, except with ε replaced by ε̃. For small values of φ, we
have that

ε̃ = ε(1 +O(φ2)) (5.6.6)

and (5.6.5) can therefore be solved to find an angled traveling wave solution when

c = c(φ) = cs +O(εφ2). (5.6.7)

The quantity c(φ) is called the nonlinear dispersion relation and relates the speed of
propagation and angle of the traveling wave solution. A related quantity

d(φ) :=
c(φ)

cos(φ) (5.6.8)

called the directional dispersion, or flux, relates the angle to the speed of propagation
in the direction of the original traveling wave (us, vs), i.e. the x-direction. The flux
near φ = 0 is said to be convex if d′′ > 0, concave if d′′ < 0, and flat if d′′ ≡ 0 for small
|φ|. In [76], the authors related the convexity of the flux to the type of corner defect
which is selected: in particular when d is convex, there exist interior corner defects for
nearby speeds c > cs, while for d concave there exist exterior corner defects for speeds
c < cs.

In the case of (5.6.5), the directional dispersion is computed as

d(φ) := cs

(
1 +

φ2

2

)
+O

(
εφ2, φ4

)
, (5.6.9)

from which we find that

d′′(φ) := cs +O
(
ε, φ2

)
, (5.6.10)

that is, to leading order the convexity is determined by the speed of propagation of the
original traveling wave (us, vs). In particular, for sufficiently small ε, the directional
dispersion is convex for cs > 0 and concave for cs < 0. Hence in the setting of
Theorems 5.2.8, 5.2.9, or 5.2.10, one expects to see nearby interior corner solutions,
but not exterior corner solutions. That is, the resulting curved vegetation stripe, gap,
or front is oriented convex downslope. However, in the setting of Theorem 5.2.11, the
convexity depends on the value of a/m as the speed cs can be negative if a is large
enough. In particular, one expects interior corner solutions if a

m < 9b
2 + 2

b , but exterior
corners (oriented convex upslope) if a

m > 9b
2 + 2

b .

5.7 Numerics
In this section we present numerical results related to Theorems 5.2.8–5.2.11 and The-
orems 5.4.2–5.4.4 regarding the existence and stability of front, stripe, and gap pattern
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5.7 Numerics

solutions of (5.1.2) . In particular, we discuss the results of numerical continuation
of stripe and gap traveling wave solutions, and direct numerical simulation of planar
stripe, gap, and front solutions, as well as corner defect solutions as discussed in section
5.6.

5.7.1 Continuation of traveling stripes and gaps
Theorems 5.2.8–5.2.9 predict the existence of traveling stripe and gap solutions to (5.1.2)
which solve the traveling wave ODE (5.1.7). These solutions were constructed as per-
turbations of singular homoclinic orbits, organized by the singular bifurcations dia-
grams in Figures 5.8a and 5.8b, corresponding to the cases of b < 2/3 and b > 2/3,
respectively. Figure 5.16 depicts the results of numerical continuation of speed c ver-
sus a for traveling stripes and gaps, conducted in AUTO for the parameter values
ε = 3 · 10−4, m = 0.5, and values of b = 0.6, 0.7 on either side of the critical value
b = 2/3. The continuation curves corresponding to vegetation stripe solutions are
depicted in green, while those corresponding to gap solutions are in purple, with the
relevant singular bifurcation curves depicted as dashed lines.

We note that the upper branches of the bifurcation curves for both stripes and gaps
continue towards c = 0 and eventually turn back onto lower branches which persist
for a range of a values and small speeds c≪ 1. These waves arise as perturbations of
a family of fast planar homoclinic orbits, as discussed in Remark 5.2.4, and we expect
they are unstable (even to 1D perturbations) as traveling wave solutions of (5.1.2).
Interestingly, the lower branch of stripe solutions continues for increasing a, while the
lower branch of gap solutions eventually turns back near the canard value a

m = 4b+1/b
due to interaction of the equilibrium p+(u2) with the fold point F .

