156 research outputs found

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Performance of Asynchronous MC-CDMA Systems with Maximal Ratio Combining in Frequency-Selective Fading Channels

    Get PDF
    The bit error rate (BER) performance of the asynchronous uplink channel of multicarrier code division multiple access (MC-CDMA) systems with maximal ratio combining (MRC) is analyzed. The study takes into account the effects of channel path correlations in generalized frequency-selective fading channels. Closed-form BER expressions are developed for correlated Nakagami fading channels with arbitrary fading parameters. For channels with correlated Rician fading paths, the BER formula developed is in one-dimensional integration form with finite integration limits, which is also easy to evaluate. The accuracy of the derived BER formulas are verified by computer simulations. The derived BER formulas are also useful in terms of computing other system performance measures such as error floor and user capacity

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Adaptive bootstrap signal separators for BPSK/QAM-modulated wireless CDMA systems in a multipath environment

    Get PDF
    CDMA is an attractive multiple-access scheme, because of its potential capacity increase and its anti-multipath fading capability. For satisfactory performance, however, the effect of the near-far problem has to be resolved. This problem can be combated by using power-control, which, however, results in an overall reduction in communication ranges, and thus in a loss of capacity. Among other methods for mitigating the near-far problem is the use of decorrelating receivers, both of fixed type, which directly utilizes the cross-correlation of the users codes, and of adaptive type, which uses recursive algorithms that leads to signal decorrelation. Not to lessen the importance of other adaptive algorithms, the current research concentrates on what was termed in the literature bootstrap algorithm . Although the emphasis will be on applying the adaptive bootstrap decorrelator, the fixed type will be used primarily to provide comparison. Also used for comparison are both blind adaptive and training sequence based MMSE. Most of the literature on multiuser detection has been assuming BPSK. However, a need for transferring wideband data demands using modulation schemes with high bits/cycle, such as QAM. Therefore, modification of the receiver is considered, so that QAM-modulation can be applied efficiently, using the complex signal approach of this modulation. For the asynchronous channel, vast amounts of research have been devoted to using one-shot matched filter banks followed by conventional decorrelators which implement the inverse of some (partial) correlation matrix. In this work, an adaptive bootstrap version is presented, which is suitable for the one-shot structure shown previously to be more robust to errors in delay estimation. It has also been noted that such a correlation matrix can, depending on the channel characteristics, become ill-conditioned or even singular. Therefore, another matched filtering structure, followed by what is called a multishot conventional (fixed type) decorrelator, has been previously suggested to mitigate this singularity problem. However, the fixed type of the multishot decorrelator is expected to have similar non-robustness to errors in delay estimation as was previously shown for the one-shot. Therefore, the adaptive multishot bootstrap decorrelator is presented and evaluated. Also, by adding an adaptive canceler, an extension to the above matched filter-decorrelator combination, will be proposed and evaluated. A multipath time-variant fading environment will be used in some of these performance evaluations. Finally, when handling multipath channels, the question is raised whether path combining should be done before or after the signals are decorrelated. For the asynchronous case, a one-shot extension of the bootstrap algorithm is presented, which is capable of decorrelating the signals from resolved paths of different users, to facilitate the decorrelate before combining case

    Initial Synchronisation in the Multiple-Input Multiple-Output Aided Single- and Multi-Carrier DS-CDMA as well as DS-UWB Downlink

    No full text
    In this thesis, we propose and investigate code acquisition schemes employing both colocated and cooperative Multiple Input/Multiple Output (MIMO) aided Single-Carrier (SC) and Multi-Carrier (MC) Code Division Multiple Access (CDMA) DownLink (DL) schemes. We study their characteristics and performance in terms of both Non-Coherent (NC) and Differentially Coherent (DC) MIMO scenarios. Furthermore, we also propose iterative code acquisition schemes for the Direct Sequence-Ultra WideBand (DS-UWB) DL. There is a paucity of code acquisition techniques designed for transmit diversity aided systems. Moreover, there are no in-depth studies representing the fundamental characteristics of code acquisition schemes employing both co-located and cooperative MIMOs. Hence we investigate both NC and DC code acquisition schemes in the co-located and cooperative MIMO aided SC and MC DS-CDMA DL, when communicating over spatially uncorrelated Rayleigh channels. The issues of NC initial and post-initial acquisition schemes as well as DC schemes are studied as a function of the number of co-located antennas by quantifying the attainable correct detection probability and mean acquisition time performances. The research of DS-UWB systems has recently attracted a significant interest in both the academic and industrial community. In the DS-UWB DL, initial acquisition is required for both coarse timing as well as code phase alignment. Both of these constitute a challenging problem owing to the extremely short chip-duration of UWB systems. This leads to a huge acquisition search space size, which is represented as the product of the number of legitimate code phases in the uncertainty region of the PN code and the number of legitimate signalling pulse positions. Therefore the benefits of the iterative code acquisition schemes are analysed in terms of the achievable correct detection probability and mean acquisition time performances. Hence we significantly reduce the search space size with the aid of a Tanner graph based Message Passing (MP) technique, which is combined with the employment of beneficially selected generator polynomials, multiple receive antennas and appropriately designed multiple-component decoders. Finally, we characterise a range of two-stage iterative acquisition schemes employing iterative MP designed for a multiple receive antenna assisted DS-UWB DL scenario

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    Spectral efficiency of CDMA based ad-hoc networks

    Get PDF
    Spectrum efficiency and energy efficiency are two important attributes driving innovation in wireless communication. Efficient spectrum utilization and sharing with multiple access techniques and using under-utilized spectra by cognitive radios is the current focus due to the scarcity and cost of the available radio spectrum. Energy efficiency to increase operating time of portable handheld devices like smartphones that handle simultaneous voice/video streaming and web browsing and battery powered nodes in a sensor network where battery capacity determines the lifetime of the network is another area attracting researchers. The focus of this thesis is the spectral efficiency of multicarrier code division multiple access (CDMA) in wireless ad-hoc networks. Furthermore, energy efficiency to maximize lifetime of a network are also studied.In a multicarrier CDMA system inter-carrier interference (ICI) due to carrier frequency offset and multiple access interference (MAI) are two major factors that deteriorate the performance. Previous work in this area has been mostly focused on simulation results due to the complexity of the analysis due to the large number of random variables involved. Taking into account accurate statistical models for ICI and MAI that account for the correlation between adjacent subcarriers, this thesis presents new mathematical analysis for the spectral efficiency of multicarrier CDMA communication systems over a frequency selective Rayleigh fading environment. We analyze and compare three multicarrier CDMA schemes which are multicarrier CDMA, multicarrier direct-sequence CDMA and multitone CDMA. We also present simulation results to confirm the validity of our analysis. We also analyze the performance of three simple multiple access techniques or coexistence etiquettes in detail, which are simple to implement and do not require any central control. Accurate interference models are developed and are used to derive accurate expressions for packet error rates in the case of direct sequence CDMA and slotted packet transmission schemes. These results are then used to study the performance of the coexistence etiquettes and compare them with each other. Finally we present a new joint node selection and power allocation strategy that increases lifetime of an ad-hoc network where nodes cooperate to enable diversity in transmission.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore