
The University of Manchester Research

Boosting Java Performance Using GPGPUs

DOI:
10.1007/978-3-319-54999-6_5

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Clarkson, J., Kotselidis, C., Brown, G., & Luján, M. (2017). Boosting Java Performance Using GPGPUs. In J.
Knoop, W. Karl, M. Schulz, K. Inoue, & T. Pionteck (Eds.), Architecture of Computing Systems - ARCS 2017: 30th
International Conference, Vienna, Austria, April 3--6, 2017, Proceedings (pp. 59-70). (Lecture Notes in Computer
Science; Vol. 10172). Springer Nature. https://doi.org/10.1007/978-3-319-54999-6_5
Published in:
Architecture of Computing Systems - ARCS 2017: 30th International Conference, Vienna, Austria, April 3--6, 2017,
Proceedings

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1007/978-3-319-54999-6_5
https://www.research.manchester.ac.uk/portal/en/publications/boosting-java-performance-using-gpgpus(d1d2f71c-51e5-4277-8dbd-740cbd48d8bc).html
https://doi.org/10.1007/978-3-319-54999-6_5

Boosting Java Performance using GPGPUs

James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján

School of Computer Science
The University of Manchester
first.last@manchester.ac.uk

Abstract. In this paper we describe Jacc, an experimental framework
which allows developers to program GPGPUs directly from Java. The
goal of Jacc, is to allow developers to benefit from using heterogeneous
hardware whilst minimizing the amount of code refactoring required.

Jacc utilizes two key abstractions: tasks which encapsulate all the in-
formation needed to execute code on a GPGPU; and task graphs which
capture both inter-task control-flow and data dependencies. These ab-
stractions enable the Jacc runtime system to automatically choreograph
data movement and synchronization between the host and the GPGPU;
eliminating the need to explicitly manage disparate memory spaces.

We demonstrate the advantages of Jacc, both in terms of programmabil-
ity and performance, by evaluating it against existing Java frameworks.
Experimental results show an average performance speedup of 19x, using
NVIDIA Tesla K20m GPU, and a 4x decrease in code complexity when
compared with writing multi-threaded Java code across eight evaluated
benchmarks.

1 Introduction

Heterogeneous programming languages, such as CUDA [2] and OpenCL [3], en-
able developers to execute portions of their code on specialized hardware. Typi-
cally, this involves offloading work from a host onto a device such as a GPGPU,
and doing this requires developers to be mindful of the different contexts their
code may execute on. Hence, the developer is burdened with writing the ap-
plication and the extra code to manage its execution over disparate devices.
This paper describes a programming framework (JIT compiler and runtime sys-
tem), which has been designed to eliminate, or automate, a large amount of this
responsibility to help reduce the burden placed on developers.

Current established heterogeneous programming languages, such as CUDA
and OpenCL, require developers to logically separate their applications into
code that runs either on the host or on the device (known as a kernel). As a
consequence, these approaches require additional code to co-ordinate execution
between the host and kernels.

This paper describes a simplified heterogeneous programming model in the
context of the Java language. We make use of implicit parallelism and task-based
parallel execution. The Java Acceleration system, hereafter Jacc, is inspired by

2

and shares many similarities with directive-based approaches such as OpenMP
4.0 [15]. However, the true benefits of Jacc are derived from the Java program-
ming language: modular, statically typed code and dynamic compilation. Thus,
a Jacc application does not need to be ported across different operating systems
or hardware devices and it is possible to compose complex processing pipelines
from existing code. Overall the paper makes the following contributions:
(1) Provides an overview of Jacc, its components, and design rationale.
(2) Discusses how Jacc can be used to write concise data-parallel code in Java
and the sub-set of the Java language supported.
(3) Analyzes the implementation of the internal components of Jacc. The Jacc
JIT compiler, unlike most prior work, compiles Java bytecode directly to PTX
code which can be executed directly by NVidia drivers.
(4) Provides an in-depth comparative performance analysis of Jacc and standard
Java multi-threaded benchmarks.

2 The Jacc Framework

Heterogeneous
Architectures

CPUs GPUs
…

Compiled
Task Graphs

CPU Code
Compiled
Methods

Methods

Standard JDKs
Java Compiler

Java Runtime

Jacc

Jacc Runtime

Jacc Memory Manager

PTX Compiler

CUDA Driver (JNI)

GPU Code

@Jacc enabled
Java Applications

Jacc Compiler

Jacc Compiler
Front End
Soot
Kernel Prep

ISA Bridge
PTX Conversion
Back End
PTX Emitter

Mid End
Optimizations

iaload
iadd
store

Bytecode
ld.param.u64 %r8, [r8];
add.u64 %r9, %r8, %r3;
st.global.s32 [%r9+0], %r6;

PTX Assembly

Fig. 1: Jacc system overview.

Jacc is a Java based framework which simplifies the programming of hetero-
geneous hardware. At present, we have been able to use Jacc to program a wide
range of devices such as multi-core processors, Xeon Phi, and both embedded
and discrete GPGPUs. In this paper we describe our initial prototype that has
been developed to program CUDA enabled GPGPUs. As depicted in Figure 1,
the two major components of Jacc are: its API and the runtime system.

The Jacc API has been designed to make possible the creation of high per-
formance data-parallel code without forcing developers to, unnecessarily, change
their software engineering practices. In order to support the API, Jacc has a
runtime system that is able to manage the execution of application code on dis-
parate hardware. This typically requires support for generating and executing

3

code, moving data between devices, and synchronization. Using both compo-
nents together, Jacc is able to automate and optimize many common house-
keeping tasks involved in writing heterogeneous code; relieving the developer
from a number of burdens that exist in languages such as CUDA and OpenCL.

The API is built on top of two basic abstractions: the task and the task
graph. A task encapsulates all the information needed to perform some action
on a disparate hardware device such as code execution, data transfers or synchro-
nization. Hence, a task which executes some code will encapsulate: a reference
to the code, references to all the data accessed by the code and some meta-data.
The meta-data is used to pass task specific parameters to the runtime system -
such as the device it should execute on, the number of threads, or the size of each
thread group, allowing dynamic adaption of those parameters during runtime.

Tasks which perform data transfers and synchronization are implicitly han-
dled by the runtime system - leaving the developer responsible for defining only
those which execute code. These tasks can be created from any method in the
application. Furthermore, their meta-data contain a mapping which associates
each one of them with the device it should execute on. Typically, this mapping
is defined when a task is inserted into a task graph, but as it is just an entry in
their meta-data it can also be updated dynamically.

Executing tasks on a GPGPU requires a number of actions to be performed:
compilation, data movement to the GPGPU, execution on the GPGPU, and
data movement back to the host. Although this can be done synchronously, it
is inefficient to execute tasks in this manner - especially when multiple tasks
operate on shared data. To make task execution more efficient, Jacc provides
the task graph abstraction - a mechanism which allows the runtime system to
optimize task execution through lazy evaluation. After a task graph is created,
the runtime system uses its meta-data to build an executable directed acyclic
graph (DAG). Once built, the runtime system is able to optimize the DAG by
inspecting task meta-data to remove redundant data transfers and re-organize
the order in which tasks are executed.

Jacc exploits many features of the Java platform in order to simplify the de-
velopment workflow. The GPGPU code is directly generated from Java bytecode
which avoids the need to either: embed source code inside the application, like
OpenCL, or re-parse the source code. This means that the code running on the
GPGPU is created using a single type system, unlike OpenCL which introduces
a second type system to the developer.

