84 research outputs found

    Design of Stochastic Machines Dedicated to Approximate Bayesian inferences

    Get PDF
    International audienceWe present an architecture and a compilation toolchain for stochastic machines dedicated to Bayesian inferences. These machines are not Von Neumann and code information with stochastic bitstreams instead of using floating point representations. They only rely on stochastic arithmetic and on Gibbs sampling to perform approximate inferences. They use banks of binary random generators which capture the prior knowledge on which the inference is built. The output of the machine is devised to continuously sample the joint probability distribution of interest. While the method is explained on a simple example, we show that our machine computes a good approximation of the solution to a problem intractable in exact inference

    Bayesian Sensor Fusion with Fast and Low Power Stochastic Circuits

    No full text
    International audience—As the physical limits of Moore's law are being reached, a research effort is launched to achieve further performance improvements by exploring computation paradigms departing from standard approaches. The BAMBI project (Bottom-up Approaches to Machines dedicated to Bayesian Inference) aims at developing hardware dedicated to probabilistic computation , which extends logic computation realised by boolean gates in current computer chips. Such probabilistic computing devices would allow to solve faster and at a lower energy cost a wide range of Artificial Intelligence applications, especially when decisions need to be taken from incomplete data in an uncertain environment. This paper describes an architecture where very simple operators compute on a time coding of probability values as stochastic signals. Simulation tests and a reconfigurable logic hardware implementation demonstrated the feasibility and performances of the proposed inference machine. Hardware results show this architecture can quickly solve Bayesian sensor fusion problems and is very efficient in terms of energy consumption

    Autonomous Robot Controller Using Bitwise GIBBS Sampling

    Get PDF
    International audienceIn the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL specification of the circuit implementation of this controller is based on stochastic computation to perform Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous works

    Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System

    Get PDF
    International audienceThis paper presents a stochastic computing implementationof a Bayesian sensorimotor system that performsobstacle avoidance for an autonomous robot. In a previouswork we have shown that we are able to automatically design aprobabilistic machine which computes inferences on a Bayesianmodel using stochastic arithmetic. We start from a high levelBayesian model description, then our compiler generates anelectronic circuit, corresponding to the probabilistic inference,operating on stochastic bit streams. Our goal in this paper isto show that our compilation toolchain and simulation devicework on a classic robotic application, sensor fusion for obstacleavoidance. The novelty is in the way the computations are implemented,opening the way for future low power autonomousrobots using such circuits to perform Bayesian Inference

    Parameter Estimation of Social Forces in Crowd Dynamics Models via a Probabilistic Method

    Get PDF
    Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.Comment: 20 pages, 9 figure

    Autonomous Robot Controller Using Bitwise GIBBS Sampling

    Get PDF
    International audienceIn the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL specification of the circuit implementation of this controller is based on stochastic computation to perform Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous works
    • …
    corecore