2,529 research outputs found

    Autonomous Evolutionary Art

    Get PDF
    Eiben, A.E. [Promotor

    DrawCompileEvolve : sparking interactive evolutionary art with human creations.

    Get PDF
    This paper presents DrawCompileEvolve, a web-based drawing tool which allows users to draw simple primitive shapes, group them together or define patterns in their groupings (e.g. symmetry, repetition). The user’s vector drawing is then compiled into an indirectly encoded genetic representation, which can be evolved interactively, allowing the user to change the image’s colors, patterns and ultimately transform it. The human artist has direct control while drawing the initial seed of an evolutionary run and indirect control while interactively evolving it, thus making DrawCompileEvolve a mixed-initiative art tool. Early results in this paper show the potential of DrawCompileEvolve to jump-start evolutionary art with meaningful drawings as well as the power of the underlying genetic representation to transform the user’s initial drawing into a different, yet potentially meaningful, artistic rendering.peer-reviewe

    Genetic Algorithm Modeling with GPU Parallel Computing Technology

    Get PDF
    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from a multi-core CPU serial implementation, named GAME, already scientifically successfully tested and validated on astrophysical massive data classification problems, through a web application resource (DAMEWARE), specialized in data mining based on Machine Learning paradigms. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the internal training features of the model, permitting a strong optimization in terms of processing performances and scalability.Comment: 11 pages, 2 figures, refereed proceedings; Neural Nets and Surroundings, Proceedings of 22nd Italian Workshop on Neural Nets, WIRN 2012; Smart Innovation, Systems and Technologies, Vol. 19, Springe

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges

    Get PDF
    A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation and training of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. While many works exist in the literature, no comprehensive surveys currently exist focusing exclusively on the strengths and limitations of using neuroevolution approaches in DNNs. Prolonged absence of such surveys can lead to a disjointed and fragmented field preventing DNNs researchers potentially adopting neuroevolutionary methods in their own research, resulting in lost opportunities for improving performance and wider application within real-world deep learning problems. This paper presents a comprehensive survey, discussion and evaluation of the state-of-the-art works on using EAs for architectural configuration and training of DNNs. Based on this survey, the paper highlights the most pertinent current issues and challenges in neuroevolution and identifies multiple promising future research directions.Comment: 20 pages (double column), 2 figures, 3 tables, 157 reference

    INVESTIGATING THE EVOLUTION OF TREE BOOSTING MODELS WITH VISUAL ANALYTICS

    Get PDF
    The present disclosure relates a method and a visual interactive system for tree boosting (VISTB). Tree boosting uses a group of sequentially generated weak learners (i.e., decision trees), each learns from the mistakes of its predecessor, to push the model’s decision boundary towards the true boundary. As the number of trees keeps increasing over training, it is important to reveal how the newly added trees change the predictions of individual data instances, and how the impact of different data features evolve. To accomplish these goals, in this present disclosure, proposes a new design of temporal confusion matrix, an effective interface is provided to users to track data instances’ predictions across the tree boosting process. Also, an improved visualization is presented the users to better illustrate and compare the impact of individual data features across time. Integrating these components with a tree structure visualization component in coordinated views

    Evolving Spatio-temporal Data Machines Based on the NeuCube Neuromorphic Framework: Design Methodology and Selected Applications

    Get PDF
    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ‘on the fly’ new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM
    • …
    corecore