9 research outputs found

    Evolving Combinational Logic Circuits Using a Hybrid Quantum Evolution and Particle Swarm Inspired Algorithm

    Get PDF
    In this paper, an algorithm inspired from quantum evolution and particle swarm to evolve combinational logic circuits is presented. This algorithm uses the framework of the local version of particle swarm optimization with quantum evolutionary algorithms, and integer encoding. A multi-objective fitness function is used to evolve the combinational logic circuits in order obtain feasible circuits with minimal number of gates in the design. A comparative study indicates the superior performance of the hybrid quantum evolution-particle swarm inspired algorithm over the particle swarm and other evolutionary algorithms (such as genetic algorithms) independently

    Differential Evolution Particle Swarm Optimization for Digital Filter Design

    Get PDF
    In this paper, swarm and evolutionary algorithms have been applied for the design of digital filters. Particle swarm optimization (PSO) and differential evolution particle swarm optimization (DEPSO) have been used here for the design of linear phase finite impulse response (FIR) filters. Two different fitness functions have been studied and experimented, each having its own significance. The first study considers a fitness function based on the passband and stopband ripple, while the second study considers a fitness function based on the mean squared error between the actual and the ideal filter response. DEPSO seems to be promising tool for FIR filter design especially in a dynamic environment where filter coefficients have to be adapted and fast convergence is of importance

    Optimal SVM Switching for a Multilevel Multi-Phase Machine using Modified Discrete PSO

    Get PDF
    This paper searches for the best possible switching sequence in a multilevel multi-phase inverter that gives the lowest amount of voltage harmonics. A modified discrete particle swarm (MDPSO) algorithm is used in an attempt to find the optimal space vector modulation switching sequence that results in the lowest voltage THD. As with typical PSO cognitive and social parameters are used to guide the search, but an additional mutation term is added to broaden the amount of area searched. The search space is the feasible solutions for the predetermined vectors at a given modulation index. Comparison of the MDPSO algorithm to an integer particle swarm optimization (IPSO) is presented for all three modulation indices tested. The resulting switching sequences found show that the MDPSO algorithm is capable of finding a minimal THD solution for all modulations indices tested. The MDPSO algorithm performed better overall than the IPSO in terms of converging to the best solution with significantly lower iterations

    Optimal Design or Rehabilitation of an Irrigation Project\u27s Pipe Network

    Get PDF

    舌象裂纹提取及特征分析

    Get PDF
    舌面的裂纹是一项重要的舌诊指标。文中提出的算法创新点在于用识别器能快速判断舌面是否存在裂纹;对于 存在裂纹的舌象,用改进的Confidence Connected 区域生长算子能有效提取裂纹区域;最后由分析器从可见性和深浅两方 面分析表征裂纹特征。总体试验结果令人满意

    Applications of swarm, evolutionary and quantum algorithms in system identification and digital filter design

    Get PDF
    The thesis focuses on the application of computational intelligence (CI) techniques for two problems - system identification and digital filter design. In system identification, different case studies have been carried out with equal or reduced number of orders as the original system and also in identifying a blackbox model. Lowpass, Highpass, Bandpass and Bandstop FIR and Lowpass IIR filters have been designed using three algorithms using two different fitness functions. Particle Swarm Optimization (PSO), Differential Evolution based PSO (DEPSO) and PSO with Quantum Infusion (PSO-QI) algorithms have been applied in this work --Abstract, page iii

    Evolving Digital Circuits Using Hybrid Particle Swarm Optimization and Differential Evolution

    No full text
    This paper presents the evolution of combinational logic circuits by a new hybrid algorithm known as the Differential Evolution Particle Swarm Optimization (DEPSO), formulated from the concepts of a modified particle swarm and differential evolution. the particle swarm in the hybrid algorithm is represented by a discrete 3-integer approach. a hybrid multi-objective fitness function is coined to achieve two goals for the evolution of circuits. the first goal is to evolve combinational logic circuits with 100% functionality, called the feasible circuits. the second goal is to minimize the number of logic gates needed to realize the feasible circuits. in addition, the paper presents modifications to enhance performance and robustness of particle swarm and evolutionary techniques for discrete optimization problems. Comparison of the performance of the hybrid algorithm to the conventional Karnaugh map and evolvable hardware techniques such as genetic algorithm, modified particle swarm, and differential evolution are presented on a number of case studies. Results show that feasible circuits are always achieved by the DEPSO algorithm unlike with other algorithms and the percentage of best solutions (minimal logic gates) is higher
    corecore