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ABSTRACT
With its sheer amount of information, the Web is clearly an impor-
tant frontier for data mining. While Web mining must start with
content on the Web, there is no effective “search-based” mech-
anism to help sifting through the information on the Web. Our
goal is to provide a such online search-based facility for support-
ing query primitives, upon which Web mining applications can be
built. As a first step, this paper aims at entity-relation discovery,
or E-R discovery, as a useful function– to weave scattered entities
on the Web into coherent relations. To begin with, as our proposal,
we formalize the concept of ER discovery. Further, to realize ER
discovery, as our main thesis, we abstract tuple ranking– the es-
sential challenge of ER discovery– as pattern-based cooccurrence
analysis. Finally, as our key insight, we observe that such relation
mining shares the same core functions as traditional page-retrieval
systems, which enables us to build the new ER discovery upon
today’s search engines, almost for free. We report our system pro-
totype and testbed, WISDM-ER, with real Web corpus. Our case
studies have demonstrated a high promise, achieving 83% − 91%
accuracy for real benchmark queries– and thus the real possibilities
of enabling ad-hoc Web mining tasks with online ER discovery.

1. INTRODUCTION
There is nearly an endless wealth of information on the Inter-

net. As an ultimate information source, with its sheer scale and
wide diversity, the Web presents not only intriguing challenges for
page retrieval but also promising opportunities for knowledge dis-
covery– On the one hand, tackling the challenge, search engines
(e.g., Yahoo or Google) have evolved in the past decade with sig-
nificant efforts and advances for providing effective page retrieval.
On the other hand, for exploiting the potential, the “mining” of Web
content has however remained relatively unexplored.

In particular, as more Web content mining efforts (e.g., [6, 5, 14,
15]) have emerged, we observe a significant limitation (as Section 7
will further explain): While Web mining must start with content on
the Web, there is no effective search-based mechanism to help sift-
ing through the information on the Web. That is, to leverage the
full scale of the Web, mining techniques must be able to efficiently
“search” interesting patterns by online query processing. To begin
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Figure 1: WISDM: Our ultimate goal.

with, due to the lack of such mechanisms, many techniques sim-
ply crawl and scan Web pages, and thus do not scale well and are
not suitable for ad-hoc tasks that must be processed online. Or, a
small step further, other techniques rely on search engines as “pre-
processing” to search for pages to analyze– While search engines
are the most common (and probably the only) way to access Web
data, their “keyword” queries are designed specifically for page re-
trieval.

Our goal is thus to provide a search-based facility for supporting
query primitives, upon which Web mining applications can be built.
Figure 1 illustrates our “ultimate goal” of WISDM– Web Indexing
and Search for Data Mining– as a generic querying mechanism for
facilitating a wide range of Web content mining tasks. We note that
today’s search engines provide indexing and search facilities for re-
trieving of individual pages. Our goal of WISDM aims at building
a layer of search functionalities that provide aggregate analysis of
the Web holistically. To realize such a Web “mining” engine, we
must ask: What are the useful functions to provide? How to ab-
stract them as query primitives? How to support such primitives as
online query processing?

As a step toward this goal, to address the first question, this
paper aims at supporting entity-relation discovery, or E-R discov-
ery, as a useful function. In essence, ER discovery is to associate
named entities (e.g., prof for professor names, univ for universities)
as individual pieces of information into a relation as a connected
whole (e.g., 〈David DeWitt, Univ. Wisconsin〉). Our goal
is to provide systematic support for discovering a target relation
whose “schema” consists of certain entities. Figure 2 conceptu-
ally illustrates this ER discovery– which we call the WISDM-ER
system: For instance, if we are to find a relation with three en-
tities 〈prof, phone, email〉 as its schema, WISDM may return1

the relation R1. In particular, such ER discovery returns a set of
tuples, each of which associates entities of certain types (as the
schema specified)– e.g., the first tuple of R1 connects three en-
tities: prof = David DeWitt, phone = 608-262-1204, and

1To give a practical context of our discussion, this paper uses real
examples as discovered by WISDM.
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email = dewitt@cs.wisc.edu.
As Section 2 will formalize the concept, we believe ER discov-

ery a useful query primitive for building Web mining applications–
To begin with, such discovery finds not only entities but also their
“meaningful” associations, which is often the very essence of our
quest of information (or even “knowledge”). For instance, by dis-
covering the example relations R1 and R2, we will be able to build
a few interesting applications: To establish a practical context, we
will use both CSContact and CSResearch below as our motivating
examples and “benchmark” scenarios.

• CSContact: By weaving entities prof, phone, email into a
relation 〈prof, phone, email〉, we can ask: What is the phone
and email of, say, David DeWitt? What are the email of all prof
at Wisconsin? There are many other questions we can answer.

• CSResearch: By weaving entities prof, univ, research into a
relation 〈prof, univ, research〉, we can ask: What is the re-
search area of DeWitt? Who are database professors at vari-
ous universities? Which area has the most faculty at Wisconsin?

Further, such discovery gives structure to entities on the Web, by
linking them into relations, which thus opens up advanced database-
oriented processing. Useful relations can be periodically discov-
ered from the Web, stored in databases, and queried with other
structured information already available– e.g.:

• By joining R1 with R2: What are the emails of the database
professors at Wisconsin?

• By joining R2 with a “university ranking” database: Which
top-20 university has the most database faculty?

To enable such discovery, as our second question, what query
primitives to support? At the core of ER discovery, our main chal-
lenge is to find promising tuples– or semantically meaningful as-
sociations of entities. As our main thesis, we propose to abstract
this core task as pattern-based cooccurrence analysis. Note that
our challenge is to “weave” entities into relations– We observe that
such associated entities often materialize themselves as cooccurred
patterns in Web text. Thus, we propose to holistically analyze many
Web pages to associate entity terms that cooccur frequently in cer-
tain patterns. To motivate this abstraction, as our foundation, Sec-
tion 3 develops dual hypotheses on how desired “tuple semantics”
presents itself on the Web with holistic regularities.

Finally, to address our third question– How to realize ER dis-
covery with online query processing? We build our solutions upon
current search engines– As our key insight, we observe that while a
traditional search engine (Figure 3a) indexes only “keywords” and
returns only “pages,” at its heart, it essentially share the same core
functions of ER discovery.

This very insight enables us to build our ER discovery almost for
free– by turning a page-retrieval engine into a relation-mining sys-
tem, as Figure 3 contrasts. At the input, we extend a keyword-only
system to be entity-aware by extracting entities from Web pages.
At the output, we morph a page-retrieval system to perform rela-
tion-discovery by ranking tuples with cooccurrence analysis and
constructing relations accordingly. At the heart, our ER discovery
share the same core functions– term indexing and pattern match-
ing. With this insight, on one hand, we can now easily deploy
such ER discovery on today’s search engines almost for free; on
the other hand, our relation mining can coexist with page retrieval,
providing a likely synergistic combination. Section 4 presents our
“morphing” from page retrieval to relation mining, and Section 5
our concrete query primitives for realizing cooccurrence analysis.

Toward building WISDM-ER, we have developed a functioning
prototype, upon the Lemur text engine [1]. With CSContact and
CSResearch as our driving “benchmark” applications, our testbed

Entity-Relation

Discovery
… …… …… …

winslett@cs.uiuc.edu333-3536Marianne Winslett

dewitt@cs.wisc.edu608-262-1204David DeWitt

emailphoneprof

… …

Purdue U.

U. Wisconsin

univ

… …… …

data miningChris Clifton

database systemsDavid DeWitt

researchprof
<prof, univ, 
research>

The Web

R1

R2

WISDM-ER<prof, phone, 
email>

Figure 2: Entity-relation discovery.

(a) Traditional page retrieval system (b) Our ER discovery system

Relation Constructor

Tuple Ranker

Relation Discovery

Web Crawler

Pattern Matcher

Inverted-List Indexer

Entity Extractor

Entity Indexing

………
………
………

Page Retrieval

Web Crawler

Pattern Matcher

Page Ranker

Inverted-List Indexer

Keyword Indexing
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crawls and indexes six computer science departments, with 82453
web pages and 1.4GB of raw text. Section 6 reports our system
implementation efforts and case studies. Our studies have revealed
the high promise of large scale ER discovery– In many cases, our
“benchmark” queries achieve 83% − 91% accuracy for construct-
ing complex relations. For further reference, our system demo is
available online at wisdm-er.myftp.org.

We summarize the main contributions of this paper:

1. We propose the concept of entity-relation discovery as a use-
ful function for a Web mining platform.

2. We abstract ER discovery as pattern-based cooccurrence anal-
ysis with a suite of query operators as its realization.

3. We build online query processing upon current text search en-
gines, and thus extend Web page retrieval to relation mining
almost for free.

4. We develop a prototype testbed with real Web corpus, and
demonstrate two case studies of Web mining applications.

2. ER DISCOVERY:
WEAVING ENTITIES INTO RELATIONS

Our goal is to provide ER discovery as a basic concept for Web
mining. This section motivates and formalizes the abstraction of
this concept upon which we will start its realization in Section 3.

To begin with, we note that our information quest is often to find
certain “fact.” We take a view that a desired fact is essentially a
tuple– or an association of entities, which forms a tuple. An entity
(or called “named entity” in information extraction) is a domain of
literal values– e.g., prof as a set of professor names, univ for uni-
versities, and email for email addresses. We may ask– What is the
email of prof DeWitt? What are the univ of various prof? Finding
the “desired” association (Section 3 will discuss such “tuple seman-
tics”) is thus a concrete task for many Web mining applications.

We thus propose entity-relation discovery: Upon W as a cor-
pus of Web pages, ER discovery constructs a “target relation,” by
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such a function for how a tuple forms the relationship of interest
(as Section 3 will discuss). As Figure 4 shows, effectively, this
step “transforms” the unordered cartesian product U into a ranked
list �UF as (t1, t2, t3, . . .), with scores F (t1) = .95, F (t1) = .85,
and so on. If the function is effective, the ranking would “surface”
those meaningful tuples to the top– e.g., t1 represents a correct tu-
ple (with respect to the interest of CSResearch).

2.1.3 Relation Construction
Upon the ranked universe of tuples, ER discovery will finally

construct a relation as the output. What tuples should be included?
Although tuple ranking has surfaced meaningful entity associa-
tions, not all such top tuples should be returned. To begin with,
as tuples are ranked, we may only want a few top-k answers. For
〈prof, phone, email〉, we may pick one tuple per prof, as her ma-
jor contact. For 〈prof, univ, research〉, each prof should asso-
ciate with one univ, which may together associate with multiple
research (e.g., in Figure 4, tuple t1 and t3 on H V Jagadish
agree on univ but differ in research).

As the final step, relation construction assemble promising tu-
ples into a target relation, satisfying some global relation constraints
C as another objective parameter. Note that, to contrast, while tuple
ranking focuses on “locally” associating entities into potential tu-
ples as guided by F , this step “globally” selects these tuples to con-
struct a relation conforming to C. Like F , such relation constraints
again depend on application semantics– for defining a “meaning-
ful” relation for the application at hands.

In principle, relation constraints C can be any (one or multiple)
criteria for a relation to satisfy– In particular, while ER discovery
is a new task, many “traditional” constraints from relational DBMS
are applicable, which we enumerate a few below:

• Relation cardinality: How many tuples to return? That is, as
tuples are ranked, what top-k results?

• Key constraint: Is certain entity (i.e., attribute) Ei necessarily
unique? That is, is Ei a “key” constraint? For instance, as just
mentioned, for 〈prof, phone, email〉, we may have: prof →
phone email, i.e., prof is a key.

• Functional dependencies: Are there certain dependencies be-
tween entities Ei and Ej? For instance, for 〈prof, univ, re-
search〉, as just mentioned, prof → univ (although prof �→
research).

• Referential integrity: Although each entity Ei can in princi-
ple take any instance from Ei(W), are their any restrictions to
“reference” only a subset of the domain?– An application may
be interested in only some specific instances. For our example
of 〈prof, univ, research〉, we may restrict univ to, say, only
those universities in California, i.e., univ may only reference
{Stanford, Berkeley, . . .}.

