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ABSTRACT 

ADAPTIVE BOOTSTRAP SIGNAL SEPARATORS FOR 
BPSK/QAM-MODULATED WIRELESS CDMA SYSTEMS IN A 

MULTIPATH ENVIRONMENT 

by 
Nico J.M. van Waes 

CDMA is an attractive multiple-access scheme, because of its potential capacity 

increase and its anti-multipath fading capability. For satisfactory performance, 

however, the effect of the "near-far" problem has to be resolved. This problem can 

be combated by using power-control, which, however, results in an overall reduction 

in communication ranges, and thus in a loss of capacity. Among other methods for 

mitigating the near-far problem is the use of decorrelating receivers, both of fixed 

type, which directly utilizes the cross-correlation of the users codes, and of adaptive 

type, which uses recursive algorithms that leads to signal decorrelation. Not to lessen 

the importance of other adaptive algorithms, the current research concentrates on 

what was termed in the literature "bootstrap algorithm" . Although the emphasis 

will be on applying the adaptive bootstrap decorrelator, the fixed type will be used 

primarily to provide comparison. Also used for comparison are both blind adaptive 

and training sequence based MMSE. 

Most of the literature on multiuser detection has been assuming BPSK. 

However, a need for transferring wideband data demands using modulation schemes 

with high bits/cycle, such as QAM. Therefore, modification of the receiver is 

considered, so that QAM-modulation can be applied efficiently, using the complex 

signal approach of this modulation. 

For the asynchronous channel, vast amounts of research have been devoted 

to using one-shot matched filter banks followed by conventional decorrelators which 

implement the inverse of some (partial) correlation matrix. In this work, an adaptive 



bootstrap version is presented, which is suitable for the one-shot structure shown 

previously to be more robust to errors in delay estimation. It has also been noted 

that such a correlation matrix can, depending on the channel characteristics, become 

ill-conditioned or even singular. Therefore, another matched filtering structure, 

followed by what is called a multishot conventional (fixed type) decorrelator, has been 

previously suggested to mitigate this singularity problem. However, the fixed type 

of the multishot decorrelator is expected to have similar non-robustness to errors in 

delay estimation as was previously shown for the one-shot. Therefore, the adaptive 

multishot bootstrap decorrelator is presented and evaluated. Also, by adding an 

adaptive canceler, an extension to the above matched filter-decorrelator combination, 

will be proposed and evaluated. A multipath time-variant fading environment will 

be used in some of these performance evaluations. 

Finally, when handling multipath channels, the question is raised whether path 

combining should be done before or after the signals are decorrelated. For the 

asynchronous case, a one-shot extension of the bootstrap algorithm is presented, 

which is capable of decorrelating the signals from resolved paths of different users, 

to facilitate the decorrelate before combining case. 
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CHAPTER 1 

INTRODUCTION 

1.1 Wireless Communications 

The demand for wireless services has grown exponentially over the last few decades. 

Items like cellular phones, advanced cordless phones, and pagers have become 

commonplace gadgets. Since bandwidth is scarce, the need arises to serve more 

and more users simultaneously within a given limited bandwidth. And this without 

reducing the quality of transmission, but rather with better transmission quality as 

new systems are designed to handle data, which requires higher transmission quality, 

as well as voice-transmission. 

1.2 Multiple Access Transmission Schemes 

To allow the simultaneous transmission of data streams, methods need to be devised, 

which allow the receiving end to extract the desired data stream from the received 

composite signal. For this purpose, there exist a number of basic concepts, termed 

multiple access (MA), which (including some hybrid forms) are used in present opera-

tional systems. Below, a brief description of the most commonly used multiple access 

schemes. 

Frequency Division Multiple Access 

Frequency Division Multiple Access (FDMA) is the oldest and most. basic 

technique. Using this scheme, the available bandwidth for a physical area, 

termed a cell, is divided into a number of sub-bands, each of which is allocated 

to a single transmitter receiver pair. Provided the guard-bands between the 

sub-bands are sufficiently large, no multiple access interference (MAI) will 

occur. Disadvantages of FDMA are, among others, the fact that if the traffic in 

a sub-band is sporadic, thus bandwidth is essentially wasted, the fact that the 

1 
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same bandwidth can only be reused in another cell if the intermittent distance 

is large enough to cause sufficiently low intercell interference (large frequency-

reuse factor) and the fact that a separate transceiver has to be dedicated to 

each sub-band. Usage of FDMA leads to very slow handoffs between cells;  thus 

causing a high probability of loss of connection [1]. 

Time Division Multiple Access 

Time Division Multiple Access (TDMA) is a technique used for example in the 

European GSM systems, allocates the whole available bandwidth in the cell to 

each user sequentially for a short duration of time, termed a timeslot. Thus, to 

avoid MAI, strict synchronization is required. At the cost of some additional 

signaling, it is possible to avoid allocating the bandwidth to users which have 

no data to send, thereby avoiding waste of bandwidth. Using TDMA, the 

same transmitter can be used to communicate with many mobiles, and, due 

to the fact that the mobile can acquire information on the signal strength 

of surrounding base-stations while it is not in its active timeslot, much faster 

handoffs can be achieved than with FDMA, causing reduction of the probability 

of connection-loss [1]. TDMA requires similar frequency-reuse factors as FDMA 

to avoid inter-cell interference. 

Direct Sequence Code Division Multiple Access 

In Direct Sequence Code Division Multiple Access (DS-CDMA), each data-

symbol is convolved with a user-specific code (each element of which is called 

a chip), after which the result is transmitted in serial using one carrier arid the 

whole bandwidth of the cell. The data-symbol is acquired at the receiver by 

again multiplying the received data with the user-specific code and summing 

the results. Synchronization of the received signals code with the receivers 

code can be performed by maximizing the correlation between the two. Since 
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it is difficult or impossible (due to channel behavior and requirements on the 

code-design) to keep the signals of the different users orthogonal, MAI will be 

introduced, the effect of which is aggravated by what is termed the "near-far 

problem". The near-far problem results in MAI reaches unacceptable levels, 

due to the interfering user(s) being significantly closer to the base-station, 

and hence being received with significantly higher power-levels. Advantages 

of DS-CDMA are increased capacity among others due to the possibility for 

a frequency-reuse factor of 1, (meaning all cells use the same bandwidth, but 

different code-sets), the more reliable soft-handoff possibility [1], and the voice-

activity factor, which increases the capacity by approximately a factor of two. 

• Multi Carrier Code Division Multiple Access 

Multi Carrier Code Division Multiple Access (MC-CDMA), also known as 

OFDM-CDMA, is a technique in which a user, like in DS-CDMA, convolves 

each data-symbol with a code, after which each element of the result is 

modulated on a different carrier (generally using a DFT). All users use the 

same carrier frequencies. The data-symbol is retrieved at the receiver by again 

multiplying the received data of all carriers with the user-specific code and 

adding the results up. Just as with DS-CDMA, using MC-CDMA will almost 

unavoidably lead to MAI. Also the system capacity, and soft-handoff feature 

are similar. 

1.3 Motivation 
Multiple Access Receivers 

Multiple access schemes like FDMA and TDMA allow for simple single user detectors, 

as the schemes themselves ensure MAI-free reception. Unfortunately, the achievable 

capacity these schemes provide is comparatively low, which is a serious disadvantage 

given the explosive growth of the demand for wireless services. Therefore, a lot of 
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research has and is being devoted to MC-CDMA and DS-CDMA using multiuser 

detectors, which promise to provide higher capacity at the cost of higher complexity. 

In this study, only DS-CDMA is being considered, although the discussed receiver 

structures could easily be adapted to fit MC-CDMA systems. 

The main disadvantage of both MC-CDMA and DS-CDMA is the presence of 

MAI, which is in most cases the main limiting factor on the performance. Hence, to 

improve the performance, the system has to either limit the MAI by applying power 

control (as for example implemented in 1S95), which limits the usable power to that 

of the worst-case user and hence severely reduces capacity, or employ a near-far 

tolerant (or resistant), MAI-reducing scheme in the receiver. 

Beside the optimal receiver proposed by Verdu[2], which is rather complex 

to implement, many suboptimal, less complicated, schemes were proposed. These 

schemes can roughly be divided into three categories; fixed (like Lupas and Verdu's 

decorrelator based on correlation matrix inversion [3]), adaptive learning by means of 

training-sequences (like adaptive LMS or type-based [4], and blind adaptive schemes 

(like BAMD [5] and bootstrap [6, 7]). 

Signal Decorrelation 

Since it can be safely assumed that data-streams of different users are independent, 

and thus uncorrelated, the MAI cancelling can effectively be done by decorrelating 

the different user signals. In this study, two basic types of decorrelators, inversion 

based decorrelator [3] (fixed type, assumes accurate knowledge of codes and relative 

delays) and bootstrap decorrelator [6] (blind adaptive type decorrelator, assumes 

knowledge of codes and relative delays with allowed errors) are being used and 

compared. Their performance is investigated for both synchronous (an approx-

imation to the forward link in mobile systems, or fixed wireless systems) and 
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asynchronous (backward link in mobile systems) systems and to forward links in 

mobile systems with multipath. 

Bootstrap Decorrelator 

The idea of the bootstrap algorithm as a way to cancel interference was first proposed 

in 1981 [81 and later used for cancelling cross-polarization in satellite communications 

[9] and in microwave terrestrial radio links [10]. Two of the bootstrap structures were 

then proposed. They are, respectively, the backward-backward structure controlled 

by power minimization, and the forward-forward structure controlled by decorre-

lating the outputs. It was shown that for the algorithms to converge to a state of 

signal separation, a signal distinguisher, termed discriminator, is needed. Such a 

discriminator uses a known, simple difference between the signals to be separated, 

rather than needing high-quality estimates of the signals themselves as in the case of 

the regular LMS noise canceler. In general the adaptive weights are controlled with 

recursive equations as follows: 

For the case of power criterion, 

and for the decorrelation control, 

where zi  i = 1, • • . , K are the outputs, corresponding to the different user signals 

(K is the number of co-users), D(•) is the discriminator operator. In this study, only 

the forward-forward structure is being considered, with the signum function used as 

discriminator, as this structure was found to be more suitable to digital signals. 

One-shot versus Multi-shot 

In an asynchronous environment, the matched filter output of the data-symbol of 

a desired user generally contains interference from not one (like in the synchronous 
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case), but more data-symbols of each other user. To handle such situations, two 

schemes for matched filter banks are considered, one using the so called "one-shot" 

approach, in which one filter is matched to one of the user codes, called the desired 

user, while other filters are matched to the left (0, Tk k = 2, • • , K) and right 

(Tk,.  • • T k = 2, . • • , K) parts of the other user codes respectively. Following such a 

bank of filters, a decorrelator is used followed by a combiner which adds the results 

that correspond to the left and right part, to estimate the symbols. The other, termed 

multi-shot approach, in which each filter is matched to the code of the respective filter 

user and sampled corresponding to the bit timing (Tk, T + TO of this user. Following 

such a bank of filters, a decorrelator is used, either fixed or adaptive, to obtain 

the current symbol using information from the samples of the current, previous and 

following symbols of all users. 

Multipath Combining and Decorrelation Processing Order in Dispersive 
Environments 

Due to channel dispersion, signals will be received via multipath separated by time 

delays. Rake receivers have been used to combine these multipath signals, to achieve 

diversity gain and improve performance. The effect of the order of these processes 

(combiner followed by decorrelator, or decorrelator followed by combiner) on the 

system performance and complexity will be studied. For the one-shot asynchronous 

case, a version of the bootstrap decorrelator, which allows for decorrelating before 

combining, is presented and evaluated. 

Two-stage Receivers 

When using very loose or no power-control, the power of the interfering users may 

be significantly larger than the power of the desired user. It has been shown that 

the performance, of some of the aforementioned decorrelators and for certain channel 

types, is significantly worse than the single-user (i.e., no MAI) performance. In those 
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cases, a second (canceler) stage can be added to improve the performance. Such a 

matched filter, decorrelator and canceler is called parallel interference canceler (PIC). 

In this study, the efficiency of several of these cascaded receivers is considered. 

Modulation Considerations 

Most of the work done with multi-user receivers assumed binary phase shift keying 

(BPSK) modulation. However, a. need for transferring wideband data demands using 

modulation schemes with high bits/cycle rates. Quadrature amplitude modulation 

(QAM) is one of these schemes. Therefore, in this study, part of the focus will be on 

applying QAM as modulation, rather than BPSK. Also, for this case, attention will 

be paid to reducing hardware by directly using complex signal presentation. 

General Channel Model 

For the (asynchronous) uplink flat fading channel with dispersion, the following 

widely accepted (see for example [11, 12, 13]) equivalent low-pass model will be 

used 

(1.1) 

where K is the number of users, M the number of paths (assumed equal for all users), 

are the amplitude and relative delay of the m  
th 

path of the k user and bk  and sk  are the data symbol and signature waveform of the 
th 

k user respectively (in the presented results, all signature wave-forms were taken 

to be length 15 binary Gold-codes, unless specified otherwise). γkm is the fading 

coefficient of path m  of user k such that Ern E[γ^2 km] = 1. δkm  is the delay of path in 

of user k relative to Tk, the delay of the first path of this user. This means δk1  = 0 

and 5km > δkn,m > n > 0. n(t) is the zero mean AWGN, with a two-sided power 

spectral density of N0 /2. (1.1) also describes the synchronous (downlink) channel 

model by taking Tk  = 0 Vk = 1, • • K and (δkm = δm Vk = 1, • • K, meaning that 
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the relative delays of the paths are the same for each user. A channel model without 

dispersion is easily created by choosing M = 1. 

L4 Outline 

The bootstrap algorithm has been proposed and used as an adaptive decorrelator 

for multiuser BPSK signals. In chapter 2, the application of QAM data, rather 

than BPSK is investigated. The synchronous (downlink) channel is considered. The 

performance of a receiver using the bootstrap algorithm with QAM modulated signals 

is evaluated analytically, as well as through simulations. Further, a new model of the 

algorithm, termed 'Complex Bootstrap', is developed, which deals directly with the 

complex signals in the complex domain, as a result of which hardware can be saved. 

In chapter 3, the asynchronous one-shot bootstrap algorithm, which enables 

the receiver to decorrelate the signals received over the resolved paths of a multipath 

channel. The performance is evaluated through simulations, and the total separation 

of the user's signals from strong interference is shown both analytically as well as 

through the simulation results. 

In [31, Lupas and Verdu suggest a decorrelator based on the inverse of the 

correlation matrix for synchronous systems. In [14], they suggested an extension 

for asynchronous systems, i.e. they use the inverse of a larger "partial correlation 

matrix". However, in the latter case, the correlation matrix may be ill-conditioned 

or even singular, something which is ignored in most publications. Hence, in chapter 

4, by use of examples, the condition number of the correlation matrix is examined 

and it is shown that the matrix may very well be singular, which makes inversion 

impossible. 

Chapter 5 deals with the multi-shot receiver; an asynchronous receiver which 

does not exhibit the singular-matrix problem examined in chapter 4. The fixed 

(non-adaptive) type of multishot decorrelator has been proposed earlier and shown 
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to perform satisfactory when only three successive bits of each user are stacked 

and processed together [15). In this work, an adaptive bootstrap structure of this 

decorrelator is proposed and examined. Also, a canceler stage to follow this decor-

relator is presented, hence exhibiting PIC based on the multishot structure, the error 

performance of which is obtained. 

In a dispersive environment, signals arrive through different paths at the 

receiver. These signals can be combined to achieve a diversity gain which improves 

the performance. In chapter 6, the effects of performing this combining before or 

after decorrelating is investigated for the synchronous receiver case. 

Lastly, in chapter 6, simulation results are presented, which compare the 

conventional single-user receiver (with MAI), the one- and multi-shot decorrelator 

based on matrix inversion, one- and multi-shot bootstrap, and both the blind 

adaptive and training sequence initialized MMSE structures. A comparison is based 

on their near-far resistance (function of interfere to desired user's power), as well as 

their robustness to errors in estimations of the user's relative delays. 



CHAPTER 2 

SYNCHRONOUS QAM-MODULATED CDMA RECEIVER 

In this chapter the adaptive synchronous QAM-modulated CDMA receiver, based 

on the bootstrap approach, is studied. This receiver is practically most suited for the 

base station of fixed point wireless networks, as synchronization is easily achieved 

there. Synchronization is also present in mobile stations, but the complexity of the 

receiver, and the requirement of the knowledge of all user codes, might be an obstacle 

for practical implementations. The synchronous assumption might also be made to 

simplify the channel model and can be used for obtaining performance bounds. 

This receiver will be studied in three steps. First we will assume that there is no 

correlation between the real and imaginary parts of all signals, meaning the real rail 

of one user suffers only interference from the real rail of the other users and likewise 

for the imaginary rail. This reduced the problem to that of two separate receivers 

using PAM modulation. The steady state performance analysis, which follows the 

analysis for BPSK in [7], will be shown. Assuming a perfect estimate of the power 

level of each user after the decorrelator, symbol level decision is performed. An 

adaptive method for power level estimation is also proposed and used for simulation 

purposes. 

Next, it is assumed, more realistically, that there exists cross-correlation 

between the real and imaginary rail of signals of different users, but at first it 

is assumed that there is no interference between the two rails of the same user. 

However, it will be shown that whether the rails of the same user are correlated 

before processing is irrelevant, since decorrelating with other users' signals will cause 

correlation between these two rails, even when they are a priori uncorrelated. Hence 

intra-rail decorrelation becomes necessary. 

The second step of study presents the receiver in real domain representation, 

from which the complex domain description is derived in the third step. 

10 
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2.1 Decorrelator Model 

The equivalent low-pass signal of a synchronous system (in channels without 

dispersion) at the input of the matched filter bank is taken from (1.1) to be 

(2.1) 

Using QAM, the symbols bk  are complex, with their real and imaginary part 

belonging to the set 

a power of 2, is the size of the square constellation. The constant c is chosen such 

that the principle constellation power is normalized to one. Thus, 

(2.2) 

Following the matched filter, the composite signal can be written in matrix form as 

(2.3) 

where x,θ, and b are complex vectors of dimension K. P is aKxK complex matrix 

containing the correlation coefficients, 

(2.4) 

where pij  is the complex correlation between between the signature of user i and user 

j. The ones on the diagonal stem from the assumption that the rails of the same 

user remain orthonormal in the channel. Omitting this assumption is examined in 

section 2.4.4. 

A = diag [√a1 • • • √aK, is real and θk = √ akbk. To keep the model general, 

it is assumed that P is not Hermitian. The noise covariance matrix is Hermitian, 

P N = (P + P")/2. 

For two inputs only, as in dually polarized QAM signals, 

(2.5) 
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Rewriting (2.5) in its real representation by expanding 

we obtain 

(2.6) 

The decorrelator we are seeking is a linear transformation of the matched filter 

output x with a matrix V, which equals 	if Lupas' and Verdu's approach is 

used (although this approach was previously only applied to BPSK modulation), 

and I — W" if the adaptive bootstrap decorrelator is used. I is the K x K identity 

matrix and W is a weight matrix with zeroes on the diagonal. Thus: 

z = Vx 	 (2.7) 

Concentrating on the bootstrap decorrelator, 

(2.8) 

We try choosing the weight matrix W such that all outputs of the decorrelator are 

uncorrelated with each other, 

(2.9) 

where zk  is z without the kth  element. This means that, except for the conjugation, 

the discriminator function is used; the signum function, is exactly the same as the 

one used for BPSK modulation (the introduced conjugate will have no effect on real 

signals). This makes the decorrelator totally transparent to the constellation used. 
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2.2 The Bootstrap Separator for Orthogonal QAM Signals 

First, we will examine the performance of orthogonal QAM. Orthogonal in this 

context means that there is no cross-rail interference between any of the users' 

signals. This, in fact, reduces the QAM-constellation to two PAM constellations. 

