4 research outputs found

    Execution time supports for adaptive scientific algorithms on distributed memory machines

    Get PDF
    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated

    A manual for PARTI runtime primitives, revision 1

    Get PDF
    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated

    Compilation techniques for irregular problems on parallel machines

    Get PDF
    Massively parallel computers have ushered in the era of teraflop computing. Even though large and powerful machines are being built, they are used by only a fraction of the computing community. The fundamental reason for this situation is that parallel machines are difficult to program. Development of compilers that automatically parallelize programs will greatly increase the use of these machines.;A large class of scientific problems can be categorized as irregular computations. In this class of computation, the data access patterns are known only at runtime, creating significant difficulties for a parallelizing compiler to generate efficient parallel codes. Some compilers with very limited abilities to parallelize simple irregular computations exist, but the methods used by these compilers fail for any non-trivial applications code.;This research presents development of compiler transformation techniques that can be used to effectively parallelize an important class of irregular programs. A central aim of these transformation techniques is to generate codes that aggressively prefetch data. Program slicing methods are used as a part of the code generation process. In this approach, a program written in a data-parallel language, such as HPF, is transformed so that it can be executed on a distributed memory machine. An efficient compiler runtime support system has been developed that performs data movement and software caching
    corecore