Example 3 (Relation Construction): Suppose CSResearch spec-
ifies C as: {prof is a key}. Figure 4 shows the result relation,
which enforces one tuple per prof). In implementation, to fulfill
this C, in relation construction, ER discovery can start from the
top of �UF (as the result of tuple ranking), select the first tuple of
every prof, and construct R = {t1, t2, t4}. Thus, t3 is not included,
as it “duplicates” t1 in terms of prof, violating C .

Note that such relation constraints depend on the application ob-
jectives. To contrast, a different application may instead specify
that it wants to return 3 research per prof (so prof is not a key)–
e.g., to post-process the result relation to pick the best matching
research for each prof (as ER discovery may not always find the
correct tuple at the top), or simply to capture that a prof can natu-
rally have multiple research areas).

2.2 ER Discovery
As we have motivated, we propose ER discovery as a task of

weaving entities into relations: We abstract this task with three
objective parameters (S, F, C), which respectively guide the three
progressively larger units of construction– entities, tuples, and re-
lations: Starting from the entities specified in the target schema S,
we associate their instances to identify promising tuples by tuple
function F , from which we construct a target relation that satisfies
constraints C. More formally, we define ER discovery as follows:

Definition 1 (Entity-Relation Discovery): Let E1, . . ., En each
be an entity, whose domain over W , or Ei(W), is the instances of
Ei occurring in W . An ER discovery task Q = (S, F, C), given a
schema S = 〈E1, . . . , En〉, a tuple function F , and a set of relation
constraints C, is to find a target relation R, such that

1. R ⊆U , where U= E1(W )×· · ·×En(W ) is the tuple universe
as S specifies,

2. each tuple t ∈ R is ranked sufficiently high by F , and
3. the relation R satisfies C.

We note that Definition 1 intends to generally capture the con-
cept of ER discovery– without specifying implementation details
such as what “sufficiently high” may actually translated to. Our
view is that, while implementations may differ, ER discovery is
a general Web mining concept for constructing coherent structure
(the target relation) from the unstructured Web, and thus a useful
query primitive for building Web mining applications upon (e.g.,
CSContact and CSResearch).

To conclude our abstraction of defining ER discovery in princi-
ple and to start our specific implementation in practice, we present
the “system query interface” of our WISDM-ER. Figure 5 shows
the interface, which consists of three groups (annotated S&F, C,
and P). To illustrate, we fill our CSResearch example query (as Fig-
ure 4 overviews), but with restriction of university to U. Wiscon-
sin. Thus, we are only interested in 〈prof, univ, research〉 where
univ ⊆ {U. Wisconsin}. (As Section 6 will report, this setting is
benchmark query R4 in our actual case studies; see Figure 13.)
Our realization of ER discovery specifies a task Q = (S, F, C) as
follows:

In Group “S&F”, the input field Tuple Function specifies F , e.g.,
as Figure 5 shows, F = #dist-uw100(...). (We will explain
the F -related constructs in Section 5.) To simplify the interface,
this input also implies a schema as those entities appearing in F ,
e.g., S = 〈professor, university, phone〉.

Group “C” then specifies relation constraints C: In particular, we
implement 1) relation cardinality: by specifying # Tuples, 2) key
constraint: by specifying Unique On, and 3) referential integrity:
by specifying Reference Only. Thus, overall, for the filled query,
we have C={professor is a key; university ⊆ {U. Wisconsin}}.

Finally, Group “P” is an added feature, for specifying the output
presentation. Links Per Tuple requests the number of Web pages
to return as “evidences” for each tuple. (As Section 5 will dis-
cuss, as a result of cooccurrence analysis, each tuple will have a
set of “supporting pages” in which the pattern occurs.) In addition,
Order By specifies the order of listing tuples (e.g., by research
alphabetically)– much like the same clause in SQL.

With our general proposal (Definition 1) and specific adaptation
(Figure 5) of ER discovery, we are next to bring forward its real-
ization. As our discussion has suggested, the core challenge lies in
the second conceptual step– tuple ranking. We will start this real-
ization with developing our key insight– tuple ranking as holistic
cooccurrence analysis.

3. MOTIVATION: COOCCURRENCE ANALYSIS
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converge at a large scale. To begin with, since the Web has become
our “ultimate information source,” the need of Web usability2 nat-
urally pushes common design patterns that many pages will likely
follow. Further, as the Web is a heavily interlinked community,
as in any social networks, “peer influence” will naturally forge the
convergence of conventions. For instance, most personal home-
pages follow similar format or adopt uniform templates. In fact,
there may even converge to de facto standards– e.g., online book-
stores seem to follow Amazon.com as a standard interface.

As further evidences, several earlier works have explored cooc-
currence analysis, at a large scale, albeit in an ad hoc way, for their
specific mining tasks. Such analysis essentially features frequency
counting over a large collection. For instance, WSQ/DSQ pro-
poses Web supported queries which essentially count the frequency
of term cooccurrences (e.g., how terms “sigmod” and “databases”
cooccur), and use a search engine to execute the frequency counting
(e.g., by keyword query “sigmod databases”). As a more classic ex-
ample, for mining structured market-basket data (instead of the un-
structured Web), mining association rules [3] boils down to count-
ing the frequency of cooccurrence in transactions. As Section 7
contrasted, we believe these early explorations have helped pave
the way for our hypotheses– Building upon the same insight, we
aim at formally abstracting such analysis for enabling ER discov-
ery (Section 2) and provide systematic search-based support (Sec-
tion 4).

Putting Together: As we have argued, we believe that the dual hy-
potheses are not only currently observable– the nature of the Web
(which facilitates pattern emergence and convergence) will con-
tinue to uphold their relevance. Putting together, we thus propose
pattern-based cooccurrence analysis as a promising approach for
tuple ranking– as the inverse discovery of Figure 6.

As motivated above, there are two key tasks for this discovery:
Pattern matching and cooccurrence analysis. We thus develop our
tuple ranking construct– i.e., the tuple function F (Figure 4)– to
essentially consist of a pattern (for matching patterns individually)
and a scoring function (for scoring matched cooccurrences holisti-
cally). To concretely abstract tuple ranking as pattern-based cooc-
currence analysis, Section 5 will develop a suite of “query primi-
tives.”

Finally, we stress that, by this cooccurrence abstraction of tu-
ple ranking– the core of our ER discovery– we can build our new
relation-mining system on the same core pattern-matching engine
of a traditional page-retrieval system. That is, we can realize our
ER discovery almost for free– which Section 4 will develop next.

4. SYSTEM ARCHITECTURE:
FROM PAGE RETRIEVAL TO RELATION MINING

Our goal is to extend a traditional page retrieval system into an
ER discovery system. This section describes the key insights and
the architecture that allows this extension almost for free. In addi-
tion, through a description of the extensions, we will characterize
what we mean by almost for free.

First, a key insight is that both systems are essentially cooccur-
rence and pattern matching systems for the Web, as shown Figure 3.
Specifically, the Web Crawler and Inverted-List Indexer, which col-
lect Web pages and index the terms offline, are means to support ef-
ficient online queries. The core task of an online query is to search
for a user-specified pattern, which equates to cooccurrence between
the search terms in the user query. This cooccurrence and pattern
matching task is handled by the Pattern Matcher.

Although these core tasks are shared between the two systems,
there are two key differences. First, our ER discovery system is de-
2

e.g., for sample discussion: www.useit.com/alertbox/20040913.html.

signed to handle abstract entities, in addition to concrete keywords.
To support this, we have implemented an Entity Extractor that will
recognize abstract entities, and we have generalized the Inverted-
List Indexer and Pattern Matcher to handle these entities. Second,
the end goal of the two systems is different. In the case of a page
retrieval system, the end goal is to return Web pages, while the end
goal of an ER discovery system is to provide relations between in-
stances of entities. Thus, we have replaced the Page Ranker with
the Tuple Ranker and Relation Constructor, in order to discover re-
lations. This section proceeds by stepping through an example that
describes the key similarities and differences in more detail.

Example 4 (Page Retrieval vs. ER Discovery): Figure 4 illustrates
the process that a traditional page retrieval system and our ER dis-
covery system undertake for similar queries, where both the docu-
ments and queries deal with professors and universities.

Specifically, Figure 4 shows the Web documents on the left, the
process of a page retrieval system on top, and the process of our ER
discovery system on the bottom. The query for the page retrieval
system, #uw50(dewitt university), is searching for doc-
uments with the keywords dewitt and university within 50
words of each other, as specified by the #uw50. The tuple func-
tion for the ER discovery system is #tf-uw50(#entity(prof)
#entity(univ)), where the ER discovery system will discover
relations between prof and univ entities by finding instances of the
entities that appear within 50 words of each other. In addition,
#tf-uw50 specifies the tuple scoring function, which will be dis-
cussed more in Section 4.2.

From Figure 4, both systems are provided the same three docu-
ments, however, as an end result, the page retrieval system returns
Web documents and the ER discovery system returns discovered
relations. In the following sections we will step through Figure 4
to show how we can extend the architecture of a page retrieval sys-
tem to discover these relations, almost for free.

4.1 Basis: Traditional Search Engine
This section describes the architecture of a page retrieval sys-

tem, which acts as the basis of our ER discovery system. We will
step through Figure 4 to clearly show the execution of a page re-
trieval system. Then, Section 4.2 will describe the process of our
ER discovery system, which will demonstrate how we extend the
base architecture of a page retrieval system.

As shown in Figure 4, the page retrieval system begins with snip-
pets from the home pages of David DeWitt and H V Jagadish, rep-
resented by the documents D1, D2, and D3. This corpus is col-
lected by a Web Crawler, as shown in Figure 3.

Next, the Inverted-List Indexer constructs an inverted index, which,
given a keyword, Ki, returns a document-position list, or DP list.
The document-position list stores the Web document IDs and the
word positions for every appearance of Ki. For example, Figure 4
shows that a lookup on dewitt returns a DP list with three entries,
each specifying the document ID and position, where the position
is represented as a range.

The crawling and indexing occur offline in order to support effi-
cient online queries. As previously mentioned, we will consider the
query #uw50(dewitt university). Therefore, the Pattern
Matcher utilizes the inverted index to find the matched patterns.
This is accomplished by first performing inverted index lookups
on dewitt and university. Then, the Pattern Matcher en-
forces the cooccurrence constraint, in this case, the positions of the
words must be within 50. Finally, the Pattern Matcher constructs
the matchings table, as shown in Figure 4. The matchings tables
stores the documents and position ranges of the matched patterns.

During the final stage, the Page Ranker applies a scoring measure
on the matching tables, such as PageRank or a distance measure, to
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the
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key
difference

betw
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a
traditional

search
engine
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E
R

discovery
system

is
thatour

E
R
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system
searches
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abstractentities,rather

than
justconcrete
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T
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text.
T

here
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is
described
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Section

7.
From
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docum
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T
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searching
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abstract
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inverted

index.
Specifically,
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D
∗i ,

the
Inverted-L
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Indexer
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inverted
index
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entities,

in
addition

a
keyw

ord
inverted

index
as

described
in

Section
4.1.

T
hus,
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E
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entity
inverted

index
w
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a
docum

ent-position-instance
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D
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D
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W
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ID
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w
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instances
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every
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E
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In

addition,
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instances

m
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to
specific

values
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the
instance-value

m
apping

table,
or

IV
m

apping
table,

as
show

n
in

Figure
4.

For
exam

ple,
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lookup
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inverted
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profentity
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D
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docum
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positions,
and
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w
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m

ap
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D
a
v
i
d
D
e
W
i
t
t
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H
V

J
a
g
a
d
i
s
h

.
C
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inverted

index
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e
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key-

w
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T
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only
difference

is
that
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indexing
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entities,
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instance

values
m

ustalso
be

stored.
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ow
that
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tuple
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prof)
#
e
n
t
i
t
y
(

univ)
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.
A

s
w
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Inverted-L
ist

Indexer,the
Pattern

M
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m
ustbe
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abstractentities.From

Fig-
ure

4,
this

requires
the

m
atchings

table
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the
concrete

instance
values,

w
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tuples,

such
as〈p

1,
u
1〉

or〈D
a
v
i
d

D
e
W
i
t
t

,
U
.
o
f

W
i
s
c
o
n
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n〉.