We can thus examine the performance for each rail separately. 

We will examine the performance of the real rail, whereby from all complex 

vectors, matrices and symbols only the real part is used without using the real 

subscript, R, to avoid unnecessary notational complexity. 

From 2.8 

(2.10) 

where i = 2,3, • • • , K, and 	pi  and wi  are respectively the data vector b, the 

column of P, and the ith  column of W without the ith  element. Pi  is the matrix 

P without the ith  column and row. pi  is the ith  column of P without the element 

and ni  is the vector n without the it' element. If z1  corresponds to a high SNR, 

signal, and all other signals are equally strong, having high SNIR., then the constraint 

2.9 can be approximated by E[zisgn(bi )] and results in wi 	 = 2 •... K. 

This will be proven section 2.4.2 for fully complex signals. 

When these conditions are met, let 

(2.11) 

where 

Tor convenience to the reader, some of the notational descriptions will be repeated in 
different places. 
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With these values of w1  and wi  we get 

(2.12) 

where 

(2.13) 

To find the components of δ1, the following must be equated to zero: 

In Appendix A, it is shown that in the steady state, when E [zi sgnzi ] = 0, δ1  

is given by 

(2.15) 

where 1.P i  is defined as 

(2.16) 

(2.17) 



1.5 

where Q(.) is the error function, and 

(2.18) 

which should be recognized as an upperbound on Q1 , which is tight when all LSNRk 

are large. When /V/ = 4 and c = 1 so as to achieve the same Eb/No  (contrary to 

its original definition, which achieves the same Es /No) , then (2.15) reduces to the 

special case of BPSK, the result for which was derived in [7). 

For user 1, an error occurs when the absolute value of the noise  plus inter-

ference δTA1b1 exceeds the threshold c (the constellation scaling factor), modified 

due to the channel, amplification and decorrelation by the factor 

(2.19) 

where the summation on b1  is on all possible vectors b1 , whose entries are taken from 

the constellation set. Thus, the symbol error probability of the QAM constellation 

(assuming no cross-rail correlation) is given by 

(2.2U) 
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In figure 2.1, the case of 16-QAM is compared with BPSK for the same 

average energy per bit (Eb1 = 8dB). Also, for comparison, the limiting single-user 

performance (no MAI), and the performance as would be achieved by using the 

inversion decorrelator P-1  are shown. The figure shows the performance of user I 

in a 3 user scenario, with correlations ρ12  = 3/7, ρ13  = ρ23  = —5/7. 

Figure 2.1 Theoretical performance comparison of 16-QAM and BPSK, three users. 
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In figure 2.2, the simulated performance of the bootstrap for different ►► umbers 

of users in a 16-QAM modulated CDMA system, using Cold codes with a spreading 

gain of 15, is given. 

Figure 2.2 Performance of bootstrap compared to conventional detection 
for 16-QAM. 

Extending the above to the case of non-orthogonal QA.M (i.e. the case in which 

there is interaction between the rails of different users), can be done by expressing 

the system in its real representation as shown in the next section. Computing the 

performance of the equivalent 2K x 2K system using (2.19) and combining the 2 

performances of the rails of a user (under the assumption of independent errors), 

will result in the desired symbol error probability of this user. 
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2.3 The Real Bootstrap Separator for QAM Signals 

For two users, the bootstrap algorithm in the real representation may be expressed 

as 

(2.21) 

It should be noticed, that although the channel is assumed to generate no cross-

correlation between the I and Q rail of the same user, we nevertheless need to include 

the weights wii  and w'ii , as the bootstrap algorithm, and any other vector rotation, 

introduces such a correlation. Without these weights , these cross-correlations would 

otherwise not be taken care off. This fact can be seen for example by expanding z1  

from (2.6) without the weight w'ii (and omitting the noise terms) 

Clearly, to clean z1R  from interference of the second user, the values of w21R  and 

w21 are dictated by the second and third term, leaving the last term non-zero. This 

means that z1R  remains a function of Om  and hence that there exists interference 

across the I and Q rails of the same user after the decorrelator. Removal of this 

interference will be further discussed in section 2.4.3. 

The recursive weight updates for the bootstrap algorithm, which will lead to 

the steady state when the outputs are uncorrelated, are defined in the same way as 

for the BPSK bootstrap structure (see [7]): 

(2.22) 



19 

The factor µ is a small number, which needs to be set such that the weights arc able 

to track changes in the channel. Weight wijR  is according to (2.21) the weight from 

the AV' input to the jRth  output, intended to remove the interfering component 

θiR from zjR. Assuming sgn(ziR) is sgn(θiR), this means that if 

zero, the steady state requirement for the weight wijR, then zjR  must be independent 

from ziR and thus the decision on zjR will be (approximately) independent of Ow. A 

similar reasoning can he made for the other three equations of (2.22). 

It's important to emphasize that only samples of the composite signal vector 

are needed in the operation of the algorithm in (2.22). Neither explicit values of the 

amplitude of the signals nor the cross-interference matrix are required (although the 

signature codes are needed for the matched filters). It is also easy to conclude that 

if the cross-interference matrix is symbol independent (as is usually the case) then 

the aforementioned real bootstrap algorithm will perform the same for any M-QAM. 

2.4 The "Complex Bootstrap Algorithm" 
2.4.1 Decorrelator model 

Instead of (2.21) we write directly in the complex domain 

(2.23) 

where z and x are It -dimensional complex vectors, 

(2.24) 

where TV is a complex matrix. Therefore, 

(2.25) 

For convenience, the same letters are used to describe complex vectors and matrices. 
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For the two-user case, we have from (2.25) for user 1 

(2.26) 

or 

(2.27) 

Comparing (2.27) and (2.21), we notice that for considering the problem in the 

complex domain we must take 

(2.28) 

(2.29) 

This means that in steady state, since both z1R and ziu  have the same term w21Rx2R 

and x1R and x13 contain the same term of θ2R, E [z1Rsgn (z2R)) and E [z13sgn (z2R] 

go to zero simultaneously in order to produce z1R  and z1  free from X2R . Similarly 

E [z1Rsgn (z2n)] and E [zi sgn (z2n)] go to zero simultaneously to free z1  and z1  

from the residue of x20. 

We can now combine the updates of (2.29) to create fast convergence or use 

only half to save hardware. 

Combining (2.29) we get 

(2.30) 
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which can be written in complex notation as 

(2.31) 

Fig. 2.3 depicts the complex bootstrap algorithm. It should be noticed that the 

weights wij  are directly calculated instead of wij, hence the seeming discrepancy 

between the figure and (2.31) 

Figure 2.3 The complex bootstrap algorithm. 

The real time implementation of the complex bootstrap algorithm is given in 

Fig. 2.4 for user 1. The same scheme must be repeated for user 2. 

Figure 2.4 Real time implementation of the complex algorithm. 
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Clearly (2.30) has (in the mean) other singular points, where 

instead of 

having all these terms equal to zero. However, as we will show next, the algorithm of 

(2.31) will have a unique steady state point at which total cancellation of interference 

occurs, particularly, when the SNIR. at z2R and z23 is sufficiently high. 

From (2.31), it is quite simple to conclude the following recursion for the. 

complex algorithm in the multi-user case. 

(2.32) 

2.4.2 The Steady State Complex Weights 

Substituting (2.3) in (2.23) we get 

(2.33) 

Two-User Case 

We first consider the two-user case: 

Therefore, for user 1 

(2.35) 

Now to rid z1  of the interference by b2, it is required that (from (2.31)) 

(2.36) 

If the SNIR for user two is high and the inphase-quadrature interference is suffi-

ciently low, then sgn (z2) ti sgn (b2 ) Under this condition (2.36) is an approximation 

of 
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By using (2.35), we get for (2.37) 

(2.38) 

From this a unique solution follows: p21 	W21 

Multi-User Case 

For the multiuser case, we note from (2.33) that the output of the detector for user 

k is: 

(2.39) 

Now if the SNIR at any zj, j 	k is large and the I-Q separation for all z j,j 	k is 

sufficiently accurate, we have sgn (4) ti sgn (bk*). Thus to rid zk  of interference we 

use as an approximation 

(2.40) 

By using (2.39) we get for (2.40): 

for k = 1,2,..., K. 	(2.41) 

Also from (2.33) 

(2.42) 

where pk  is the kth column of P without Pick) Pk and Ak are the matrices P and A 

respectively without the kth  row and columns and nk  is n without its Oh  element. 



(2.43) 

(2.44) 

Hence 

We note that 
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In the derivation above, the assumption is used that the data of the different 

users are uncorrelated and independent of the noise Further it was assumed that the 

real and imaginary part of a data symbol are uncorrelated. Also, using (2.42) we 

have 

and substituting (2.43) gives 

(2.46) 

Therefore, substituting (2.44) and (2.46) in (2.41) we get 

These are the steady state complex columns of the matrix W, under the assumption 

of high interference levels, and a sufficient SNR. 
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2.4.3 Steady State Separator's Output and Elimination of the Resultant 
I-Q Interaction 

For the two users case (2.47) reduces to wij  = pij. Hence from (2,35), by substituting 

w21  = P21 , we have a total cancellation of the 02  term leaving 

Again transforming into a real representation as in section 2 gives 

(2.48) 

Equation (2.48) shows the generation of interaction between I and Q of channel 1. 

As mentioned earlier, the weights wkk3  and w'kk3 are introduced to eliminate this 

interaction. 

Figure 2.5 Real two signal bootstrap algorithm. 

From Fig. 2.5 

(2.49) 
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where 

(2.50) 

The real bootstrap algorithm for controlling w110  (see (2.22)): 

Again, if the SNIR at m is high, then sgn (yin) 	sgn (b3). At the steady state of 

w11 we must have 

But θ1R = √a1bR  is independent of 	θ13 = √a1b3 and of the noise, leads to 

Similarly 

(2.52) 

The control E (y13sgn (b1R )) = 0 will lead to 

is equivalent to a purely imaginary weight wii, we can be apply 

this either in V/ or in a separate 2 x 2 real bootstrap (Fig. 2.5) after the inter-user 

interference canceler of Fig. 2.3. 

Since 
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2.4.4 Effect of Non-zero Interaction Between I and Q Channels of Each 
User 

For this case, the incoming signal of each user can be presented as 

If for example the local oscillator has a phase-offset Ф  then we have 

(2.54) 

Using {2.35) and the same steps as before, we end up with 

(2.55) 

which has, the same unique solution as (2.38). This means that the complex 

bootstrap algorithm is invariant to phase-offsets in the local oscillators. This phase-

offset is subsequently eliminated by the real two signal bootstrap algorithm described 

in 2.4.3 (or directly in the complex bootstrap algorithm if the pure complex weights 

are added), which purpose is to rotate zi  such that no interaction between I and 

Q remains. 

2.4.5 Complexity Comparison of Real and Complex Bootstrap Algorithm 

Applying a real algorithm (i.e. splitting all K inputs into I and Q and proceed 

as if there were 2K real users), we need 2K(2K — 1) controlled weights and 2K 

signum operators. The complex algorithm requires 4K(K —1) (see Fig. 2.4) plus 2K 

for removing the I-Q interaction. That is the same number of weights and signurn 

operators. However, half of the weights are copies of others, allowing for a saving in 

hardware of K(2K — 1) correlators, weights and controls_ 
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2.4.6 Adaptive Symbol Sorter 

At this point, it should be noted that at the calculations in the previous section, 

it was assumed that the symbol decision levels are known. However, due to the 

decorrelator and the channel, these values are not known and have to be estimated. 

A practical way to do this, is to normalize the input signal to decision stage. For 

this, we use the adaptive scheme as shown in figure 2.6, 

Normalizer Discretization 

Figure 2.6 Adaptive symbol sorter. 

in which 

(2.56) 

where g, is the estimate of the channel gain of the kth  user. The factor 2 stems from 

the fact that we normalized the constellation power to be 1, and thus each rail to 

have power 1/2. Notice that the input zk  here is again one rail only. If zk  is the full 

complex signal, the]  assuming the gain gk  is the same for both rails 

of the same user. Normalization is performed by dividing zk by gk corresponding 

to each user separately. Thus the estimate of the sorter's principle energy is made 

unity. 

The adaptation for the i-th bit-interval is performed by 

which is a discrete implementation of a low-pass filter. p is a small constant number, 

which should be set according to the fading properties of the channel. 
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2.5.6 Simulation Results 

Fig. 2.7 depicts the performance of the complex bootstrap algorithm with two users 

16-QAM. Note that without the separator the probability of error may go very high 

when interference is high, particularly for high M-QAM. For comparison, the single 

user (no MAI) as a lower bound, the the performance without any separation, and the 

complex version of the conventional decorrelator [3] are shown. The cross-coupling 

matrix was chosen to be 

Fig. 2.8 gives results for a three user case. The cross-coupling matrix was chosen to 

be 

In order to show the effect of the separator on the signal constellation, we show in 

Fig. 2.9 this constellation before and after the separator. 



Figure 2.7 Performance of the complex bootstrap algorithm, two users 
16-QAM, SNR1  = 12dB/bit, coupling ρ  = + .3j. 

Figure 2.8 Performance of the complex bootstrap algorithm, three users 
SNR1  = 12 dB/bit. 
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Figure 2.9 16-QAM Constellation before and after the complex 
bootstrap 2 users, SNR = 12dB/bit. 
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2.5 The Canceler Stage 

As in the case of BPSK, we can use an adaptive canceler following the symbol 

estimator (the sorter) in order to further improve performance, particularly in the 

region where interference-to-desired user's SNR is high. This leads to multistage 

(PIC) receiver for QAM signals. 

Figure 2.10 Multistage synchronous receiver. 

The output of the canceler (Fig. 2.10) 

(2.57) 

'Using steepest descent algorithm in minimizing E  leads to 

(2.58) 

If the linear decorrelator of [3] is used, a total separation of signals occurs at the 

output, so that E [bk*bk] = 0 and E [bkbk H]  I Is a diagonal matrix. This is not the 

case with the bootstrap decorrelator. However, simulation results showed that with 

either decorrelator, the probability of error of any user at the canceler outputs is 

almost the same. Hence, for the sake of simplicity, we will use these assumptions 

and we get from (2.58) 

(2.59) 
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Assuming total elimination of inter-rail coupling after the decorrelator (effectively 

creating two PAM systems) , the terms of E bk bk  E [b jbj*]  are given by 

where each of the terms in the summation is an integral over a bivariate Gaussian 

density function. is a zero mean Gaussian random vector who's covariance matrix 

is No(P + P^H)-1. Also, for √M-PAM 

and hence under the assumption of a total lack of inter-rail coupling, for M-QAM, 

E [bi*bi] is twice the above due to the two rails. 



One can show that the probability of error at bk  is given by  
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The conditional probability P r  [bk | bk] is the integral 

of the 2(K — 1)-variate Gaussian density, specified in detail in [16] 

In figure 2.5, the performance of the multistage receiver with 4,6, and 8 users, 16 

QAM modulated, is shown, assuming no inter-rail interference and implemented with 

the real bootstrap decorrelator. As comparison, the performance of the conventional 

decorrelator only is provided, as well as the single-user (no MAI) lower bound. 

In figure 2.12 the multistage receiver that uses the complex bootstrap described 

in section 2.5 is presented. For the three users, cross-correlations of 0.7 + 03j and 

0.5 + 0.2j were assumed with 16-QAM modulation as in the previous section. For 

comparison, we again add the probability of error at the output of the matched filter 

(conventional single user detection) and with single user (no MAI). We also add a 

curve obtained by using P-H  (conventional decorrelator). 



Figure 2.11 Performance of (multistage) receiver using 'real' 
bootstrap, compared to conventional decorrelator. 

Figure 2.12 Performance comparison of (multistage) receiver 
using complex bootstrap, three user case. 
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CHAPTER 3 

ONE-SHOT CDMA RECEIVER FOR DISPERSIVE CHANNELS 

In a wireless system, both indoors arid outdoors, a signal sent from a transmitter 

generally arrives at the receiver though a large number of paths. Apart from the 

direct line of sight path (if existent), signals can arrive at the receiver due to reflection 

from obstacles. Because the length of the paths traversed by the signal are different, 

the time of incident at the receiver will be different for each path. When the 

relative delay between signals from different paths is large enough, particularly if 

it is larger than the coherence time, these paths can be resolved. In combining 

the additional energy contained in these paths, and thus obtaining additional infor-

mation, the performance of the receiver increases. The effects of a multi-path 

channel are however the creation of a number of extra interference sources. For 

the (synchronous) downlink channel without dispersion, interference solely consists of 

terms related to the simultaneously transmitted symbols of other users (Multi-Access 

Interference (MAI)). If the channel is dispersive however, this MAI will contain extra 

terms from the previous and following symbols of these other users, equivalent to an 

asynchronous channel (with or without dispersion). 

Also, a dispersive channel causes interference by each user to itself. This does 

not only consist of Inter Symbol Interference (ISI), hut also of interference between 

the signals of the same symbol on different paths, which we will term Self-Interference 

(SI) for convenience. This SI can be both constructive and destructive. This effect 

will be explained in more detail in the next section. 

Typically, if the dispersion is only a few chips, and the code-length significantly 

long, the ISI and adjacent symbol MAI can be neglected in the downlink. This case 

is further examined in chapter 6. 

In this chapter, an extension of the one-shot asynchronous bootstrap algorithm 

[2] is presented, which is suited for dispersive channels. The idea is to separate 
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(3.1) 
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the user's paths, treating each path principally as if it is a separate user with its 

corresponding partial code. However, it should be noted that decorrelating signals 

from one user carrying the same data-symbol is not possible as the data on each path 

is the same. This is true for any decorrelator which doesn't assume the correlations 

to be known, including the bootstrap. 

3.1 One-shot Matched Filtering 

Representing the received signal from (1.1) in one-shot of (i.e. synchronous to) the 

first path of the i
th 
 bit of user one, and without loss of generality, letting i = 0: 

where it is assumed that 0 < 	< T V k, m 1, which means that all delays are 

assumed to be shorter than one symbol interval, and 

An example of one-shot timing (synchronized to the first path of the first user) is 

given in Fig. 3.1. In this figure, the total received signal of 2 users, each with 3 

paths, is split up per path. 

The received signal is fed into a matched filter bank, in which one filter is 

matched to the left and right part of each path, 2  except for that matched to the 

'This assumption can be released without much effort 
2We will use left path (signal), or left part of the path (signal), losely to indicate the 

time interval [T— Tkm,T] of the bit carried by this path and spreaded by the corresponding 
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Figure 3.1 One-shot timing. 

first path of the first user. Since we match synchronously to the first path of an 

arbitrary first user, a total of 2KM — 1 matched filters is needed. The structure of 

this matched filter bank is shown in Fig. 3.2. 

Figure 3.2 Matched filter scheme. 

The outputs of the matched filters are ordered: 

partial signature codes. Similarly for the right path etc., which indicate the time interval 
[0,T — Tkm]. 
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contains all matched filter outputs for 

the left parts of user k's signal. xk R is similarly defined for the right parts. Since we 

synchronized to the first path of user 1, this path has no left side and hence 	is 

— 1 dimensional. 

Defining the correlation coefficients 

(3.3) 

where k,l= 1, 2, .., K, and m, n = 1, 2, ..., M, pkl^mRnL is the correlation of the right 

part of path m of user k with the left part of path n of user l  etc. Also pkl^mR  and 

ρ1k^mL are the correlations of the first path of the first user and the mth path of the Oh  

user. 

In matrix notation, the output of the matched filter bank can be written as 

(3.4) 

where each vector 



(3.5) P= 
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where 

P 

The input data vector is defined as 

where each vector bk (-1) and b(0) contains M copies of bk (-1), and bk(0) respec-

tively, with the exception of b1 (-1), which contains only M — 1 copies. Also defined 

is a diagonal matrix 

with αkR; k =1,- • • K, a M x M diagonal matrix containing respectively 

m  = 1 • M , while αkL contains the elements respectively equal 

except that 	is M —1 x M — 1 containing the elements 

m = 2 • - • M. Finally n(0) is a zero-mean Gaussian vector with covariance PN0/2. 

Corresponding to the block vector (3.2), P is divided into block matrices as follows 



where the block matrices are defined as follows: 

41 

It should be noticed that these matrices are not all sized M x M due to the 

fact that the rows and columns pertaining to the left part of the first user should be 

omitted. This is clue to the synchronous matching to this path, hence the left part 

does not exist, and the synchronously matched result is considered the right part. 

In Appendix BA, the above definitions are applied to a two user case with two 

paths per channel to provide some additional clarity. 

The off-diagonal elements in the blocks PkL, kLαkL  and PkR,kRαkR  represent the 

aforementioned SI, which essentially is the interference between the same parts of 

the paths of the same user. This interference can not be canceled as the data on 

these path-parts, bkT(-1) and bkT(0) respectively, is exactly the same. The total self-

interference on a path-part after the matched filters is thus given by the sum of the 

off-diagonal elements of a row of these blocks. 

As a simple example, consider a single user with a two-path channel, while 

for simplicity omitting a left or right subscript, with correlations pi  and ρ2  (i.e. 
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Now at the output of 

the filter matched to the first partial code, we get (α1 + ρα2)b. The SI here is thus 

pat, which is constructive if p is positive, yet destructive when p is negative. As will 

be shown later, the self-interference is modified by the application of the bootstrap 

decorrelator. For example if the ISR is very high, (3.15) shows the self-interference 

term to become 

In a dispersive downlink, in which the delays for the 	path of each user 

are the same (see (1.1)), the rows and columns in IV pertaining to the left part of 

the paths with relative delay 0 should be removed. This should also been done in 

creating the matrix P, necessary for the conventional detector, as it would otherwise 

contain rows with all zeroes, which obviously makes the matrix singular, and hence 

not invertable. Other than this, the correlation coefficients 

Vic, l E l• • • K will become zero, which has however no effect on the structure of 

the decorrelator. The same is true in the uplink case where the relative delay of a 

path of another user but the one matched to synchronously, is zero. 

3.2 The Decorrelator 

To the output of the matched filter bank we apply a linear transformation to separate 

the signals. 

z = Vx 

For the transformation, a modified version of the Bootstrap decorrelator [2], and 

for comparison the conventional decorrelator, which implements the inverse of the 

(2KM — 1 x 2KM — 1) partial cross-correlation matrix (V = P-1 ) is used. This 

"modified bootstrap decorrelator", which will take into consideration the correlation 
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data in different paths, has the form 

V = I — WT 	 (3.6) 

where I is the identity matrix and 

(3.7) 

in which the block matrices are defined correspondingly, similar to (3.1) 

Following the same argument in earlier sections, that all weights 

which would separate matched filter outputs reflecting the same bk (i) through 

different paths, are forced to zero. Clearly, these data are not independent and hence 

can not be separated. Therefore all block-matrices WkL,kL = 0 and WkR,kR = 0. 

This is different from the one-shot bootstrap implementation for asynchronous non-

dispersive channels [17], in which only the diagonal contains zeroes, which is, in fact, 

a special case of the above for M = 1. 

Also, even though the original left and right path parts carry uncorrelated data, 

correlation at the corresponding matched filter outputs 

is created through transformation (by W), which requires additional weights, to 

eliminate this correlation. Hence the weights 

separation of 

are added to assure 
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3.3 Steady State Bootstrap Weights 

For controlling the weights, we use a recursive scheme which simultaneously reduces 

the absolute value of the correlation between the outputs of the decorrelator and 

the decision on all other outputs. That is, the weight, wkl mG,nH is controlled by the wkl 

recursion, 

For the readers convenience, in Appendix B.2, the above definitions are clarified 

using a two user, two channels per path example. 

We may now rewrite from (3.4). 

(3.9) 

The update of the weights from (3.8) can now be written as 

(3.10) 

In the mean, the steady state is reached when 

(3.11) 



Generalizing over m gives 

(3.12) 

(3.13) 
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The decorrelator output, pertaining to the Gth  part of the mth  path of user k can be 

written as 

in which the matched filter output xkmG is found from (3.9) to be 

If the condition occurs that the SNR's of all users are sufficiently high to approximate 

sgn (zk G) 	than in order to find the steady state of wkG, we may write instead 

of (3.11) 

where we used the fact that 	and bk~G 
 
are uncorrelated. 

(3.14) 
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Substituting the steady state weights from (3.14) in (3.13) and using (3.9) to expand 

we have 

(3.15) 

This shows the perfect cancellation of the other users' interfering signal energy "in 

the limit of interference SNR". This result is not exactly equal to that of using 

V = P-1  as we do not (and, using adaptive schemes, can not) decorrelate the 

signals originating from the same symbol of a user. For the case of V = P -1 , 

(3.16) 

In general, if the remaining SI, given by the off-diagonal terms in (3.15), 

between the path-parts is small, the performance of the 

bootstrap decorrelator will be nearly as good as that of the the conventional decor-

relator for high ISR 
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3.4 Time-Path Combining 

After the bootstrap separator (or the decorrelator when V = P-1  is used), the left 

and right parts of each path are combined. It was shown in [18] that a maximum 

SNR is achieved when weighting the left and right part with 

respectively. Subsequently, all paths of each user are combined using a maximum-

ratio combiner, after which a decision stage follows. The basic scheme is given in 

Fig. 3.3. 

Figure 3.3 Receiver scheme. 

3.5 Simulation Results 

The simulation results in Fig. 3.4 and Fig. 3.5 depict the performance of the 

bootstrap algorithm and the matrix inverse based decorrelator applied to scheme 

depicted in Fig. 3.3, for a three user case, as a function of the SNR of user 2. 

The SNR of user 3 is equal to that of user 2, whereas user 1 has SNR = 8dB. The 

simulation was performed using Gold codes of length 15 and 3 paths per user with 

relative delays of 0, 2, 4, 5, 6, 8 and 11, 12, 13 chips respectively. As modulation, BPSK 

was used. Fig. 3.4 shows the performance for user 1;  and Fig. 3.5 the performance  
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for user 2. Also provided is the single user conventional detection performance, which 

means matched filtering to the strongest (first) path of each user. 

From Fig. 3.4, it can clearly be seen that, for high interference levels, the 

modified bootstrap algorithm achieves a near perfect cancellation of the interfering 

signals (that is, a perfect cancellation of all interference except the SI, which turns 

out to be very minor) as we derived analytically in the previous section. 

Figure 3.4 Performance of 3 user one-shot receiver (user 1). 



Figure 3.5 Performance of 3 user one-shot receiver (user 2 
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CHAPTER 4 

ILL-CONDITIONING OF ASYNCHRONOUS CDMA CORRELATION 
MATRICES 

The conventional one-shot decorrelator suggested by Verdu[19] is based on inverting 

the partial correlation matrix P, the definition of which is extensively described in. 

the previous chapter. The bootstrap algorithm adaptively searches a transformation 

which, for the case of M  = 1, diagonalizes P when the SNR's of the users 

are heigh. When M > 1, this transformation will only near-diagonalize P clue to its 

restricted structure, which is extensively described in the previous chapter. 

However, a problem arises when P is singular, a matter which is mostly 

overlooked, or argued to be of only negligible probability, in analysis of the one-

shot decorrelators. If P is singular, the inverse - does not exist, and hence the 

conventional decorrelator cannot be applied without severe performance degradation 

clue to erroneous inversion. 

The performance of the bootstrap algorithm in this situation also deteriorates 

drastically as the control becomes unstable. However, using a soft-limiter in the 

decision stage instead of a hard-limiter (the signum function as shown in the previous 

chapter), was shown to reduce the deterioration. [20] 

The purpose of this chapter is to examine cases wherein the correlation matrix 

in the one-shot asynchronous case is not so well behaved and point out the impli-

cations. Since it is extremely difficult, if not impossible, to derive closed form 

expressions for the situation in which the correlation matrix is singular, observations 

will be made based on simulations performed for K = 3 and 4 and Gold codes of 

length N = 7 and 15 using channels without multi-path components, i.e. M = 1. 
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4.1 The Partial-Correlation Matrix 

To keep the model simple, the general case of the dispersive system described in the 

previous chapter is used with only one path per channel, i.e.  M= 1. Dropping the 

path subscript, the equivalent low-pass signal at the input of the matched filter bank 

then becomes (in one-shot representation of the ith bit of user one, and letting i = 0 

as in (3.2)): 

(4.1) 

where 

(4.2) 

r (t) is applied to a bank of filters matched to 

to unity with 

The correlation matrix P that arises as the result of this becomes: 

(4.3) 

in which the correlation coefficients are given by (3.4) 

To examine the ill-conditionedness of the correlation matrix, the eigen-ratio is 

used. The higher this ratio the worse conditioned the matrix, and in the limit, when 

this ratio is infinite (represented by the peaks in the simulation results), the matrix 

is singular. 

and normalized 



52 

4.2 Simulation Results 

In a set of Gold codes of length N there are N + 2 different codes, every N of 

which are linearly independent. N 1 of these have —1 as cross-correlation. In the 

simulations shown, K (K < N) out of the latter N + 1 codes were used. For the 

simulations shown, the following Gold Codes were used: 

1 +1 +1 +1 —1 +1 —1 —1 
2 —1 —1 —1 +1 +1 —1 
3 +1 —1 —1 +1 +1 —1 +1 
4 +1 —1 +1 —1 —1 

For K = 3 and N = 7, it appears, (see as example Fig. 4.1) that singularities 

only occur for T2/T, T3/T E N and that P tends to be ill-conditioned if at least 2 of 

the users have a delay difference which is an integer multiple of Tc, the chip-duration. 

For K = 3 and N = 15, it appears that P can be singular only if r2  = r3. Again P 

tends to have larger eigenvalue ratios if at least 2 of the users have an delay difference 

which is a integer multiple of Tc, although the ratios are much lower then for N = 7. 

