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Abstract: Dynamically Adaptive Systems (DAS) are systems that modify their 
behavior and structure in response to changes in their surrounding environment. 
Critical mission systems increasingly incorporate adaptation and response to the 
environment; examples include disaster relief and space exploration systems. 
These systems can be decomposed in two parts: the adaptation policy that 
specifies how the system must react according to the environmental changes 
and the set of possible variants to reconfigure the system. A major challenge for 
testing these systems is the combinatorial explosions of variants and envi-
ronment conditions to which the system must react. In this paper we focus on 
testing the adaption policy and propose a strategy for the selection of envi-
ronmental variations that can reveal faults in the policy. Artificial Shaking 
Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a 
technique widely used in civil engineering to evaluate building’s structural re-
sistance to seismic events. ASTT makes use of artificial earthquakes that simu-
late violent changes in the environmental conditions and stresses the system 
adaptation capability. We model the generation of artificial earthquakes as a 
search problem in which the goal is to optimize different types of envi-
ronmental variations. 

Keywords: Testing of dynamically adaptive systems, Artificial shaking table 
testing, Adaptation policy testing, Search based testing. 
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Résumé: Dynamically Adaptive Systems (DAS) are systems that modify their 
behavior and structure in response to changes in their surrounding environment. 
Critical mission systems increasingly incorporate adaptation and response to the 
environment; examples include disaster relief and space exploration systems. 
These systems can be decomposed in two parts: the adaptation policy that 
specifies how the system must react according to the environmental changes 
and the set of possible variants to reconfigure the system. A major challenge for 
testing these systems is the combinatorial explosions of variants and envi-
ronment conditions to which the system must react. In this paper we focus on 
testing the adaption policy and propose a strategy for the selection of envi-
ronmental variations that can reveal faults in the policy. Artificial Shaking 
Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a 
technique widely used in civil engineering to evaluate building’s structural re-
sistance to seismic events. ASTT makes use of artificial earthquakes that simu-
late violent changes in the environmental conditions and stresses the system 
adaptation capability. We model the generation of artificial earthquakes as a 
search problem in which the goal is to optimize different types of envi-
ronmental variations. 

Mots clés: Testing of dynamically adaptive systems, Artificial shaking table 
testing, Adaptation policy testing, Search based testing.
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1 Introduction 

Software is expected to do more for us today in more situations than we ever 
expected in the past. Nowadays, there exist more users, interacting systems, re-
sources and goals than before. That is translated into system operating non-stop 
on complex, rapidly changing, and possibly hostile environments. It is unac-
ceptable for these systems to crash when confronted with changes; they must 
instead fluidly adapt to the ongoing circumstances and find the way to continue 
accomplishing their functionalities. Such systems, called dynamically adaptive 
systems (DAS), play increasingly vital roles in society’s infrastructures. The 
demand for DAS appears in application domains ranging from crisis manage-
ment applications such as disaster management [17], space exploration [12], 
and transportation control to entertainment and business applications such as 
mobile interactive gaming and business collaborations (e.g., through virtual or-
ganizations and dynamic service compositions). This demand is accentuated by 
the mobile and nomadic nature of many of these domains. Indeed, future appli-
cations will need to cope with advanced properties such as context awareness 
and mobility. The IDC3 analysts forecast a global increase in the number of 
mobile workers to more than 850 million by 2009 [10].  

DAS responds to environmental changes by modifying their internal configu-
ration in order to continue meeting their functional and non-functional require-
ments. 

Designing a DAS consists in two phases. The first is the identification of the 
system parts that may vary during the execution. Typically, designers address 
this step using software product lines techniques (SPL) [3]. SPL proposes to 
define a family of software starting from a core system and encoding its varying 
parts into variation points. These variation points enable determine the system’s 
changeable structure while maintaining its overall organization. In this way, the 
structural changes performed in adaptation are reflected as the transition be-
tween variants of the system. During the second step, designers specify which 
environmental fluctuations should have an impact on the system as well the as-
sociated strategies to perform the structural changes. Typically, designers ad-
dress this step by defining adaptation policies that encode the courses of actions 
to be adopted when the environment changes [2, 13, 18, 21]. Adaptation poli-
cies drive the adaptation process and compute the right system variant that 
should be adopted given an environmental condition.  

We distinguish two activities for testing an adaptive system. The first activity 
consists in testing the system variants. That is, for each variant, a set of test sce-
narios is executed to check the variant validity. However, due to the exponential 
growth of system variants with the number of variables, it is impossible to per-
form this activity for all of them. Instead, it is necessary to select a representa-
                                                
3  IDC is an analyst company and a global provider of market intelligence, advisory services, and events 
for the information technology, telecommunications, and consumer technology markets 
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tive subset of variants to be tested. Existing testing techniques for software 
product lines can be applied to address this issue [5].  

The second activity consists in testing whether the adaptation policies are cor-
rectly implemented and well suited for their working environment. That is, 
simulate environmental changes and check whether the system adapts correctly 
with respect to those changes and with respect to the adaptation policy. Doing 
so is challenging because again there is a problem lying on exponential growth. 
Simulating environmental changes requires moving the environment from one 
condition to another (environmental transition). Simulating the whole environ-
ment is impossible due to: (i) the extremely large number environmental condi-
tions, and (ii) the even larger number of environmental transitions. 

In this paper we address the selection of representative environmental condi-
tions, and environmental transitions to test the adaptation policies of DAS. Our 
strategy is based on the metaphor of a civil engineering testing technique, where 
structural engineers test the structural resistance of building by simulating natu-
ral earthquakes. This kind of test is referred as shaking table testing (STT) [11], 
because it involves placing a structure scale model over a table capable of oscil-
lating in such a frequency and cadence that simulate a natural earthquake. 
Analogous to STT we propose artificial shaking table testing (ASTT) for testing 
adaptation policies and their realization. ASTT consists in laying a DAS into a 
virtual shaking table, which produces artificial earthquakes (AEQ) that test its 
adaptation capabilities. AEQs are series of environmental conditions, where at 
least two consecutive conditions are very different, i.e. series with strong and 
smooth environmental variations. 

Generating AEQs embodies several challenges: (a) selecting series of envi-
ronmental conditions that are consistent with the real occurrence of the envi-
ronment; (b) selecting as much series as necessary to cover a testing criterion 
for adaptive systems; (c) selecting series containing as much violent variations 
as possible.  

In order to address these challenges, we model the generation of AEQs as a 
functional optimization problem that consists in optimizing the compromise 
between the previous challenges. This allows us to adapt existing search-based 
techniques such as hill-climbing, tabu-search and simulated annealing to auto-
matically generate AEQs. The virtual table is now a set of optimization goals 
and search algorithms. 

The contribution of this paper is a technique to automatically generate AEQs 
in such a way that they simulate representative environmental changes. The ex-
perimental results of performing mutation analysis over an adaptive web server 
indicate that automatically generating violent and smooth environmental varia-
tions are beneficial to uncover faults in adaptation policies and their realization. 

The reminder of this paper proceeds as follows. Section 2 gives a background 
on dynamically adaptive systems. Section 3 describes the challenges in testing 
adaptation policies. Section 4 introduces artificial shaking table testing. Section 
4 presents the results of an experimental study over an adaptive web server. 
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Section 5 presents the related work. Finally, in section 6 we conclude and pre-
sent our perspectives. 
2 Dynamically adaptive systems 

Consider a simple adaptive web server, which processes file requests over the 
http protocol. It answers the requests it receives as fast as possible while opti-
mizing the resources it consumes. Additionally, it provides a non-stop service 
and thus it needs to modify its internal structure in order to respond to its 
changing working environment. The working environment of the web server is 
characterized by the variable amount of requests over time. 
2.1 Environment and variants 

Dynamically adaptive systems (DAS) encode the environment into an abstrac-
tion called a context.  

DEFINITION 2.1. A context consists on an n-tuple of fields <p1, p2, …, pn>, 
where each field pi represents an environmental property. The type of each field 
is defined by the encoding chosen for the property it represents. 

In our adaptive web server example, the environment is modeled as a context 
with the properties p1: number of request per second (request density); p2: the 
amount of files that can be requested (file number); and, p3: dispersion of the 
request (request dispersion). The last one corresponds to the percentage of re-
quests that point to different files (among file number). The domain or type of 
each property has a lower and an upper bound. For instance, Request density 
and file number are integer numbers with lower bound 1 and upper bound 1000, 
whereas request dispersion is a real number with period 0.1, lower bound 0 and 
upper bound 1. The request density domain indicates that the minimum amount 
of request in one second is 1 and the maximal is 1000. Analogous, request dis-
persion indicates that when every request points the same file it has a value 0, 
and when all the requests are uniformly distributed among the possible files has 
a value 1. 

DEFINITION 2.2. Specific environmental conditions at an instant t are drawn 
by an instance I of the context representing the environment. Such instance is 
an n-tuple of values corresponding to the punctual value of a particular prop-
erty. 

The context instance <12, 3, 0.5> designates a particular environmental con-
dition, where 12 files are requested each second, the requests point to 3 differ-
ent files, and out of 12 requests 6 point the same file. A series of context in-
stances I0, I1, I2, …, In ordered by their occurrence over time is called context 
flow (F). 
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Figure 1: Architectural and feature diagram view of the simple adaptive web server. 

Since the adaptive web server works on a changing environment, it dynami-
cally modifies its internal structure to continue running. Figure 1 presents dif-
ferent views of the web server structure. On the top, an architectural view de-
scribes the structure in terms of components and connections. It states that the 
web server is composed of a single request receiver, which receives the http 
requests, encodes and passes them to a request handler. The request handler 
verifies through a cache handler whether the requested file exists in an optional 
cache. If the document exists, then the request is immediately answered. Oth-
erwise the handler passes the request to one of the available data severs, which 
loads the file from a resource and answer the request. On bottom, a feature dia-
gram [9] describes the software product line (SPL) comprising the different 
variation points of the web server. More precisely, it states that a web server 
must deploy exactly one (black dot) request receiver, one request handler, one 
request dispatcher, optionally one cache handler (0 or 1), and any number of 
data servers (1 or more).  Besides, when a cache handler is deployed, the size 
and duration validity (seconds the files are present) of the cache must be speci-
fied.  

The variation in DAS is commonly represented by an abstraction that encodes 
the system variants. 

DEFINITION 2.3 Variation is a n-tuple of field <v0, v1, …, vn>, where each 
field vi corresponds to a variation point (actually varying). Analogously to envi-
ronmental properties, each field bears a type encoding the variation point they 
represent. 

The variation of the adaptive web server includes the variation points previ-
ously described: v1: cache existence, v2: cache size, v3: cache duration validity, 
and v4: amount of data servers. The domain for cache existence is a Boolean 
indicating that either the cache exists or not. When the case exists, its size cache 
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size varies between 10 and 1024. The number of data servers varies between 1 
and 100, which means that always must be at least one data server and no more 
than 100.  

DEFINITION 2.4. A specific configuration of the system at a moment t is 
drawn by a system variant δ. Each value in δ matches to the variation points 
values selected for that particular variant.  

The system variant <true, 10, 2,1> designates a configuration with a cache of 
size 10, a duration of 2 seconds per file, and only one data server. Analogously 
to a context flow, a variant flow reflects the configuration changes over time.  

Context and variation raise a space containing all the possible instances / vari-
ants that can produce the combination of the properties / variation point values. 
For example, the context of the adaptive web server raises a space containing 
all its possible context instances. 

DEFINITION 2.5 Context instances (I) as well as system variants (δ) must 
satisfy a series of constraint (ζ) specific to their encoding and domain. Any con-
text instance or system variant violating these constraints is invalid and does 
not belongs to the context / variant space they represent. 

Two constraints are defined for the adaptive web server. The first is a con-
straint on the variant space and states that when a cache exists its size and dura-
tion must be great than 0, otherwise they should be 0. An example of a system 
variant violating this constraint is <false, 10, 2,1>. The second constraint re-
stricts the context space and states that the number of files that can be requested 
cannot be superior to the number of requests per second. That is, the number of 
possible files grows linearly with the number of requests per second. 
3 Adaptation driver 

Adaptation in DAS is driven by a series of adaptation policies (adaptation 
model) that use different formalisms to describe the variant to adopt given a 
context change.  

DEFINITION 2.6. An adaptation policies fp defines a relation between con-
text and system variants. It is a function fp: ℘ (I) x ℘ (δ) → δ that receives a 
context flow (context history), a variant flow (variation history), and gives the 
next variant the system must adopt.  

There exist several strategies to implement adaptation policies, a few exam-
ples are: action-based adaptation [18], where adaptations are triggered when a 
condition is satisfied; goal based adaptation [13], where adaptations are per-
formed to reach a specific goal; and utility function based adaptation [21], 
where adaptations are calculated according to a cost function based on envi-
ronmental conditions and variation point value. 
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 The adaptation policies of the adaptive web server use a class of action-based 
strategy [18]. In this case the adaptation policy is a set of rules that, for each 
event (environmental change) evaluate if a set of conditions are satisfied, and if 
it is so, they perform a series of adaptation actions. In particular, this strategy 
encodes the condition values using fuzzy logic transformations [23]. This en-
able designers to write conditions based on adjectives (fuzzy values) such as 
high, medium, low instead of precise value. The use of such adjectives allows 
designers to abstract from low-level details and qualitatively define the system 
adaptations [2]. 