2.1 Writing Data Parallel Code

There are two ways in which developers can write parallel code: explicitly or
implicitly. Although the Jacc framework supports both, implicit parallelism is
strongly encouraged since the code will produce the same result whether exe-
cuted serially or in parallel. This provides Jacc with the option to revert back
to serial execution if an error is encountered whilst offloading onto the GPGPU.

Jacc provides an annotation based API, similar to OpenMP, which allows
developers to statically define task meta-data. However, unlike OpenMP this

4

meta-data can also be provided or adapted dynamically at runtime. For instance,
information such as the parallelization strategy and type of variable access, spec-
ified by the @Jacc, @Read, @Write and @ReadWrite annotations, is better defined
statically. In certain circumstances it may be beneficial to override these settings
- for example to ensure data is always fetched from the host and not cached on
the GPGPU or if a specific device responds better to a different parallelization
scheme. The only aspects of the API which cannot be overridden are the ones
which directly influence code generation, such as @Atomic or @Shared, as they
are embedded directly into Java bytecode.

To produce data-parallel code, the Jacc compiler has the ability to re-write
certain classes of loop-nests so that each iteration of a loop is executed by a
different thread. This can be done by adding to a method the @Jacc annotation
and setting the iterationSpace parameter. The iteration space parameter de-
fines how many levels of the loop-nest should be re-written. (e.g. A value of 2
will re-write the two outermost loops.) Since it is not possible to use annotations
at a sub-method granularity in Java 7, the Jacc compiler will only parallelize
the first loop-nest encountered in a method1.

As some loop-nests communicate data between iterations, Jacc provides the
ability to perform inter-thread communications via shared memory atomics. A
field can be declared as @Atomic which forces the compiler to use atomic oper-
ations when reading from and writing to this field. To support reduction opera-
tions, it is possible to specify an operation that can be applied in each update
of the field. In this case, the field is initialized with a default value at the start
of execution and then updated with the result of applying the operation to the
existing and incoming values.

In cases where it is impossible to express a kernel using a single loop-nest,
the developer has two choices: to split functionality across multiple kernels or to
manually parallelize the code similarly to CUDA and OpenCL. The advantage
of the latter approach is that developers can create highly optimized parallel
code for a specific device. Unfortunately, this comes at the expense of reduced
code re-use as Java applications cannot readily use this code.

Figure 2 (right) provides an example of how the data-parallel code is written
while Figure 2 (left) demonstrates how a task is created and scheduled using a
task-graph. Initially, we want each iteration of the outermost loop to be executed
by independent threads — each thread will read a single element of the array
and accumulate the value in result. To achieve this, a parallelization strategy
is selected in line four, using the @Jacc annotation, to specify that only the
outer-most loop should be parallelized. Finally, to handle the accumulation of
partial results in the result variable, line 11, we use the @Atomic annotation
which instructs the compiler to update this variable atomically.

In order to execute this code on a GPGPU, we need to define a task, add it
to a task-graph, and schedule it. This is shown in Figure 2 (left) where the task
is defined in lines 1-11. In this case, the task-graph consists of a single task which
has been mapped onto the GPGPU. The number of threads used and the dimen-

1 This problem is resolved in Java 8.

5

sions of each thread group are defined in lines 7-8, where array.length threads
are specified - one for each iteration of the loop. On invoking the execute method
of the task-graph, the runtime system will: compile the code for the GPGPU,
move data to the GPGPU, execute the code, and synchronize the data between
the host and the GPGPU.

1 DeviceContext gpgpu =
2 Cuda.getDevice (0). createContext ();
3
4 Reduction r = new Reduction (...);
5 Task task = Task.create(
6 Reduction.class ,methodName ,
7 new Dims(array.length),
8 new Dims(BLOCK_SIZE));
9

10 task.setParameters(r, data);
11 tasks = new TaskGraph () {
12 @Override
13 public void create () {
14 executeTaskOn(task , gpgpu);
15 }
16 }
17 tasks.execute ();

public class Reduction {
@Atomic(op=ADD) float result;

@Jacc(iterationSpace=ONE_DIMENSION)
public void reduction(

@Read float[] array) {
float sum=0;
for(int i=0;i<array.length;i++) {

sum+=array[i];
}
result=sum;

}
}

Fig. 2: Left: Reduction by generating a TaskGraph, Right: Reduction operation
using implicit parallelism.

