938 research outputs found

    Reusable aspect-oriented implementations of concurrency patterns and mechanisms

    Get PDF
    In this paper, we present a collection of well-known high-level concurrency patterns and mechanisms, coded in AspectJ. We discuss benefits of these implementations relative to plain Java implementations of the same concerns. We detect benefits from using AspectJ in all the cases presented, in the form of higher modularity, reuse, understandability and unpluggability. For most of the implementations, two alternatives can be used: one based on traditional pointcut interfaces and one based on annotations.Fundo Europeu de Desenvolvimento Regional (FEDER).Fundação para a Ciência e a Tecnologia (FCT) - PPC-VM Project POSI/CHS/47158/2002; Project SOFTAS (POSI/EIA/60189/2004)

    A Functional Safety OpenMP∗ for Critical Real-Time Embedded Systems

    Get PDF
    OpenMP* has recently gained attention in the embedded domain by virtue of the augmentations implemented in the last specification. Yet, the language has a minimal impact in the embedded real-time domain mostly due to the lack of reliability and resiliency mechanisms. As a result, functional safety properties cannot be guaranteed. This paper analyses in detail the latest specification to determine whether and how the compliant OpenMP implementations can guarantee functional safety. Given the conclusions drawn from the analysis, the paper describes a set of modifications to the specification, and a set of requirements for compiler and runtime systems to qualify for safety critical environments. Through the proposed solution, OpenMP can be used in critical real-time embedded systems without compromising functional safety.This work was funded by the EU project P-SOCRATES (FP7-ICT-2013- 10) and the Spanish Ministry of Science and Innovation under contract TIN2015- 65316-P.Peer ReviewedPostprint (author's final draft

    Achieving High Performance and High Productivity in Next Generational Parallel Programming Languages

    Get PDF
    Processor design has turned toward parallelism and heterogeneity cores to achieve performance and energy efficiency. Developers find high-level languages attractive because they use abstraction to offer productivity and portability over hardware complexities. To achieve performance, some modern implementations of high-level languages use work-stealing scheduling for load balancing of dynamically created tasks. Work-stealing is a promising approach for effectively exploiting software parallelism on parallel hardware. A programmer who uses work-stealing explicitly identifies potential parallelism and the runtime then schedules work, keeping otherwise idle hardware busy while relieving overloaded hardware of its burden. However, work-stealing comes with substantial overheads. These overheads arise as a necessary side effect of the implementation and hamper parallel performance. In addition to runtime-imposed overheads, there is a substantial cognitive load associated with ensuring that parallel code is data-race free. This dissertation explores the overheads associated with achieving high performance parallelism in modern high-level languages. My thesis is that, by exploiting existing underlying mechanisms of managed runtimes; and by extending existing language design, high-level languages will be able to deliver productivity and parallel performance at the levels necessary for widespread uptake. The key contributions of my thesis are: 1) a detailed analysis of the key sources of overhead associated with a work-stealing runtime, namely sequential and dynamic overheads; 2) novel techniques to reduce these overheads that use rich features of managed runtimes such as the yieldpoint mechanism, on-stack replacement, dynamic code-patching, exception handling support, and return barriers; 3) comprehensive analysis of the resulting benefits, which demonstrate that work-stealing overheads can be significantly reduced, leading to substantial performance improvements; and 4) a small set of language extensions that achieve both high performance and high productivity with minimal programmer effort. A managed runtime forms the backbone of any modern implementation of a high-level language. Managed runtimes enjoy the benefits of a long history of research and their implementations are highly optimized. My thesis demonstrates that converging these highly optimized features together with the expressiveness of high-level languages, gives further hope for achieving high performance and high productivity on modern parallel hardwar

    Programming with Exceptions in JCilk

    Get PDF
    JCilk extends the Java language to provide call-return semantics for multithreading, much as Cilk does for C. Java's built-in thread model does not support the passing of exceptions or return values from one thread back to the "parent" thread that created it. JCilk imports Cilk's fork-join primitives spawn and sync into Java to provide procedure-call semantics for concurrent subcomputations. This paper shows how JCilk integrates exception handling with multithreading by defining semantics consistent with the existing semantics of Java's try and catch constructs, but which handle concurrency in spawned methods. JCilk's strategy of integrating multithreading with Java's exception semantics yields some surprising semantic synergies. In particular, JCilk extends Java's exception semantics to allow exceptions to be passed from a spawned method to its parent in a natural way that obviates the need for Cilk's inlet and abort constructs. This extension is "faithful" in that it obeys Java's ordinary serial semantics when executed on a single processor. When executed in parallel, however, an exception thrown by a JCilk computation signals its sibling computations to abort, which yields a clean semantics in which only a single exception from the enclosing try block is handled. The decision to implicitly abort side computations opens a Pandora's box of subsidiary linguistic problems to be resolved, however. For instance, aborting might cause a computation to be interrupted asynchronously, causing havoc in programmer understanding of code behavior. To minimize the complexity of reasoning about aborts, JCilk signals them "semisynchronously" so that abort signals do not interrupt ordinary serial code. In addition, JCilk propagates an abort signal throughout a subcomputation naturally with a built-in CilkAbort exception, thereby allowing programmers to handle clean-up by simply catching the CilkAbort exception. The semantics of JCilk allow programs with speculative computations to be programmed easily. Speculation is essential for parallelizing programs such as branch-and-bound or heuristic search. We show how JCilk's linguistic mechanisms can be used to program a solution to the "queens" problem and an implemention of a parallel alpha-beta search.Singapore-MIT Alliance (SMA
    corecore