A
t
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how
ever,
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M
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R
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system
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e
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in
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.
Specifically,in
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M
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inverted
index.

Since
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E
R
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than
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a
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.

Specifically,
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T
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R
anker
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scoring
function
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tuples
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m

atchings
table.

T
he

scoring
function

in
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exam
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tuple

frequency,
w
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#
t
f
-
u
w
5
0

in
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tuple
function.T

he
tuple

frequency
is

calculated
by

counting
num
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occurrences
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instance,
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v
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i
t
y
o
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W
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o
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2.
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final
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R
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C
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C
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tuples
w
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ex-
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there
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“unique-on”
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thus,
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w
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profare
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a
v
i
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D
e
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.

o
f
W
i
s
c
o
n
s
i
n〉

and
〈H

V
J
a
g
a
d
i
s
h

,U
.

o
f
M
i
c
h
i
g
a
n〉.

T
hus,
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e
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E

R
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searching
on

abstract
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and
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the
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,w
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pattern

m
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constraints
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W
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T
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e
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free.

5.
Q
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P
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E

S
A

s
a

m
ain

challenge
forrealizing

E
R

discovery,w
e

m
ustachieve

effective
and

efficient
discovery

of
prom

ising
tuples–

by
ranking

tuples
in

the
universe

(Section
2).

A
s

Section
3

m
otivated,w

e
ab-

stractsuch
tuple

m
ining

as
pattern-based

cooccurrence
analysis,as

guided
by

a
tuple

function
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captures
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desired
“tuple
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an-
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W

e
w

ill
now
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a
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cooccurrence
analysis
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used
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entthis

tuple
function.

W
e
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atproposing

these
operators
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a
variety

of
applications

in
E

R
discovery.

O
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view
is

that
each

ap-
plication

w
ill
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specific

know
ledge

about
its

“tuple
sem

antics”
leading

to
an

appropriate
selection

of
operators.W

e
w

illthus
m

oti-
vate

how
the

operators
can

supportvarious
underlying

assum
ptions,
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α description
uwn unordered window of size n
own ordered window of size n
nnuwn nearest neighbor unordered window of size n
nnown nearest neighbor ordered window of size n

Figure 9: Pattern measures.

β description
tf tuple frequency
tfidfj tuple frequency, multiplied by the inverse

document frequency of the j-th entity
dist distance weighted

Figure 10: Scoring measures.

using examples from the CSContact and CSResearch applications.
To begin with, as Section 3 motivated from our dual hypotheses,

we are to realize our tuple function through pattern-based cooccur-
rence analysis– Thus, to support the two aspects of both pattern
matching and cooccurrence-analysis scoring, each operator spec-
ifies a “search pattern” and a “scoring measure,” which are pro-
cessed by the Pattern Matcher and Tuple Ranker (Figure 3b, respec-
tively. Specifically, each operator is written as #β-α(X), where
# is an operator prefix, and executes the two functions as follows:

• Pattern matching: α(X) specifies a search pattern, in which
X represent a list of search terms, as either abstract entities
or literal keywords, and α is a pattern measure specifying
how the terms are connected into a pattern.

• Cooccurrence-analysis scoring: β is a scoring measure,
which determines, upon all the matched occurrences, the spe-
cific scoring method.

Example 5 (Operator Format): Recall the tuple function in Fig-
ure 8: F = #tf-uw50(#entity(prof) #entity(univ)). In this
operator, tf specifies a scoring measure “tuple frequency,” and
uw50 specifies a pattern measure in which prof and univ must ap-
pear within 50 words of each other. Note our query syntax uses
#entityE to specify that E represents an abstract entity (and not a
literal keyword). To contrast, if we are to discover 〈prof univ〉 for
a prof who received a PhD from univ, the tuple function could be
#tf-uw50(#entity(prof) phd #entity(univ)), in which
we use keyword phd as part of the search pattern.

Thus, as a uniform format, each operator is comprised of two
components: a search pattern α(X) and a scoring measure β. As
an overview, Figure 9 and Figure 10 summarizes our currently sup-
ported pattern measures and scoring measures, respectively. Note
that, in our realization of pattern-based cooccurrence analysis, an
operator #β − α(·) can be “constructed” by any combination of
a scoring measure β with a pattern measure α. To introduce both
aspects of the operator, we will discuss pattern matching measures
in Section 5.1 and cooccurrence scoring measure in 5.2.

5.1 Pattern-Measure Techniques
This section will present our pattern measures in Figure 9. As

a starting point, we will first motivate with the most basic type of
pattern matching technique.

Document Cooccurrence
Specifically, the first search pattern that we considered was doc-
ument cooccurrence, where search terms are constrained to occur
within the same page, or “document.” However, after performing
accuracy analysis on a variety of relations, we found that document
cooccurrence yields unacceptable accuracy – generally below 50%.

Figure 11: Hub page for UIUC CS professors.

This is a result of the fact that many unrelated terms cooccur in the
same document. For instance, university phone numbers, common
research area such as Algorithms, and email addresses such
as webmaster@cs.uiuc.edu and colloq@cs.wisc.edu
tend to occur in many documents.

In addition, on hub pages, or pages that list a number of entity in-
stances, unrelated instances will match the document cooccurrence
pattern. An example of a hub of UIUC computer science profes-
sors appears in Figure 11. From the figure, hubs tend to list related
entities in localized groups, however, this locality can not be ex-
pressed with document cooccurrence. In general, we believe that
terms that cooccur together with some locality are related to each
other. However, document cooccurrence does not specify enough
locality between entities for accurate relation discovery.