 
Listing 1: Excerpt of the adaptive web server adaptation rules. 

Listing 1 presents an excerpt of the adaptive web server adaptation policy4. It 
contains 2 rules (lines 1-3 and 5-7), which state the utility of adding a cache 
(adaptation action), given certain request dispersion. The first (lines 1-3) states 
that whenever the request dispersion is low or medium (line 1) and there is no 
cache (line 2), deploying a cache is very useful (line 3, value high). The utility 
of adding a cache is also an adjective, in this way the adaptation policy remains 
abstract from the application domain. Later on, a fuzzy engine assigns numeri-
cal values to this adjective and whether it reaches a threshold, the system de-
ploys a cache. The second rule (lines 5-6) is analogous to the first; nonetheless, 
it states that when the dispersion is high, adding a cache is not very useful. 
4 Testing the adaptation policy 

Definition 2.6 introduces the concept of adaptation policy as the driver of the 
adaptation. Testing the realization of such driver means verifying whether the 
system is capable of adapting to environmental changes, and whether such ad-
aptations proceed as specified in the adaptation policy. Additionally, tests as-
sess the adequacy of adaptation policies with respect to the possible environ-
mental changes. That is, they can help uncovering unforeseen environmental 
conditions that may not be covered by the adaptation policy. 

Testing adaptation policies involves generating context instances, and evaluat-
ing the results of exposing the system to such context instances.  

Figure 2, illustrates the testing process for adaptation policies. It is composed 
of the three steps. (1) Initially, testers synthesize a context flow from a series of 

                                                
4 The full adaptation policy can be found at http://freddy.cellcore.org/research/cherokee/rules.html 

1: WHEN REQUESTDISPERSION IS ’LOW’ OR ’MEDIUM’  
2: IF CACHEHANDLER.ISEMPTY  
3: THEN UTILITY OF ADDCACHE IS ’HIGH’  
  
5: WHEN REQUESTDISPERSION IS ’HIGH’  
6: IF CACHEHANDLER.ISEMPTY  
7: THEN UTILITY OF ADDCACHE IS ’LOW’ 
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context instances. (2) Then, they execute and expose the system to the gener-
ated context flow. That is, varying the system environment as described by the 
instances in the flow. Additionally, tester must analyze the adaptation policy in 
order to calculate the expected variant for each instance in the context flow; this 
generates an expected variant flow. (3) Finally, testers evaluate whether the 
variants adopted by the system (variant flow) when exposed to environmental 
changes are equivalent to the expected variant flow. If it is the case the process 
may start again until a stop criterion is reached. Such criterion may be for in-
stance the coverage of the whole environment. Otherwise, there is a fault and 
must be localized and corrected. 

 
Figure 2: Testing of adaptation policies 

Executing the testing process previously described raises two challenges. The 
first challenge relates to generating test data. Ideally we may want to generate 
all the context instances in order to assure the validity of adaptation policies 
over the whole environment. However, the number of context instances (con-
text space) grows exponentially with the number of properties modeled by the 
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context. For example, the context of the adaptive web server models 3 proper-
ties that generate a space of 106 (1000 x 10 x 500) instances. Moreover, since 
adaptation policies use the history of the context flow that has occurred before 
the new context instance, the configuration chosen by the adaptation policy may 
change according to the system history. It is possible that context flows contain-
ing identical context instances, but with different order of occurrence over time 
may lead to completely different variants. For this reason, the order of occur-
rence of context instances in a context flow cannot be disregarded. This creates 
a flow space containing the different context flows of a context. The length n of 
the flows determines the size of such space, which is equal to j x k, where there 
are k possible ways to choose n values from the context space, and j possible 
combinations of n context instances (j=n x (n-1)).  For example, the size of the 
adaptive web server‘s flow space of the, with context flows of length 106 is 1012 
(106 x (106-1) x 1). This means that for testing the adaptation policies of our 
adaptive web server against all the possible environmental variations it is nec-
essary to execute the testing process at least 1012 times. Rapidly we notice that 
executing such amount of tests is not feasible in reasonable time. Synthesizing 
context flows is challenging because it involves selecting the minimal represen-
tative amount of context instances and arranging them in the right way to pro-
duce context flows that adequately represent environmental variations.  

The second concerns the evaluation of the variant flow produced by the sys-
tem. Generally adaptation policies are hard-coded into the system without a 
proper specification. Since there is no proper specification, it is difficult to cal-
culate the expected variant flow. Moreover, some adaptation policies may not 
produce deterministic results, and rather produce a set of possible results or 
template results. In such cases, evaluating whether the expected and the pro-
duced variant flow are equivalent is complex because they may share only some 
commonalities. 

In this paper we propose a strategy to explore the context flow space and to 
cope with the first challenge. Inspired by civil engineering structural testing we 
propose to synthesize context flows with particular properties that stress the 
system’s environment. Such flows may exercise the adaptation policy and un-
cover faults. Concerning the evaluation of the expected result, we propose a so-
lution specific to our case study. 
5 Artificial shaking table testing 

Consider the following scenario for the adaptive web server. Initially, the 
server receives 10 requests per second equally distributed between 5 files, has a 
configuration of 1 file server and no cache deployed. Suddenly, it receives 1000 
requests per second distributed between 300 files of which 2 repeats 300 times. 
The adaptation policy specifies that the server should deploy as fast as possible 
the cache with a sufficient size to hold the 300 files, and enough file servers to 
fetch 300 files. After a few seconds, the server request rate returns to its initial 



 Artificial table testing dynamically adaptive systems  11 

RR n° 6866 

value and the server should remove the deployed cache and file servers in order 
to save resources.  

This scenario is an example of violent changes in the environmental condi-
tions of a DAS. The realization of the adaptation policy should drive the sys-
tem’s adaptation responding to such changes and produce the described con-
figuration changes. However, if it fails to do so, the system may not meet its 
functional and nonfunctional requirements, and will not be able to provide the 
expected service. We can speculate about a variety of faults that lie on the adap-
tation policy realization or specification, and that can be revealed by the de-
scribed scenario. Three faults that may occur are the following. (1) Consider 
that the adaptive web server is faced to the described scenario, but, when re-
quired, it does not deploy the file servers, or the cache, or the size of the cache 
is too small to hold 2 different files. If request response quality of service re-
quirements were bounded to the system, it will not be able to meet them. Since 
the adaptation policy specification stipulates the way the adaptation must pro-
ceed, the source of misbehavior is located in the policy realization.  (2) Con-
sider that the adaptive web server is capable of deploying the file servers and 
the cache with the right size, but with a long delay. Again, if quality of service 
requirements were bounded to the system, it will not be able to meet them be-
cause the response time will be too long, and probably when deployed, the file 
server and the cache will be useless. (3) Now, consider that the adaptive web 
server actually deploys the servers and the cache as needed, but it does not re-
move them after the request rate descends. If memory and calculation resources 
are scarce, the server will be over-consuming them and eventually crash. This 
misbehavior can be due to a faulty realization of the adaptation policy, or to a 
fault in the adaptation policy; for example, the adaptation policy does not spec-
ify what to do when the server request rate decreases, or there exist some con-
tradictory rules. 