2.2 Current Subset of Java Supported for Execution on GPGPUs

Objects: Jacc provides object support and is able to freely access fields and
invoke methods on objects or classes2. Jacc is not integrated directly with the
garbage collector and, thus, it only supports the manipulation of existing objects
on the GPGPU. However, due to escape analysis, stack allocated objects can be
freely accessed. In practise, we have found that most tasks amenable for GPGPU
offloading perform some form of volume reduction and object creation is often
not needed. At present we do not maintain object headers in order to reduce
storage requirements and improve serialization times. Consequently, we do not
yet support reflection or the instanceof keyword3.

Arrays: Use of arrays of primitives, objects and multi-dimensional arrays is
supported as long as the element type is not an interface.

Virtual and Static Method Calls: Practically, the aggressive use of in-
lining removes all method calls except polymorphic calls which introduce in-
direction into the generated code. Tasks can be created from either static or
virtual methods. The only difference between these two, is that the developer
must remember to insert the this object reference as the first task parame-
ter. The advantage of virtual methods is that the this object reference neatly
encapsulates state that needs to be shared among multiple kernels.

2 However, this can easily lead to a large number of indirect-memory accesses in the
generated code - which will degrade performance on a GPGPU.

3 There is no technical reason why support can not be added at a later date.

6

Memory Allocations: Jacc is able to support the new keyword under cer-
tain circumstances. The compiler will try to inline the constructor and any mem-
ory is allocated on the stack. Additionally, the use of inlining enables the elim-
ination of a number of field accesses using scalar replacement. If the developer
wishes to allocate memory in a certain memory space, the variable must be de-
clared as a field with the declaration using the annotation specifying the memory
space.

Assertions and Exceptions: Jacc has the ability to handle assertions and
some limited exception checking on the GPGPU. Exception checks such as null
pointer and array index out of bounds can be inserted by the compiler. If the
runtime system detects that an exception has been thrown, it will attempt to
run the same code within the JVM to produce a valid stack trace.

3 Runtime System

3.1 JIT Compiler

The Jacc JIT compiler, shown in Figure 1, unlike most prior work compiles
Java bytecode directly to PTX code which can be executed directly by NVidia
drivers. The compiler is organized in three layers: the front-end - responsible
for parsing bytecode; the mid-end - responsible for transforming and optimizing
the code for data-parallel execution; and the back-end - responsible for emit-
ting the GPGPU specific machine-code. The front-end of the compiler has been
implemented using the SOOT framework [17]. It generates various levels of IR
from Java bytecode and leverages a number of advanced optimizations (e.g. com-
mon sub-expression elimination, loop invariant code motion, copy propagation,
constant folding, straightening, and dead code elimination).

Initially, the IR is augmented with information about kernel entry points,
exception handlers, and sets up accesses to the different memory spaces. Next,
an optional transformation performs parallelization - this involves searching for
loop-nests and updating the schedule of their induction variables so that itera-
tions are assigned to different threads. This update is dependent on the value
of the iterationSpace parameter specified in the meta-data of each task4. Af-
ter parallelization, the remainder of the mid-end aims to generate high quality
data-parallel code through a set of optimizations.

To optimize away costly functions calls, we search the IR for call-sites which
map directly onto hardware instructions and replace them with appropriate in-
trinsics. If it is not possible to substitute a specific call-site, the compiler then
tries to inline the code. If inlining is deemed infeasible the compiler will generate
the code to support the call. If the compiler is unable to determine the ac-
tual method invoked at a particular call-site, the compilation will be terminated
with an exception. Additionally, the compiler tries to minimize the number of
branches in the IR. For example, it attempts to fully exploit the fact that PTX

4 In our experience, the majority of kernels that we could not auto-parallelize using
this scheme was due containing multiple loop-nests.

