5 research outputs found

    Model Driven Mutation Applied to Adaptative Systems Testing

    Get PDF
    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary results on an adaptive web server highlight the difficulty of killing mutants for adaptive systems, and thus the difficulty of generating efficient tests.Comment: IEEE International Conference on Software Testing, Verification and Validation, Mutation Analysis Workshop (Mutation 2011), Berlin : Allemagne (2011

    Artificial table testing dynamically adaptive systems

    Get PDF
    Dynamically Adaptive Systems (DAS) are systems that modify their behavior and structure in response to changes in their surrounding environment. Critical mission systems increasingly incorporate adaptation and response to the environment; examples include disaster relief and space exploration systems. These systems can be decomposed in two parts: the adaptation policy that specifies how the system must react according to the environmental changes and the set of possible variants to reconfigure the system. A major challenge for testing these systems is the combinatorial explosions of variants and envi-ronment conditions to which the system must react. In this paper we focus on testing the adaption policy and propose a strategy for the selection of envi-ronmental variations that can reveal faults in the policy. Artificial Shaking Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a technique widely used in civil engineering to evaluate building's structural re-sistance to seismic events. ASTT makes use of artificial earthquakes that simu-late violent changes in the environmental conditions and stresses the system adaptation capability. We model the generation of artificial earthquakes as a search problem in which the goal is to optimize different types of envi-ronmental variations

    Managing software evolution through midleware and policy-based software adaptation framework

    Get PDF
    Software evolution is a process that is needed in order for software to remain useful. Thus, software evolution should be properly planned and controlled to prevent its negative impact from affecting any organization. Software adaptation concept is one of the promising ways to control software evolution. In this approach, software is made adaptable to minimize the impact of change. A lot of researches on software adaptation focus on adaptability of mobile based and network application due to its context sensitivity and quality-of-service requirements. However, there is still lack of work in enterprise system domain with multiple delivery channels, which focus on adaptability of its context environment such as the changes introduced to its devices. Hence, the purpose of this research is to develop a middleware and policy-based, adaptation framework to manage negative effects of software evolution in an enterprise system. The main research focus is on the changes introduced at the device layer. The concept of policy is used to specify adaptations requirements. This research provides a framework called Middleware and Policy-Based Framework to Manage Software Evolution (MiPAF), which can be used to develop adaptive software, allowing parameterized and compositional adaptation. Furthermore, the framework can be used by client-server and web-based application. A policy language called MiPAF Policy Language (MPL) is created to be used with the framework. MiPAF is formally specified using Z Notation and the policy language is described using pseudo code. A tool is provided to assist developers in creating the policy. For evaluation of the framework, a set of runtime components were developed and implemented for Unit Trust System (UTS) Front-end and web-based UTS, two industrial-based case studies. The evaluation result shows that MiPAF excellently fulfil all the evaluation criteria described in this thesis

    Artificial table testing dynamically adaptive systems

    Get PDF
    Dynamically Adaptive Systems (DAS) are systems that modify their behavior and structure in response to changes in their surrounding environment. Critical mission systems increasingly incorporate adaptation and response to the environment; examples include disaster relief and space exploration systems. These systems can be decomposed in two parts: the adaptation policy that specifies how the system must react according to the environmental changes and the set of possible variants to reconfigure the system. A major challenge for testing these systems is the combinatorial explosions of variants and envi-ronment conditions to which the system must react. In this paper we focus on testing the adaption policy and propose a strategy for the selection of envi-ronmental variations that can reveal faults in the policy. Artificial Shaking Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a technique widely used in civil engineering to evaluate building's structural re-sistance to seismic events. ASTT makes use of artificial earthquakes that simu-late violent changes in the environmental conditions and stresses the system adaptation capability. We model the generation of artificial earthquakes as a search problem in which the goal is to optimize different types of envi-ronmental variations

    A framework for robust control of uncertainty in self-adaptive software connectors

    Get PDF
    Context and motivations. The desired behavior of a system in ubiquitous environments considers not only its correct functionality, but also the satisfaction of its non-functional properties, i.e., its quality of service. Given the heterogeneity and dynamism characterizing the ubiquitous environments and the need for continuous satisfaction of non-functional properties, self-adaptive solutions appear to be an appropriate approach to achieve interoperability. In this work, self-adaptation is adopted to enable software connectors to adapt the interaction protocols run by the connected components to let them communicate in a timely manner and with the required level of quality. However, this self-adaptation should be dependable, reliable and resilient to be adopted in dynamic, unpredictable environments with different sources of uncertainty. The majority of current approaches for the construction of self-adaptive software ignore the uncertainty underlying non-functional requirement verification and adaptation reasoning. Consequently, these approaches jeopardize system reliability and hinder the adoption of self-adaptive software in areas where dependability is of utmost importance. Objective. The main objective of this research is to properly handle the uncertainties in the non-functional requirement verification and the adaptation reasoning part of the self-adaptive feedback control loop of software connectors. This will enable a robust and runtime efficient adaptation in software connectors and make them reliable for usage in uncertain environments. Method. In the context of this thesis, a framework has been developed with the following functionalities: 1) Robust control of uncertainty in runtime requirement verification. The main activity in runtime verification is fine-tuning of the models that are adopted for runtime reasoning. The proposed stochastic approach is able to update the unknown parameters of the models at runtime even in the presence of incomplete and noisy observations. 2) Robust control of uncertainty in adaptation reasoning. A general methodology based on type-2 fuzzy logic has been introduced for the control of adaptation decision-making that adjusts the configuration of component connectors to the appropriate mode. The methodology enables a systematic development of fuzzy logic controllers that can derive the right mode for connectors even in the presence of measurement inaccuracy and adaptation policy conflicts. Results. The proposed model evolution mechanism is empirically evaluated, showing a significant precision of parameter estimation with an acceptable overhead at runtime. In addition, the fuzzy based controller, generated by the methodology, has been shown to be robust against uncertainties in the input data, efficient in terms of runtime overhead even in large-scale knowledge bases and stable in terms of control theory properties. We also demonstrate the applicability of the developed framework in a real-world domain. Thesis statement. We enable reliable and dependable self-adaptations of component connectors in unreliable environments with imperfect monitoring facilities and conflicting user opinions about adaptation policies by developing a framework which comprises: (a) mechanisms for robust model evolution, (b) a method for adaptation reasoning, and (c) tool support that allows an end-to-end application of the developed techniques in real-world domains
    corecore