In the previous section we stated the challenges of testing the adaptation pol-
icy realization. Particularly we highlighted the challenge of synthesizing flows 
representative of the context flow space. Such context flow must aim at uncov-
ering faults due to violent environmental changes and ensure that the system is 
capable of adapting in violent and non-violent environment.  

We address this issue by proposing a strategy to synthesize context flows, 
which contain violent and non-violent environmental changes. Based on the 
metaphor of a civil engineering testing technique referred as shaking table test-
ing, we propose to generate artificial earthquakes: context flows with several 
violent environmental changes. Our hypothesis is that synthesizing context 
flows with the described property will help testers finding faults in the adapta-
tion policy implementation and design. Additionally, such context flows may 
help developers checking whether the DAS meets its requirements. For in-
stance, whether the adaptation is carried within 5 seconds. 

In the reminder of this section we present the underlying idea of shaking table 
test to later introduce our strategy to artificial shaking table testing. 
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5.1 Shaking table testing & Artificial shaking table testing 
Shake table testing (STT), or earthquake testing is a technique widely used in 

civil engineering to test the structural resistance of buildings to ground move-
ments such as earthquakes. It consists in simulating the shaking effect of earth-
quake over a target structure. It uses a table (shaking table) that sustains the 
structure under test and oscillates with different intensities and cadence rates 
over time; this produces waves that stress the tested structure’s material resis-
tance and design [11]. STT is used to test the structural integrity, construction 
material, and structural configuration of a building facing the effects of an 
earthquake or another ground movement. STT helps civil engineers to develop 
structures that better resist natural disasters such as earthquakes without risking 
human lives in the process. 

Analogous to STT, we propose using a virtual shaking table to test the resis-
tance of adaptation policies to smooth and violent environmental changes. We 
refer to such testing strategy as artificial shaking table testing (ASTT). ASTT 
operates by generating data we refer as artificial earthquakes, in reference to 
natural earthquakes that produce sudden and violent ground movement. Artifi-
cial earthquakes are context flows embodying violent and sudden context 
changes, which are transitions between two instances located as far as possible 
from each other in the context space. Our hypothesis is that such changes may 
stress the implementation of the adaptation policy and help testers uncovering 
faults related to transitions between context instances with different degree of 
separation. Furthermore, through the exploration of the context flow space, arti-
ficial earthquakes may help testers uncovering design faults in the adaptation 
policy specification and therefore assess their adequacy with respect to their 
working environment. 
6 Artificial Earthquakes 

Artificial shaking table testing (ASTT) uses artificial earthquakes as the core 
element for testing an adaptation policy. We define an artificial earthquake and 
its component elements as follows. 

DEFINITION 5.1 An artificial earthquake (AEQ) Æ is a context flow f, which 
exhibits an earthquake profile (EP).  

An earthquake profile EP is the fundamental property of an AEQ, and, as its 
name suggests, it is the presence of a virtual earthquake among the elements of 
a context flow. Consider a context flow f composed of a series of context in-
stances I0, I1, ..., In, ordered in such a way that at some point the distance be-
tween a series of consecutive instances increases violently in relation with the 
prior distances. We call such violent variation of the distance between consecu-
tive context instances and EP. A precise definition of an EP relies on the defini-
tion of distance between a pair of context instances.  
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DEFINITION 5.2 The distance between two context instances Ii, Ii+1 is defined 
as D(Ii, Ii+1) where D : I × I→   is a function that assigns a distance (continu-
ous value) to a pair of context instances. 

The function fd depends on the application domain of the system under test. It 
basically maps a pair of context instances (tuples of values) into a single value 
representative of their location in the context space. For instance, such function 
for the adaptive web server context corresponds to the Euclidian distance be-
tween two triplets of values.   

DEFINITION 5.3 The origin ⊗ of a context space is a single instance that rep-
resents a reference point in the context space.  

The origin of the context space gives us a stand ground to define EP, and al-
lows us to state important properties that an EP must have. 

 
Figure 3: Graphical representation of a context flow with an EP 

DEFINITION 5.4 An earthquake profile in a context flow f consists in a violent 
variation of the distance between two or more context instances. 

(1) ∃ <Ik, Ik+1,...,Ik+j> ⊆  f  ⁄  
    (D(Ik,Ik+1 ) << D(Ik+j-1, Ik+j)) ∨  
    (D(Ik,Ik+1 ) >> D(Ik+j-1, Ik+j)) , k=1..n  

(2) ∀ Ii, Ii+1, Ii+2 ∈   f , 
 (D(Ii, ⊗) ≥ D(Ii+1, ⊗) ∧ D(Ii+1, ⊗) ≤ D(Ii+2, ⊗)) ∨ 

    (D(Ii, ⊗) ≤ D(Ii+1, ⊗) ∧ D(Ii+1, ⊗) ≥ D(Ii+2, ⊗)), i=1..n 

A context flow f has an earthquake profile if it has the following properties 
(earthquake profile): (1) It must contain at least one sequence of context in-
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stances Ik, Ik+1,...,Ik+j , such that the distance between the first pair of elements is 
very different from the distance between the last pair. This property forces a 
context flow to contain violent and smooth variations in the context transitions. 
(2) Property two forces a context flow to contain context instances, whose dis-
tance to the origin oscillates.  

Figure 3 graphically illustrates a context flow with an EP. In the figure, the 
abscissa axis represents the occurrence of context instances over time, whereas 
the ordinate axis represents the distance of such context instances with respect 
to the origin ⊗. The sequence of instances Ik, Ik+1,...,Ik+j in figure 3 satisfies the 
first property, because the distance between Ik and Ik+1 is much smaller than the 
distance between Ik+j-1 and Ik+j. We can also notice that the distance between all 
the instances and the origin oscillates. 

 
Figure 4: Examples of the different shapes that an AEQ can adopt 

It is worth mentioning that the graphical representation of an earthquake pro-
file can have a variety of shapes, figure 4 illustrate three of them. At the left it 
shows an AEQ with smooth transitions but incremental distance between the 
instances and the origin. At the center it shows an AEQ with smooth transitions 
with approximately equal distance between the context instances and the origin. 
Finally, at the right it shows an AEQ with transitions whose distance incremen-
tally increase until reaching a pick. 