7

supports predicated execution by replacing simple branch statements with pred-
icated instructions.

The mid-end is also responsible for handling code which access variables that
are stored in different memory spaces or use shared memory atomics. Data-flow
analyses are used to discover which loads/stores access a particular memory
space and templated code is used to handle the initialization and update of
variables accessed using atomics.

After passing through the mid-end, the IR goes through a lowering process
which converts each statement of the IR into lower-level IR statements which
generate one or more PTX instructions — this is marked as the ISA bridge.
Finally, the PTX emitter converts each statement into valid PTX instructions.

3.2 Memory Management

As a prerequisite to execution, data must be pre-loaded into the GPGPU memory
by a memory manager (an instance is assigned to each device). To enable Jacc
to target as many devices as possible, we have taken the decision that the Jacc
runtime should be responsible for explicitly managing GPGPU memory; opposed
to using CUDA’s unified memory — as it is not yet available on all devices.
This also has the secondary advantage of allowing Jacc to optimize data layout
on a per-device basis. Typically, Jacc is able to avoid copying un-used data
and minimizes the number of indirect memory accesses in the code. Hence, the
memory manager is responsible for maintaining a custom data layout scheme.
The format used is built dynamically, in concert between the memory manager
and the compiler, and is communicated to the compiler and data serializer via a
data schema. The generated schema maps each element of a composite type onto
a specific memory location (relative to a given address). If the runtime system
wishes to transfer data to the GPGPU it must serialize each object according to
the schema provided by the memory manager.

A key design goal of Jacc is the ability to allow data to persist on the GPGPU.
This feature makes possible to have multiple tasks or even task-graphs operate
on the same data - avoiding the continual need to transfer data between host
and device. However, as Jacc is unable to determine whether an object has been
modified on the JVM, the developer is responsible for maintaining the state
of persistent data. Typically, Jacc ensures shared state remains consistent by
blocking until the task-graph has finished executing, at which point the memory
managers will have synchronized any modified data with the host.

Generally, variables or arrays of primitive types can be copied “as-is” and
composite types are laid out according to the data schema provided by each de-
vice manager. In order to tackle the data serialization process of objects, we de-
veloped a novel compiler driven approach that dynamically builds data schemas
during compilation. A schema starts empty, and as compilation progresses and
new composite-types are discovered, dynamic new data schemas are built with

8

on-demand object references. This minimizes the number of objects transferred
to the device during data serialization5.

4 Evaluation

1

10

100

Sparse Mat. Mult. Histogram VectorAdd Reduction Conv. 2D Mat. Mult

S
pe

ed
up

 O
ve

r
S

er
ia

l J
av

a
(lo

g1
0)

Threads 1 2 4 8 12 16 20 24

(a)

1

10

100

Sparse Mat. Mult. Histogram VectorAdd Reduction Conv. 2D Mat. Mult

Sp
ee

du
p

O
ve

r S
er

ia
l J

av
a

(lo
g1

0)

Java MT (Peak) OpenMP (Peak) Jacc CUDA

(b)

Fig. 3: Left: The speedups obtained using multi-threaded Java code only, Right:
The performance of GPGPU accelerated implementations normalized to the per-
formance of the serial Java implementation.

The experimental hardware platform used has two Intel Xeon E5-2620 pro-
cessors (12 cores / 24 threads total @2.0 GHz), 32GB of RAM and a NVIDIA
Tesla K20m GPGPU with 5 GB of memory. Regarding the experimental soft-
ware stack, CentOS 6.5, CUDA 6.5 and Java SDK 1.7.0 25 were used. All CUDA
implementations are taken from the CUDA SDK except the matrix multiplica-
tions: SGEMM is taken from the cuBLAS library and SPMV from cuSPARSE. The
benchmarks used for the performance evaluation are:
Vector Addition adds two 16,777,216 element vectors (300 iterations).
Reduction performs a summation over an array of 33,554,432 elements (500
iterations).
Histogram produces frequency counts for 16,777,216 values placing the results
into 256 distinct bins (400 iterations).
Dense Matrix Multiplication of two 1024 × 1024 matrices (400 iterations)6.
Sparse Matrix Vector Multiplication performs a sparse matrix-vector mul-
tiplication using a 44609 × 44609 matrix with 1029655 non-zeros (The bcsstk32
matrix from Matrix Market) (400 iterations).
2D Convolution of a 2048 × 2048 image with a 5 × 5 filter (300 iterations).
Black Scholes is an implementation of the Black Scholes option pricing model.
The benchmark is executed to calculate 16,777,216 options over 300 iterations
and is supplied as an example in the APARAPI source code.
Correlation Matrix is an implementation of the Lucene OpenBitSet “intersec-
tion count”. The benchmark is executed using 1024 Terms and 16384 Documents

5 The schema also tracks which fields are accessed and modified by the code, to min-
imize the cost of synchronizing data with the host after a task has been executed.

6 The OpenMP implementation uses the OS supplied libatlas library.

9

and is supplied as an example in the APARAPI source code. Only a single iter-
ation is performed.

Jacc is compared against: serial Java, multi-threaded Java, OpenMP, CUDA
and the more mature APARAPI [1] framework that uses OpenCL [3]. The per-
formance of each benchmark is calculated by measuring the time to perform the
specified number of iterations of the performance critical section of the bench-
mark. Each quoted performance number is an average across a minimum of ten
different experiments. The reported Jacc execution times are inclusive of a sin-
gle data transfer to the device and a single transfer to the host but exclusive
of JIT compilation times. This is done in order to demonstrate both the peak-
performance of Jacc generated code and the low-overheads of the runtime system.
In terms of programmability, we take the stance that code complexity is propor-
tional to code size and that code can be accelerated, using a GPGPU, without
requiring any significant increase in code complexity over a multi-threaded imple-
mentation. We assess this by measuring the number of source code lines required
to express the data-parallel kernel(s).

4.1 Java Multi-Threaded Performance

Figure 3a shows the speedups achieved by converting from serial to multi-
threaded Java implementations. The results show that these benchmarks scale
with increased thread counts. In this scenario, the largest performance increases
are observed when the number of threads used is equal to or less than the number
of physical cores in the system (up to 12 threads). Table 4b provides a summary
of the peak performances of each benchmark and the number of threads used.

Figure 3b compares the same benchmarks against the Jacc implementations
running on the GPGPU. As a sanity check, we have also implemented all bench-
marks in OpenMP 3.2 and CUDA. By comparing the multi-threaded Java and
OpenMP implementations, we see that our Java implementations have a number
of inefficiencies. However, with the exception of the sparse matrix vector multi-
plication benchmark, Jacc still outperforms the OpenMP implementations. Fur-
thermore, in order to provide a strong comparison point, the OpenMP version of
SGEMM is provided by libatlas. Results indicate that even in this case Jacc
is still able to outperform OpenMP, albeit by a reduced margin in comparison
to Java multi-threaded implementations.

4.2 Performance and code size in heterogeneous environment

In terms of performance, Jacc is evaluated against: serial Java, multi-threaded
Java, multi-threaded OpenMP and CUDA. The effect on programmability is
studied by comparing the lines of code required to implement data-parallel code
on the GPGPU against that required to write multi-threaded Java code.

