7 research outputs found

    Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum

    Get PDF
    Chicano, F., & Alba E. (2012). Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum. (Hao, J-K., & Middendorf M., Ed.).Evolutionary Computation in Combinatorial Optimization - 12th European Conference, EvoCOP 2012, Málaga, Spain, April 11-13, 2012. Proceedings. 111–123.Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Ministry of Science and Innovation and FEDER under contracts TIN2008-06491-C04-01 and TIN2011-28194. Andalusian Government under contract P07-TIC-03044

    Exact computation of the fitness-distance correlation for pseudoboolean functions with one global optimum

    Get PDF
    Abstract. Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty

    Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization

    Get PDF
    Journal of Heuristics, 19(4), pp.711-728Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of an especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that can be exploited to explain the behavior of some existing algorithms when they are applied to the problem or to create new search methods for the problem. In this paper we analyze the 0-1 Unconstrained Quadratic Optimization from the point of view of landscapes’ theory. We prove that the problem can be written as the sum of two elementary components and we give the exact expressions for these components. We use the landscape decomposition to compute autocorrelation measures of the problem, and show some practical applications of the decomposition.Spanish Ministry of Sci- ence and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Design Space Re-Engineering for Power Minimization in Modern Embedded Systems

    Get PDF
    Power minimization is a critical challenge for modern embedded system design. Recently, due to the rapid increase of system's complexity and the power density, there is a growing need for power control techniques at various design levels. Meanwhile, due to technology scaling, leakage power has become a significant part of power dissipation in the CMOS circuits and new techniques are needed to reduce leakage power. As a result, many new power minimization techniques have been proposed such as voltage island, gate sizing, multiple supply and threshold voltage, power gating and input vector control, etc. These design options further enlarge the design space and make it prohibitively expensive to explore for the most energy efficient design solution. Consequently, heuristic algorithms and randomized algorithms are frequently used to explore the design space, seeking sub-optimal solutions to meet the time-to-market requirements. These algorithms are based on the idea of truncating the design space and restricting the search in a subset of the original design space. While this approach can effectively reduce the runtime of searching, it may also exclude high-quality design solutions and cause design quality degradation. When the solution to one problem is used as the base for another problem, such solution quality degradation will accumulate. In modern electronics system design, when several such algorithms are used in series to solve problems in different design levels, the final solution can be far off the optimal one. In my Ph.D. work, I develop a {\em re-engineering} methodology to facilitate exploring the design space of power efficient embedded systems design. The direct goal is to enhance the performance of existing low power techniques. The methodology is based on the idea that design quality can be improved via iterative ``re-shaping'' the design space based on the ``bad'' structure in the obtained design solutions; the searching run-time can be reduced by the guidance from previous exploration. This approach can be described in three phases: (1) apply the existing techniques to obtain a sub-optimal solution; (2) analyze the solution and expand the design space accordingly; and (3) re-apply the technique to re-explore the enlarged design space. We apply this methodology at different levels of embedded system design to minimize power: (i) switching power reduction in sequential logic synthesis; (ii) gate-level static leakage current reduction; (iii) dual threshold voltage CMOS circuits design; and (iv) system-level energy-efficient detection scheme for wireless sensor networks. An extensive amount of experiments have been conducted and the results have shown that this methodology can effectively enhance the power efficiency of the existing embedded system design flows with very little overhead

    Methodology and Software for Interactive Decision Support

    Get PDF
    These Proceedings report the scientific results of an International Workshop on "Methodology and Software for Interactive Decision Support" organized jointly by the System and Decision Sciences Program of IIASA and The National Committee for Applied Systems Analysis and Management in Bulgaria. Several other Bulgarian institutions sponsored the workshop -- The Committee for Science to the Council of Ministers, The State Committee for Research and Technology and The Bulgarian Industrial Association. The workshop was held in Albena, on the Black Sea Coast. In the first section, "Theory and Algorithms for Multiple Criteria Optimization," new theoretical developments in multiple criteria optimization are presented. In the second section, "Theory, Methodology and Software for Decision Support Systems," the principles of building decision support systems are presented as well as software tools constituting the building components of such systems. Moreover, several papers are devoted to the general methodology of building such systems or present experimental design of systems supporting certain class of decision problems. The third section addresses issues of "Applications of Decision Support Systems and Computer Implementations of Decision Support Systems." Another part of this section has a special character. Beside theoretical and methodological papers, several practical implementations of software for decision support have been presented during the workshop. These software packages varied from very experimental and illustrative implementations of some theoretical concept to well developed and documented systems being currently commercially distributed and used for solving practical problems
    corecore