An AEQ with a particular shape may uncover a particular set of faults. For in-
stance, the first one can detect faults due to defective handling of context transi-
tions incrementally far from the origin. That is, subtle and smooth transitions 
between instances that are not very far from each other, but globally increase 
their distance to the origin. The second one can detect faults due to defective 
handling of oscillating context transitions, which are continuous transitions be-
tween context instances relatively close. The distance between the oscillating 
instances defines if this profile is capable of detecting faults on smooth context 
transitions. Finally, the last one can detect faults due to defective handling of 
incrementally violent context transitions. That is, transitions between context 
instances increasingly far from each other. 
6.1 Artificial Earthquake synthesis 

ASTT comprises the generation and use of artificial earthquakes to uncover 
faults. Generating AEQ consists in selecting context flows containing at least 
one occurrence of an EP. That is, explore the context flow space searching for a 
context flow with the properties described in definition 5.4. Additionally, the 
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candidate flows must represent a particular set of the environment qualities, i.e. 
they must fulfill an adequacy criterion. 

When searching for AEQs we must also consider that, in the real world, con-
text instances generally do not occur randomly, and thus, the candidate flow 
should be as similar as possible to the real occurrence of context instances. 
Typically the occurrence of context instances over time is described by the aid 
of a probabilistic distribution function, and therefore, the candidate context flow 
must fit such distribution. 

Our strategy to generate AEQ consists in translating the selection of context 
instances and the assembly of context flows into a functional optimization or 
search problem. In this way, a search algorithm such as genetic algorithm, or 
ant colony optimization will search a compromise between the different goals 
of an AEQ, (1) the presence of EP, (2) the similarity with reality, (3) and the 
satisfaction of a particular criterion. Moreover, it is possible that no single AEQ 
completely satisfies the search goals; hence, the search should select as much 
AEQ as needed to accomplish the goals. 

We model this search problem as a two-fold optimization. At the top level, the 
objective is selecting the smallest set of AEQ that maximizes coverage of a par-
ticular criterion, and the number of AEQ with different shapes. At the bottom 
level, the objective is selecting the AEQ that maximizes the occurrences of 
earthquake profile, and better approximates the real occurrence of the instances 
over time.  

These two-folds help us defining a global, and a local optimization functions 
based on the following elements. 

DEFINITION 5.5 A coverage criterion µ captures a set of context instances 
that must be covered by a context flow (or a set of them). Let CL: F × µ →  be 
a function mapping context flows to an integer value indicating the number of 
elements of µ covered by a single context flow. Let CG: ℘(F) × µ →  be a 
function mapping a set of context flows to an integer value indicating the num-
ber of elements of µ covered by set of context flows. 

Examples of coverage criteria are the coverage of all the pairs of instances, 
the coverage of all the transitions between the pairs of instance, coverage of 
X% of the transitions, etc. Such criteria drive the generation of AEQ, forcing the 
search on the uncovered context space.  

DEFINITION 5.6 Let EP : F →  a function mapping context flows to a real 
value indicating the amount of occurrences of EP (property 1 definition 5.4) in 
a single context flow. 

DEFINITION 5.7 Let S : ℘(F) →  a function mapping context flows to an 
integer value indicating the amount of different EP shapes in a sequence of 
context flows. 
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DEFINITION 5.8 A probabilistic distribution ϖ defines the real occurrence of 
context instances over time. Let RE: F × ϖ →  a function mapping context 
flows to a real value indicating the distance between the actual context flow 
and the real occurrence of the instances in the context. 

Globally, the optimization goal consists in finding the maximum value for a 
global function to optimize. 

DEFINITION 5.9 Given CG, S, and the set of context flows sf we define the 
global function to optimize: 

 G (sf) = w0 * CG (sf, µ) + w1*S (sf) – sizeof (sf), w0+w1=1 

Where w0 and w1 are the respective weight of covering a target criterion and 
having different AEQ shapes. Greater the value of w0 or w1, greater is the im-
portance of optimizing that particular goal. G (sf) aims at optimizing the cover-
age of a criterion, and AEQ shapes of a set of AEQ while minimizing the num-
ber of AEQs.  

Locally, the optimization goal consists in finding the maximum value for a lo-
cal function to optimize. 

DEFINITION 5.10 Given CL, EP, RE, and a context f we define the local 
function to optimize: 

L (f)=w0 * CL (f, µ) + w1 * EP (f) + w2* RE (f,ϖ), 
w0+ w1+w2=1 

Where w0, w1, and w2 are the respective weight of the elements of a particular 
criterion covered by the context flow, the amount of occurrences of EP and dis-
tance of the approach of the context flow with the reality. This function 
searches to optimize the trade-off between the different search goals when se-
lecting a particular AEQ. 

Given the global and local optimization functions we propose an algorithm for 
searching the optimal sequence of AEQ for a given context. Since any local 
search meta-heuristic such as tabu-search or simulated annealing can be 
adapted for performing the local search, we describe only the global search al-
gorithm. In this paper we decided to use tabu-search [14] for local search. 

Listing 2 shows the pseudo code of our global search algorithm. Initially, two 
memory structures are created (lines 2-3). The objective of the first memory 
structure MEM is storing context flows that could be useful in the future. Each 
element in MEM has an associated iteration number, which is updated itera-
tively (line 21). The second memory structure T stores the shapes and criterion 
elements already covered by the candidate solution. It is used by the local 
search to avoid exploring the areas already covered by existing solution. 

 
  1: procedure globalSearch : SOL: Sequence[ContextFlow] 
  2:  MEM: Set[ContextFlow] 
  3:  T: MemoryStructure 
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  4:   while stop criterion not met do 
  5:      for each Æ in MEM do 
  6:       if G(SOL U Æ ) > G(SOL) then 
  7:         add Æ to SOL 
  8:       else 
  9:          if maximal amount of iterations of Æ then 
11:           remove Æ from MEM 
12:         end if 
13:      end for each 
14:      Æ <- localSearch(T) 
15:      if G(SOL U Æ ) > G(SOL) then 
16:         add Æ to SOL 
17:     else 
18:         add Æ to MEM 
19:     end if 
20:     update T with the new elements in SOL 
21:     update iteration number of each element in MEM 
22:   end while 
23: end procedure 

 

Listing 2: Global search algorithm for the generation of AEQ 

 
Once the data structures are initialized and while a stop criterion such as a 

minimum value for G or a maximal number of iterations is not met, the algo-
rithm proceeds (line 4). Otherwise, it returns the candidate solution SOL. For 
each AEQ in MEM, the algorithm evaluates the utility of adding it to the candi-
date solution (line 6). If adding it increases the value of G, then it is added to 
the candidate solution (line 7). Otherwise, if it has reached a maximum amount 
of iterations in the memory structure MEM it is deleted (line 11).  Next, a local 
search algorithm generates an AEQ that does not overlap the elements in T. The 
algorithm evaluates the utility of adding it to the candidate solution. If adding it 
increases the value of G, then it is added to the candidate solution (line 7). Oth-
erwise, it is added to the memory structure MEM with an initial iteration count 
of 0. Finally, the data structure T is updated with the new elements in the can-
didate solution, and the MEM iteration number is updated. 