In general it becomes ill-conditioned if r2 	T3. 

For K = 4 and N = 7, one of the delays was fixed, while the other two were 

varied as to obtain the presented 3-dimensional plots. In this case, singularities only 

occur if at least 2 out of the 4 users have an integer delay difference. In Fig. 4.2 

it can be seen that if T2 = Tc  P is only singular only if T3/Tc, T4/Tc E N. If on 

the other hand we choose T2 to be 0.3T,, we get a singularity only if T3 = 1.3Tc and 

= 2.3Tc (see Fig. 4.3). 



Figure 4.1 Condition ratios for a three user example. 

Figure 4.2 Condition ratios for a four user example r4  > r:. 
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Figure 4.3 Condition ratios for a four user example T4 > T3. 

The simulation results presented serve to draw attention to difficulties that 

may occur in using the one-shot approach, whether based on matrix inversion or an 

adaptive approach like the bootstrap algorithm, and hence to justify proposing the 

multi-shot decorrelator, dealt with in the next chapter, whose correlation matrices 

are never singular. 

It should be observed that the probability of the correlation matrix being 

singular is not negligible. When relative delays are small, the left parts of paths 

can comprise only a few chips. This increases the likelihood of the matrix becoming 

singular. A clear example is the case in which two parts have the same length. The 

rows in the correlation matrix arising from these parts will be dependent if these 

left parts contain exactly the same, or exactly the opposite chips, which has, given 

n chips in these parts, a probability of 2'. Thus, the probability of the corre-

lation matrix becoming singular becomes very significant, and notably important, 

irrespective of the actual codelength. 



CHAPTER 5 

MULTI-SHOT BPSK/QAM-MODULATED CDMA RECEIVER 

In this chapter, instead of the one-shot decorrelator structure applied in the previous 

chapters, the adaptive (bootstrap) multi-shot decorrelator (ABMSD) structure is 

presented. This structure is an adaptive extension of the multi-shot decorrelator 

(MSD) based on cross-correlation matrix inversion introduced in [15]. 

As pointed out in the previous chapter, the "partial cross-correlation" matrix 

used in the one-shot asynchronous decorrelator may be badly conditioned or even 

singular, which clearly creates a problem when an attempt to invert this matrix is 

made. On the other hand, the cross-correlation matrix of the filters' outputs in the 

multi-shot (asynchronous) decorrelator is always non-singular, as in the synchronous 

decorrelator. 

The ABMSD structure presented in this chapter will be shown to outperform 

both the MSD and the one-shot decorrelators (OSD). Also, a suitable adaptive 

canceler is presented to follow the multishot decorrelator, and hence obtain the 

multistage multiuser receiver based on multishot matched filtering. 

The performance study will use multipath fading environments, as well as well 

as time-variant (flat fading) channels. 
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5.1 Multishot Matched Filters Model (MSMF) 

The multishot decorrelator is particularly useful for multipath asynchronous 

channels, as in uplink mobile communications. 

Under the assumption that τk,max + Tkl,max is less than 2T for every k (extension 

to larger delays is straight-forward but clutters the notation unnecessarily) the 

combined multipath signal of each user in such an environment can be defined from 

(1.1) as, 

(5.1) 

allowing us to rewrite (1.1) 

where 

In matrix notation, 

(5.2) 

where 

The combined multipath signal from (5.1) is used to drive the matched filters. The 

acquisition of each symbol at the kth output is performed over an interval of 

seconds, which requires a dual memory input buffer and switch, as is shown in Fig. 

5.1. 	Therefore, for the ith  symbol, the filter is matched to the data input which 

= • • • —1, 0, 1, • • •. Therefore, following 

the kth  matched filter, the output 

:5.3) 



where the integrals are defined from element of SAO. 
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switch 	sampler 

data synch. 

Figure 5.1 Multishot matched filter structure. 

After stacking the outputs of a hank of K multi-shot matched filters into a K x 1 

vector x = [x (i) , 	x Off we obtain, using matrix notation for the ith  bit multi- 

shot matched filter outputs, 

is a colored Gaussian noise vector. From 

the definition of S f(t), one can easily show that the matrices P, Pu  and PL  whose 

elements are defined in (5.4) can be obtained from the inner product. 
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Using P-1 θ(i) to estimate the data vector will result in poor performance, as 

x(i) depends on the current, following, and previous bits of the same and other users. 

However, staking N samples of vector x(i) together, we get after the matched filters 

(matched to s fk , rather than each individual path) [15], 

where N is the (odd,  for notational convenience) number of symbols processed simul-

taneously. 

5.2 Multishot Conventional Decorrelator (based on matrix inversion) 

Clearly, to a certain approximation, decorrelation can be achieved by 

Z(:,i) = P-1X(:,i), where the error due to the bias-term will become smaller if N 

is large. However, the computational complexity increases rapidly as N increases. 

The matrix P is diagonally dominant and so is P. Hence the estimate of Z(:, i) is 

only distorted by the previous and following symbol. In [15], it was shown that using 

only N = 3 to estimate x(i), which is least distorted by the bias term, is adequate. 

For N = 3, the correlation matrix used is 



59 

Due to the diagonal dominance, instead of computing 2' fully, and then calculating 

z(i) can be obtained directly as from applying the central block row of 

At this point, it should be noted that for N = 5, W becomes for example, W = 

(I — BDC — CDB)-1 [CDC : —DC : : —DB : BDB], 

where B and C as before while D = I - BC. These expressions will be used in the 

simulations shown later. Schematically, this is shown in figure 5.2 for N = 3. 

Figure 5.2 Multishot decorrelator, N=3. 
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5.3 Adaptive Bootstrap Multishot Decorrelator (ABMSD) 

Instead of the conventional rnultishot decorrelator shown in the previous section, 

using the bootstrap decorrelator as depicted in Fig. 5.3 is proposed. 

Figure 5.3 Multishot bootstrap for N = 3. a) general scheme. b) 2 user detail. 

The disadvantage of this approach compared to the inverse matrix based 

multishot, which in fact requires computation of only the K middle outputs of (5.7), 

is that all NK of 

have to be computed, as the bootstrap requires these outputs for its weight control. 

The outweighing advantage, however, is the robustness of the bootstrap to errors, 

both to estimation of the relative delays and fading coefficients of the paths. Because 

the matched filter needs exact knowledge of the delays of each path and the power 

of each path to be able to form s fk , estimating the cross-correlation matrices will be 

difficult. 

The matrix W  in (5.9)has the structure 
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in which each matrix Wn,l  is a full K x K weight matrix, except Wn,n which has 

zeroes on its diagonal. The weights are controlled by 

(5.11) 

for n, = 1 ••• KN. 

The symbol estimates are obtained by taking the signum, or another discretising 

function for other than BPSK modulations, of the middle K elements of 2(:, i) 

Due to the known diagonal dominance, it is optional to omit 

(the upper right and lower left corner of W) to reduce computational cost. 

5.4 Multishot Canceler 

The multishot bootstrap as well as the multishot inversion-decorrelator, as shown in 

figure 5.2, can be followed by a suitable "multishot" canceler. 

multishot canceler 

Figure 5.4 Multishot canceler, N = 3. 
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At the output of the canceler, we have (see Fig. 5.4) 

(5.12) 

in which b(i) = sgn(z(i)) (in case of BPSK). The output for the kth  user 

(5.13) 

where uj, k , j = — 1, 0 , 1 is the kth  column of U. The weights are controlled by 

(5.14) 

5.5 Performance of Multishot Structures 

For a non-faded channel, the error performance of 3-symbol (N = 3) decorrelators 

are depicted in Fig. 5.5. SNR1  is taken to be 8 dB, while the power of the other 

users is varied. For K = 2 and K = 5 users, the multishot bootstrap and conven-

tional decorrelator provide comparable performance, significantly better than the 

single-user conventional detector. The single-user conventional detector uses the 

same matched filtering as the multishot structures, which is, as mentioned before, 

equivalent to using a RAKE receiver). For comparison, the single user case (K = 1, 

no MAI) is added. 

In figure 5.6, the performance for a 2 user detector using 3 symbols N = 3 

and 5 symbols N = 5 is compared. Again, the single user conventional detector, 

as well as the single user case (no MAI) (both using the RAKE equivalent matched 

filtering), are depicted. It demonstrates that the improvement in performance due 

to increasing N is not significant and does not justify the increased complexity. 

Both from figure 5.5 and 5.6 it can be seen that the multishot bootstrap slightly 

outperforms the conventional (inversion-based) multi-shot for high SIR, as is typical 
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Figure 5.5 Performance of multishot receiver. 

for all bootstrap applications, but is slightly worse for low SIR, (At this point it 

should be noted that in the synchronous case, the bootstrap's performance is always 

equal or better than that of the conventional decorrelator [7]). Such a discrepancy 

might be due to the inaccuracy in the weight updates, caused by the bias term in 

(5.6). 



Figure 5.6 Performance of multishot receiver. 

Figure 5.7 Performance of multishot receiver (without canceler) in a 
dispersive Rayleigh fading environment. 
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In figure 5.7 the performance in a dispersive Rayleigh fading environment is 

shown. The simulation was performed by calculating the performance for all three 

shown receivers in the same 250 fading realizations. 

In figure 5.8 the performance improvement clue to the addition of the multi-

shot canceler is shown for K = 2 and K = 5 users. It demonstrates that the 

two-stage receiver drastically improves the performance, especially for high levels of 

interference. 

Figure 5.8 Performance of two-stage multishot receiver. 

In figure 5.9, we present the results for 16-QAM, rather than BPSK modulation, 

where the real implementation of the decorrelator matrix P has the size 2KN x 2KN. 

In all of the figures, Gold codes of length 15 were used, and each user's channel 

consisted of 3 paths, seperated by 1 chip. 
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Figure 5.9 Performance of multishot receiver with 16-QAM modulation. 

