230,225 research outputs found

    Towards Scalable Real-Time Entity Resolution using a Similarity-Aware Inverted Index Approach

    Get PDF
    Most research into entity resolution (also known as record linkage or data matching) has concentrated on the quality of the matching results. In this paper, we focus on matching time and scalability, with the aim to achieve large-scale real-time entity resolution. Traditional entity resolution techniques have as-sumed the matching of two static databases. In our networked and online world, however, it is becoming increasingly important for many organisations to be able to conduct entity resolution between a collection of often very large databases and a stream of query or update records. The matching should be done in (near) real-time, and be as automatic and accurate as possible, returning a ranked list of matched records for each given query record. This task therefore be-comes similar to querying large document collections, as done for example by Web search engines, however based on a different type of documents: structured database records that, for example, contain personal information, such as names and addresses. In this paper, we investigate inverted indexing techniques, as commonly used in Web search engines, and employ them for real-time entity resolution. We present two variations of the traditional inverted in-dex approach, aimed at facilitating fast approximate matching. We show encouraging initial results on large real-world data sets, with the inverted index ap-proaches being up-to one hundred times faster than the traditionally used standard blocking approach. However, this improved matching speed currently comes at a cost, in that matching quality for larger data sets can be lower compared to when tandard blocking is used, and thus more work is required

    Was Suchmaschinen nicht können. Holistische Entitätssuche auf Web Daten

    Get PDF
    Mehr als 50% aller Web Suchanfragen sind entitätsbezogen. Benutzer suchen entweder nach Entitäten oder nach Entitätsinformationen. Dennoch solche Anfragen von Suchmaschinen nicht gut unterstützt. Aufbauend auf dem Konzept des semiotischen Dreiecks aus der kognitiven Psychologie, haben wir drei Anfragetypen zur Entitätssuche identifiziert: typbasierte Anfragen – Suche nach Entitäten eines gegebenen Typs, prototypbasierte Anfragen – Suche nach Entitäten mit bestimmten Eigenschaften, und instanzbasierte Anfragen – Suche nach Entitäten die ähnlich zu einer gegebene Entität sind. Für typbasierte Anfragen haben wir eine Methode entwickelt die query expansion mit einer self-supervised vocabulary learning Technik auf strukturierten und unstrukturierten Daten verbindet. Unser Ansatz liefert einen guten Kompromiss zwischen Precision und Recall. Für prototypbasierte Anfragen stellen wir ProSWIP vor. Dies ist ein eigenschaftsbasiertes System um Entitäten aus dem Web abzurufen. Da aber die Anzahl der Eigenschaften die durch die Benutzer bereitgestellt werden relativ klein sein kann, baut ProSWIP auf direkten Fragen und Benutzer Feedback um die Menge der Eigenschaften zu einer Menge welche die Intentionen der Benutzer korrekt erfasst zu erweitern. Unsere Experimente zeigen dass mit maximal vier Fragen eine perfekte Precision erreicht wird. In dem Fall von instanzbasierten Anfragen besteht die Schwierigkeit darin eine Anfrageform zu finden die die Benutzerintentionen eindeutig macht. Wir stellen eine minimalistische instanzbasierte Anfrage, die aus einem Beispiel und dem entsprechenden Entitätstypen besteht vor. Mit Hilfe des Konzepts der Familienähnlichkeit entwickeln wir eine praktische Lösung um Entitäten mit Bezug zur der Anfragenentität direkt aus dem Web abzurufen. Unser Ansatz erzielt sogar für Anfragen, die für standard Entitätssuchaufgaben wie related entity finding problematisch waren, gute Ergebnisse. Entitätszusammenfassung ist ein anderer Typ von entitätszentrischen Anfragen, der Informationen bezüglich einer Entität bereitstellt. Googles Knowledge Graph ist der Stand der Technik für solche Aufgaben. Aber das Zurückgreifen auf manuell erstellte Knowledgebases schließt weniger bekannten Entitäten für das Knowledge Graph aus. Wir schlagen daher vor datengetriebene Ansätze zu nutzen. Wir sind überzeugt dass das Bewältigen dieser vier Anfragetypen eine holistische Entitätssuche auf Web Daten für die nächste Generation von Suchmaschinen ermöglicht.More than 50% of all Web queries are entity related. Users search either for entities or for entity information. Still, search engines do not accommodate entity-centric search very well. Building on the concept of the semiotic triangle from cognitive psychology, which models entity types in terms of intensions and extensions, we identified three types of queries for retrieving entities: type-based queries - searching for entities of a given type, prototype-based queries - searching for entities having certain properties, and instance-based queries - searching for entities being similar to a given entity. For type-based queries we present a method that combines query expansion with a self-supervised vocabulary learning technique built on both structured and unstructured data. Our approach is able to achieve a good tradeoff between precision and recall. For prototype-based queries we propose ProSWIP, a property-based system for retrieving entities from the Web. Since the number of properties given by the users can be quite small, ProSWIP relies on direct questions and user feedback to expand the set of properties to a set that captures the user’s intentions correctly. Our experiments show that within a maximum of four questions the system achieves perfect precision of the selected entities. In the case of instance-based queries the first challenge is to establish a query form that allows for disambiguating user intentions without putting too much cognitive pressure on the user. We propose a minimalistic instance-based query comprising the example entity and intended entity type. With this query and building on the concept of family resemblance we present a practical way for retrieving entities directly from the Web. Our approach can even cope with queries which have proven problematic for benchmark tasks like related entity finding. Providing information about a given entity, entity summarization is another kind of entity-centric query. Google’s Knowledge Graph is the state of the art for this task. But relying entirely on manually curated knowledge bases, the Knowledge Graph does not include all new and less known entities. We propose to use a data-driven approach. Our experiments on real-world entities show the superiority of our method. We are confident that mastering these four query types enables holistic entity search on Web data for the next generation of search engines

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Weaving Entities into Relations: From Page Retrieval to Relation Mining on the Web

    Get PDF
    With its sheer amount of information, the Web is clearly an important frontier for data mining. While Web mining must start with content on the Web, there is no effective ``search-based'' mechanism to help sifting through the information on the Web. Our goal is to provide a such online search-based facility for supporting query primitives, upon which Web mining applications can be built. As a first step, this paper aims at entity-relation discovery, or E-R discovery, as a useful function-- to weave scattered entities on the Web into coherent relations. To begin with, as our proposal, we formalize the concept of E-R discovery. Further, to realize E-R discovery, as our main thesis, we abstract tuple ranking-- the essential challenge of E-R discovery-- as pattern-based cooccurrence analysis. Finally, as our key insight, we observe that such relation mining shares the same core functions as traditional page-retrieval systems, which enables us to build the new E-R discovery upon today's search engines, almost for free. We report our system prototype and testbed, WISDM-ER, with real Web corpus. Our case studies have demonstrated a high promise, achieving 83%-91% accuracy for real benchmark queries-- and thus the real possibilities of enabling ad-hoc Web mining tasks with online E-R discovery

    A Metadata-Enabled Scientific Discourse Platform

    Get PDF
    Scientific papers and scientific conferences are still, despite the emergence of several new dissemination technologies, the de-facto standard in which scientific knowledge is consumed and discussed. While there is no shortage of services and platforms that aid this process (e.g. scholarly search engines, websites, blogs, conference management programs), a widely accepted platform used to capture and enrich the interactions of research community has yet to appear. As such, we aim to create new ways for the members and interested people working in research communities to interact; before, during and after their conferences. Furthermore, to serve as a base to these interactions, we want not only to obtain, format and manage a body of legacy and new papers related to this community but also to aggregate several useful information and services to the environment of a discourse platform

    CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

    Get PDF
    Autosuggest is an important feature in any search applications. Currently, most applications only suggest a single term based on how frequent that term appears in the indexed documents or how often it is searched upon. These approaches might not provide the most relevant suggestions because users often enter a series of related query terms to answer a question they have in mind. In this project, we implemented the Smart Solr Suggester plugin using a context-based approach that takes into account the relationships among search keywords. In particular, we used the keywords that the user has chosen so far in the search text box as the context to autosuggest their next incomplete keyword. This context-based approach uses the relationships between entities in the graph data that the user is searching on and therefore would provide more meaningful suggestions

    An infrastructure for building semantic web portals

    Get PDF
    In this paper, we present our KMi semantic web portal infrastructure, which supports two important tasks of semantic web portals, namely metadata extraction and data querying. Central to our infrastructure are three components: i) an automated metadata extraction tool, ASDI, which supports the extraction of high quality metadata from heterogeneous sources, ii) an ontology-driven question answering tool, AquaLog, which makes use of the domain specific ontology and the semantic metadata extracted by ASDI to answers questions in natural language format, and iii) a semantic search engine, which enhances traditional text-based searching by making use of the underlying ontologies and the extracted metadata. A semantic web portal application has been built, which illustrates the usage of this infrastructure

    Constructing experimental indicators for Open Access documents

    Get PDF
    The ongoing paradigm change in the scholarly publication system ('science is turning to e-science') makes it necessary to construct alternative evaluation criteria/metrics which appropriately take into account the unique characteristics of electronic publications and other research output in digital formats. Today, major parts of scholarly Open Access (OA) publications and the self-archiving area are not well covered in the traditional citation and indexing databases. The growing share and importance of freely accessible research output demands new approaches/metrics for measuring and for evaluating of these new types of scientific publications. In this paper we propose a simple quantitative method which establishes indicators by measuring the access/download pattern of OA documents and other web entities of a single web server. The experimental indicators (search engine, backlink and direct access indicator) are constructed based on standard local web usage data. This new type of web-based indicator is developed to model the specific demand for better study/evaluation of the accessibility, visibility and interlinking of open accessible documents. We conclude that e-science will need new stable e-indicators.Comment: 9 pages, 3 figure
    • …
    corecore