We have implemented this algorithm as well as a taboo local search as a 
~7000 LOC java program we refer as shaker. 
7 Experiments 

In the previous section we presented ASTT and proposed a strategy to synthe-
size AEQ (context flows with particular properties). Our hypothesis is that such 
data may help testers finding faults in the adaptation policy specification and its 
realization. This section describes the empirical evaluation of this hypothesis. 
Section 6.1 presents our test subject and describes the instrumentation we per-



18  Munoz & Baudry 

INRIA 

formed in order to obtain the experimental data. Section 6.2 describes the set-
ting of the experiment. Finally section 6.3 presents and discusses the results. 
7.1 Test subject 

In order to validate our hypothesis about the ability of ASTT to uncover faults 
in adaptation policies, we use the adaptive web server presented in section 2 as 
a test subject.  

 
Figure 5: Architecture of the adaptive web server adaptation policy realization 

Figure 5 presents the architectural realization of the adaptation policy pre-
sented in section 2. It is composed of a sensor component, which is aware about 
the environment and collects the data produced by environmental changes. It 
encodes the data into values representing the environmental properties of inter-
est (context instance) and passes them to a fuzzy engine. The fuzzy engine con-
verts these values into fuzzy values (adjectives such as high, low, or medium) 
and passes them to a reconfiguration engine. Finally, the reconfiguration en-
gine loads the adaptation rules and matches the fuzzy values against the adapta-
tion rules. If an adaptation rule matches the values, then it requests the system 
implementation to reconfigure as described by the rule.  

 
Figure 6: Instrumented architecture of the adaptive web server adaptation policy realiza-

tion 
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In order to inject context instances and collect reconfiguration data we have 
instrumented the adaptation policy realization. Figure 6 presents the instru-
mented architecture. We have modified the source code of the sensor compo-
nent and replaced the environment sensing mechanism with an environment 
emulator. This emulator reads context flows from a text file and injects them 
into the system provoking the instrumented sensor to respond identically to the 
non-instrumented one. We have also added a reconfiguration probe that records 
the reconfiguration requests produced by the reconfiguration engine. These re-
quests constitute a variant flow as described in section 2. 
7.2 Experiment set up 

We prepared and executed our experiment in the following way. (1) Initially 
we introduced a series of faults into the adaptation policy realization generating 
a set of mutant versions of it. (2) Next using the algorithm described in section 
5.1 we generated 3 series of AEQs (test data). (3) Finally, we executed the sys-
tem exposing it to the environmental variations described by the AEQs. We col-
lected and compared the traces generated by the reconfiguration probes in the 
original and mutant versions of the web server. Whenever the traces produced 
by the original version where different from the mutant version we declared that 
the test data killed that mutant. In the reminder of this section we detail the 
faults we introduced into the instrumented adaptation policy, the settings we 
used to generate the sets of AEQs, and finally we detail the support we used to 
execute the mutants and evaluate their results. 
7.3 Mutants 

We have introduced 90 faults into instrumented version of the adaptation pol-
icy realization generating 90 mutants of it. We classify the introduced faults in 
4 groups: 
F1. Faults introduced in the values transmitted from the sensor component to 

the fuzzy engine (3 faults). This fault consists in changing the order and 
magnitude of the property values of each context instance. 

F2. Faults introduced in the calculation of the fuzzy values in the fuzzy engine 
(25 faults). These faults consist in permuting the fuzzy values passed from 
the fuzzy engine to the reconfigurations engine. For instance, whether the 
values (adjectives) passed from the fuzzy engine were high, low, and me-
dium, we replaced high by low and low by high.  

F3. Faults introduced in the adaptation policies leaving gaps in the adaptation 
(34 faults). These faults consist in changing the adaptation rules fuzzy val-
ues, one each time. For instance, on listing 1 in section 2.2 we changed the 
value high by low (line 5). Such change leaves a gap in the possible events 
the adaptation rules capture; in this case when the fuzzy value is high no 
action is performed. 

F4. Faults introduced in the adaptation rules without leaving gaps in the adap-
tation (28 faults). These faults are similar to F3, however, instead of 
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changing one value each time, we permuted pairs of fuzzy values. For in-
stance, on listing 1 in section 2.2 we changed the value high by low on the 
first rule (line 1), and low by high on the second (line 5). These changes 
invert the action that may take place when a fuzzy value occurs for a given 
property. 

7.4 Data generation parameter settings 
Using shaker, our java implementation of the algorithm described in section 

5.3, we have generated 3 sets of 100 AEQ. For this experiment we decided to 
fix the length of each AEQ to 60 context instances.  

Concerning the coverage of the generated data, we used pairwise testing tech-
niques [4, 22] to generate all the possible context instance pairs, and employ 
them as a coverage indicator. That is, try to cover the entire valid context in-
stances generated by the possible pair combination of their property values. We 
calculated such combinations using the AllPairs5 tool. Since this tool does not 
take into account the context constraints when generating the pairs, we filtered 
them extracting those that satisfied the constraints. For example, we removed 
the context instance <5,100,1> because having more files than requests is not 
relevant. 

On the global search, we fixed the permanence of each AEQ in the MEM 
structure to 10 iterations. We implemented the memory structure T (section 5.1, 
listing 2, line 3) as a list containing the instances already covered by the candi-
date solution. We established as stop criterion a total of 100 iterations with no 
amelioration of the G value. Besides, whether the G value continued increasing, 
we fixed a hard limit of 1000 iterations.  

Regarding the local search, we used a tabu-search meta-heuristic with a sim-
ple tabu list [14] of size 30 (half of the AEQ length). The movement we imple-
mented for this search consisted in the changing the property values of a single 
context instance in order to increase or decrease the distance with its neighbors. 
In order to minimize the amount of overlap in the criterion coverage, we 
matched the elements memorized by the global search against the elements 
generated by the tabu-search. Whenever a maximum of three context instances 
were in the memory, we forced the algorithm to move the solution away from 
them.  

We have parameterized the global and local optimization functions in the fol-
lowing way.  In the global optimization function G, we have assigned the same 
importance to the coverage criterion and the EP shape (definition 5.9, w0=0.5, 
w1=0.5). In the local optimization function, we have assigned a major impor-
tance to the occurrence of an EP (definition 5.10, w0=0.6), and a relatively mi-
nor importance to the coverage criterion (definition 5.10, w1=0.4). Notice that 
we have disregarded the similitude of the AEQ with the reality (definition 5.10, 
w3=0); the rationale for doing so is that file requests can arrive with a very large 
range of probabilistic distributions over time. Such distribution depends on the 
                                                
5 http://www.mcdowella.demon.co.uk/allPairs.html 
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application domain of the web server such as online sales, content management, 
etc. Since the adaptive web server is intended to work on multiple domains, we 
decided to disregard it. 
7.5 Execution 

We have simulated the environmental variations drawn by the 3 sets of AEQs 
over the 90 mutants. To do so we executed the initially instrumented policy re-
alization, as well as the 90 mutants on a grid composed of 90 computers 
equipped each with two Intel Xeon processors at 3.4Ghz, and 4 Gb of main 
memory. The execution of the 27300 simulations (91 program  * 100 simula-
tion/AEQ * 3 AEQ/program) took about 55 minutes, and each computer exe-
cuted in average 600 simulations. 

Once the simulations were completed, we compared the traces (variant flows) 
produced by each mutant with those produced by the initial policy realization. 
We performed such comparison using a custom program written in java, which 
interprets and compares each trace with the system configuration at each point 
where a context instance arrives. This tool enabled us to determine the precise 
points where the adaptation policy produced the wrong configuration (with re-
spect to the initial realization). We then say that whenever the simulation of an 
AEQ on a mutant t produces a trace that differs from the trace produced by the 
original server, it kills the mutant t. 

In the next section we present and discuss the results of comparing of the 
traces produced by the 27000 simulations. 
7.6 Results and analysis 

Figure 7 presents a chart containing the average amount of the 3 sets of AEQ 
killing each mutant. Vertical bars represent the different mutants from 1 to 90, 
their color indicated the different groups of faults they belong to, and the value 
at left is the average amount of AEQ killing the mutants. This chart helps us 
reasoning about to illustrate whether ASTT was capable of detecting faults, and 
if some of these faults were more or less difficult to detect.  

In general the sets of AEQ were capable of killing the 96% of the mutants. 
Nevertheless, we analyzed the survival mutants noticing that they were equiva-
lent with the original adaptation policy realization. This means that our test data 
was capable of killing the 100% of the mutants. This result is positive because 
it indicates that AEQs were capable of finding each fault we introduced. Notice 
that 56% of the mutants were killed by all the AEQs, and that 4% by more than 
60% of the AEQs.  
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Figure 7: Amount of AEQ killing each mutant 

In the following we analyze the results by each group of faults. At this point it 
is worth mentioning that the adaptive web server adaptation policy encodes 
property values using adjectives such as low, high, and medium. 
F1:  The totality of AEQs was capable of killing the mutants of this group. The 

rationale behind this success is that mutants realizing these faults are very 
sensitive to environmental variations. Since this group consists in permut-
ing environmental properties with different domains (request density, re-
quest dispersion), the variations introduced by AEQs always produced 
wrong configurations. Therefore, this group of faults does not help us de-
termining whether AEQ can actually find more subtle faults in the adapta-
tion policy. 

F2:  The mutants of this group are those introducing permutations between low 
and high for the request density, and request dispersion properties. They 
are killed by more than 60% of the generated AEQs. Interestingly, the mu-
tant 14 permuted medium by low values of the request dispersion property. 
This fault can be detected only by AEQs that contain smooth changes on 
the property request dispersion. Mutants 16 and 17 show another interest-
ing result. They introduced permutations were high values of the property 
request density are always replacing medium values. This fault can only be 
detected by smooth variations on the request density property. The low 
amount of AEQs killing the last mutants indicates that only a few of them 
contain smooth changes between high and low values of the properties re-
quest density and request dispersion. 

F3:  The mutants of this group, killed by more than 60% AEQs were those in-
troducing gaps on the adaptation to violent environmental changes. The 
major part of such gaps consists in replacing the adaptation facing high 
values by those facing low values (and vice versa) of the request density 
property. Consequence of this, AEQs introducing violent context variations 
from low to high values on this property were able to detect these faults. A 
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different situation occurs with faults replacing medium by high, and low 
values on the request dispersion and request density properties (Mutants 
34, 51-58). This fault can only be detected by smooth environmental varia-
tions passing from high to medium, and low to medium values. Mutants 
61, 62 produce another interesting result. They replace the high values of 
the request density property by medium or low values. These values were 
used by the adaptation policy handling the removal of data servers. This 
fault is particularly dependant of the system history, and is sensible only to 
context changes introducing initially low values, followed by a high and a 
low value. 

F4:  Analogous to the previous group, in this group the mutants killed by more 
than 60% AEQs were those permuting low to high, and high to low values 
in the request density and request dispersion properties. We pay special at-
tention to mutant 68, which permutes high by medium values in the adapta-
tion handling the removal of cache. This fault is sensible only to context 
changes with initially high values, followed by low values on both, request 
density and request dispersion properties. Mutants 83 and 85 are a particu-
lar case of the fault introduced by mutant 16 and 17. They permute the val-
ues high and low by middle on the request density property. More pre-
cisely, the property values used by the adaptation handling the deployment 
of data servers. The faults introduced by mutants 86, 87 are equivalent to 
those introduced by mutants 89, 90.  These faults permute medium by high 
and low values in the rule stating the removal of data servers.  Only smooth 
environmental variations from high to medium request density can detect 
such faults.  

The results obtained on each group of faults allows us to infer the following 
conclusions: 

1. The experimental data obtained for fault groups F2, F3, and F4 supports 
our hypothesis: ASTT can detect faults in DAS’s adaptation policy. Evi-
dence of this is the high amount of mutants killed, as well as the high per-
centage of AEQs killing mutants that introduce faults affecting the handle 
of violent environmental variations. Furthermore, the experiments show 
evidence that several AEQs are needed in order to detect different types of 
faults. 

2. Although AEQs were initially meant to detect faults caused by wrong han-
dling of violent context variations, and not particularly smooth variations, 
experimental evidence show that they were capable of detecting such 
faults. This is explained by the fact that the AEQ generation algorithm al-
lows the generation AEQs containing smooth context changes. That is, 
AEQs with different shapes.   

3. A number of the introduced faults were sensible only to particular se-
quences of context instances. The empirical evidence demonstrates that 
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AEQs contained such sequences, and that the order in which the instances 
composing an AEQ must be assembled cannot be disregarded. 

4. The parameter setting of the AEQ generation algorithm on listing 2 pro-
duced AEQs with tendency to particularly violent context variations.  Evi-
dence of this is the large portion of test cases detecting faults caused by 
wrong handling of violent context changes. Furthermore, we were capable 
of automatically generating particular AEQs with different EP shapes, and 
that globally cover all the context pairs (pairwise testing criterion). 

7.7 Threats to validity 
There are three threats to the validity of our experiments. The first comes from 

the application of our strategy to only a single test subject. In order to make 
more general statements about the effectiveness of ASTT, it will be necessary 
to apply the strategy and algorithms introduced in this paper to a large scope of 
DAS. We plan to do so in the context of the European project DiVa [1], which 
comprises two large case studies. 

The second threat comes from the use of only one parameter setting for the 
experiment. We have generated 3 sets of AEQ using the identical parameter set-
tings for the generation algorithm. This implies that the 3 test sets produce ap-
proximately the same results, which allows us to make statements about the av-
erage results. However, in order to make more precise statements about the ef-
fectiveness of ASTT, it will be necessary to generate AEQs with a variety of 
parameters. Particular threats to validity are the length of each AEQ and the pa-
rameterization of global, and local optimization functions. The length of each 
AEQ can affect the number of AEQ needed to find a particular fault, such as 
those requiring smooth context variation, and the time consumption of the tests. 
Moreover, the compromise between the coverage of a particular criterion and 
the EAQ shape can also affect the number of AEQs that can detect a particular 
fault. 

Finally, the third threat to validity comes from the choice of the faults we in-
troduced. We did not introduce every possible fault into the adaptive web 
server. Instead we introduced the faults we thought meaningful to our case 
study, such as modification in the adaptation policy bearing violent and smooth 
context variations. Considering every possible mutant will allow testers to pre-
cisely identify the faults that ASTT is more, or less suitable to find. 
8 Related work 

A number of researchers have addressed the validation of adaptive systems. 
Zhang et al. [25] address the verification of dynamically adaptive systems 
through modular model checking. For each transition between systems variants, 
they model check only the parts of the system that have change product of an 
adaptation. In [24], they introduce a model-based adaptive software develop-
ment process that uses Petri nets to model the behavior, and uses existing Petri 
net-based model checking tools to verify these models gain interesting proper-
ties. Kramer and Magee [19] use property automata to specify the properties of 
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adaptive program, and labeled transition system analysis to verify these proper-
ties. These works diverges form ours because instead of verifying the system 
and its adaptations, we propose to validate the adaptation driver (adaptation pol-
icy) independently from the underlying platform. Besides they are founded on 
formal methods and verification, whereas our work on testing techniques. 

Lu et al. [16] study the test of pervasive context-aware software. They assume 
context awareness as a series of if-then cases, and starting from that point they 
formalize the notions of context aware data flow entities, i.e. entities that ma-
nipulate data coming from the context. By using this formalization they propose 
a family of test adequacy criteria that measure the quality of test sets with re-
spect to the context variability. The underlying idea of this work is pretty simi-
lar to ours testing the driver of potential adaptations. However we do not per-
form any data flow analysis on the context data, and our proposition can ad-
dress a much larger variety of reasoning strategies, including those relying on 
the system state.  

Combinatorial interaction testing [4] consists in sampling a test data space in 
such a way that its t-possible combinations are included; pairwise or 2-way 
combinations are the most commonly studied. Many researchers [6-8, 15, 22] 
have explored the generation of such combinations with the prime objective of 
producing the smallest subset of test data to achieve the desired t-way. Al-
though combinatorial testing is efficient reducing the size of test to run, it is not 
sufficient for testing adaptation policies. This is because besides considering the 
context space, it is necessary to consider the transitions between the elements of 
such space (flow space).  The benefit of AEQs over selecting the t-wise is that 
they ensure the presence of specific properties that targeting specific kind of 
fault. Furthermore, even if the t-wise is not enough for testing the adaptation 
policy, we have used the pairwise as a coverage criterion.  

Search based testing consists in the use of random or directed search tech-
niques (hill climbing, genetic algorithms etc.) to address problems in the soft-
ware testing domain [20]. Our contribution comes to form part of such body of 
work because we search to generate the better set of AEQs capable of finding 
faults in adaptation policies. 

The combinatorial test of software product lines also relates our work. Since it 
searches to check whether a set of product is valid we think it can be used in 
combination to our strategy. Cohen et al. [5] study the coverage and adequacy 
criteria for testing software product lines. They propose mapping a variability 
model into a simple relational model that satisfies the requirements of interac-
tion testing. In this way the relational model is used as a covering array, which 
defines test adequacy and coverage criteria.  
9 Conclusions and perspectives 

Testing whether adaptation policies are correctly implemented and well suited 
for their working environment is challenging not because of the process itself, 
but for the large amount of testing data.  
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Although simulating environmental changes is not particularly hard, it is hard 
to simulate each possible environmental condition and the transitions between 
them (environmental space). That is because the amount of possible environ-
mental conditions grows exponentially with each environmental property. This 
drawn the simulation of all the environmental conditions and their transition not 
feasible in a reasonable amount of time. 

 In this paper we proposed a strategy for selecting only a portion of the envi-
ronmental space. Inspired by a civil engineering technique called shaking table 
testing, we proposed artificial shaking table testing (ASTT). ASTT put forward 
the use of artificial earthquakes (AEQ) to test the resistance of adaptation poli-
cies to violent environmental changes. Basically, an AEQ is a sequences of en-
vironmental conditions characterized by an earthquake profile (EP), which is 
the presence of violent variation in the transitions between each condition in the 
sequence. Our hypothesis was that ASTT is capable of detecting faults due in 
the adaptation policy implementation and design. More precisely, faults that are 
due to erroneous specification or handling of violent environmental changes. 

We automated the generation of AEQ by translating their formulation into a 
search problem and defining two optimization functions. Next, we proposed an 
initial algorithm to explore the environmental space. The experimental results 
exhibit evidence that corroborate our hypothesis. Out of 90 faults introduced 
into an adaptation policy realization, ASTT was capable of detecting the 100% 
of them. AEQs resulted to be particularly good in the detection of faults lying 
on violent environmental changes. Furthermore, the experiments show that 
AEQs are also capable of detecting faults due to smooth environmental varia-
tions. 

The benefits of using ASTT for testing adaptation policies are various. It can 
help testers uncovering faults related to violent and smooth environmental 
changes. Furthermore, it can help testers uncover design faults in adaptation 
policies specification and assess their adequacy with respect to their working 
environment. 

In future work we plan experimenting with different case studies, particularly 
large scale dynamically adaptive systems. This will give use a more precise in-
dication of the scalability and effectiveness of ASTT. We also plan improving 
the algorithms for local and global search, and study the use of different cover-
age criteria in the generation of AEQs. 
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