Window of Words
Therefore, we will consider a window of words, where the terms in
the tuple function must occur within a specified number of words.
There are two window of words pattern matching techniques: un-
ordered window of words and ordered window of words, which
have the syntax uwn and own, respectively. For a tuple function
using an unordered window of words, #β-uwn(E1E2...En), and
a collection of Web documents with instances ei of the entity Ei at
position ei.pos, a pattern e1, e2, ..., en will match if and only if:

∀i,ji!=j |ei.pos − ej .pos| <= n (1)

For an ordered window of words query, #β-own(E1E2...En),
a pattern e1, e2, ..., en will match if and only if:

∀i,ji!=j(ei.pos < ej .pos) ∧ (ej .pos − ei.pos <= n) (2)

Both window of words pattern matching techniques are common
to many traditional search engines. Applications can choose an
appropriate ordering constraint based on the relation being discov-
ered. For instance, with the CSContact application, people gen-
erally list their name before their email address or phone number.
Therefore, an ordered window operator is probably more appro-
priate to constrain an ordering for prof-email and prof-phone oc-
currences. On the other hand, an unordered window is probably
more appropriate for the CSResearch application, because there is
no obvious ordering between a professor’s name, research area,
and university. Therefore, the user would not want to restrict the
patterns found based on an arbitrary ordering. Thus, for discov-
ering 〈prof, phone, email〉 in CSContact, it makes sense to use
#tf-ow50(#entity(prof) #tf-uw50(#entity(phone)
#entity(email)). This is because there is no clear ordering be-
tween phone number and email address, however, there is a logical
ordering relative to the professor’s name.

Nearest Neighbor Window of Words
Although a window of words can specify more locality than docu-
ment cooccurrence, a basic window can not handle all applications
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equally well. For instance, if the application is trying to discover
an implicit 1-to-1 mapping between entity instances, a basic win-
dow of words may not perform well. The problem can arise on a
hub page because the Pattern Matcher will match all combinations
of entities that appear within the specified window, however, only
the first match may be valid. For instance, pages such as the hub
of UIUC computer science professors, shown in Figure 11, could
cause too many matches for the CSContact application. Specifi-
cally, each professor instance may pattern match with several other
professors’ email addresses and phone numbers.

Thus, we have developed nearest neighbor window of words
techniques: nnuwn and nnown. The nearest neighbor further
constrains the window of words operators beyond Equation (1) or
Equation (2). Specifically, a tuple with entities E1, E2, ..., En and
instances of the entities e1,1, e1,2, ..., e1,m1 , ..., en,1, en,2, ... en,mn

will pass the nearest-neighbor constraint if and only if:

∀i,j,v,w (|ei,x.pos − ej,y.pos| < |ei,v.pos − ej,y.pos|) ∧
(|ei,x.pos − ej,y.pos| < |ei,x.pos − ej,w.pos|) (3)

5.2 Scoring-Measure Techniques
We next address the issue of cooccurrence scoring– After match-

ing pattern occurrences of entity instances e1, ..., en across Web
pages, how to score the corresponding tuple 〈e1, ..., en〉? This sec-
tion will motivate the tuple scoring techniques in Figure 10.

Tuple Frequency
The most basic scoring measure is a tuple frequency measure, which
has the syntax tf. As demonstrated in Section 4.2, the tuple fre-
quency is calculated by counting the number of times a tuple, 〈e1,
..., en〉, appears in the matchings table. For many applications, a
simple count is sufficient, however, this technique can be too sim-
plistic for other applications. For example, a term-frequency based
approach tends to give high scores to common email addresses,
phone numbers, etc.

Tuple Frequency - Inverse Document Frequency
In order to handle entities that are unevenly distributed across the
Web, we support a TFIDF scoring measure, which has the syntax
tfidfj. This measure is calculated by multiplying the tuple fre-
quency of a tuple 〈e1, ..., en〉 by the inverse document frequency of
the entity instance ej . The inverse document frequency, IDF (ej),
can be calculated from the document frequency, DF (ej), which
is the number of documents that e1 appears in at least once [17].
Then, with |D| documents, the inverse document frequency is:

IDF (ej) = log(
|D|

DF (ej)
) (4)

For example, assume the tuple function #tfidf2(#entity-
(prof) #entity(univ)) was applied to the example in Fig-
ure 4. Then, the tuple 〈David DeWitt, U. of Wisconsin〉
would receive a score of .352. Specifically, the tuple frequency re-
mains 2, while the inverse document frequency of the university
instance, University of Wisconsin, is log(3

2
) = .176, as the Uni-

versity of Wisconsin appears in D1 and D3 of the DPI list.
The TFIDF that we propose is a variation of a common technique

used in information retrieval [17]. Specifically, the TFIDF measure
in information retrieval has no concept of a tuple. Rather, the TF
refers to the frequency of a term within a document. Thus, TFIDF
is traditionally used to measure the importance of a term within a
document. However, the motivation remains the same, which is
that the occurrence of a term is not as meaningful if it occurs very
frequently. Thus, this scoring technique is useful for applications
where entity instances should be evenly distributed across tuples,
but they are not evenly distributed across the Web.

An example of this is the CSContact application, where emails
and phone numbers should be evenly distributed across professors,
however, that is not the case across the Web. On the other hand,
with the CSResearch application, research areas are not necessar-
ily evenly distributed across the Web, but we probably do not want
to use a TFIDF scoring measure. Specifically, research areas are
not evenly distributed across professors, where there are more pro-
fessors with Architecture or Database Systems research interests
than professors with Compilers or User Interface research interests.
Therefore, depending on the application, a term-frequency measure
may be preferable to a TFIDF measure.

Distance Weighted
Another scoring measure is a distance-weighted scoring measure,
with the syntax dw, where the tuples are scored by a root mean
square distance measure. Assume each tuple, tj , has instances
of entities e1, e2, ..., en, where e1.pos < e2.pos < ... < en.pos,
then the root mean square distance is:

D(tj) =

qPn−1
i=1 (ei.pos − ei+1.pos)2

n − 1
(5)

Then, each tuple, tj , will receive a score of:

1

D(tj)
(6)

This root mean square distance measure is used in text retrieval
with the motivation that terms that occur closer together are more
related [14]. This is a similar motivation to that of the nearest
neighbor technique. The difference between the two methods is
that the nearest neighbor technique is context-sensitive, omitting
entity instances from consideration based on the surrounding entity
instances. The nearest neighbor technique is useful for hub pages,
as discussed in Section 5.1, however, this can be too restrictive for
other situations.