Remark 5.7.1. We also remark that in the case of b < 2/3, depicted in the left panel
of Figure 5.16, that the upper branch of gap solutions also approaches the canard point.
Here this branch transitions into a “double-gap” solution, resembling two copies of the
primary homoclinic orbit. This transition is similar to canard transitions observed in
systems such as the FitzHugh–Nagumo equation [26, 27, 73], albeit with a somewhat
different mechanism due to the presence of the additional equilibrium p0(a).

We also depict the results of continuation of both stripe and gap solutions for fixed
values of rainfall a = 1.2 (stripes) and a = 2 (gaps), with m = 0.45, b = 0.5, and
ε = 0.01. As discussed in section 5.2.4, it is expected that nearby the single traveling
stripe or gap solutions are periodic wave train solutions corresponding to repeating
vegetation patterns which exist for a range of wave speeds, and that these patterns can
similarly be constructed by perturbing from singular periodic orbits in the traveling
wave equation (5.1.7). We verify this prediction by numerically continuing the stripe
(and gap) solutions as periodic orbits for decreasing period, the results of which are
depicted in Figure 5.17. We observe that in general the wave speed c decreases as the
period T decreases, as do the total biomass B :=

∫ T

0
v dx and the maximum value

of v over one period, denoted by vmax. Lastly the results of continuation of periodic
orbits in (a, k)-space for fixed wave speeds c = {0.15, 0.2, 0.25, 0.3, 0.35} are depicted
in Figure 5.18; here k denotes the wavenumber of the corresponding pattern.

These numerical results align with previous work on (similar) ecosystem mod-
els; similar trends are found in, for instance, studies on the Klausmeier vegetation
model [152], on extended Klausmeier models [8, 9, 158], on the Klausmeier-Gray-Scott
model [148] and the Rietkerk model [36]. Moreover, measurements on the speed of mi-
grating vegetation patterns, indeed, show vegetation patterns with higher wavelength
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Figure 5.16 – Shown are numerically computed bifurcation diagrams of vegetation
stripes (green curves) and gaps (purple curves) for the parameter values m = 0.5, ε =
0.0003, and b = 0.6 (left panel), b = 0.74 (right panel). The solutions were obtained via
parameter continuation in AUTO for the traveling wave equation (5.1.7). Also plotted
in dashed black are the curves c = c∗(a) and c = ĉ(a). The vertical dashed curve denotes
the location of ā in each panel.

move faster [9, 41]. Finally, recent in-situ measurement on the above ground biomass
in the Horn of Africa corroborate displayed trends in biomass [9].

5.7.2 Direct simulations
In this section we present direct numerical simulations of the various traveling wave so-
lutions predicted by Theorems 5.2.8–5.2.11. To that end, we have spatially discretized
the PDE (5.1.2) with a uniformly spaced grid in both x and y directions, which was
integrated using a Runge–Kutta solver. In all simulations, the initial conditions were
constructed using the approximate expressions derived in the previous sections of this
article.

First, we have tested the existence and 2D stability of straight (i.e. non-curved)
patterns. The results for b = 0.5 < 2/3 are given in Figure 5.19 and for b = 0.75 > 2/3
in Figure 5.20. In both cases, all solutions from Theorems 5.2.8–5.2.11 could be
obtained easily and were (2D) stable in our simulations (and in fact all seem to have
a quite large domain of attraction).

Moreover, we numerically inspected corner solutions as described in section 5.6.
Again, numerical simulations corroborate theoretical predictions – see Figure 5.21.
In fact, we were able to find corner-type solutions for each front or pulse in Theo-
rems 5.2.8–5.2.11. When the speed of the straight pattern is positive, i.e. cs > 0, it is
possible to find curved patterns which are oriented convex downslope (interior defect)
and when cs < 0 the curved pattern is oriented convex upslope (exterior defect); recall
that upslope corresponds to the direction of increasing x. This matches the prediction
given by the directional dispersion, as outlined in section 5.6.

5.8 Discussion
In this paper we constructed planar traveling stripes, gaps and front-type solutions
to the modified Klausmeier model (5.1.2). We proved their existence rigorously using
geometric singular perturbation methods for a wide range of system parameters a, b,m
in the large advection limit ε→ 0. We showed that vegetation stripes exist for smaller
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Figure 5.17 – Results of numerical continuation of periodic stripe (a-c) and gap (d-
f) pattern solutions for decreasing wavelength for the parameter values m = 0.45, b =
0.5, ε = 0.01 and a = 1.2 (stripes), a = 2 (gaps). Shown are plots of speed c of the
pattern vs. period T (left panels), biomass B :=

∫ T

0
v dx vs period T (middle panels),

and vmax versus the period T , where vmax denotes the maximum of v over one period
(right panels).
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Figure 5.19 – Results of direct numerical simulation of the PDE (5.1.2) for b = 0.5,
m = 0.45, ε = 0.01 and a = 1.2 (a,f), a = 2.0 (b–d,g–i) or a = 3.0 (e,j). Figures a–e
show the evolution of a cross section of v, i.e. for constant y and figures f–j show the
v(x, y) pattern at a specific time. Simulations are run on a finite grid of size Lx = 200,
Ly = 100, accompanied with Neumann boundary conditions for the y-direction and
either periodic (a–b,f–g) or Neumann (c–e,h–j) boundary conditions in the x-direction.
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Figure 5.20 – Results of direct numerical simulation of the PDE (5.1.2) for b = 0.75,
m = 0.45, ε = 0.01 and a = 1.75 (a,f), a = 2.4 (b,g), a = 2.5 (c–d,h–i) or a = 3.0
(e,j). Figures a–e show the evolution of a cross section of v, i.e. for constant y and
figures f–j show the v(x, y) pattern at a specific time. Simulations are run on a finite
grid of size Lx = 200, Ly = 100, accompanied with Neumann boundary conditions for
the y-direction and either periodic (a–b,f–g) or Neumann (c–e,h–j) boundary conditions
in the x-direction.
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Figure 5.21 – v(x, y) configuration of corner solutions in direct numerical simulations
of the PDE (5.1.2) for m = 0.45, ε = 0.01, b = 0.5 (a–e) or b = 0.75 (f–j) and various
a-values. Simulations are done on a finite grid of various sizes, accompanied with either
periodic boundary conditions (a–b,f–g) or Neumann boundary conditions (c–e,h–j) in
the x-direction and the boundary conditions vy(x, Ly) − αvx(x, Ly) = 0 and vy(x, 0) +
αux(x, 0) = 0 in the y-direction to accommodate corner solutions, with α = −1 (a–d,f,h–
i), α = −0.5 (g) α = +1 (e,j)

a/m values, while vegetation gap patterns and front solutions can be found for larger
values of a/m. For the largest a/m values, stripes and gaps no longer persist, and
we find only front-type solutions that correspond to invading vegetation. Contrary to
the typical pulse patterns constructed in similar dryland models [8, 148], the stripes
and gaps found in (5.1.2) are not thin, but have sizable widths – aligning better with
observations of real dryland ecosystems [42, 64, 136, 176].

Furthermore, we showed that all such solutions are 2D spectrally stable, using
exponential dichotomies and Lin’s method, based on similar stability analysis of trav-
eling pulse solutions to the FitzHugh–Nagumo equations in [22]. We note that, to our
knowledge, there are currently no direct results which guarantee nonlinear stability
based on spectral stability of traveling wave solutions to (5.1.2). Multidimensional
nonlinear stability of traveling wave solutions in reaction-diffusion systems, however,
has been studied previously [90]. By adding a small diffusion term, as in (5.6.1), we
obtain a system which fits into the framework of planar interface propagation studied
in [76, 77]. We expect our results still hold for (5.6.1) using a perturbation argument,
provided D ≪ ε ≪ 1. Further, results relating spectral and nonlinear stability have
been found to hold in mixed parabolic-hyperbolic equations such as (5.1.2) for pertur-
bations in one spatial dimension [140], and we expect that similar results may hold in
higher dimensions.

As far as we are aware, ours is the first construction of 2D linearly stable trav-
eling stripes in a reaction-diffusion-advection model of vegetation pattern formation.
Typically in this class of models, one finds that stripe solutions are stable in 1D, but
destabilize for some range of (small) wavenumbers in 2D [54, 120, 148, 155]. We at-
tribute this phenomenon to the stabilizing effect of the large advection term, as well
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as the destabilizing effect of water diffusion. By ignoring the diffusion of water and
allowing the advection to dominate, the lateral competition for water resources is di-
minished, and 2D stability can essentially be reduced to 1D stability. This is reflected
in our stability analysis in which the critical part of the 2D spectrum is bounded to
the left of the 1D spectrum: In order to compute the 2D spectrum, a Fourier decom-
position in the transverse variable y results in a family of 1D eigenvalue problems
parameterized by the transverse wavenumber ℓ. These eigenvalue problems can then
be solved using the methods of [22], and we find that eigenvalues occurring for ℓ ̸= 0
can be bounded to the left of those occurring for ℓ = 0, corresponding to the 1D
spectrum. In fact we find that the correspondence is approximately λ→ λ− ℓ2.

An important question is how and why the addition of water diffusion and reduc-
tion in the magnitude of the advection term results in instabilities in the resulting
patterns. This matches intuition, as water diffusion allows for lateral competition
for water resources, which – if sufficiently large – could manifest in lateral instabil-
ities. From the mathematical point of view, the onset of these instabilities is not
well understood, though we note that one indeed finds lateral instabilities, both nu-
merically and analytically, in similar models where both advection and diffusion are
present [54, 120, 148, 155]. A natural direction for future research lies in understanding
this transition, and in particular the precise relation between the water diffusion and
advection which determines the boundary for stability. This is likely to be challenging,
given that the singular geometries in the advection-dominant case (as in this paper)
versus the diffusion-dominant case are wholly distinct. The traveling wave solutions
constructed in this work are all based off of singular fast front-type jumps between
one-dimensional slow manifolds, much like one finds in the classic FitzHugh–Nagumo
equation. However, typically in the diffusion-dominant regime traveling stripe so-
lutions are constructed as perturbations of fast homoclinic orbits which depart and
return to the same two-dimensional slow manifold in a four-dimensional singularly per-
turbed traveling wave equation [56, 148]. Hence, even the existence of stripe solutions
in an intermediate regime is far from clear, as one must understand how the transition
between these two geometries occurs.

Also novel to our results are the implications for the appearance of curved solutions,
even in the absence of terrain curvature. These arise as corner defect solutions [76, 77],
which resemble two angled planar traveling wave solutions which meet along an inter-
face. We find that the speed of the straight planar traveling wave predicts whether the
associated corner solutions are oriented convex upslope or downslope. In particular,
since all of the traveling stripe and gap solutions we constructed travel in the uphill
direction, the corresponding curved stripes and gaps are oriented convex downslope.
The planar front solutions, however, can be oriented either convex downslope or up-
slope depending on parameters. An interesting direction for future research lies in
determining the effect of alternative topographies, in particular topographies which
can be viewed as perturbations of constantly sloped terrain, which we expect can be
studied using similar methods. A natural question is whether such topographies can
destabilize stripe patterns or affect the curvature of these patterns. There are several
numerical and observational results in this direction [64], but little is known analyti-
cally. A first analytical step towards this can be found in [7], in which the impact of
non-trivial topographies on 1D stripe patterns is studied.

