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ABSTRACT 

The thesis focuses on the application of computational intelligence (CI) 

techniques for two problems- system identification and digital filter design. In system 

identification, different case studies have been carried out with equal or reduced number 

of orders as the original system and also in identifying a blackbox model. Lowpass, 

Highpass, Bandpass and Bandstop FIR and Lowpass IIR filters have been designed using 

three algorithms using two different fitness functions. Particle Swarm Optimization 

(PSO), Differential Evolution based PSO (DEPSO) and PSO with Quantum Infusion 

(PSO-QI) algorithms have been applied in this work. PSO-QI is a new hybrid algorithm 

where global best particle (gbest) obtained from PSO goes into a tournament with an 

offspring produced by mutating the gbest of PSO using the quantum principle in 

Quantum behaved PSO (QPSO) and the winner is selected as the new gbest of the swarm. 

In QPSO, unlike traditional PSO, exact values of particle’s position and velocity cannot 

be determined. However, its position in the solution space is determined by mapping the 

probability of its appearance in the quantized search space. The results obtained from 

PSO-QI have been compared with the DEPSO hybrid algorithm and the classical PSO. In 

all of the cases, PSO-QI has outperformed the other two algorithms in its ability to 

converge to the lowest error value and its consistency in finding the solution every time 

and thus proven to be the best. However, the computational complexity of PSO-QI is 

higher than that of the other two algorithms. 
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1. INTRODUCTION 

1.1. INTRODUCTION 

System identification is a challenging and complex optimization problem due to 

nonlinearity of the systems and even more in a dynamic environment. Adaptive infinite 

impulse response (IIR) systems are preferably used in modeling real world systems 

because of their reduced number of coefficients and better response over the finite 

impulse response (FIR) filters. In this work, system identification has been viewed as a 

problem of adaptive IIR filtering so that it becomes a parameter estimation problem. 

Digital filter design is also a complex optimization problem due to the number of filter 

parameters that can be optimized. Hence different computational intelligence (CI) 

techniques can be used to estimate the filter coefficients so as to optimize these 

parameters and design the desired filter response. 

Particle Swarm Optimization (PSO) and its other variants have been a topic of 

research over the past decade. Inspired by social behavior of bird flocking and fish 

schooling, PSO has proven to be an effective stochastic search technique. Hence it has 

been applied to a wide variety of problems related to search optimization, clustering, 

routing, scheduling. PSO has gone through various changes and different variants have 

been introduced in order to solve the problems more effectively. It has also been 

combined with other different algorithms to create hybrid optimization algorithms. These 

algorithms have been reported in different literatures and applied to different practical 

applications. In this thesis, two problems have been studied- system identification and 

digital filter design. These applications have been implemented using the standard PSO 

and two hybrid algorithms- Differential Evolution Particle Swarm Optimization 

(DEPSO) and PSO with Quantum Infusion (PSO-QI). The results of system identification 

have also been compared with another hybrid algorithm PSO with Evolutionary 

Algorithm (PSO-EA). The thesis covers the details of these algorithms, the research work 

carried out towards the implementation of the above mentioned problems and their 

results. 

 

 



 

 

2 

1.2. OBJECTIVES 

The main objective of this research is to apply swarm, evolutionary and quantum 

based algorithms to solve two practical problems viz. system identification and digital 

filter design. PSO, DEPSO and PSO-QI are the major algorithms involved in this work 

for system identification and in the design of digital filters. The results of the case studies 

are also presented. 

 

 

1.3. THESIS LAYOUT 

The thesis has been divided into 9 chapters. Chapter 1 introduces to the topic and 

outlines the objectives of the research work carried out. The next two chapters explain the 

major areas of this research work. In Chapter 2, system identification has been explained. 

This chapter introduces to the problem of system identification and traditional and 

modern techniques used to solve it. In Chapter 3, digital filter design is explained. This 

chapter introduces to the problem and traditional and modern techniques used in digital 

filter design.  

In next three chapters, the three algorithms have been explained in detail. In 

Chapter 4, PSO has been covered. This chapter explains the basics of the algorithm and 

how it has been applied to the above mentioned problems. In Chapter 5, DEPSO has been 

explained. Similarly, PSO-QI has been explained in Chapter 6. 

In the next two chapters, case studies carried out during the research and the results 

obtained from them have been presented. In Chapter 7, studies and results of system 

identification have been presented. This chapter shows the comparison of results obtained 

from system identification, and is presented as figures and tabulated data. In Chapter 8, 

similar results obtained for digital filter design are presented. These results are also 

presented as figures and tabulated data and show a comparison of different algorithms as 

applied to the problem. 

Conclusion of the thesis and future work is presented in Chapter 9. 
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1.4. NEW CONTRIBUTIONS 

The research work leading towards this thesis makes the following contributions: 

System identification: 

• Application of hybrid algorithms DEPSO and PSO-QI (new algorithm). 

• Comparison of the results for different case studies and in both full and 

reduced order system cases show that hybrid algorithms introduced in this 

work perform better than the standard PSO or PSO-EA and PSO-QI 

performs better than DEPSO. 

Digital filter design: 

• Use of new hybrid algorithms DEPSO and PSO-QI for the design of 

Lowpass, Highpass, Bandpass and Bandstop FIR and Lowpass IIR filters. 

• Use of two different fitness functions for the filter design in order to 

illustrate the robustness of the CI algorithms. 

• Comparison of results obtained from different algorithms in terms of 

execution time, fitness obtained and consistency of convergence, and their 

analysis to understand the efficiency of the algorithms in the design of 

digital filters. 

• All of the results show that the new hybrid algorithms introduced in this 

work have a much better and consistent performance over the standard 

PSO. 

 

 

1.5. RESEARCH PUBLICATIONS 

As a result of the research work carried out over the course of studies, two 

refereed conference papers were published [Luitel and Venayagamoorthy, 2008(a); 

2008(b)] and two journal papers are to be submitted [Luitel and Venayagamoorthy, 

2008(c); Luitel and Venayagamoorthy, 2008(d)]. 

 

 



 

 

4 

1.6. SUMMARY 

This chapter briefly introduced to the topic of the research and the content layout 

of the thesis. The objective of the study and the major contributions of it are also 

presented in this chapter. The chapter also listed the publications that came out as a result 

of the research work leading towards this thesis. 
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2. SYSTEM IDENTIFICATION 

2.1. INTRODUCTION 

System identification is a challenging and complex optimization problem due to 

nonlinearity of the systems and even more in a dynamic environment. Adaptive infinite 

impulse response systems are preferably used in modeling real world systems because of 

their reduced number of coefficients and better performance over the finite impulse 

response filters. Particle Swarm Optimization (PSO) and its other variants has been a 

subject of research for the past few decades for solving complex optimization problems. 

In this thesis, the concept of Differential Evolution based Particle Swarm Optimization 

(DEPSO) is implemented for system identification. A hybrid of Particle Swarm 

Optimization and Evolutionary Algorithm (PSO-EA) has been considered for comparison 

with PSO and DEPSO algorithms. 

 

 

2.2. SYSTEM IDENTIFICATION PROBLEM 

System identification is the mathematical modeling of an unknown system by 

monitoring its input output data. This is achieved by varying the parameters of the 

developed model so that for a set of given inputs, its output match that of the system 

under consideration. For a plant whose behavior is not known, an adaptive system can be 

modeled and its parameters can be continuously adjusted using any adaptive algorithms. 

By the use of such adaptive algorithms, the required parameters can be obtained such that 

the output of the plant and the model are same for the same set of inputs, which is the 

goal of system identification (Panda et al., 2007). Traditionally, Least Mean Square 

(LMS) and other algorithms have been studied for the identification of linear and static 

systems (Windrow et. al., 1976). But, almost all physical systems are nonlinear to certain 

extent and recursive in nature and hence it is more convincing to model such systems by 

using nonlinear models (Panda et. al., 2007; Krusienski and Jenkins, 2005). Thus 

nonlinear system identification has attracted attention in the field of science and 

engineering. Hence these are better modeled as Infinite Impulse Response (IIR) models 

as they can provide better performance than a Finite Impulse Response (FIR) filter with 
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the same number of coefficients (Shynk, 1989(a)). Thus the problem of nonlinear system 

identification can also be viewed as a problem of adaptive IIR filtering. Also, IIR models 

are more efficient than the FIR models for implementation as they require less parameter 

and hence fewer computations for the same level of performance. However, there are few 

problems associated with the use of IIR models in identification of a system, such as 

instability of the algorithms, slow convergence and convergence to the local minimum 

(Netto et al., 1995). In order to overcome these, different techniques have been developed 

over the years. Fig. 2.1 shows a block diagram describing the problem of system 

identification. 

 

 

 

 

Figure 2.1. Schematic showing system identification 
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2.3. SYSTEM IDENTIFICATION TECHNIQUES 

Different learning algorithms have been used in the past for nonlinear system 

identification. These techniques include use of neural network (Hongwei and Yanchun, 

2005) and gradient based search techniques such as least mean square algorithm (Shynk, 

1989(a)).  Unfortunately, the error surface of such recursive systems such as a multi-

machine power system (Kundur, 1993) tends to be multi-modal and hence traditional 

techniques of parameter approximation fail as they get trapped into local minimum and 

cannot attain the global minimum (Krusienski and Jenkins, 2005). Various algorithms 

that are implemented in the adaptive IIR filtering for system identification are described 

in (Netto et al., 1995).   

Population based search algorithm such as Genetic Algorithm (GA) has also been 

used for the system identification. It uses a population of potential solutions encoded as 

chromosomes which go through genetic operations such as crossover and mutation to 

find the best solution (Kristinsson and Dumont, 1992). But its effectiveness is affected by 

the convergence time (the time it takes to find the global minimum). So to eliminate such 

deficiencies, population based stochastic optimization techniques have been discussed in 

various literatures. Particle Swarm Optimization (PSO) is one of the most known 

techniques (delValle et al., 2007). Application of PSO in the system identification has 

been discussed in (Panda et al., 2007).  In (Lee et al., 2006), a method for the 

identification of nonlinear system and parameter optimization of the obtained input-

output model has been described. The proposed method uses least squares support vector 

machines regression based on PSO. In another work, PSO has been used for optimizing 

the parameters of Elman neural network which is used for speed identification of 

ultrasonic motors (Hongwei and Yanchun, 2005). A modified form of PSO called as the 

self-organizing particle swarm optimization and its application in the system 

identification has been discussed in (Shen and Zeng, 2007). Radial Basis Function Neural 

Network (RBFNN) has been used for system identification in (Chen et al., 2007), where a 

hybrid gradient-based PSO algorithm has been used to adjust the parameters of the 

RBFNN. In (Liu et al., 2006), particle swarm optimization and quantum-behaved particle 

swarm optimization have been used for the system identification. Use of different types 

of stochastic optimization techniques in adaptive IIR filters and nonlinear systems has 
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been explained in (Krusienski and Jenkins, 2005). Use of Differential Evolution (DE) and 

Ant Colony Optimization (ACO) in IIR filter design has been presented in (Karaboga, 

2005) and (Karaboga et al., 2004) respectively. They also talk about the possible use of 

these approaches in system identification and other applications. But these algorithms 

have the tendency to get stuck in the local minimum when the complexity of the problem 

increases and in dynamic systems where time allowed for convergence is constrained. 

Hybrid algorithms are used to improve the performance by combining the best feature of 

both algorithms. In (Cai et. al., 2007), one such hybrid algorithm has been shown. In the 

paper, PSO and Evolutionary Algorithm (PSO-EA) hybrid has been implemented to 

combine the best features of PSO (co-operation) and EA (competition).   

 

 

2.4. SUMMARY 

Identification of complex systems is an optimization problem and is viewed as IIR 

system identification in this chapter. By the use of swarm and evolutionary algorithms, 

the coefficients of the filter are determined. The results of the study are shown in Chapter 

7. 
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3. DIGITAL FILTER DESIGN 

3.1. INTRODUCTION 

This chapter introduces digital filter design as an optimization problem and 

discusses various methods applied in the design of digital filters traditionally and 

currently using the computational intelligence techniques. 

 

 

3.2. DIGITAL FILTER 

A filter is a frequency selective circuit that allows a certain frequency to pass 

while attenuating the others. Filters could be analog or digital. Analog filters use 

electronic components such as resistor, capacitor, transistor etc. to perform the filtering 

operations. These are mostly used in communication for noise reduction, video/audio 

signal enhancement etc. In contrast, digital filters use digital processors which perform 

mathematical calculations on the sampled values of the signal in order to perform the 

filter operation. A computer or a dedicated digital signal processor may be used for 

implementing digital filters. Filters mostly find their use in communication for noise 

reduction, audio/video signal enhancement etc. 

Any time varying signal C=x(t) sampled at a sampling interval of h has input 

signals x0, x1, x2, x3,…………, xn in intervals 0, h, 2h, 3h, ……….. , nh. These inputs have 

corresponding outputs y0, y1, y2, y3, …………, yn depending upon the kind of operation 

performed. Thus, the order of the filter is determined by the number of the previous input 

terms used to calculate the current output. The a0, a1, a2 terms appearing in the following 

equations are called the filter coefficients and determine the operation of the filter. These 

determine the characteristics of the filter. Various filter parameters which come into 

picture are the stopband and passband normalized frequencies (ωs, ωp), the passband and 

stopband ripple (δp) and (δs), the stopband attenuation and the transition width. This has 

been shown in Fig. 3.1. 
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Figure 3.1. Illustration of filter parameters. 

 

 

 

3.2.1.  Finite Impulse Response.  Finite Impulse Response filters are those 

 for which the output of the filter depends only on the present inputs. FIR filter, or also 

called the non-recursive filter can be represented by the following difference equation: 
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By introducing a unit delay element z
-1
, such that z

-1
xn=x(n-1), the transfer function of FIR 

filter can be represented as: 
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The FIR filter has following advantages: 

• Since FIR filter has its poles located at the origin, it is inherently stable since the 

poles lie within the unit circle. 

• FIR filters can be designed as linear phase filters, making them a better choice in 

phase sensitive applications. 

3.2.2.  Infinite Impulse Response.  Infinite impulse response filters are those  

for which the output of the filter at any given time depends upon the present inputs and 

past outputs. The difference equation for a Linear Time Invariant IIR filter can be written 

as: 
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Similar to FIR, introducing a unit delay element z
-1
, such that z

-1
xn=x(n-1) and z

-1
yn=y(n-1), 

the transfer function of IIR filter can be represented as: 
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The IIR filters have the following advantages over FIR: 

• They can achieve much sharper transition region than FIR filters of the same 

order. 

• They require less memory and are computationally less complex for the same 

length of the filter. 

However, due to the feedback element present in the IIR filters, chances of 

accumulating the rounded errors over summed iterations are higher. 

3.2.3. Lowpass Filter.  Lowpass filters are those that allow the frequencies below 

a threshold to pass while attenuating the frequencies beyond the threshold. The threshold 

frequency is called the cut-off frequency. Fig. 3.2 shows the Lowpass filter. 

 

 

Figure 3.2.  Lowpass filter 
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3.2.4. Highpass Filter.  Highpass filters allow the frequencies beyond a threshold 

frequency to pass while attenuating others. Fig. 3.3 shows the highpass filter. 

 

 

 

Figure 3.3. Highpass filter 
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3.2.5. Bandpass Filter.  In a bandpass filter, frequencies which lie between a 

lower cutoff frequency and an upper cutoff frequency are allowed to pass while others are 

attenuated. The frequency band for which the filter allows to pass is called the pass band 

and the bands of frequencies which are attenuated are called the stopband frequencies. 

Fig. 3.4 shows the bandpass filter. 

3.2.6. Bandstop Filter.  In a bandstop filter, the frequencies between two cutoff 

frequencies are attenuated while the others are allowed to pass. Fig. 3.5 shows the 

bandstop filter. 

 

 

 

Figure 3.4. Bandpass filter 
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Figure 3.5. Bandstop filter 

 

 

 

3.3. FILTER DESIGN TECHNIQUES 

3.3.1. Traditional Techniques.  Traditionally, different techniques exist for  

the design of digital filters. Of these, windowing method is the most popular. In this 

method, ideal impulse response is multiplied with a window function. There are various 

kinds of window functions (Butterworth, Chebyshev, Kaiser etc.), depending on the 

requirements of ripples on the passband and stopband, stopband attenuation and the 

transition width. These various windows limit the infinite length impulse response of 

ideal filter into a finite window to design an actual response. But windowing methods do 

not allow sufficient control of the frequency response in the various frequency bands and 

other filter parameters such as transition width. Designer always has to compromise on 

one or the other of the design specifications. So, computational intelligence techniques 

have been implemented in the design of digital filters to design with better parameter 
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control and to better approximate the ideal filter. Since population based stochastic search 

methods have proven to be effective in multidimensional nonlinear environment, all of 

the constraints of filter design can be effectively taken care of by the use of these 

algorithms. 

3.3.2. Computational Intelligence Techniques.  Computational intelligence 

based techniques such as particle swarm optimization (PSO) and genetic algorithms (GA) 

have been implemented in the design of digital filters. Use of PSO and GA in the design 

of digital filters is described in (Ababneh and Bataineh, 2007).  Use of differential 

evolution in the design of digital filters has been implemented in Storn’s work (Storn, 

1996; Storn, 2005; Karaboga, 2005). Design of infinite impulse response (IIR) filters 

using PSO is described in (Krusienski and Jenkins, 2004). Quantum behaved PSO 

(QPSO) and its application in filter design has been described in (Fang et al., 2006(a); 

Fang et al. 2006(b)). 

 

 

3.4. SUMMARY 

Digital filter design is an important aspect of digital signal processing. Although 

various traditional techniques have been used in the past, digital filter design as an 

optimization problem can be solved by using computational intelligence based 

techniques. The use of these intelligent stochastic search approaches tend to produce 

better results in a short period of time, thus opening grounds for adaptive filter to be 

designed to use in an online environment. 
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4. PARTICLE SWARM OPTIMIZATION 

4.1. INTRODUCTION 

Introduced by Eberheart and Kennedy in 1995 (del Valle et al., 2007), PSO is a 

search technique based on social behavior of bird flocking and fish schooling. There are 

different kinds of bio and social behavior inspired algorithms. PSO is one of the different 

swarm based algorithms. In PSO, each particle of the swarm is a possible solution in the 

multi-dimensional search space. The particles change their positions with a certain 

velocity in each iteration, according to the standard PSO equations, thus moving towards 

the global best (gbest) solution. Being easy to implement and yet so effective, PSO has 

been utilized in a wide variety of optimization applications. In this thesis, PSO has been 

used in system identification and to design digital filters. 

 

 

4.2. PSO ALGORITHM 

Particle swarm optimization is a population based search algorithm and is inspired 

by the observation of natural habits of bird flocking and fish schooling. In PSO, a swarm 

of particles moves through a D dimensional search space. The particles in the search 

process are the potential solutions, which move around the defined search space with 

some velocity until the error is minimized or the solution is reached, as decided by the 

fitness function. Fitness function is the measure of particles fitness which is the deviation 

of the particle from the required solution. The particles reach to the desired solution by 

updating their position and velocity according to the PSO equations. In PSO model, each 

individual is treated as a volume-less particle in the D-dimensional search space with 

initial random velocity. Each particle has memory which keeps track of its previous best 

position and fitness, with the position and velocity of i
th
 particle represented as: 

 

),........,,( 21 iDiii xxxX =
       (10) 

),........,,( 21 iDiii vvvV =
        (11) 
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These particles are randomly distributed over the search space with initial position 

and velocity. They change their positions and velocity according to (12) and (13) where 

c1 and c2 are cognitive and social acceleration constants, rand1() and rand2() are two 

random functions uniformly distributed in the range of [0,1] and w is the inertia weight 

introduced to accelerate the convergence speed of PSO (del Valle et al., 2007). Vector Pi 

= (Pi1, Pi2,.......,PiD) is the best previous position (the position giving the best fitness 

value) of particle i called the pbest, and vector Pg = (Pg1, Pg2,..........., PgD) is the position 

of the best particle among all the particles in the population and is called the gbest. Xid, 

Vid, Pid are the d
th
 dimension of vector of Xi, Vi, Pi. The gbest is changed to lbest in local 

PSO where lbest is the best value in the neighborhood. 

 

)(*()*)(*()*)(*)1( 2211 idgidididid XPrandcXPrandckVwkV −+−+=+ (12) 

)1()()1( ++=+ kVkXkX ididid       (13) 

 

Other variations of PSO equations also exist for discrete and binary PSO. The 

flowchart in Fig. 4.1 shows the PSO algorithm. 