Figure 4b summarizes the speedups obtained by Jacc against our Java im-
plementations. We have normalized the speedups with the performance of two

10

0

10

20

Black Scholes Vector Add Correlation Matrix

Sp
ee

du
p

O
ve

r S
er

ia
l J

av
a

APARAPI Jacc

(a)

Speedup Lines of Code

Benchmark Serial Java MT Peak Java MT Jacc Reduction

Vector Add 21.52 6.00 (20) 40 6 6.67x
Matrix Mult. 98.56 13.08 (24) 46 16 2.88x
2D Conv. 60.31 10.18 (24) 66 33 2.00x
Reduction 28.31 4.21 (16) 43 11 3.91x
Histogram 11.86 7.53 (24) 61 8 7.62x
Sparse Mult. 2.85 0.63 (20) 51 14 3.64x
Black Scholes 5.93 - - - -
Cor. Matrix 26.16 - - - -

Geo. Mean 19.27 5.02 50 13 4.01x

(b)

Fig. 4: Left: Speedup obtained by APARAPI and Jacc over serial Java imple-
mentations, Right: A comparison of Jacc against Java based implementations.

different Java implementations: a serial Java implementation and the peak per-
forming multi-threaded Java implementation. Results indicate that Jacc, on av-
erage, outperforms the serial and peak multi-threaded performance of all Java
implementations by 19x and 5x respectively. Our pathological case is the sparse
vector multiplication benchmark, where the irregular memory accesses pattern
is not well suited to our current parallelization strategies. This can be resolved
either algorithmically or through better code generation — assigning loop iter-
ations on a per warp basis and making use of the texture cache. The table also
contains the results of the difference in code complexity implementing a data-
parallel kernel in multi-threaded Java or using Jacc. The results show that using
Jacc to create data-parallel code requires 4x fewer lines of codes than writing
them using Java threads.

Additionally, we compare against APARAPI [1], an alternative Java based
framework, using three of their benchmarks: Vector addition, Black Scholes,
and Correlation Matrix. A comparison of the results is shown in Figure 4a. To
understand the impact of JIT compilation on performance, we conducted exper-
iments that are both inclusive and exclusive of compilation times. Comparing
the geometric mean of these speedups, we observe that both frameworks are very
similar in terms of performance; APARAPI just incurs less overheads due to JIT
compilation.

In contrast to our approach, APARAPI is built upon OpenCL and uses
source-to-source translation to generate OpenCL C from Java bytecode. This
approach provides APARAPI with two advantages: consistently low-compilation
times, around 400 milliseconds, and a high quality of generated code. As our com-
piler matures, the cost of our JIT compilation will fall, so that it is comparable
with APARAPI.

In the Correlation Matrix benchmark, Jacc significantly outperforms APARAPI
because of its ability to easily tune the number of threads in each work group7

and to replace an entire method with a single PTX instruction — popc.

7 We found that changing Jacc’s work group size, to match that of APARAPI, severely
reduced performance but remained faster than APARAPI.

11

5 Related Work

Most prior work focuses on embedded support for heterogeneous programming
inside existing languages targeting GPGPUs, FPGAs, vector units, and multi-
core processors [1, 5, 10, 12, 9, 18, 16, 14, 8, 13]. Jacc is different from the majority
of these efforts since it does not rely on translating bytecode into CUDA or
OpenCL C to generate code for the GPGPU. Instead it generates PTX code
which can be JIT compiled by the GPGPU driver. To the best of our knowl-
edge, the most complete attempt at enabling the use of GPGPUs from Java is
APARAPI [1] which translates Java bytecode into OpenCL C. We improve over
APARAPI since we impose less restrictions on developers while making it easier
to build complex multi-kernel codes. Jacc does not force developers to separate
data-parallel code into singleton classes and our task-graph abstraction enables
a series of runtime optimizations that are not possible in APARAPI. This work
was being used as inspiration for the now defunct OpenJDK Sumatra project
[4].

Rootbeer [16] is another attempt at exposing GPGPUs to Java developers.
In contrast to APARAPI, it uses ahead of time code generation by extending
SOOT [17] with support for emitting CUDA code. Other projects [5, 12, 10, 6,
13] use supersets of Java which include special syntax and language features to
simplify the writing of data-parallel code, or advocate the use of a functional
style programming on a specialized array class. Finally, projects such as [7,
11] use a new intermediate language (IL) which is enriched with support for
parallel execution allowing the JIT to be embedded in domain-specific dynamic
programming languages. Jacc is different from these approaches as we use an
existing IL, Java bytecode, and we aim to support general purpose programming
in Java.

6 Conclusions

Heterogeneous programming allows developers to improve performance by run-
ning portions of their code on specialized hardware resources. In this paper we
have introduced the Jacc framework and shown how it is possible to write con-
cise data-parallel code and execute it on GPGPUs. Moreover, our task-based
programming model and runtime system means that a large amount of tedium
associated with programming heterogeneous devices can be automated. Our ex-
perimental results demonstrate that Jacc is able to generate code which outper-
forms serial Java code by 19x on average and that it requires 4x less code than
a multi-threaded Java implementation.

7 Acknowledgments

This work is supported by the AnyScale Apps and PAMELA projects funded by
EPSRC EP/L000725/1 and EP/K008730/1. Dr Luján is supported by a Royal
Society University Research Fellowship.

12

References

1. Aparapi, http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/
2. CUDA, http://developer.nvidia.com/cuda-zone
3. OpenCL, https://www.khronos.org/opencl/
4. Project Sumatra, http://openjdk.java.net/projects/sumatra/
5. Auerbach, J., Bacon, D.F., Cheng, P., Rabbah, R.: Lime: A java-compatible and

synthesizable language for heterogeneous architectures. In: OOPSLA ’10:
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications. ACM (2010)

6. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: Compiling an embedded
data parallel language. In: PPoPP ’11: Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming. PPoPP ’11, ACM (2011)

7. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism. p. 35. ACM Press (2011)

8. Chafik, O.: Scalacl: Faster scala: optimizing compiler plugin + gpu-based
collections (opencl), http://code.google.com/p/scalacl

9. Dotzler, G., Veldema, R., Klemm, M.: JCudaMP. In: Proceedings of the 3rd
International Workshop on Multicore Software Engineering (2010)

10. Fumero, J.J., Steuwer, M., Dubach, C.: A composable array function interface for
heterogeneous computing in java. In: ARRAY’14: Proceedings of ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array
Programming. ACM (2014)

11. Garg, R., Hendren, L.: Velociraptor: An embedded compiler toolkit for numerical
programs targeting cpus and gpus. In: PACT ’14: Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation. ACM (2014)

12. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Accelerating
habanero-java programs with opencl generation. In: Proceedings of the 2013
International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (2013)

13. Herhut, S., Hudson, R.L., Shpeisman, T., Sreeram, J.: River trail: A path to
parallelism in javascript. In: OOPSLA ’13: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages Applications. ACM (2013)

14. Nystrom, N., White, D., Das, K.: Firepile: Run-time compilation for gpus in
scala. In: GPCE ’11: Proceedings of the 10th ACM International Conference on
Generative Programming and Component Engineering. ACM (2011)

15. OpenMP Architecture Review Board: OpenMP Specification (version 4.0) (2014)
16. Pratt-Szeliga, P., Fawcett, J., Welch, R.: Rootbeer: Seamlessly using gpus from

java. In: Proceedings of 14th International IEEE High Performance Computing
and Communication Conference on Embedded Software and Systems (2012)

17. Vallèe-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Phong, C.:
Soot - a java optimization framework. In: Proceedings of CASCON 1999 (1999)

18. Yan, Y., Grossman, M., Sarkar, V.: Jcuda: A programmer-friendly interface for
accelerating java programs with cuda. In: Sips, H., Epema, D., Lin, H.X. (eds.)
Euro-Par 2009 Parallel Processing (2009)