Finally, we remark on the implications of our results for Klausmeier’s original
equation [95], which corresponds to infinite carrying capacity, or setting b = 0 in (5.1.2).
As discussed in section 5.2.1 (see Remark 5.2.12), the limit b → 0 is highly singular,
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and our results no longer hold in this regime. Existence of traveling stripes in this case
has been obtained in [23] using geometric singular perturbation theory and blow-up
methods to account for passage near a nonhyperbolic slow manifold. Pulse solutions
in that setting consist of portions of two slow manifolds, along with a single fast
jump. Stability, however, is not known; this is due to the fact that several rescalings
and coordinate transformations are required to recover a slow-fast structure in the
corresponding traveling wave equation. The result is that the associated reduced
eigenvalue problem across the fast jump can no longer be interpreted in terms of the
simpler scalar problem for the corresponding front as in section 5.5.6, which precludes
the application of Sturm-Liouville theory. However, we expect stability to continue to
hold in this regime. In particular, the existence of a single fast jump should result in
one matching condition, and hence a single critical eigenvalue λ = 0 due to translation
invariance. This intuition supported by the fact that the second critical eigenvalue λ̃c
of Theorem 5.5.5 satisfies λ̃c → −∞, when naively taking the limit b → 0 for fixed ε.
Rigorous verification of the stability of traveling stripes in the Klausmeier equation is
the subject of ongoing work.
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Appendices

5.A Stability of steady states
To understand the stability of steady states, (5.1.4) and (5.1.5), against homogeneous
perturbations, we linearize (5.1.2) around the steady states by setting (U, V )(x, t) =
(U∗, V ∗)+ eλt(Ū , V̄ ), where (U∗, V ∗) is the steady state solution. For the desert-state
(U0, V0) = (a, 0) this gives the linearized system

λ

(
Ū
V̄

)
=

(
−1 0
0 −m

)(
Ū
V̄

)
.

Thus the corresponding eigenvalues are λ = −1 < 0 and λ = −m < 0. Both eigenval-
ues are negative and thus the desert-state (U0, V0) = (a, 0) is stable against homoge-
neous perturbations for all parameter values.

Linearization around the other steady states (U1,2, V1,2) yields the eigenvalue prob-
lem

λ

(
Ū
V̄

)
=M

(
Ū
V̄

)
; M :=

(
−1− V 2

1,2 −2U1,2V1,2
(1− bV1,2)V

2
1,2 −m+ (2− 3bV1,2)U1,2V1,2

)
.

(5.A.1)
The determinant of the matrix on the right-hand side can be computed as

detM =
−1 + 2bV1,2 + V 2

1,2

1− bV1,2
m.

From this, it can be found that the determinant is negative when V1,2 < −b+
√
1 + b2

and positive when V1,2 > −b +
√
1 + b2. Using (5.1.5), one can readily obtain that

V1 < −b +
√
1 + b2 and V2 > −b +

√
1 + b2. Hence the uniform steady state (U1, V1)

necessarily has a positive eigenvalue and therefore this steady state is unstable. To
determine the stability for (U2, V2) we need to determine the trace of the matrix M .
Straightforward computation using the expressions (5.1.5) yields:

Tr M = −1− V 2
2 +m

1− 2bV1,2
1− bV2

,

which we note is always negative if V2 > 1
2b , corresponding to the condition a

m > 4b+ 1
b ,

and hence the state (U2, V2) is stable to homogeneous perturbations in this regime.

5.B Absence of point spectrum in R2(δ,M)

In this section, we complete the proof of Proposition 5.5.6, and show that the region
R2(δ,M) contains no eigenvalues λ̃ of (5.5.9).

Proof of Proposition 5.5.6. Following the argument outlined in section 5.5.6, we note
that the translated derivative eηξϕ′j(ξ) is an exponentially localized solution to (5.5.56)
at λ̃ = 0, which admits no zeros. Therefore, by Sturm-Liouville theory [91, The-
orem 2.3.3], (5.5.56) admits no bounded solutions for λ̃ ∈ R2(δ,M). Thus, for λ̃ ∈
R2(δ,M) (5.5.56) admits an exponential dichotomy on R with constants C, µ > 0 inde-
pendent of λ̃ ∈ R2(δ,M). Exploiting the lower triangular structure of system (5.5.54)
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the exponential dichotomy of (5.5.56) can be extended to the system (5.5.54) using
variation of constants formulae. We denote the corresponding projections by Qu,s

j (ξ; λ̃)
for j = †, ⋄.

We now consider the eigenvalue problem (5.5.9) as a perturbation of (5.5.13). By
Theorem 5.5.1, we have that

|Aη(ξ; λ̃, ℓ, ε)−A†,η(ξ; λ̃)| = O(ε|log ε|), ξ ∈ [−Lε, Lε],

|Aη(Zε + ξ; λ̃, ℓ, ε)−A⋄,η(ξ, λ̃)| = O(ε|log ε|), ξ ∈ [−Lε,∞).
(5.B.1)

Denote by P u,s
j,±(λ̃) the spectral projection onto the (un)stable eigenspace of the asymp-

totic matrices A±∞j,η (λ̃) = limξ→±∞Aj,η(ξ; λ̃) of (5.5.13). We note that Aj,η(ξ; λ̃) con-
verges at an exponential rate to the asymptotic matrix A∞j,η(λ̃) as ξ → ∞. Hence, the
projections Qu,s

j (±ξ, λ̃) satisfy

∥Qu,s
j (±ξ, λ̃)− P u,s

j,±(λ̃)∥ ≤ Ce−µ̃ξ, j = †, ⋄, (5.B.2)

for ξ ≥ 0 for some µ̃ > 0 (see for instance [126, Lemma 3.4]). Using (5.B.1) and
roughness [32, Theorem 2], we obtain exponential dichotomies for (5.5.9) on I† and
I⋄ with constants C, µ2 > 0 independent of λ̃ ∈ R2(δ,M) and projections Qu,s

j (ξ; λ̃, ε),
which satisfy

∥Qu,s
j (ξ; λ̃, ε)−Qu,s

† (ξ, λ̃)∥ ≤ Cε|log ε|,
∥Qu,s

j (Zε + ξ; λ̃, ε)−Qu,s
⋄ (ξ, λ̃)∥ ≤ Cε|log ε|,

(5.B.3)

for |ξ| ≤ Lε.
By Proposition 5.5.2 system (5.5.9) admits exponential dichotomies on the intervals

Iℓ = (−∞, Lε] and Ir = [Lε, Za,ε − Lε] with projections Qu,s
r,ℓ (ξ; λ̃, ε), which satisfy∥∥∥[Qs

ℓ − P](−Lε; λ̃, ε)
∥∥∥ ≤ Cε|log ε|,∥∥∥[Qs

r − P](Lε; λ̃, ε)
∥∥∥ ≤ Cε|log ε|,∥∥∥[Qs

r − P](Za,ε − Lε; λ̃, ε)
∥∥∥ ≤ Cε|log ε|,

(5.B.4)

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of the matrix
Aη(ξ; λ̃, ℓ, ε).

We now compare the exponential dichotomies for (5.5.9) constructed on each of the
intervals Iℓ, I†, Ir, I⋄ at the endpoints of the intervals. Recall that Aj,η(ξ; λ̃) converges
at an exponential rate to the asymptotic matrix A±∞j,η (λ̃) as ξ → ±∞ for j = †, ⋄.
Recalling (5.B.1), we have that

|Aη(±Lε; λ̃, ℓ, ε)−A±∞†,η (λ̃)|, |Aη(Zε − Lε; λ̃, ℓ, ε)−A−∞⋄,η (λ̃)| ≤ Cε|log ε|.

By continuity the same bound holds for the spectral projections associated with these
matrices. Combining this with (5.B.2)–(5.B.4) we obtain∥∥∥[Qu,s

ℓ −Qu,s
† ](−Lε; λ̃, ε)

∥∥∥ ≤ Cε|log ε|,∥∥∥[Qu,s
r −Qu,s

† ](Lε; λ̃, ε)
∥∥∥ ≤ Cε|log ε|,∥∥∥[Qu,s

r −Qu,s
⋄ ](Zε − Lε; λ̃, ε)

∥∥∥ ≤ Cε|log ε|.

(5.B.5)
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Let ψ(ξ) be an exponentially localized solution to (5.5.9) at some λ̃ ∈ R2(δ,M).
This implies Qs

ℓ(−Lε; λ̃, ε)ψ(−Lε) = 0. By for instance [83, Lemma 6.10] or [22,
Lemma 6.19], we have that

|Qs
r(Lε; λ̃, ε)ψ(Lε)| ≤ Cε|log ε||Qu

r (Lε; λ̃, ε)ψ(Lε)|, (5.B.6)

using (5.B.5). Again using [22, Lemma 6.19] and (5.B.5) to obtain a similar inequality
at the endpoint Za,ε − Lε, we obtain

|Qs
⋄(Zε − Lε; λ̃, ε)ψ(Za,ε − Lε)||

≤Cε|log ε||Qu
⋄(Zε − Lε; λ̃, ε)ψ(Zε − Lε)|

=0,

since we assumed ψ(ξ) is exponentially localized. Hence, any exponentially localized
solution ψ(ξ) to (5.5.9) is the trivial solution.
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Samenvatting

Verspreid over de hele wereld zijn er vele, grote gebieden waar jaarlijks de hoeveel-
heid vegetatie afneemt. Omdat – ook binnen een gebied – de begroeiing op sommige
plekken eerder verdwijnt dan op andere, leidt dit tot patronen in de vegetatie. In eerste
instantie kunnen dit ‘gaten’ in de vegetatie zijn, maar ook bijvoorbeeld bandpatronen
en doolhofpatronen zijn waargenomen (zie figuur SV voor een aantal voorbeelden).
Uiteindelijk zorgt een aanhoudende afname dat vruchtbare grond verandert tot lege,
onbegroeide en onvruchtbare stukken land. Dit aftakelingsproces, het zogenoemde ver-
woestijningsproces, heeft vaak desastreuze gevolgen voor de lokale bevolking die voor
hun voedselvoorziening afhankelijk is van vee en gewassen, waar vruchtbare grond
noodzakelijk voor is. Het voorkomen van dergelijke, veelal onomkeerbare verwoestij-
ning is dus erg belangrijk. Een goed begrip van de mechanismen achter dit proces is
hiervoor essentieel.

Om deze mechanismen beter te begrijpen, zijn er in de loop van de tijd vele ver-
schillende wiskundige modellen opgesteld, variërend in de mate van realisme en com-
plexiteit. Het bestuderen van deze modellen geeft inzichten in het gedrag van de
werkelijke gebieden, wat dan weer bijdraagt aan het begrip van het verwoestijnings-
proces. In dit proefschrift is een aantal verschillende modellen bestudeerd met be-
hulp van geavanceerde wiskunde. Deze modellen zijn hierin telkens zo simpel mo-
gelijk gekozen, zodat er makkelijk mee gewerkt kan worden en nieuwe effecten beter
inzichtelijk zijn. Tegelijk geeft bestudering van simpele modellen vaak een goede in-
tuïtie voor het gedrag van geavanceerdere, meer realistische modellen en natuurlijk
voor het werkelijke gedrag.

Deze theoretisch verkregen intuïtie moet vervolgens wel weer getest en vergeleken
worden met de werkelijkheid. In hoofdstuk 2 speelt deze vergelijking de hoofdrol.
Hierin is gekeken naar het typische gedrag van de wiskundige modellen en is dat op
een gestructureerde manier vergeleken met satellietmetingen aan vegetatiepatronen in
Somalië. Deze vergelijking verifieert veel intuïtie uit eerdere theoretische studies. In
het bijzonder is er ‘multistabiliteit’ gevonden: in de bestudeerde gebieden is niet één
specifiek patroon overheersend, maar is er juist een scala aan patronen mogelijk. Hier-
door kunnen dergelijke ecosystemen bij veranderingen aan het klimaat vrij gemakkelijk
overgaan van het ene patroon in het andere – met relatief weinig consequenties voor
de hoeveelheid vegetatie in het ecosysteem. Dit bekent dat deze gebieden – door de
aanwezigheid van vegetatiepatronen – veel robuuster en veerkrachtiger zijn dan tot
dusver bekend was en dus ook dat ze minder snel dan gedacht ineen zullen storten tot
een kale, onvruchtbare woestijn.

Hoewel uit onderzoek dus bekend is dàt vegetatiepatronen zorgen voor een veer-
krachtiger ecosysteem, is niet precies bekend hoe. Hiervoor is meer kennis over de
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(a) Bandpatroon in Somalia (b) Gatenpatroon in Niger (c) Doolhofpatroon in Sudan

Figure SV – Google Earth satelietbeelden van verschillende soorten vegetatiepatro-
nen. (a) Bandpatroon in Somalië (8◦5′N; 47◦27′E); (b) Gatenpatroon in Niger (12◦22′N;
2◦24′E); (c) Doolhofpatroon in Sudan (11◦8′N; 27◦50′E).

precieze stappen van het verwoestijningsproces nodig. Daarom is in hoofdstuk 3 van
dit proefschrift gekeken naar het gedrag en de verdwijning van vegetatiepatronen. Deze
studie heeft laten zien dat vegetatie een sterke voorkeur heeft voor regelmatigheid;
over de tijd worden vegetatiepatronen steeds regelmatiger. Juist hierdoor kan de
vegetatie grotere veranderingen aan het klimaat opvangen voordat een deel van de
begroeiing verdwijnt. Er is ook gekeken naar welk deel dan verdwijnt en dit blijkt sterk
afhankelijk van de regelmatigheid van het vegetatiepatroon: onregelmatige patronen
verliezer vaker kleine stukken vegetatie, terwijl regelmatigere patronen af en toe in één
keer grote stukken verliezen.

Uit metingen aan vegetatiepatronen (waaronder die in hoofdstuk 2) zijn verder
enkele tekortkomingen ontdekt in de standaardmodellen. Zo voorspellen de modellen
dat vegetatie zich langzaam heuvelopwaarts verplaatst, terwijl dit in werkelijkheid
niet altijd gebeurt; er zijn observaties van omhooglopende vegetatiepatronen, maar
ook van naar beden lopende vegetatie en zelfs van stilstaande patronen. Om ook
dit te vatten in modellen is het nodig om de precieze topografie van een gebied te
modelleren. In hoofdstukken 3 en 4 wordt een simpel model op deze manier uit-
gebreid. Deze uitbreiding zorgt er onder andere voor dat zowel een heuvelopwaarste
als een heuvelafwaarste beweging van vegetatiepatronen waargenomen kan worden
(sterk afhankelijk van de precieze vorm van het terrein). Verder wordt in hoofdstuk 4
de basis gelegd voor een wiskundige bestudering van deze uitgebreide modellen – door
de aanwezigheid van een ingewikkelde topografie kan dit namelijk niet meer met de
gebruikelijke methoden.

Tot slot is ook bekend dat niet alle type patronen overal voorkomen. Zo vormt
vegetatie zich doorgaans alleen tot ‘banden’ op relatief steile1 hellingen. Uit model-
matig werk is al eerder een zelfde conclusie getrokken. De vraag is dan ook waarom
dit het geval is. In hoofdstuk 5 wordt deze vraag deels beantwoord. Hier wordt
wiskundig bewezen dat vegetatiebanden kunnen ontstaan als de heuvels in het model
steil genoeg zijn. In combinatie met eerder werk dat laat zien dat ze juist niet kunnen
ontstaan op te vlakke ondergronden, toont dit dat deze observaties overeenkomen met
het theoretisch begrip van deze modellen.

1De bestudeerde gebieden zijn doorgaans niet bepaald steil in absolute zin; hellingen zijn typisch
rond 0% tot 1%.
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