420 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Finding Induced Subgraphs via Minimal Triangulations

    Get PDF
    Potential maximal cliques and minimal separators are combinatorial objects which were introduced and studied in the realm of minimal triangulations problems including Minimum Fill-in and Treewidth. We discover unexpected applications of these notions to the field of moderate exponential algorithms. In particular, we show that given an n-vertex graph G together with its set of potential maximal cliques Pi_G, and an integer t, it is possible in time |Pi_G| * n^(O(t)) to find a maximum induced subgraph of treewidth t in G; and for a given graph F of treewidth t, to decide if G contains an induced subgraph isomorphic to F. Combined with an improved algorithm enumerating all potential maximal cliques in time O(1.734601^n), this yields that both problems are solvable in time 1.734601^n * n^(O(t)).Comment: 14 page

    Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions

    Full text link
    Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al., it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table

    Computing hypergraph width measures exactly

    Full text link
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2^n) and compute the fractional hypertree-width of H in time O(m*1.734601^n).Comment: 12 pages, 1 figur
    • …
    corecore