8 research outputs found

    Prediction of lung tumor types based on protein attributes by machine learning algorithms

    Full text link

    Nudging lifestyles for better health outcomes: crowdsourced data and persuasive technologies for behavioural change

    Get PDF
    For at least three decades, a Tsunami of preventable poor health has continued to threaten the future prosperity of our nations. Despite its effective destructive power, our collective predictive and preventive capacity remains remarkably under-developed This Tsunami is almost entirely mediated through the passive and unintended consequences of modernisation. The malignant spread of obesity in genetically stable populations dictates that gene disposition is not a significant contributor as populations, crowds or cohorts are all incapable of experiencing a new shipment of genes in only 2-3 decades. The authors elaborate on why a supply-side approach: advancing health care delivery cannot be expected to impact health outcomes effectively. Better care sets the stage for more care yet remains largely impotent in returning individuals to disease-free states. The authors urge an expedited paradigmatic shift in policy selection criterion towards using data intensive crowd-based evidence integrating insights from system thinking, networks and nudging. Collectively these will support emerging potentialities of ICT used in proactive policy modelling. Against this background the authors proposes a solution that stated in a most compact form consists of: the provision of mundane yet high yield data through light instrumentation of crowds enabling participative sensing, real time living epidemiology separating the per unit co-occurrences which are health promoting from those which are not, nudging through persuasive technologies, serious gaming to sustain individual health behaviour change and intuitive visualisation with reliable simulation to evaluate and direct public health investments and policies in evidence-based waysJRC.DDG.J.4-Information Societ

    Nudging lifestyles for better health outcomes : crowsourced data and persuasive technologies for behavioural change

    Get PDF
    Analysis of lifesyle induced by cultural modernisation that are producing negative outcomes (obesity, diabetes, etc) and discussion of how social media could be harnessed together with insights from behavioural sciences to induce behavioural change

    Intelligent Medical Image Segmentation Using Evolving Fuzzy Sets

    Get PDF
    Image segmentation is an important step in the image analysis process. Current image segmentation techniques, however, require that the user tune several parameters in order to obtain maximum segmentation accuracy, a computationally inefficient approach, especially when a large number of images must be processed sequentially in real time. Another major challenge, particularly with medical image analysis, is the discrepancy between objective measures for assessing and guiding the segmentation process, on the one hand, and the subjective perception of the end users (e.g., clinicians), on the other. Hence, the setting and adjustment of parameters for medical image segmentation should be performed in a manner that incorporates user feedback. Despite the substantial number of techniques proposed in recent years, accurate segmentation of digital images remains a challenging task for automated computer algorithms. Approaches based on machine learning hold particular promise in this regard because, in many applications, including medical image analysis, frequent user intervention can be assumed as a means of correcting the results, thereby generating valuable feedback for algorithmic learning. This thesis presents an investigation of the use of evolving fuzzy systems for designing a method that overcomes the problems associated with medical image segmentation. An evolving fuzzy system can be trained using a set of invariant features, along with their optimum parameters, which act as a target for the system. Evolving fuzzy systems are also capable of adjusting parameters based on online updates of their rule base. This thesis proposes three different approaches that employ an evolving fuzzy system for the continual adjustment of the parameters of any medical image segmentation technique. The first proposed approach is based on evolving fuzzy image segmentation (EFIS). EFIS can adjust the parameters of existing segmentation methods and switch between them or fuse their results. The evolving rules have been applied for breast ultrasound images, with EFIS being used to adjust the parameters of three segmentation methods: global thresholding, region growing, and statistical region merging. The results for ten independent experiments for each of the three methods show average increases in accuracy of 5\%, 12\% and 9\% respectively. A comparison of the EFIS results with those obtained using five other thresholding methods revealed improvements. On the other hand, EFIS has some weak points, such as some fixed parameters and an inefficient feature calculation process. The second approach proposed as a means of overcoming the problems with EFIS is a new version of EFIS, called self-configuring EFIS (SC-EFIS). SC-EFIS uses the available data to estimate all of the parameters that are fixed in EFIS and has a feature selection process that selects suitable features based on current data. SC-EFIS was evaluated using the same three methods as for EFIS. The results show that SC-EFIS is competitive with EFIS but provides a higher level of automation. In the third approach, SC-EFIS is used to dynamically adjust more than one parameter, for example, three parameters of the normalized cut (N-cut) segmentation technique. This method, called multi-parametric SC-EFIS (MSC-EFIS), was applied to magnetic resonance images (MRIs) of the bladder and to breast ultrasound images. The results show the ability of MSC-EFIS to adjust multiple parameters. For ten independent experiments for each of the bladder and the breast images, this approach produced average accuracies that are 8\% and 16\% higher respectively, compared with their default values. The experimental results indicate that the proposed algorithms show significant promise in enhancing image segmentation, especially for medical applications

    Genetic algorithm-neural network: feature extraction for bioinformatics data.

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data

    On the development of intelligent medical systems for pre-operative anaesthesia assessment

    Get PDF
    This thesis describes the research and development of a decision support tool for determining a medical patient's suitability for surgical anaesthesia. At present, there is a change in the way that patients are clinically assessedp rior to surgery. The pre-operative assessment, usually conducted by a qualified anaesthetist, is being more frequently performed by nursing grade staff. The pre-operative assessmenet xists to minimise the risk of surgical complications for the patient. Nursing grade staff are often not as experienced as qualified anaesthetists, and thus are not as well suited to the role of performing the pre-operative assessment. This research project used data collected during pre-operative assessments to develop a decision support tool that would assist the nurse (or anaesthetist) in determining whether a patient is suitable for surgical anaesthesia. The three main objectives are: firstly, to research and develop an automated intelligent systems technique for classifying heart and lung sounds and hence identifying cardio-respiratory pathology. Secondly, to research and develop an automated intelligent systems technique for assessing the patient's blood oxygen level and pulse waveform. Finally, to develop a decision support tool that would combine the assessmentsa bove in forming a decision as to whether the patient is suitable for surgical anaesthesia. Clinical data were collected from hospital outpatient departments and recorded alongside the diagnoses made by a qualified anaesthetist. Heart and lung sounds were collected using an electronic stethoscope. Using this data two ensembles of artificial neural networks were trained to classify the different heart and lung sounds into different pathology groups. Classification accuracies up to 99.77% for the heart sounds, and 100% for the lung sounds has been obtained. Oxygen saturation and pulse waveform measurements were recorded using a pulse oximeter. Using this data an artificial neural network was trained to discriminate between normal and abnormal pulse waveforms. A discrimination accuracy of 98% has been obtained from the system. A fuzzy inference system was generated to classify the patient's blood oxygen level as being either an inhibiting or non-inhibiting factor in their suitability for surgical anaesthesia. When tested the system successfully classified 100% of the test dataset. A decision support tool, applying the genetic programming evolutionary technique to a fuzzy classification system was created. The decision support tool combined the results from the heart sound, lung sound and pulse oximetry classifiers in determining whether a patient was suitable for surgical anaesthesia. The evolved fuzzy system attained a classification accuracy of 91.79%. The principal conclusion from this thesis is that intelligent systems, such as artificial neural networks, genetic programming, and fuzzy inference systems, can be successfully applied to the creation of medical decision support tools.EThOS - Electronic Theses Online ServiceMedicdirect.co.uk Ltd.GBUnited Kingdo

    Genetic algorithm-neural network : feature extraction for bioinformatics data

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore