20,385 research outputs found

    Simulation of the influence of hydrophones used for the characterization of pressure field distribution in low frequency, high power ultrasonic reactor vessels

    Get PDF
    This paper describes the use of a finite element (FE) modeling approach to investigate the influence of different hydrophone designs in laboratory scale reactor vessels. In addition to conventional PVDF membrane and piezoceramic hydrophone, the performance of a conceptual array hydrophone, comprising a 2D matrix of PVDF array elements, will be simulated. The FE modeling concentrates on two issues: the disturbance to the field through the introduction of each hydrophone configuration; and their suitability and response to measuring non-linear effects. To simplify the model the ultrasonic transducer is not directly represented. Here, a pressure loading function is used as the excitation technique, with a sawtooth waveform applied for the simulation of the non-linear detection capability of each hydrophone configuration. The results from the simulation programme demonstrate that the dynamics of the reactor vessel are critical to optimize the performance of the ultrasonic system. In addition, the introduction of a hydrophone alters the wave propagation, and hence the field distribution beyond a given probe location. Nevertheless, the spatial pressure distribution at the active area remains reasonably accurate if within the useable bandwidth of the device. Accordingly, the broadband nature of the membrane device is suited to operation in both the linear and non-linear regimes, with the PVDF array membrane device offering a fast, convenient measurement of the pressure field distribution for industrial applications

    Development of an ultrasonic resonator for ballast water disinfection

    Get PDF
    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonic is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able of distributing the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes

    Effects of ultrasound on polymeric foam porosity

    Get PDF
    A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements

    Simulation of ultrasonic lamb wave generation, propagation and detection for an air coupled robotic scanner

    Get PDF
    A computer simulator, to facilitate the design and assessment of a reconfigurable, air-coupled ultrasonic scanner is described and evaluated. The specific scanning system comprises a team of remote sensing agents, in the form of miniature robotic platforms that can reposition non-contact Lamb wave transducers over a plate type of structure, for the purpose of non-destructive evaluation (NDE). The overall objective is to implement reconfigurable array scanning, where transmission and reception are facilitated by different sensing agents which can be organised in a variety of pulse-echo and pitch-catch configurations, with guided waves used to generate data in the form of 2-D and 3-D images. The ability to reconfigure the scanner adaptively requires an understanding of the ultrasonic wave generation, its propagation and interaction with potential defects and boundaries. Transducer behaviour has been simulated using a linear systems approximation, with wave propagation in the structure modelled using the local interaction simulation approach (LISA). Integration of the linear systems and LISA approaches are validated for use in Lamb wave scanning by comparison with both analytic techniques and more computationally intensive commercial finite element/difference codes. Starting with fundamental dispersion data, the paper goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries, before presenting a theoretical image obtained from a team of sensing agents based on the current generation of sensors and instrumentation

    Nonlinear characterization of half and full wavelength power ultrasonic devices

    Get PDF
    It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device

    Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates

    Get PDF
    Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was give

    A wireless ultrasonic NDT sensor system

    Get PDF
    Ultrasonic condition monitoring technologies have been traditionally utilized in industrial and construction environments where structural integrity is of concern. Such techniques include active systems with either single or multiple transmit-receiver combinations used to obtain defect positioning and magnitude. Active sensors are implemented in two ways; in a thickness operation mode, or as an area-mapping tool operating over longer distances. In addition, passive ultrasonic receivers can be employed to detect and record acoustic emission activity. Existing equipment requires cabling for such systems leading to expensive, complicated installations. This work describes the development and operation of a system that combines these existing ultrasonic technologies with modern wireless techniques within a miniaturized, battery-operated design. A completely wireless sensor has been designed that can independently record and analyze ultrasonic signals. Integrated into the sensor are custom ultrasonic transducers, associated analogue drive and receive electronics, and a Texas Instruments Digital Signal Processor (DSP) used to both control the system and implement the signal processing routines. BlueTooth wireless communication is used for connection to a central observation station, from where network operation can be controlled. Extending battery life is of prime importance and the device employs several strategies to do this. Low voltage transducer excitation suffers from poor signal-to-noise ratios, which can be enhanced by signal processing routines implemented on the DSP. Routines investigated include averaging, digital filtering and pulse compression

    Numerical Investigation of Second Mode Attenuation over Carbon/Carbon Surfaces on a Sharp Slender Cone

    Full text link
    We have carried out axisymmetric numerical simulations of a spatially developing hypersonic boundary layer over a sharp 7^{\circ{}}-half-angle cone at M=7.5M_\infty=7.5 inspired by the experimental investigations by Wagner (2015). Simulations are first performed with impermeable (or solid) walls with a one-time broadband pulse excitation applied upstream to determine the most convectively-amplified frequencies resulting in the range 260kHz -- 400kHz, consistent with experimental observations of second-mode instability waves. Subsequently, we introduce harmonic disturbances via continuous periodic suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies complex impedance boundary conditions (IBC), modeling the acoustic response of two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces, are applied at the wall. The IBCs are derived as an output of a pore-scale aeroacoustic analysis -- the inverse Helmholtz Solver (iHS) -- which is able to return the broadband real and imaginary components of the surface-averaged impedance. The introduction of the IBCs in all cases leads to a significant attenuation of the harmonically-forced second-mode wave. In particular, we observe a higher attenuation rate of the introduced waves with frequency of 350kHz in comparison with 270kHz, and, along with the iHS impedance results, we establish that the C/C surfaces absorb acoustic energy more effectively at higher frequencies.Comment: AIAA-SciTech 201
    corecore