4.2.1.  Parameters.  PSO equation consists of three parameters. These c1 and c2 

are called cognitive and social acceleration constants and help to guide the particles 

towards the gbest. These constant are equal and have the values from 0 to 2 but studies 

have shown their values set to 2 gives the best results. Another parameter of PSO is w 

called the inertia weight. Value of w ranges from 0.2 to 1.2 but is usually considered to be 

0.8 for best results in case of Constrained PSO (CPSO). For unconstrained PSO, w is 

linearly decreasing from 0.9 to 0.4 over iterations. 
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Figure 4.1. Flowchart for PSO 
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4.2.2. Topologies.  Social Interaction is the key factor in the success of PSO. 

Individual particles in the population learn from their own and their neighbors past 

experiences to get to a better fitness value. There are three different topologies for PSO. 

These control the flow of information within the network. Particles in PSO are capable of 

communicating within the network but information outside the network is inaccessible. 

The type of network is determined by the following three topologies: 

 Star Topology: In this topology, each particle is connected with every other 

particle in the population and shares information among all. It is also called as the global 

version of PSO and hence the particle which performs the best in the swarm has an 

influence over the entire population. This is shown in the Fig. 4.2. 

 

 

 

 

Figure 4.2. Star Topology 



 

 

21 

 

Ring Topology: In this topology, each particle is connected with its immediate 

neighbors and information sharing is only between the neighbors. This topology is used 

in the local PSO where lbest is considered instead of gbest, which is the best position 

among the neighbors. This is shown in Fig. 4.3. 

 

 

 

 

 

Figure 4.3. Ring Topology 
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Wheel Topology: In this topology, one particle is connected with all of the other 

particles while the rest of the particles are not connected to each other directly. The 

information sharing takes place through the node, which is the center of the wheel. This 

is shown in Fig. 4.4. 

 

 

 

 

 

Figure 4.4. Wheel Topology 
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4.3. MODIFIED PARTICLE SWARM OPTIMIZATION 

In (Cai et. al., 2007), hybrid PSO-EA has been explained. It uses selection and 

mutation operations on the PSO and thus combines the co-operative and competitive 

characteristics of PSO and EA. In this algorithm, half of the population selected as 

winners based on their fitness are copied and mutated where as the losers are discarded in 

each generation. EA loses the valuable search information from its population by 

discarding the particles, which PSO maintains. Thus PSO-EA combines the advantages 

of information sharing from PSO with enhanced elites of EA. This algorithm has been 

used in the thesis to show a comparison among the hybrid algorithms. The flowchart for 

PSO-EA is shown in Fig. 4.5. 
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Figure 4.5. Flowchart for PSO-EA 

 

 

 

4.4. SUMMARY 

In this chapter, PSO and its applications in system identification and digital filter 

design was presented. Although PSO is effective in solving a lot of optimization 

problems, it still suffers from premature convergence and thus getting stuck in local 

minima before reaching the global minimum. To overcome these shortcomings of PSO, 

different enhancements are brought and hence PSO has deviated a lot from its initial form 

of classical PSO. A form of modified PSO was also discussed in this chapter. Different 

modifications of PSO and its hybrid with other algorithms will be discussed in the rest of 

the chapters. 
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5. DIFFERENTIAL EVOLUTION PARTICLE SWARM OPTIMIZATION 

5.1. INTRODUCTION 

Due to the limitations of PSO in finding the best solution, different other 

approaches were also considered. Over the past few years, research in the field of 

computational intelligence gave birth to a number of different approaches. All of these 

algorithms had some special features in finding the best solutions, either their 

convergence speed or their ability to find the better solution. However, they suffered 

from one or the other problems. In order to overcome these shortcomings and utilize their 

effective best properties, hybrid algorithms were introduced. Hybrid algorithms take the 

best features of the individual algorithms and thus tend to be more effective than the 

individual algorithms. DEPSO is one of such hybrid algorithms. In this chapter, DEPSO 

and its applications in system identification and digital filter design is discussed.  

 

 

5.2. DEPSO ALGORITHM 

DEPSO is the hybrid of DE and PSO.  

5.2.1.  Differential Evolution.  Differential Evolution was introduced by 

Storn and Price in 1995 (Storn, 1996). It is also a population based stochastic search 

technique for function minimization. In (Storn, 1996), DE has been applied in the field of 

filter design. In DE, the weighted difference between the two population vectors is added 

to a third vector and optimized using selection, crossover and mutation operators as in 

GA. Each individual is first mutated according to the difference operation. This mutated 

individual, called the offspring, is then recombined with the parent under certain criteria 

such as crossover rate. Fitness of both the parent and the offspring is then calculated and 

the offspring is selected for the next generation only if it has a better fitness than the 

parent (Karaboga, 2005). The mutation takes place according to (14). 
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where δ2,d is the weighted error in different dimensions, Tid(i) is the i
th
 offspring and Ppd(i) 

is the pbest position of the i
th
 parent.  

5.2.2. DEPSO.  Differential evolution particle swarm optimization is a stochastic 

search technique utilizing the hybrid of the particle swarm optimization and the 

differential evolution (Zhang and Xie, 2003). In DEPSO, new offspring is created by the 

mutation of the parent. In this work, both gbest  and pbest have been taken as the parent 

for different applications and a Gaussian distribution is considered (Moore and 

Venayagamoorthy, 2006). For mutation, 4 particles are randomly chosen from the 

population. The weighted error between these particles’ pbest positions is used to mutate 

the parent and create an offspring. The mutation takes place under the condition when a 

random number between [0,1] is less than the crossover rate CR or the particle’s position 

in any one randomly chosen dimension, k, is mutated. This ensures that offspring is never 

the same as the parent. Then the fitness of the offspring is evaluated and the offspring 

replaces the parent only if it has a better fitness than the parent, otherwise the parent is 

retained for the next iteration (Zhang and Xie, 2003). In (Hao et al., 2007), different 

scheme for mutation in DEPSO is also proposed where position update in PSO is carried 

out either in canonical PSO way or in DE way depending upon the crossover rate. The 

flowchart in Fig. 5.1 shows the DEPSO algorithm. 
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Figure 5.1. Flowchart for DEPSO 
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5.3. SUMMARY 

In this chapter, a hybrid algorithm was described and implemented in system 

identification and in the design of FIR and IIR filters. Two different approaches are 

explained for DEPSO where either only the gbest is taken as a parent and mutated or all 

of the pbest particles are taken as parents and each creates its own offspring, and goes 

through a tournament with the offspring. Thus it is shown that DEPSO can only be either 

equal to or better than PSO in its performance. The results to support the claim are 

presented in Chapters 7 and 8. 
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6. PARTICLE SWARM OPTIMIZATION WITH QUANTUM INFUSION 

6.1. INTRODUCTION 

In this chapter, another hybrid algorithm called PSO-QI is introduced which 

combines QPSO and PSO. It utilizes the principal of quantum mechanics to improvise the 

PSO algorithm and thus gain better solution. It has been applied in the design of FIR and 

IIR filters, and has outperformed other two algorithms in the results. 

 

 

6.2. PSO-QI ALGORITHM 

PSO-QI is a new algorithm developed by combining QPSO (Sun et. al., 2004(a)) 

with PSO. QPSO is improved from QDPSO where particles position in the search space 

is updated using the quantum mechanics. 

6.2.1.  QDPSO.  According to the uncertainty principle, position and velocity 

of a particle in quantum world cannot be determined simultaneously. Thus quantum 

behaved PSO differs from traditional PSO mainly in the fact that exact values of x and v 

cannot be determined. In quantum mechanics, a particle, instead of having position and 

velocity, has a wavefunction given by: 

 

),( trψ           (16) 

 

which has no physical meaning but its amplitude squared gives the probability measure 

of its position in any one dimension r at time t. The governing equation of quantum 

mechanics is the Schrodinger’s equation given by: 
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where H is a time-independent Hamiltonian operator given by: 
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where h  is Planck’s constant, m is the mass of the particle and V(r) is the potential 

energy distribution (Mikki and Kishk, 2006). Based on the probability density function, a 

particle’s probability of appearing in position x can be determined. Therefore in QDPSO, 

a Delta-potential-well based probability density function has been used with center at 

point P = (p1, p2, .., pd) in order to avoid explosion and help the particles in PSO to 

converge (Sun et al., 2004(b)). Assuming a particle in one-dimensional space having its 

center of potential at P, normalized probability density function Q and distribution 

function Df can be obtained (Sun et al, 2005). Let y=x-p, then the form of this probability 

density function is given as follows and depends on the potential field the particle lies in  
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where the parameter L is the length of the potential field which depends on the energy 

intensity and is called the creativity or imagination of the particle that determines the 

search scope of each particle (Sun et al., 2004(b)). 

  In QDPSO, the search space and the solution space are two different spaces of 

different qualities. So a mapping mechanism is necessary to interpret the position of a 

particle in solution space by looking at its position in quantized search space. This is 

called the collapse and is achieved by applying the Monte Carlo simulation. This is 

explained in (Sun et al., 2004(a)) as follows. 

Let s be any random number uniformly distributed between 0 and 1/L. For a random 

number u=rand(0,1), s is defined as: 
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Now, equating (19) and (21), we get: 
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Lyeu /||2−=          (22) 
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As y=x-p, it results in the position equation as shown (Zhang and Xie, 2003): 
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where the particle’s local attractor point P = (p1, p2, .., pd)  has coordinates given by the 

following equation: 

 

idgdd ppP 21 αα +=         (25) 

 

where α1 = a/(a + b) and α2 = b/ (a + b), and a and b are two uniformly distributed 

random numbers and L can be evaluated as the distance between the particles’ current 

position and point P as follows: 

 

||.2 xPL −= β         (26) 

 

From (24) and (26), the new position of the particle is calculated as: 

 

)/1ln(.|)(|.)1( ukxPPkx −±=+ β       (27) 

 

The parameter β is the only parameter of the algorithm. It is called the creativity 

coefficient and is responsible for the convergence speed of the particle. The term u is a 

uniformly distributed random number. This Delta-Potential-well based quantum PSO is 

called the QDPSO.  
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6.2.2.  QPSO.  An improvement to it is brought by defining a mainstream 

thought or the Mean Best Position, mbest, defined in (Sun et al., 2005) as: 
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where M is the size of the population, D is the number of dimensions and pi is the pbest 

position of each particle. Now the positions update equation in (29) can be written as: 

 

)/1ln(.||. uxmbestPx −±= β       (29) 

 

By using (25), this can also be written as follows to show the mutation on gbest: 
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The pseudocode for the QPSO algorithm is written as follows: 

Initialize x, pbest and gbest of the particles.  

Do 

 For i from 1 to population size 

  evaluate fitness 

  If fitness (x)<fitness (pbest) 

   pbest=x 

  gbest=min(pbest) 

Calculate mbest 

 For d from 1 to dimension size 

  r1=rand(0,1) 

  r2=rand(0,1) 

  P=(r1*pid+r2*pgd)/(r1+r2) 

  r3=rand(0,1) 

  L=β*abs(mbest-xid) 
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  If rand(0,1)>0.5 

   xid=P-L*ln(1/r3) 

  else 

   xid=P+L*ln(1/r3) 

  end 

While termination criteria not met 

6.2.3. PSO-QI.  Particle swarm optimization with quantum infusion is a novel 

approach to hybridization of PSO and QPSO. Here, the quantum theory based on QPSO 

has been used to create a new offspring. After the position and velocity of the particles 

are updated using PSO, a randomly chosen particle from the pbest population is utilized 

to do the quantum operation as described in QPSO algorithm and thus create an offspring 

by mutating the gbest. The fitness of the offspring is evaluated and the offspring replaces 

the gbest particle of PSO only if it has a better fitness. This ensures that the fitness of the 

gbest particle is equal to or better than its fitness in the previous iteration. Thus, it gets 

improved and pulled towards the best solution over iterations. By infusing the quantum 

theory to the traditional PSO, a new hybrid algorithm is obtained which incorporates the 

best features of both participating algorithms and thus achieve better performance. In 

PSO-QI, fast convergence obtained by PSO which is the rate of convergence for first few 

iterations, and the lower value of average error obtained by QPSO, have been utilized and 

hence the performance has significantly improved, as is seen in the results and figures. 

PSO-QI is shown in the flowchart in Fig. 6.1. 
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Figure 6.1. Flowchart for PSO-QI 
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6.3. SUMMARY 

In this chapter, PSO-QI and its applications were discussed. It is observed that 

application of quantum mechanics in the swarm behavior could also produce useful 

results and provide yet another method of stochastic search in a multi-dimensional space. 

Further, by combining the quantum based swarm optimization technique to traditional 

PSO, even better results were obtained in real world application. The results of the case 

studies using PSO-QI are presented in Chapter 8. 
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7. SYSTEM IDENTIFICATION USING PSO, PSO-EA, DEPSO AND PSO-QI 

7.1. INTRODUCTION 

PSO, PSO-EA, DEPSO and PSO-QI are the four algorithms used in the case 

studies of system identification. PSO forms the basis of comparison for other algorithms, 

as it gets stuck in local minima and cannot converge to the best solution all of the time. 

So, this research work introduces two hybrid algorithms- DEPSO and PSO-QI which 

perform better than PSO and can better approximate the coefficients of the given IIR 

system. A modified PSO using the hybrid of PSO and EA is also compared against PSO 

and DEPSO. Two different models are studied in implementing these algorithms for the 

identification of an IIR system. The study is carried out in two different scenarios. In the 

first scenario, PSO, PSO-EA and DEPSO are used and DEPSO is shown as the best 

performer among the three. In the second scenario, PSO, DEPSO and PSO-QI have been 

used and it is shown that the new hybrid algorithm PSO-QI performs the best in terms of 

both consistency and minimum error achieved. 

The study is carried out for 6 different benchmark systems. The Table 7.1 below 

shows the parameters used in the study. Table 7.2 trough 7.5 show the six different cases 

studied for the full and reduced order models.  

 

 

 

Table 7.1. Parameters used in the study  

Symbol Parameter Description Value 

P Population Size 25 

c1 Cognitive constant 2 

c2 Social constant 2 

w Inertia weight Linearly decreasing from 1.4  to 0 

Vmax Maximum Velocity 1.3 

Xmax Maximum Position 1.3 

β Creativity Coefficient Linearly increasing from 0.5 to 1 
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Table 7.1. (cont.) Parameters used in the study 

CR crossover rate 0.8 

N Number of Inputs 50 

 Number of Iterations 500, 50 

 Number of Trials 50 

 Noise Introduced -30dB 

 

 

 

Table 7.2. Study of Cases I and II 
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(Krusienski and Jenkins, 2004) 
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(Ng et al., 1996) 
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Table 7.3. Study of Case III 

 
Case III 

(Shynk, 1989(b)) 

Transfer Function 
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Table 7.4. Study of Case IV 

 
Case IV 

(Karaboga, 2005) 

Transfer Function 
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Table 7.5. Study of Cases V and VI 

 

 

 

 

 
Case V 

(Karaboga et al., 2004) 

Case VI 

(Karaboga et al., 2004) 

Transfer Function 
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7.2. APPLICATION IN SYSTEM IDENTIFICATION 

In this thesis, system identification is carried out using different algorithms. As 

already discussed, system identification is a complex optimization process and hence CI 

techniques can be effectively and efficiently used for identifying complex dynamic 

systems. Most nonlinear systems are also recursive in nature. Hence, models for real 

world systems are better represented as IIR systems. By doing so, the problem of system 

identification now becomes the problem of adaptive IIR filtering, for which different 

adaptive algorithms can be applied for adjusting the feed forward and feedback 

parameters of the recursive system. PSO, PSO-EA, DEPSO and PSO-QI have been used 

in the identification of various IIR systems. Fig. 7.1 shows the block diagram for system 

identification.  

 

 

 

 

Figure 7.1. System identification block diagram 
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An IIR system can be represented by the transfer function: 

 

n

n

m

m
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zbzbzbb
zH −−−

−−−

++++
++++

=
.......1

.......
)(

2

2

1

1

2

2

1

10                                             (31) 

 

where m and n are the number of numerator and denominator coefficients of the transfer 

function and an and bm are the pole and zero parameters of the IIR filter. This can be 

written as difference equation of the form (Krusienski and Jenkins, 2005; Karaboga, 

2005):  

 

∑∑
==

−+−=
M

n

n

L

n

n nkxkbnkykaky
01

)()()()()(      (32) 

 

where x(k) and y(k) represent the k
th
 input and output of the system. Also, n = 1, 2, 3, ….., 

L and n = 0, 1, 2, ……, M represent the coefficients of the IIR filter. Considering the 

block diagram of Fig. 1, the output y(k) for input x(k) to the system is mixed with a noise 

signal n(k). The output of the plant added with the noise gives the final system output 

d(k). On the other hand, the output of the IIR filter in the modeled system for the same 

input x(k) has an output of y’(n). The difference of the output from the actual system with 

that of the modeled system gives the error e(k). This error is used by the adaptive 

algorithm to adjust the parameters of the IIR filter, and thus reduce the error in a number 

of iterations so as to exactly identify the actual system. This has been shown in the 

following equations: 

 

)()()( knkykd +=         (33) 

)(')()( kykdke −=         (34) 

 

For the identification of the system, the adaptive algorithm tries to minimize the 

error e(k) by adjusting the parameters of the modeled system, which are the pole-zero 

coefficients in case of an IIR system. The different kinds of algorithms that can be used 
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for error minimization in adaptive systems are explained in (Netto et al., 1995). In this 

paper, Mean Squared Error (MSE) between the output of the actual system and the 

designed system as given by (35) has been considered as the feedback to the adaptive 

algorithm. 

 

∑
=

−=
N

k

kykd
N

J
1

2))(')((
1

       (35) 

 

The fitness function used by the different algorithms that are illustrated in the 

paper is given by: 

 

J
Fitness

+
=
1

1
        (36) 

 

The numerator and denominator coefficients of the IIR filter are represented by D 

dimensions (D = L+M). In (Karaboga, 2005), DE has been used for adjusting the 

parameters of the IIR system to reduce the MSE or to increase the fitness of the system. 

The application of system identification is illustrated in the flowchart in Fig. 7.2. 
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Figure 7.2. Flowchart for the system identification 
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7.3. RESULTS WITH PSO 

Classical PSO with linearly decreasing inertia weight is used in the study. In all of 

the cases PSO has the poorest performance of the three algorithms. This is because of the 

tendency of the particles in PSO to get stuck in the local minimum quickly. Since all of 

the particles are attracted towards the gbest particle, which when gets stuck, the particles 

thus lose diversity. Thus PSO fails to explore the search space extensively. 

 

 

7.4. RESULTS WITH PSO-EA 

The modified form of PSO used in the study is the hybrid of PSO and EA called 

as PSO-EA. Due to the fact that only elites are selected after mutation of the particles in 

EA, the best particles are involved in the search in PSO-EA. This leads to faster 

convergence time of PSO-EA. However, the losing population is then discarded and 

hence diversity is lost in this algorithm, which leads to the particle getting stuck in local 

minima. This justifies the ability of PSO-EA to converge quickly and perform better than 

PSO. 

 

 

7.5. RESULTS WITH DEPSO 

DEPSO is the winning algorithm of the three when compared with PSO and PSO-

EA, performing either as good as or better than the other two algorithms. DEPSO shows 

the ability to converge to the minimum average error in all of the cases while the other 

two deviate over different trials. Unlike PSO-EA, DEPSO is able to come out of the local 

minima and reach the global solution every time. The following figures show the results 

of the study in different cases under the two models.  

 

 

7.6. RESULTS WITH PSO-QI 

PSO-QI is the best performing algorithm in terms of minimum error achieved and 

consistency of performance when compared with PSO and DEPSO. Although time taken 



 

 

45 

by PSO-QI is longer than that of the other two algorithms, performance of PSO-QI is 

remarkable. 

Figs. 7.3 and 7.4 show the average error graph for the full and reduced order 

model in Case I. Case I is a second order IIR system. In full order model, DEPSO has 

quickly overcome the other two algorithms although all of them converged to nearly 

equal values after a certain number of iterations. 

  

 

Figure 7.3. Error graph for full order model of Case I  
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Figure 7.4. Error graph for reduced order model of Case I 
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The pole-zero plot of the coefficients obtained from PSO, PSO-EA and DEPSO is 

shown in Fig. 7.5. 

 

 

 

 

Figure 7.5. Pole zero plot for the full order model of Case I 
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Figures 7.6 and 7.7 show the error graph for the full and reduced order models of 

Case II Case II is a third order IIR system and its modeled as a second order system in 

reduced order. In both models, DEPSO has quickly converged to a much lower value 

than the other two algorithms. 

 

Figure 7.6. Error graph for the full order model of Case II 
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Figure 7.7. Error graph for the reduced order model of Case II 
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The pole-zero plot for the coefficients obtained from PSO, PSO-EA and DEPSO 

in Case II is shown in Fig. 7.8. 

 

 

 

 

Figure 7.8. Pole zero plot for the full order model of Case II 
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The full order model of Case III is a fourth order IIR system. It is modeled as a 

third order system in reduced order. Figures 7.9 and 7.10 show the error graph for the 

three algorithms. In both the figures, PSO-EA has performed better than PSO where as 

DEPSO has performed the best. Although PSO-EA has converged to a lower value of 

error in less iteration, it is then stuck. 

 

 

 

Figure 7.9. Error graph for the full order model of Case III 
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Figure 7.10. Error graph for the reduced order model of Case III 
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The pole-zero plot of the coefficients obtained from PSO, PSO-EA and DEPSO 

for the full order model of Case III is shown in Fig. 7.11. 

 

 

 

 

 

 Figure 7.11. Pole zero plot for the full order model of Case III 
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Error graphs for the full and reduced order models of Case IV are shown in Figs. 

7.12 and 7.13. Case IV is a sixth order system modeled as a fifth order system in its 

reduced order. DEPSO has shown the best result in both the cases. Also observable in the 

figures is the speed of convergence of PSO-EA.  

 

 

 

Figure 7.12. Error graph for the full order model of Case IV 
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Figure 7.13. Error graph for the reduced order model of Case IV 
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The pole-zero plot of the coefficients obtained by PSO, PSO-EA and DEPSO 

from the full order model of Case IV is shown in Fig. 7.14. 

 

 

 

 

Figure 7.14. Pole zero plot for the full order model of Case IV 
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Cases V and VI are both second order IIR systems and are only studied in their 

full order. Due to the fewer number of coefficients in the transfer function, search space 

is limited and hence each of the algorithms finds almost the same set of solution. Hence, 

it is difficult to see any significant improvement among the three algorithms in the 

figures. However, PSO-EA seems to have taken lead over the first few iterations of the 

run. The result for Cases V is shown in Fig. 7.15.  

 

 

 

 

Figure 7.15. Error graph for Case V 
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The pole-zero plot of the coefficients obtained by PSO, PSO-EA and DEPSO for 

the full order model of Case V is shown in Fig. 7.16. 

 

 

 

 

Figure 7.16. Pole zero plot for the full order model of Case V 
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The error graph for the results obtained in Case VI is shown in Fig. 7.17. 

 

 

 

 

 

Figure 7.17. Error graph for Case VI 
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The pole-zero plot of the coefficients obtained by PSO, PSO-EA and DEPSO for 

the full order model of Case VI is shown in Fig. 7.18. 

 

 

 

 

Figure 7.18. Pole zero plot for the full order model of Case VI 
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  The data obtained from the studies are tabulated below. Table 7.6 shows the data 

obtained for the full order model of all six cases for the first scenario. The table presents 

the average, minimum and standard deviation of the mean squared error for the three 

algorithms in each case, along with time taken by each. These results show that DEPSO 

was the most consistent and also converged to better fitness in most of the cases where as 

PSO-EA performed the best in terms of time. Table 7.7 shows the similar data for the 

reduced order model of the four cases. The coefficients obtained by each algorithm along 

with the actual parameters in full and reduced order model are presented in tables 7.8 and 

7.9 below. 

 

 

 

Table 7.6. Data for the Full Order Model 

 MSE (dB) Time(seconds)* Case 

 Min. Avg. Std. Min.  Avg. 

PSO -62.564 -62.449 0.364 4.313 5.163 

PSO-EA -62.564 -62.563 0.003 3.656 4.160 

Case I 

DEPSO -62.564 -62.564 5.024e-14 5.391 6.222 

PSO -61.854 -47.728 11.952 3.734 4.248 

PSO-EA -63.732 -50.238 16.312 2.703 3.354 

Case II 

DEPSO -63.817 -63.815 0.002 4.141 5.446 

PSO -64.553 -59.322 5.401 2.094 2.558 

PSO-EA -64.558 -60.806 5.107 2.515 2.941 

Case III 

DEPSO -64.559 -64.559 1.318e-4 3.375 3.869 

PSO -58.323 -51.134 4.389 3.406 3.694 

PSO-EA -62.512 -50.689 7.757 3.062 3.306 

Case IV 

DEPSO -62.641 -57.855 2.923 4.234 4.506 

PSO -63.699 -63.699 1.621e-11 3.125 3.834 

PSO-EA -63.699 -63.699 1.463e-14 3.172 3.518 

Case V 

DEPSO -63.699 -63.699 7.177e-15 4.625 5.405 
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Table 7.6. (cont.) Data for the Full Order Model  

PSO -62.753 -62.752 0.001 3.641 4.098 

PSO-EA -62.753 -62.753 1.510e-9 3.391 3.984 

Case VI 

DEPSO -62.753 -62.753 5.994e-14 2.609 6.643 

*Performed on the same computer for 500 iterations. 

 

 

 

 

 

Table 7.7. Data for the Reduced Order Model 

 MSE (dB) Time (seconds)* Case 

 Min. Avg. Std. Min.  Avg. 

PSO -44.8085 -44.8085 7.177e-15 4.468 5.242 

PSO-EA -44.8085 -44.8085 7.177 e-15 3.782 4.322 

Case I 

DEPSO -44.8085 -44.8085 7.177 e-15 5.015 6.496 

PSO -46.393 -40.235 4.553 3.594 4.116 

PSO-EA -46.433 -45.412 1.875 2.875 3.652 

Case II 

DEPSO -46.440 -46.440 3.343e-11 4.156 5.896 

PSO -45.367 -41.697 2.782 3.156 3.737 

PSO-EA -45.391 -42.666 2.881 1.781 3.177 

Case III 

DEPSO -45.392 -45.392 8.099e-6 2.468 4.997 

PSO -57.445 -49.754 3.545 3.375 4.755 

PSO-EA -60.427 -48.755 6.181 3.203 3.971 

Case IV 

DEPSO -60.415 -56.530 2.221 5.328 6.333 

*Performed on the same computer for 500 iterations. 
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Table 7.8. Coefficients for Full Order Model  

Achieved Parameters Actual 

Parameters PSO PSO-EA DEPSO 

 Case I 

0.3 

-0.4 

1.25 

-0.25 

0.2892 

-0.4108 

1.2537 

-0.2469 

0.2803 

-0.4173 

1.2536 

-0.2586 

0.2803 

-0.4173 

1.2536 

-0.2586 

 Case II 

0.6 

-0.25 

0.2 

-0.2 

-0.4 

0.5 

0.6666 

-0.1012 

0.2853 

-0.2005 

-0.4186 

0.4642 

0.6573 

-0.1980 

0.1936 

-0.2184 

-0.4205 

0.4625 

0.6001 

-0.2653 

0.1849 

-0.2184 

-0.4072 

0.4976 

 Case III 

-0.04 

-0.2775 

0.2101 

-0.14 

1 

-0.9 

0.81 

-0.729 

0.0250 

-0.1730 

0.2469 

-0.1415 

0.9706 

-0.8370 

0.8373 

-0.7040 

0.3075 

0.0651 

0.4515 

0.0375 

0.9518 

-0.5618 

0.8331 

-0.3833 

0.0009 

-0.1809 

0.2643 

-0.1355 

0.9731 

-0.8576 

0.8508 

-0.7071 
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Table 7.8. (cont.) Coefficients for Full Order Model 

 Case IV 

0 

-0.77 

0 

-0.8498 

0 

0.6486 

1 

0 

-0.4 

0 

-0.65 

0 

0.26 

0.0977 

-0.2965 

-0.5443 

-0.7497 

0.4205 

0.1619 

1.0059 

0.1977 

0.1024 

-0.6116 

-0.5135 

0.2111 

0.1789 

0.1878 

-0.0489 

-0.3007 

-0.2044 

0.1387 

-0.5669 

0.9828 

0.2045 

0.3571 

-0.2301 

0.1924 

0.1158 

-0.3122 

-0.3127 

-0.1042 

0.0495 

-0.7689 

0.1998 

0.0238 

0.9665 

-0.3036 

0.3012 

-0.0919 

-0.2569 

0.0202 

-0.0332 

 Case V 

-1.2 

0.6 

1 

-1.2058 

0.6037 

0.9903 

-1.2058 

0.6037 

0.9903 

-1.2058 

0.6037 

0.9903 

 Case VI 

-1.1314 

0.25 

0.05 

-0.4 

-1.1721 

0.2905 

0.0335 

-0.3893 

-1.1731 

0.2913 

0.0327 

-0.3880 

-1.1731 

0.2913 

0.0327 

-0.3880 
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Table 7.9. Coefficients for Reduced Order Model 

Achieved Parameters Actual 

Parameters PSO PSO-EA DEPSO 

 Case I 

a1 

b0 

0.769 

1.097 

0.769 

1.097 

0.769 

1.097 

 Case II 

a1 

a2 

b0 

b1 

0.674 

-0.370 

0.006 

-0.536 

1.172 

0.148 

-0.238 

-0.627 

1.189 

0.166 

-0.191 

-0.569 

 Case III 

a1 

a2 

a3 

b0 

b1 

b2 

0.559 

-0.603 

-0.318 

 0.996 

-0.475 

-0.184 

0.042 

-1.043 

-0.313 

0.975 

-1.039 

-0.068 

1.017 

0.558 

0.344 

1.038 

0.217 

0.858 
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Table 7.9. (cont.) Coefficients for Reduced Order Model 

 Case IV 

a1 

a2 

a3 

a4 

a5 

b0 

b1 

b2 

b3 

b4 

b5 

-0.254 

-0.436 

0.268 

-0.293 

-0.187 

0.956 

-0.234 

-0.046 

0.212 

-0.0274 

-0.1944 

0.470 

-0.204 

-0.107 

-0.627 

-0.335 

0.941 

0.413 

0.117 

0.081 

-0.142 

-0.108 

-0.024 

0.124 

-0.136 

-0.776 

-0.043 

0.987 

0.031 

0.499 

-0.150 

-0.283 

-0.117 
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For the second scenario, PSO-QI is the undoubted winner. The results are shown 

in the following figures. Figs. 7.19 and 7.20 show the results of the full order and reduced 

order model in Case I. The figures have been magnified in scale to compare the fitness of 

the algorithms. 