5.6 Joint Adaptive Channel Gain Estimation and 
Bootstrap Multishot Decorrelator 

5.6.1 In slow fading multipath environment 

From (5.1) through (5.6), it should be observed that perfect knowledge of the fading 

coefficients γkm. was assumed when calculating the matched filter response. In 

practice, this has to be separately estimated. In this section, an adaptive scheme is 

presented to estimate and track these coefficients while simultaneously performing 

decorrelation. That is, the control of the adaptive gain estimator facilitates the 

outputs of the ABMSD (see Fig. 5.10) 

Clearly, each path coefficient must be estimated separately. Hence, in contrast 

to matching to the combined paths of each user (Sfk (t - τk)), we must match to  



(5.15) 

67 

each signature code delayed according to each paths delay of the respective user 

(sk(t — iT -Tkm)). (Note from (1.1) that Tkm  = Tk + δkm.) 

This separation of matched filters will solely affect the number of filters to be 

used and not the mathematical representation, nor the performance, (at least if the 

filters use gkl  = Am as before). 

The output of the matched filter to a path is 

in which the first part constitutes the MAI, the second the MI and the third desired 

signal on different paths. 

The scheme used is depicted in Fig. 5.10. 

multishot 

bootstrap 

Figure 5.10 Adaptive gain-measurement. 
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The gains can be initialized with gkl(1) = 1 (i.e., equal gains); and are updated 

according to 

(5.16) 

Note that, at steady state, in the mean E[gkm]  = E[xkm(i)bk(i)]. That is, gkm will 

depend only on the terms in correlation with bk (i). This desired path gain will be 

shown analytically in the sequel. The different delays in (5.16) are due to the inherent 

delay in decision in the multi-shot bootstrap. 

Higher probability of a better gain-estimation is obtained when the estimate is 

independent of symbols other than the original symbol attempted to be estimated, 

i.e. without the effect of MAI. Hence; we avoid making use of the transmitted symbol 

directly after a matched filter, but rather use the final symbol decisions (in this case 

at the output of the decorrelator), which have a significantly lower probability of 

error and are the least dependent on other users signals and ISI components. 

Assuming independent data: 

where correlations pkmn are defined as 

Further defining the matrix 
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where from (5.18) pkmn = 1. Thus, (5.17) can be written as 

(5.19) 

is a scaling constant, it can be 

Eqn. (5.19) shows that due to the correlation, 

the estimated weights are not equal to the maximum ratio weights (maximum ratio 

under assumed uncorrelated paths), i.e. gk ≠ 	yk. However, when expressing (5.15) 

as 

(5.20) 

and comparing this with (5.19), it shows that the adaptive estimator finds the total 

gain for this path after matched filtering, which is, due to the correlation, notably 

different from the gain of the path itself, 7km. Hence, the estimator finds the real 

maximum ratio combining weights for the outputs of the matched filters. 

In Fig. 5.11, an example of performance of this adaptive scheme is added. For 

comparison, equal gain combining (gk  = 1) and max. ratio combining (9k  7k) is 

also depicted. As suggested, the adaptive gain performs slightly better. Added to 

this curve is the performance of the conventional single user detector, also using the 

joint channel estimation as proposed in this section. 

5.6.2 In Time-Variant Flat Rayleigh Fading Multipath Channels 

In the results presented in the previous sections, no fading was applied, allowing the 

receiver ample time to adapt to its steady state condition. In this section, the effect 

of time-variant Raleigh fading channels is examined. 

A flat fading channel characterization which has applications to many commu-

nications systems of practical importance is described by a fading power spectrum 

removed by normalizing 



(5.21) 
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Figure 5.11 Multishot performance using adaptive gain-estimation. 

which falls off as f : 

Requiring unity channel gain, 

(5.22) 

gives A = (2/π)B. Defining α  = 2π/B allows (5.21) to be rewritten as [21]: 

The corresponding correlation function is 

(5.24) 

The decorrelation time 

τo 

 is defined as that value of r for which Rh(T) is 1/e of its 

peak. Quantity 1/τo  is known as the fading rate- To satisfy the condition Rh(τo ) = 

1/e, we get α  = 2.146/ τ

o 

 The factors in (5.23) suggest that h(t) can be generated 

by passing white Gaussian noise with correlation function Rg(τ) = δ(τ) through  
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two cascaded single pole filters [21]. In [22], Wittwer has given a simple digital 

implementation of this arrangement, shown in Fig. 5.12, which produces a sequence 

of uniformly spaced Gaussian samples h(n)  with correlation function 

(5.25) 

, which agrees with (5.24) 

Figure 5.12 Wittwers correlated. Gaussian samples generator. 

The T0 can also be related to the mobile's speed through the coherence time Cr, 

which is often defined as the required time interval to obtain an envelope correlation 

where f is the carrier frequency, fd  is the Doppler frequency, c is the speed of light 

and fd  = 1/CT. 

For a PCS system at 1.9 GHz, it follows that v 	3.6/To (km/h). For speeds 

up to 100 km/h and data-rates as low as 4.8kb/s, it follows that To will be in the 

order of a few hundred to a few thousand times Tb It should be noted;  that if the 

data transmission rate increases, this number becomes larger. 

In Fig. 5.13, the performance of the joint adaptive channel gain estimation 

and bootstrap multishot decorrelator for various values of To, for a fixed value of µ 
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(the updating constant to both the bootstrap and the gain-estimator) is shown. It 

depicts that if the fading rate increases, the estimators fail to track its movement. 

Potentially, this could be corrected by increasing the updating constant. 

Figure 5.13 Joint adaptive channel estimation and ABMS decor-
relator performance in time-variant Rayleigh fading 
channels (at 1.6 CH and 19.2kbps, τo = 1000Tb  corre-

sponds to 80 km/h). 



CHAPTER 6 

PERFORMANCE COMPARISON OF (MULTISTAGE) RECEIVER 
STRUCTURES 

In this chapter, a brief simulation comparison is presented concerning the order of 

multi-path combining and decorrelating in a synchronous environment with multi-

path channels using QAM modulation. Also discussed are simulations depicting 

near-far resistance and sensitivity to errors in delay estimation of the asynchronous 

receiver structures presented and analyzed in this work. 

6.1 Performance Comparison of Bootstrap/Multipath-Corribiner 
Configurations 

In a dispersive environment, matching to different paths and combining the results is 

known to give a certain amount of diversity gain. In a synchronous QAM modulated 

system with K users, and M resolvable paths per user, a bank of 2KM matched 

filters is needed. Two different forms of processing are posibble in order to improve 

performance: decorrelating the outputs of the bank of matched filters to rid the the 

signals of MAI and combining signal paths belonging to the same user to gain energy 

diversity. 

An interesting question is, whether first decorrelating the 2KM signals and 

combining the corresponding M paths (per user), will give a better or worse 

performance, than first combining each set (of each rail) of M paths of user k, and 

then decorrelating the 2K resulting signals afterwards. 

The later arrangement is shown in Fig. 6.1, while the first is depicted in Fig. 

6.2. Here it is assumed that the different paths of the same user are delayed by 

only one chip (1Tc) from each other. Since the system's relative delays are very 

small, ISI can be considered relatively small and is ignored, making the system look 

synchronous (as in downlink). 
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Figure 6.1 Rake receiver + bootstrap separator structure. 

The bootstrap structure used is the the complex bootstrap as described in 

chapter 2, where in the case of combining after decorrelating ( Fig. 6.2), the 

same paths of the same rail of the same user are not decorrelated (similar to the 

asynchronous case described in chapter 3), due the data in the signals on these rails 

being the same. 

Figure 6.2 Bootstrap separator + Rake receiver structure. 
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The estimation of the combiner weights is in both structures performed 

adaptively for each rail by (omitting user and rail subscripts) 

(6.1) 

in which x(i) are the inputs of the combiner. This in fact is a discrete implementation 

of the scheme with low pass filter suggested in [24] for orthogonal waveforms, but 

has, as shown in section 5.6.1, a similar effect on non-orthogonal waveforms for ISI 

and MAI; because of the independent data. This estimation is the same as shown 

in (5.16), except for the fact that here it is normalized, which was not necessary for 

the BPSK case discussed in chapter 5. but is useful (though not required) for QAM 

modulation. The reason for this is that, when using QAM-modulation, an adaptive 

symbol-sorter; as discussed in section 2.4.6; is required, whereas BPSK modulation 

merely requires a signum function. Normalizing as above keeps the range of the gain 

in the symbol-sorter small. 

The simulation results are shown in Fig. 6.3 and 6.4. From comparing these 

two figures, we can conclude that combining after clecorrelating provides a slightly 

better performance. However, the computational burden in the decorrelator of this 

structure is M2  times larger. 

In both figures, a curve is presented for one user with combiner and bootstrap. 

This bootstrap in this case is added to decorrelate the two rails of the user, as 

discussed in section 2.4.3. 

If the system is asynchronous; as in the uplink, the one-shot decorrelator 

structures presented in chapter 3 can  be used to decorrelate before combining. But as 

concluded earlier, the computational burden is even larger than for the synchronous 

case. With one-shot matched filtering, combining before decorrelating will require a 

full new evaluation of the receiver, as the combination of paths will no longer have 

the separable parts belonging to the previous and current symbol of a user, There 

following symbol, will also be interference from the 	 which needs to be dealt with. In 



Figure 6.3 Decorrelating-after-combining receiver. 
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Figure 6.4 Combining-after-decorrelating receiver. 



77 

fact, when combining before decorrelating, the correlation matrix will be a function 

of the correlation matrix before combining, the fading coefficients of each path and 

the gains of the combiner. It should be noted that, apart from changes occurring 

in the fading coefficients,  generating an estimate of the correlation matrix will be 

extremely involved, thus making the conventional decorrelator unsuitable for the 

combining-decorrelating structure. Since both the one-shot and multi-shot will have 

to deal with both the previous; current;  and next symbols, the multi-shot structures 

would be inherently more suited for combining followed by decorrelation, which is 

also less complex as stated earlier. Results for this arrangement with multishot were 

given in chapter 5. 

In conclusion, if one uses a one-shot decorrelator then decorrelating before 

combining is possible although with sacrificed complexity. Decorrelating after 

combining is difficult both with one-shot or conventional decorrelators. When 

using the multishot decorrelator, then it is better to implement combining before 

decorrelating, as it is the less complex of the two arrangements. 

6.2 Comparison of Decorrelator Structures 

In this section; the one- and multi-shot decorrelators as described and evaluated in 

in this work are compared in terms of near-far resistance capability' and robustness 

to errors in estimation of the users relative delays. 

The receivers were assumed to have no knowledge of the amplitudes (ak) and 

fading coefficients (7km) of the separate paths of the received signal given by (1.1). 

The estimation of these parameters was performed with the estimation algorithm 

shown in chapter 5. 

'We refer to near-far resistance as the capability to performance of one user (d) as a 
function of SNRi — SNRd 
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The relative delays were assumed to be estimated accurately for the near-far 

resistance comparison ,  in which each channel has three paths (Al = 3). On the other 

hannd, we assume the delays are estimated with error 82  for the robustness to delay-

estimation errors comparison;  in which case both users have channels consisting of 

only one path M = 1, with relative delays T1 = 0 and T2 = 6Tc respectively. 

The one-shot decorrelators applied are described in chapter 3, that is, decor-

relating before combining is used. The multi-shot decorrelators are described in 

chapter 5, with the path combining is performed first. The MMSE was applied both 

with decision feedback (DF) and using training sequences (tr. seq). 

Fig. 6.5 shows that the multishot structures perform better for low SIR, while 

the multishot bootstrap improves more slowly in performance as the SIR increases. 

From 6.6 it can be seen however, that the performances of the different structures are 

not drastically different, with the exception of the conventional single user detector, 

which is roughly 2.5 dB worse for equal power users. 

In Fig. 6.7 and 6.8, the performance is shown as a function of the error in 

delay estimation of user two. Both users have an equal SNR of 8 dB. It shows that 

the adaptive algorithms are more robust over a wider range of errors in the delay 

estimation. For the bootstrap structures, the performance degraded negligibly over 

a range of —0.2Tc to 0.2Tc; while for the fixed decorrelators, this is only half. Fig. 

6.8 shows the performance of the user for which the delay was estimated with offset 

82 . The performances are approximately equal, with exception of the single user 

detector. It can be seen that the probability of error goes to 1 as the offset nears 1T,, 

which is due to the auto-correlation R(t) of the users code being negative for 1Tc; 

which hence inverts the signal of user 2 at the output of the matched filter matched 

to the code of user 2. 



Figure 6.5 Comparison of near-far resistance (user 1). 
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Figure 6.6 Comparison of near-far resistance (user 2 



Figure 6.7 Comparison of robustness to delay estimation errors (user 1 

Figure 6.8 Comparison of robustness to delay estimation errors (user 1 
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CHAPTER 7 

CONCLUSIONS 

In the preceding chapters, it has been shown that the bootstrap decorrelator can be 

used to decorrelate QAM-modulated multi-user CDMA signals. It was established 

that the signum function can be used as discriminator, exactly as in the case of 

BPSK modulation. 

The bootstrap decorrelator for QAM was shown both in the real and in the 

complex domain. The resultant algorithm of complex signals was termed "the 

Complex Bootstrap". The steady state weights were derived analytically for high 

levels of interference and the symbol error rate was found under the assumption of 

no intra-rail correlation, and perfect power estimation for the decision stage. As 

an extra intra-rail decorrelation is needed due to vector rotation, the no intra-rail 

assumption is not a generality limit. We also suggested an adaptive power estimating 

scheme for the decision stage; which was used in the shown simulations. 

Comparing this complex bootstrap scheme with the correlation-matrix inversion 

based conventional decorrelator and the conventional single-user (no MAI) performance, 

it was found that the bootstrap decorrelator performance tends towards the single-

user performance for high SIR and approaches the inversion based decorrelators 

performance for low SIR. Forming a multistage receiver by adding a suitable 

canceler was shown to improve the performance in the low SIR region, as in the case 

of BPSK. 

In handling multipath asynchronous channels, we depicted the special structure 

of the weight matrix needed for the bootstrap algorithm, and showed its performance. 

It was established that the one-shot conventional asynchronous based decor-

relator suffers from ill-conditionedness and singularity of the cross-correlation matrix. 

Hence we also examined the multishot decorrelator, which does not suffer from this 

problem. The bootstrap multi-shot decorrelator and the multishot canceler were 
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presented, and shown simulation-wise, that the performance is similar to that of the 

conventional multi-shot inversion decorrelator, which is based on matrix inversion 

and which requires full knowledge about cross-correlations. Using an adaptive 

channel gain estimation, the adaptive bootstrap multishot decorrelator was shown 

to be able to adapt to time-variant Rayleigh fading channels, at practical fading 

rates. This presents joint adaptive channel estimation arid decorrelation. 

The impact of the order of processing of signals from a dispersive environment, 

was examined, which showed that decorrelating the signals before path combining 

gives a somewhat better performance for low SIR. However, the computational 

burden of processing in this order is significantly larger. The one-shot asynchronous 

bootstrap decorrelator; capable of decorrelating the signals from resolved paths, was 

presented to facilitate the decorrelate before combining case. It does not seem easy 

to use one-shot decorrelators after path combining. However, this arrangement is 

possible and preferred from a complexity point of view. 

Lastly, the near-far resistance and robustness to estimation errors in relative 

delay of the signals from different users was examined using simulations. It was 

shown that the bootstrap algorithm, both based on oneshot and multishot matched 

filtering, is more robust to estimation errors than the conventional decorrelators 

and MMSE with decision feedback. It was also shown that the performance of the 

oneshot and multishot bootstrap and MMSE have comparable performances in terms 

of near-far resistance, with the adaptive bootstrap multishot slightly outperforming 

the others for low SIR and the others slightly outperforming the multishot for high 

SIR. 



APPENDIX A 

WEIGHT DERIVATION FOR ORTHOGONAL QAM 

In this appendix, the closed form solution of (δ1, as a result of (2.14) is derived. 

Expanding from (2.14) 

Concentrating first on the first expectation of (A.1) 

(A.2) 

Using the independence of data 

where 
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was derived from (2.13). and Defining 

(A.4)  

where Q(.) is the error function and 

(A.5)  

which should be recognized as an upperbound on Q1 , which is tight when all LSNRk 

are large. The first expectation from (A.1) is found from (A.3) to be 

(A.6)  

Using the transformation 

Since λi  and λ1  are independent zero mean random variables 

which, as both 	and + |bi| give the same result, leads to (with substitution of 

(A.3)) 

(A.7)  



so that 

(A.8)  

(A.9)  

(A.11) 

To calculate Fi  we first notice that 
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where Yi  is the identity matrix with column i put in front of all the other columns. 

When a matrix is post-multiplied with Yi then its ith  column w ill be placed as the 

first, and the others will be shifted to the right. 

Now we notice that 

(A.10) 

where I is a (K — 1) x (K — 1) identity matrix, and Ti  {x} is a transformation on 

the vector x that removes the first element of the vector, shifts elements 2 to i — 1 

one place up and inserts a 1 on the now v vacant position i — 1. Using (A.9) and 

(A.3) we find Fi  to be 
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Combining this with (A.7) finally results in 

(A.12)  

The second expectation from (A.1). is now found to be 

(A.13)  

(A.14)  

and r as the K — 1 x K — 1 matrix of which the rows are given by 

The transformation Ti  {xT removes the first element of the row-vector xi', shifts 

elements 2 through i — 1 one place to the left and inserts a 1 on the now open place 

i — 1. 

Now equating (A.1) to zero from (A.6) and (A.13) gives 

(A.15)  

(A.16)  



APPENDIX B 

ONE-SHOT BOOTSTRAP FOR DISPERSIVE CHANNELS, TWO 
USER CASE 

B.1 The Decorrelator 

In this Appendix, the one-shot bootstrap decorrelator for multi-path channels is 

shown for the case of two users, each of which has a channel consisting of 2 distint 

paths. Repeating for convenience (3.4) 

x(0) = P Ab(0) + n(0) 	 (B.1) 

where 

or, after some substitutions 

rest 2 x 2 in size. The zeroes in TV arise due to the fact that the left and right partial 

signature codes of any path are uncorrelated, and the ones are due to normalizing 

the correlation of the partial codes by their energies. 
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The data vector 

(B.2)  

Similarly, 

(B.3)  

The matched filter bank output vector 

(B.4)  

The noise vector n is defined in a similar fashion as x. 

(B.1) can thus, omitting the noise contribution, be presented as 

(B.5)  

For the weight matrix of the bootstrap, we derive from (3.7) 

where the off-diagonal zeroes are inserted to assure that the same data carried by 

different partial paths of the same user does not interact. Even though the original 

left and right path parts carry uncorrelated data, correlation at the corresponding 

matched filter outputs is created through transformation (by W), which requires 



W = 

W= 

(B.6) 

additional weights to get rid of. In the above weight matrix, these weights are 

B.2 Steady State Bootstrap Weights 

In this section, as example to section 3.3, the steady state weights will be derived, 

by random choice, for the left parts of the paths of user 2. First, reorganizing (B.5) 

after which the definition of (3.91 gives 

(13.7) 



Using the above definitions, we now get the equivalent of (3.9) 
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(B.8) 

Similarly reorganizing W 

(B.9)  

(B.10)  

The output z of the bootstrap algorithm is defined as 

and thus for the left parts of user two (see (3.13)) 

(B.11)  

From (B.6) and (B.7) and the assumption that P is symmetrical, which is true if 

the users relative delays are known or estimated perfectly, 

(B.12)  
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The later two equations are equivalent to (3.12). Using (B.11) and (B.12) in the 

steady state requirement of the bootstrap 

Since under the assumption of independent data 

zeroes) 

= 0 (a matrix with 

(B.14) 

Similarly, by stacking columns, it follows using (B.8) that 

(B.15) 

Repeating (B.13) and substituting (B.14) and (B.15), 

Now again stacking columns and using (B.7) 

(B.16) 



92 

This final result is the equivalent of (3.14) for the weights of the left parts of user 

two. 
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