For example, in the case of 〈prof research〉 discovery, a profes-
sor may have multiple research areas. In this case, these multiple
instances of research (e.g., programming languages, formal sys-
tems, etc.) will appear next to prof, but typically in order of impor-
tance. Therefore, the distance-weighted technique may be more ap-
propriate, as all of the research areas will be pattern matched. Also,
the distance-weighted measure reduces sensitivity to the window
size, as instances that are far apart will receive a lower weighting.

As we conclude, we have described both pattern-measure α’s
(Figure 9) and scoring-measure β’s (Figure 10) for together con-
structing our tuple function F =#β-α(X). As the core of ER dis-
covery for ranking tuples, these tuple functions are supported in our
WISDM-ER system, by the Pattern Matcher (for pattern matching)
and the Tuple Ranker (for tuple scoring), as we discussed in Sec-
tion 4. Our system development is thus complete, with the realiza-
tion of this suit of operators.

6. PROTOTYPE AND CASE STUDIES
Toward our goal of providing indexing and search service for

Web mining applications, we have built our prototype WISDM-ER
system for ER discovery. Section 6.1 will discuss our prototype
testbed. Further, to demonstrate its usage, Section 6.1 presents two
real “case studies,” to show the possibilities and effectiveness of
building Web mining upon WISDM-ER. We demonstrate two sam-
ple applications– CSContactand CSResearch– as “benchmark” sce-
narios we have used throughout. For further reference, we publish
the system for real-time online demo at wisdm-er.myftp.org3.
3To honor the anonymity reviewing policy, instead of using our
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university num pages raw size (MB)

1 IIT 1305 10
2 Illinois 26158 927
3 Indiana 6265 56
4 Michigan 18982 172
5 Purdue 10002 121
6 Wisconsin 19741 117

Figure 12: Web crawl of CS departments at six universities.

6.1 System Prototype
We now report our implementation of our proposed system ar-

chitecture (Section 4). We will discuss the implementation of the
six components of our ER discovery system in Figure 3: Web
Crawler, Entity Extractor, Inverted-List Indexer, Pattern Matcher,
Tuple Ranker, and Relation Constructor. As our current testbed fo-
cuses on support interesting discovery relating to computer science
in an academic setting (i.e., our benchmark scenarios CSContact
and CSResearch), our testbed collects, extracts, and indexes Web
pages from several computer science departments. As our gen-
eral platform, we have implemented the system in C++ on Red Hat
Linux with gcc 3.2.2, unless otherwise noted.

As Section 4 describes, we build our new ER discovery system
upon a traditional page retrieval search engine (“almost for free”).
Specifically, we have extended the Lemur Toolkit (version 2.2), an
information retrieval engine [1]. We extended the system as Fig-
ure 3 shows (and as Section 4 described). On one hand, at the
“bottom,” as Lemur is keyword-based and not entity-aware, we ex-
tended the Inverted-List Indexer and Pattern Matcher to support en-
tities. On the other hand, at the “top,” as Lemur is document-based
and not relation-aware, we implemented our new components of
the Tuple Ranker and Relation Constructor.

To support ER discovery, as our “virtual” Web Crawler, we ob-
tained a portion of a Web crawl from the Stanford WebBase Project4.
Currently, we have indexed a crawl from January 2004 of six uni-
versities. This crawl contains 82453 web pages and 1.4GB of raw
text, as Figure 12 summarizes. We are in the process of scaling up
our corpus to focused crawls of some 20 CS departments from the
WebBase group– We are grateful to their generous support.

Finally, for entity extraction, we have implemented two types of
Entity Extractors (or “taggers”)– Section 7 provides more details
on different types of taggers and their suitability for different kinds
of entities. First, our pattern-driven extractor encodes rules for tag-
ging entities with regular patterns– e.g., phone and email. Second,
our dictionary-driven extractor works for entities whose domains,
or dictionaries are enumerated (e.g., a list of professors, a list of
states)– e.g., university (those in Figure 12), professor (at these
universities), research (as areas in CS), and state (the US states).

We stress that, while not a focus of our work, our tagging is
rather scalable– It reads all of the “dictionaries” into a hash table
and scan the text in just one pass, during the same time as offline
text indexing. To give a perspective, in comparison, the Entity Ex-
tractor runs in under half of the time of Lemur’s Inverted-List In-
dexer. In our own experience as well as several related efforts, such
pattern and dictionary-driving tagging have proven effective– For
instance, using the TAP ontology [10] (which, unlike our simple
dictionary, is a sophisticated “knowledge base”), SemTag [8] has
semantically marked-up 264 million pages and generated 434 mil-
lion semantic tags with 82% accuracy, which is the largest scale ef-
fort to date. In the meantime, to support more “application-generic”
entities, such as person, location, and company, we are in the
process of incorporating automatic learning-based taggers.

6.2 Case Studies
own Web site, we register the demo at this anonymous address.
4http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/

C2a:

C2b:

R1a:

C1a: C1b:

R1b:

Figure 14: Actual query results.

It is our goal to provide relation discovery on the Web for sup-
porting a layer for Web mining applications to be built on top (as
Figure 1 shows). Therefore, to demonstrate such possibilities, this
section studies two “benchmark” scenarios– our example applica-
tions of CSContact and CSResearch. As we have used these sce-
narios throughout the paper, we believe it is most meaningful to
study and evaluate the actual working of these sample applications.

Specifically, we will report and evaluate the results of a series
of sample queries for each scenario. In Figure 13, we describe the
purpose of each query, the tuple function, and the three relation
constraints– We have executed these queries through the system
interface (Figure 5, as Section 2.2 explained). (Thus, these queries
can be submitted to our online demo for their actual results.)

Note that our case studies focus on the “semantic” issues and
do not discuss the “time” performance. Since our system directly
builds upon an IR system (which can be any scalable search en-
gine), such performance evaluation will likely boil down to the
choice of the underlying engine– which we use Lemur. While not
explicitly measured, in our experiments, the response time has been
rather satisfactory even for interactive querying. We invite the read-
ers to view the online real-time demo. The current server is running
on a Pentium-4 2.6GHz PC with 1GB memory.

Application: CSContact
First, we report the CSContact application. To begin with, suppose
we are interested in the phone number for David DeWitt. From the
query C1a, WISDM-ER produces the result as shown in Figure 14,
which does match David DeWitt’s phone number.

To contrast, now, suppose we want the “fax” number instead.
Although the same schema 〈prof, phone〉 as C1a, this query has
different underlying tuple semantics (we are looking for a different
phone). However, while fax and phone are not distinguished in
entity extraction, we can do so by WISDM-ER online disambigua-
tion with an appropriate tuple function– Specifically, C1b accom-
plishes this disambiguation by adding keyword fax to the tuple
function, which leads to the discovery of a different tuple, as Fig-
ure 14 shows. Contrasting C1a with C1b, we observe that such
online disambiguation is guided by different tuple functions for dis-
covering different tuple semantics– which is in essence consistent
with our view of the hypotheses in Section 3.

Such online disambiguation for the desired association of in-
stances, can be achieved in many ways– e.g., with the presence of
“context” entities: Consider finding email for AnHai Doan. First,
C2a produces, as Figure 14 shows, all his emails from three uni-
versities that he has been associated with. To disambiguate, how-
ever, if we know the additional context that he is at Illinois, we can
perform online disambiguation to focus on only this context. Query
C2b thus specifies a tuple function by adding university, which is
restricted by a reference-only constraint to Illinois– and it indeed
produce the right email in Figure 14.

To more systematically measure the “accuracy” this application,
we evaluated a “larger” query returning many tuples (unlike pre-
vious examples). We created query C3 for finding 〈professor,
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between all three entities must be correct. We also have reason to
believe with a larger corpus, we will be able to filter out even more
noise to produce better results.

7. RELATED WORK
The goal of WISDM-ER is to provide a generic, systematic Web

indexing and search mechanism to support entity-relation discov-
ery and then to benefit the development of many Web-mining appli-
cations. To our knowledge, there is little work directly addressing
the problem we consider in this paper. In this section, we review
some works that are considered relevant to ours in the following as-
pects: semantic entity and relation annotation, and cooccurrence-
and pattern-based relation mining.

Sharing a similar goal of building a more structured and machine-
understandable Web, many research studies are addressing the prob-
lem of semantic annotation on Web pages, e.g., Semantic Web.
Most of such studies perform the tagging of relations through the
use of carefully crafted ontologies [8, 11, 18]. For example, Sem-
Tag [8] tags entities and relations using the TAP ontology [10].
However, the creation and maintaining of ontologies is arduous and
time-consuming. In contrast, our approach uses holistic cooccur-
rence analysis to dynamically and reliably discover the association
between entities. In addition, as the entities (such as universities)
are rarely changed but the relations (or tuple semantics) to discover
vary enormously and depend on individual application, relying on
those “static” relations defined in the ontology is rather inflexible.
Our approach aims for an adaptable search-based support towards
mining relations, beyond just annotating relations.

One core technique in our tuple discovery is cooccurrence anal-
ysis. As the Web becomes the largest and most ubiquitously avail-
able data repository in the world, cooccurrence analysis based on
such Web-scale statistics have been explored in many problems,
such as finding synonyms in an IR system [19], validating the question-
answer pairs in a Q/A system [14, 15], and acquiring hit counts to
support various mining tasks in databases [9, 12]. However, most of
such works exploit cooccurrence analysis in a rather ad-hoc way:
First, the lack of abstraction makes their approaches rather task-
specific and hard to adapt; Second, they only provide limited op-
erations, such as the use of hit counts of keywords or documents–
whatever the search engines provides; And third, due to the pre-
vious two points, they lack systematic search-based support. In
contrast, our work aims to provide a systematic mechanism to sup-
port various cooccurrence scoring techniques on top of the vari-
ous cooccurrence patterns. With such systematic search support
on pattern-based cooccurrence analysis, many applications can be
easily built, including those just mentioned.

Entity and relation extraction is a traditional problem in informa-
tion extraction (IE). Entity extraction, as one building block of our
system, has been explored extensively and is rather mature. The
techniques are mainly of three types, and each helps for a differ-
ent type of entity in our system: (1) pattern/rule-based– suitable
for entities with generic patterns, such as email and phone; (2)
dictionary-based [7]– suitable for application-specific entities, such
as prof and movie; And (3) machine learning-based (e.g., Hidden
Markov Model [4])– suitable for generic entities with complex pat-
terns, such as person and address.

In addition to entity extraction, relation extraction is also consid-
ered in IE. However, most of the approaches require hand-crafted
rules or training data. Wrappers [13] can be learned with a small
amount of training, but only operate on highly structured docu-
ments; that is, the relations have been formatted semi-structurally
and hence, the challenge is in segmenting entities, rather than min-
ing relations. Some recent IE systems adopt bootstrapping tech-
niques to discover tuples [2, 5, 16]. With a small set of domain-

specific seed tuples (e.g., book titles and authors), the systems learn
extraction patterns from them and use the learned patterns to extract
more tuples, which in turn are used to learn more patterns. The ma-
jor problem of applying such approaches, as shown in [5], is that the
patterns learned in later steps become enormous and error-prone so
that the tuples extracted become less and less reliable. In contrast,
we use the cooccurrence analysis to find the matching relation tu-
ples. The large scale of Web data becomes an opportunity, instead
of obstacle, to our approach. In addition, our system is a combi-
nation of entity extraction and relation mining, while earlier works
generally address only one of the tasks.

8. CONCLUSION
We have introduced ER discovery as a useful function that sup-

ports mining of the Web by providing a layer of knowledge rep-
resentation. In addition, we have implemented WISDM-ERby ex-
tending a traditional IR search engine, which shows interesting ap-
plications of ER discovery and 83% − 91% accuracy. We will
continue to build upon our current system to support a broader
spectrum of Web mining applications. First, we plan to integrate
machine learning based entity taggers, in order to support generic
entities such as person and organization. In addition, we
will consider stop-early conditions, to retrieve promising relations
on a much larger scale. Finally, we will consider more advanced
Web mining applications on top of WISDM-ER.
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