 

 

 

 

Figure 7.19. Error graph for full order model of Case I. 
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Figure 7.20. Error graph for reduced order model of Case I. 
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The full order model and the reduced order model implementation results for Case 

II are also shown in Figs. 7.21 and 7.22. 

 

 

 

 

Figure 7.21. Error graph for full order model of Case II. 
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Figure 7.22. Error graph for the reduced order model of Case II. 
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The full order and reduced order model of Case III are shown in Figs. 7.23 and 

7.24. These figures also show the better performance of PSO-QI over PSO and DEPSO. 

 

 

 

 

Figure 7.23. Error graph for the full order model of Case III. 



 

 

72 

 

Figure 7.24. Error graph for the reduced order model of Case III. 
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Figs. 7.25 and 7.26 show the full order and reduced order model results for Case 

IV. 

 

 

 

 

Figure 7.25. Error graph for the full order model of Case IV. 
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Figure 7.26. Error graph for the reduced order model of Case IV. 
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Cases V and VI are implemented only for full order and the error curves obtained 

for these cases are shown in Figs. 7.27 and 7.28, respectively. 

 

 

 

 

Figure 7.27. Error graph for the full order model of Case V. 
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Figure 7.28. Error graph for the full order model of Case VI. 
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The study was also carried out to show that PSO-QI starts to converge in lesser 

number of iterations than the other algorithms and that this could be useful in online 

adaptation. This is shown by implementing the system identification for 50 iterations. It 

is seen that PSO-QI converges to a reasonable error level in lesser number of iterations. 

Figs. 7.29 and 7.30 show these results for full order model of Case III and IV 

implemented in 50 iterations. 

 

 

 

 

Figure 7.29. Error graph for full order model of Case III in 50 iterations. 
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Figure 7.30. Error graph for the full order model of Case IV in 50 iterations. 
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The results of system identification carried out in the second scenario are 

tabulated in the following tables. In Table 7.10, the results obtained for full order model 

in 500 iterations are presented. Similar results for reduced order model are presented in 

Table 7.11. The results obtained for full order model using 50 iterations are also 

presented in Table 7.12. 

 

 

Table 7.10. Results of full order model for 500 iterations. 

 MSE (dB) Time(seconds)* Case 

 Min. Avg. Std. Min.  Avg. 

PSO 7.102e-4 8.612e-4 5.074e-4 3.422 3.769 

DEPSO 7.102e-4 7.278e-4 4.391e-5 2.547 3.166 

Case I 

PSO-QI 7.102e-4 7.102e-4 1.148e-7 2.984 3.227 

PSO 7.791e-4 0.001 5.222e-4 3.563 3.778 

DEPSO 7.791e-4 9.480e-4 4.011e-4 2.703 2.826 

Case II 

PSO-QI 7.791e-4 9.215e-4 3.627e-4 3.281 3.432 

PSO 7.245e-4 0.003 0.003 2.609 3.404 

DEPSO 7.245e-4 0.001 0.001 2.672 3.056 

Case III 

PSO-QI 7.245e-4 0.001 0.001 3.421 3.734 

PSO 7.821e-4 0.011 0.014 0.938 2.240 

DEPSO 7.623e-4 0.002 0.003 1.046 2.329 

Case IV 

PSO-QI 7.984e-4 0.002 0.004 3.063 4.008 

PSO 7.542e-4 0.002 0.004 3.468 3.791 

DEPSO 7.542e-4 0.001 0.001 2.594 2.888 

Case V 

PSO-QI 7.542e-4 7.542e-4 8.241e-19 2.953 3.237 

PSO 8.567e-4 9.138e-4 1.729e-4 2.250 2.286 

DEPSO 8.567e-4 8.681e-4 8.071e-5 2.421 2.455 

Case VI 

PSO-QI 8.567e-4 8.567e-4 2.750e-11 2.703 2.733 
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Table 7.11. Results of reduced order model for 500 iterations. 

 MSE (dB) Time (seconds)* Case 

 Min. Avg. Std. Min.  Avg. 

PSO 0.006 0.006 7.149e-4 2.234 2.356 

DEPSO 0.006 0.006 4.214e-4 2.125 2.326 

Case I 

PSO-QI 0.006 0.006 4.085e-18 2.500 2.601 

PSO 0.004 0.089 0.443 3.625 3.799 

DEPSO 0.004 0.010 0.005 3.609 3.700 

Case II 

PSO-QI 0.004 0.011 0.006 3.079 3.130 

PSO 0.005 0.008 0.003 0.766 1.269 

DEPSO 0.005 0.007 0.003 0.859 1.392 

Case III 

PSO-QI 0.005 0.005 0.001 2.312 2.700 

PSO 0.001 0.018 0.042 2.281 2.766 

DEPSO 0.001 0.004 0.004 2.515 2.678 

Case IV 

PSO-QI 0.001 0.003 0.001 3.375 3.627 

 

 



 

 

81 

Table 7.12. Results of full order model for 50 iterations. 

 MSE (dB) Time(seconds)* Case 

 Min. Avg. Std. Min.  Avg. 

PSO 9.448e-4 0.001 5.011e-4 0.218 0.261 

DEPSO 9.448e-4 0.001 5.806e-4 0.234 0.302 

Case I 

PSO-QI 9.447e-4 9.988e-4 1.222e-4 0.265 0.275 

PSO 0.001 0.002 0.003 0.234 0.264 

DEPSO 0.001 0.002 0.003 0.235 0.263 

Case II 

PSO-QI 0.001 0.001 5.674e-4 0.297 0.343 

PSO 0.001 0.013 0.045 0.233 0.269 

DEPSO 0.001 0.004 0.002 0.250 0.275 

Case III 

PSO-QI 8.353e-4 0.003 0.002 0.343 0.371 

PSO 0.001 0.024 0.032 0.234 0.257 

DEPSO 8.688e-4 0.007 0.010 0.250 0.267 

Case IV 

PSO-QI 9.994e-4 0.004 0.006 0.375 0.399 

PSO 8.675e-4 0.003 0.005 0.203 0.240 

DEPSO 8.675e-4 8.677e-4 4.662-7 0.233 0.321 

Case V 

PSO-QI 8.675e-4 8.677e-4 4.060-7 0.250 0.277 

PSO 9.562e-4 0.001 2.669e-4 0.203 0.238 

DEPSO 9.561e-4 0.001 9.524e-5 0.234 0.259 

Case VI 

PSO-QI 9.560e-4 9.858e-4 3.322e-5 0.265 0.287 

 

 

 

 

7.7. DISCUSSION 

From these studies it is observed that PSO, PSO-EA, DEPSO and PSO-QI all 

could be used in the identification of complex systems. However, hybrid algorithms have 

an edge over the classical PSO due to the fact that they combine the best features of both 

the algorithms. From the figures and results, it is observed that PSO-EA could reach a 

lower value of error in a short period of time because of the use of elites in its search 
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process. However, this caused it to lose diversity and hence it could not explore the 

search space. This is where DEPSO overcame this limitation and continued to explore the 

search space, thus settling to a much lower value of error. Moreover, the benefit of using 

DEPSO is in the fact that it converges to a lower value of error every time, while the 

other two deviate from the final error value over a number of runs, as is evident from the 

standard deviation values. In the second scenario when PSO-QI is introduced, PSO-QI 

outperformed the convergence capacity of DEPSO and also in its performance. Although 

time taken by PSO-QI is higher than the other two, it is a trade-off against its 

performance. From the results, it is also observed that coefficients approximated by 

DEPSO are more close to the coefficients of the actual system. The lower average error 

and lower values of standard deviation even in the reduced order case prove the ability of 

DEPSO and PSO-QI to find better results more consistently even in multimodal error 

surfaces. 

 

 

7.8. SUMMARY 

In this chapter, result of application of PSO, PSO-EA and DEPSO in system 

identification was presented. The results showed DEPSO to be the best of the three 

algorithms in terms of its performance and consistency. PSO-EA outperformed the others 

in terms of execution time. The results of successful implementation of six benchmark 

IIR systems proved the abilities of swarm and evolutionary algorithms, and opened 

ground for research into more novel algorithms that are more efficient in terms of both 

time and performance. 
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8. DIGITAL FITLER DESIGN USING PSO, DEPSO AND PSO-QI 

8.1. INTRODUCTION 

PSO, DEPSO and PSO-QI are used for the design of Lowpass (LP), Higpass 

(HP), Bandpass (BP) and Bandstop (BS) FIR and IIR digital filters. These algorithms 

have been applied in different case studies where linear phase FIR, non-linear phase FIR 

and IIR filters have been designed. Two different kinds of fitness function have been 

used in one of the cases. In all of the cases, the goal is to effectively approximate the 

filter coefficients using the algorithms, so that the magnitude response of the filter is as 

close as possible to that of ideal filter. One of the fitness functions considers the mean 

squared error between the magnitude of the ideal and the designed filter where as the 

other fitness function considers the ripples on the passband and stopband. In the former 

case, the fitness function tries to match the magnitudes of the designed and ideal filter, 

where as in the later case, the fitness function tries to keep the passband and stopband 

ripples of the designed filter within a given range. 

In Case I, linear phase FIR filter has been designed using PSO and DEPSO using 

the first fitness function given by (40). In Case II, the same case is repeated using the 

second fitness function given by (41). In order to show the effectiveness of DEPSO in 

time critical design environment where fast convergence is required, the study is also 

carried out for a less number of iterations. This study has shown DEPSO to be able to 

design the filter in a very short period of time, making it suitable for use in online 

environment for adaptive systems. The parameters for the filter and the parameters used 

by the algorithms in Cases I and II are summarized in Table 8.1.  
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Table 8.1. Parameters used in the study of Cases I and II 

Symbol Parameter Description Value 

P Population Size 25 

c1 Cognitive constant 2 

c2 Social constant 2 

w Inertia weight Linearly decreasing from 0.95  to 0.4 

Vmax Maximum Velocity 1 

Xmax Maximum Position 1 

CR crossover rate 0.5 

N Number of Inputs 256 

D Dimension 10 

δp Passband ripple 0.1 

δs Stopband ripple 0.01 

ωp Passband cutoff frequency 0.25 

ωs Stopband cutoff frequency 0.3 

 Number of Coefficients 20 

 Number of Iterations 40, 200 

 Number of Trials 10 
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In Case III, LP, HP, BP and BS FIR filters are designed using PSO, DEPSO and 

PSO-QI. The same algorithms are also used in designing a LP IIR filter. Both of these 

cases use the fitness function given by (40). The parameters used in the design are 

summarized in Table 8.2. In Case IV, these algorithms have been used in the design of 

LP, HP, BP and BS FIR filters using the fitness function given by (41). The specifications 

of the filter and number of coefficients are taken from (Ababneh and Bataineh, 2005; 

Fang et al., 2006). The algorithm’s parameters used in the study are obtained from the 

best parameters as reported in (Eberhart and Shi, 2000). 

 

 

 

Table 8.2. Parameters used in the study of Cases III and IV 

Symbol Parameter Description Value 

P Population Size 25 

c1 Cognitive constant 2 

c2 Social constant 2 

w Inertia weight Linearly decreasing from 0.9  to 0.4 

β Creativity coefficient Linearly increasing from 0.5  to 1 

Vmax Maximum Velocity 1 

Xmax Maximum Position 1 

CR crossover rate 0.5 

N Number of Inputs 256 

D Dimension 20 

δp Passband ripple 0.1 

δs Stopband ripple 0.01 

ωp Passband cutoff frequency 0.45 (LP, HP) , 0.3 (BP, BS) 

ωs Stopband cutoff frequency 0.55 (LP, HP) , 0.7 (BP, BS) 

 Number of Coefficients 20 

 Number of Iterations 500,1500 

 Number of Trials 50 
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8.2. APPLICATION IN DIGITAL FILTER DESIGN 

Transfer function of the FIR filter can also be represented as: 
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Similarly, an IIR filter can have the following transfer function: 
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Now for (37), the numerator coefficient vector { b0, b1, b2, …………….., bN} is 

represented in N dimensions where as for (38), the numerator as well as denominator 

coefficient vector is { b0, b1, b2, ……………, bM, a0, a1, a2, …………….., aN } which is 

represented in (N+M) dimensions. The particles are distributed in a D dimensional search 

space, where D = N for FIR and D = (N+M) for IIR filter. The position of the particles in 

this D dimensional search space represents the coefficients of the transfer function. In 

each iteration, these particles find a new position, which is the new set of coefficients. 

Fitness of particles is calculated using the new coefficients. This fitness is used to 

improve the search in each iteration, and result obtained after a certain number of 

iterations or after the error is below a certain limit is considered to be the final result.  

Different kinds of fitness functions have been used in different literature. An error 

function given by (39) is the approximate error used in Parks-McClellan algorithm for 

filter design. 

 

)]()()[()( ωωωω jj

d eHeHGE −=        (39)  

 

where G(ω) is the weighting function used to provide different weights for the 

approximate errors in different frequency bands,  Hd(e
jω

) is the frequency response of the 
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desired filter and H(e
jw

) is the frequency response of the approximate filter (Ababneh and 

Bataineh, 2007).  

Now the error to be minimized is defined as: 
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where δp and δs are the ripples in the passband and stopband, and ωp and ωs  are passband 

and stopband normalized cut off frequencies respectively. The algorithms try to minimize 

this error and thus increase the fitness.  

The second fitness function takes the mean squared error between the frequency 

response of the ideal and the actual filter. An ideal filter has a magnitude of 1 on the 

passband and a magnitude of 0 on the stopband. So the error for this fitness function is 

the squared difference between the magnitudes of this filter and the filter designed using 

the evolutionary algorithms, summed over desired frequency range and divided by the 

total number of input samples for which the frequency response is evaluated. This is 

called the mean squared error and is given by (41) 
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where ideal(k) and actual(k) are the magnitude response of the ideal and the actual filter, 

and N is the number of samples used to calculate the error. 

In one of the works, a linear phase FIR filter is designed. Since the coefficients of 

the linear phase filter are matched, meaning the first and the last coefficients are the 

same; the dimension of the problem could be reduced by one-half. By only determining 

one half of the coefficients, the filter could be designed. This greatly reduced the 

computational complexity of the algorithms. Application of digital filter design using 

PSO-QI is shown in the flowchart in Fig. 8.1. 
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Figure 8.1. Flowchart for the design of digital filters using PSO-QI. 
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8.3. RESULTS WITH PSO AND DEPSO 

Performance of PSO in digital filter design gives a basis of comparison for other 

algorithms. The results show that DEPSO performs better than PSO in Cases I and II. 

FIR and IIR filters are designed in Case III and FIR filters are designed in Case IV.  In 

both of these cases performance of PSO is the baseline for the other algorithms’ 

performance. In Case II run for 200 iterations, PSO has converged as well as DEPSO. For 

Case I, it is observed that PSO performed better on the stopband. Execution time for PSO 

is the least in all of the cases. Although PSO could sometimes converge to a much lower 

minimum value of error, its final value of convergence varied greatly over a number of 

iterations, thus making it highly inconsistent algorithm. DEPSO has performed better 

than PSO in terms of its consistency as well as ability to converge to a lower value of 

average error for both fitness functions. This is more convincing when it is run for only 

40 iterations. DEPSO could converge to the same value of average error in less than 40 

iterations as is done by PSO in 200 iterations, thus making it a better choice of algorithm 

for online adaptation. In Cases III and IV, DEPSO is better with respect to execution time 

for its performance. However its overall performance is midway between PSO and PSO-

QI. 
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The error graph with PSO and DEPSO for Case I run for 200 iterations is shown 

in Fig. 8.2. 

 

 

 Figure 8.2. Error graph for Case I in 200 iterations. 

 

 

  

 

 

 

 

 

 

 

 



 

 

91 

The magnitude and gain plots for the filters designed in Case I are shown in Figs. 

8.3 and 8.4 respectively. 

 

 

Figure 8.3. Magnitude response of filters for Case I in 200 iterations. 
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Figure 8.4. Gain response for the filters designed in Case I in 200 iterations. 
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The error graph and gain plot for the filters designed in Case II are presented in 

the Figs. 8.5 and 8.6 respectively. 

 

 

 Figure 8.5. Error graph for Case II in 200 iterations. 
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 Figure 8.6. Magnitude plot for the filters designed in Case II in 200 iterations. 
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The two cases represent the two kinds of fitness function used. This effect of 

fitness function in the magnitude and gain response of the designed filters is shown in the 

following figures. The comparison of magnitude response for DEPSO is shown in Fig. 

8.7. The comparison of gain response for PSO is shown in Fig. 8.8. 

 

 

 Figure 8.7. Comparison of magnitude response for the two cases. 
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Figure 8.8. Comparison of gain response for the two cases. 
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Both the cases were also subjected to 40 iterations, in which case better 

performance of DEPSO is evident. The Figs. 8.9, 8.10 and 8.11 show the error graph, 

magnitude plot and gain plot for Case I run for 40 iterations. 

 

 

 Figure 8.9. Error graph for Case I in 40 iterations. 
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Figure 8.10. Magnitude response of the filters designed in Case I in 40 iterations. 
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Figure 8.11. Gain plot for the filters designed in Case I in 40 iterations.  

 

 

 

The data obtained from the case studies are tabulated below. Table 8.3 presents 

the data for the two cases in 200 iterations where as Table 8.4 presents the same set of 

data for 40 iterations. These data have been compared with the results obtained in [2]. 
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Table 8.3. Passband and stopband ripples with 200 iterations 

  PSO DEPSO Ref [2] 

  Case I Case II Case I Case II  

Avg. 9.054 8.899 9.396 9.382 <60 

T
im

e 

(s
) 

Min. 8.828 8.796 9.032 9.267 <60 

Avg. 0.174 0.257 0.195 0.257 0.073 

Min. 0.166 0.257 0.169 0.257 0.071 

Max. 0.200 0.257 0.218 0.257 0.075 

P
as
sb
an
d
 (

δ
p
) 

Std. 0.009 0.000 0.014 0.000 0.0013 

Avg. 0.160 0.259 0.182 0.259 0.073 

Min. 0.141 0.259 0.158 0.259 0.071 

Max. 0.185 0.259 0.235 0.259 0.075 

S
to
p
b
an
d
 (

δ
s)
 

Std. 0.012 0.000 0.025 0.000 0.0013 

 

 

 

 

Table 8.4. Passband and stopband ripples with 40 iterations 

  PSO DEPSO Ref [2] 

  Case I Case II Case I Case II  

Avg. 3.108 3.077 4.573 3.015 <60 

T
im

e 

(s
) 

Min. 3.021 2.954 3.200 2.875 <60 

Avg. 0.169 0.275 0.172 0.269 0.073 

Min. 0.124 0.256 0.152 0.253 0.071 

Max. 0.266 0.290 0.194 0.291 0.075 

P
as
sb
an
d
 (

δ
p
) 

Std. 0.041 0.016 0.018 0.016 0.0013 

Avg. 0.124 0.263 0.203 0.245 0.073 

Min. 0.190 0.246 0.169 0.207 0.071 

Max. 0.262 0.275 0.257 0.270 0.075 

S
to
p
b
an
d
 (

δ
s)
 

Std. 0.063 0.012 0.041 0.027 0.0013 
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8.4. RESULTS WITH PSO-QI 

PSO-QI performed the best among all of the algorithms used in different cases. In 

Case III, Lowpass, Highpass, Bandpass and Bandstop FIR filters were designed. PSO-QI 

performed the best in terms of its consistency as well as ability to converge to a lower 

value of average error. However, its execution time is almost two times that of either 

PSO or DEPSO. This is the trade-off over performance in case of PSO-QI. Similar results 

are obtained for the design of LP IIR filter using the same fitness function. In Case IV, 

second fitness function was used to design LP, HP, BP and BS FIR filters. In this case 

also, PSO-QI performed better than PSO and DEPSO. All FIR filters have been plotted 

against the filter designed using standard Parks McClellan method. IIR filter has been 

plotted against standard elliptical window based filter design. The performance of filters 

designed using CI algorithms is better than the filters designed using standard techniques 

in all cases. In Case III, these techniques are either comparable to or better than the 

standard techniques and in Case IV, the CI techniques perform much better than the 

standard techniques, as is observed in the magnitude and gain plots and the tabulated 

results shown below. However, IIR filter designed using CI techniques is unable to gain 

as sharp transition as an IIR filter designed using elliptical window technique.  

Although cases have not been studies exclusively for QPSO but a new algorithm 

PSO-QI derived from it, it was used to show a comparison in order to prove that PSO-QI 

is better than QPSO. QPSO could perform better than PSO but only when allowed to run 

for a large number of iterations. It possessed the ability to escape the local minima, which 

made it a better choice over PSO but it converged very slowly. Therefore it is allowed to 

run for 1500 iterations to see any effect. In 1000 iterations, QPSO outperformed PSO. In 

more than 1500 iterations it is comparable to PSO-QI. However, it continues to converge 

until 4000 iterations and more. This suggests that QPSO could converge to a better 

fitness if given enough time. But PSO-QI which combines the same convergence 

characteristics of QPSO with PSO, converges much faster. Hence, depending upon the 

requirements of time and amount of convergence according to applications and/or design 

environment, the trade-off can be maintained. The error graph in Fig. 8.12 shows the 

performance of QPSO compared with the other two algorithms. 
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Figure 8.12. Error graph showing the comparison of PSO, QPSO and DEPSO. 
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The error graph, magnitude response and gain response for the LP FIR filter 

designed in Case III are shown in Figs. 8.13, 8.14 and 8.15 respectively. 

 

 

 

 Figure 8.13. Error graph for LP FIR filter designed in Case III 
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 Figure 8.14. Magnitude response of the LP FIR filter designed in Case III 
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 Figure 8.15. Gain response of the LP FIR filter designed in Case III. 
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The error graph, magnitude response and gain response for the LP IIR filter 

designed in Case III are shown in Figs. 8.16, 8.17 and 8.18 respectively. 

 

 

 

 Figure 8.16. Error graph for the LP IIR filter designed in Case III 
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 Figure 8.17. Magnitude response for the LP IIR filter designed in Case III 
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 Figure 8.18. Gain response for the LP IIR filter designed in Case III 
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The magnitude and gain response of the HP FIR filter designed in Case III are 

shown in Figs. 8.19 and 8.20, respectively. 

 

 

 

 Figure 8.19. Magnitude response of HP FIR filter designed in Case III 
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 Figure 8.20. Gain response of HP FIR filter designed in Case III 
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The error graph, magnitude plot and gain plot for the BP FIR filter designed in 

Case III are shown in the Figs. 8.21, 8.22 and 8.23 respectively. 

 

 

 

 Figure 8.21. Error graph for the BP FIR filter designed in Case III 
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 Figure 8.22. Magnitude plot of the BP FIR filter designed in Case III 
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 Figure 8.23. Gain plot of the BP FIR filter designed in Case III 
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In the following Figs. 8.24 and 8.25, magnitude and gain response of the BS FIR 

filter designed in Case III have been shown. 

 

 

 

 Figure 8.24. Magnitude response of the BS FIR filter designed in Case III 
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 Figure 8.25. Gain response of the BS FIR filter designed in Case III 
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In Case IV, a different fitness function is used to design the digital FIR filters. 

The error graph, magnitude response and gain response of the LP FIR filter designed in 

this case are shown in Figs. 8.26, 8.27 and 8.28 respectively. 

 

 

 

 Figure 8.26. Error graph for the LP FIR filter designed in Case IV 
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 Figure 8.27. Magnitude plot for the LP FIR filter designed in Case IV 
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 Figure 8.28. Gain plot for the LP FIR filter designed in Case IV 
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Figs. 8.29 and 8.30 represent the magnitude and gain plots respectively, of the HP 

FIR filter designed in Case IV. 

 

 

 

 Figure 8.29. Magnitude plot of the HP FIR filter designed in Case IV 
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 Figure 8.30. Gain plot of the HP FIR filter designed in Case IV 
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The error graph, magnitude plot and gain plot of the BP FIR filter designed in 

Case IV are shown in Figs. 8.31, 8.32 and 8.33, respectively. 

 

 

 

 Figure 8.31. Error graph for the BP FIR filter designed in Case IV 
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Figure 8.32. Magnitude response of the BP FIR filter designed in Case IV  
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 Figure 8.33. Gain response of the BP FIR filter designed in Case IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.33: Gain response of the BP FIR filter designed in Case IV 
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The magnitude and gain response of the BS FIR filter designed in Case IV are 

shown in the following Figs. 8.34 and 8.35 respectively. 

 

 

 

 Figure 8.34. Magnitude response of the BS FIR filter designed in Case IV 
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 Figure 8.35. Gain response of the BS FIR filter designed in Case IV 
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PSO-QI took twice as much time as PSO in the finding the solution. Hence a test 

was done to allow PSO to run for as much time as is taken by PSO-QI and see if it 

performs as good as PSO-QI. However, PSO could not converge to a lower average error. 

This has been shown in Fig. 8.36. 

 

 

 

  Figure 8.36. Comparison of PSO and PSO-QI in terms of time 
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The data obtained from the case studies are presented in Table 8.5. This shows the 

minimum, maximum and standard deviation values of passband and stopband ripples for 

each of the algorithms. It also shows the time taken by each algorithm for 500 iterations. 

The results are clearly in favor of PSO-QI except for the time. 

 

 

 

Table 8.5. Passband and stopband ripples for FIR filter in Case III* 

PSO DEPSO PSO-QI Parks McClellan 
 

LP BP LP BP LP BP LP BP 

Avg. 16.780 17.010 17.440 17.006 32.398 32.528 0.1560 0.1570 

T
im

e 

(s
) 

Min. 16.203 16.781 16.938 16.110 31.656 31.593   

Avg. 0.256 1.003 0.061 0.833 0.049 0.828 1.3692 2.2196 

Min. 0.019 0.819 0.019 0.812 0.014 0.808   

E
rr
o
r 

Std. 0.430 0.394 0.032 0.013 0.026 0.007   

Avg. 0.175 0.240 0.102 0.304 0.102 0.335 0.9988 0.9969 

Min. 0.099 0.099 0.099 0.104 0.099 0.226   

Max. 1.297 0.647 0.133 0.517 0.157 0.476   

P
as
sb
an
d
 (

δ
p
) 

Std. 0.222 0.112 0.006 0.084 0.010 0.063   

Avg. 0.190 0.873 0.069 0.641 0.056 0.602 0.4804 1.3327 

Min. 0.029 0.414 0.029 0.431 0.024 0.452   

Max. 1.173 2.324 0.189 0.883 0.133 0.717   

S
to
p
b
an
d
 (

δ
s)
 

Std. 0.281 0.408 0.030 0.092 0.025 0.066   

*Carried out on the same computer for 500 iterations 
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Table 8.6. Passband and stopband ripples for the IIR filter in Case III* 

PSO DEPSO PSO-QI Elliptical 
 

LP LP LP LP 

Avg. 18.222 18.989 34.976 0.6560 

T
im

e 

(s
) 

Min. 17.453 18.140 33.672  

Avg. 0.285 0.138 0.126 0.9987 

Min. 0.036 0.011 0.014  

E
rr
o
r 

Std. 0.208 0.093 0.093  

Avg. 0.173 0.130 0.131 0.1087 

Min. 0.099 0.093 0.099  

Max. 0.378 0.255 0.391  

P
as
sb
an
d
 (

δ
p
) 

Std. 0.085 0.048 0.070  

Avg. 0.221 0.119 0.104 1.0000 

Min. 0.027 0.021 0.024  

Max. 0.894 0.391 0.279  

S
to
p
b
an
d
 (

δ
s)
 

Std. 0.175 0.085 0.054  

*Carried out in the same computer for 500 iterations 



 

 

129 

Table 8.7. Passband and stopband ripples for the FIR filter in Case IV* 

PSO DEPSO PSO-QI Parks McClellan 
 

LP BP LP BP LP BP LP BP 

Avg. 14.542 14.852 15.516 15.260 28.891 28.288 0.1560 0.1570 

T
im

e 

(s
) 

Min. 14.297 14.781 15.403 15.234 28.251 28.187   

Avg. 0.016 0.031 0.007 0.024 
5.458e-

4 
0.017 0.2912 0.5172 

Min. 
3.173e-

4 
0.016 

2.677e-

4 
0.016 

3.189e-

4 
0.016   

E
rr
o
r 

Std. 0.052 0.071 0.036 0.051 
3.299e-

4 
0.001   

Avg. 0.177 0.498 0.118 0.492 0.081 0.490 0.9988 0.9969 

Min. 0.033 0.466 0.018 0.464 0.027 0.460   

Max. 1.154 0.705 0.929 0.625 0.138 0.503   

P
as
sb
an
d
 (

δ
p
) 

Std. 0.289 0.036 0.168 0.021 0.026 0.007   

Avg. 0.235 0.500 0.158 0.494 0.118 0.478 0.4804 1.3327 

Min. 0.080 0.450 0.081 0.463 0.078 0.463   

Max. 1.399 1.105 1.280 1.105 0.210 0.524   

S
to
p
b
an
d
 (

δ
s)
 

Std. 0.347 0.122 0.232 0.091 0.026 0.017   

*Carried out on the same computer for 500 iterations 

 

 

 

 

8.5. DISCUSSION 

The results shown in the tables and figures show that DEPSO is better than PSO 

while PSO-QI is the best of the three algorithms under consideration. PSO-QI has 

obtained the best features of PSO and QPSO and thus presented itself as a powerful 

algorithm. Its ability to escape the local minima and thus better explore the search space 

is highlighted by the lower values of average error. Also the lower values of standard 

deviation confirm its consistency in finding the best result every time. The amount of 
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time taken is justified by the fact that QPSO is carried out on the gbest particle after PSO 

and fitness is calculated. Execution of QPSO mutation turns out to be more time 

consuming than DE mutation in DEPSO. As a result, DEPSO outperforms the other 

algorithms when its performance is compared with the amount of time it takes. This still 

supports its suitability in online adaptations. At the expense of time, better filter response 

could be obtained by the new hybrid algorithm.  

The study still leaves room for more research into the area. PSO-QI has not been 

subjected to the kind of approach taken in DEPSO-by creating the offspring of the whole 

population and then carrying out their tournament with the parents. Also, Case III and IV 

have not been implemented using the fitness function studied in Cases I and II. With 

further research into the topic, PSO-QI could be used in a wide variety of filter design 

applications. Trade-off between various parameters of the filter can lead to designing 

different kinds of filter according to different requirements in various kinds of 

applications. This also remains to be explored. 

 

 

8.6. SUMMARY 

The result for the various cases of digital filter design was presented in this 

chapter. The results showed that DEPSO performed better than PSO and PSO-QI 

performed better than both of the two algorithms. Although the response of the filter in 

stopband in one of the cases was better in case of PSO, it failed to find the best solution 

most of the time and deviated highly from the standard value of minimum error. From the 

studies and their results, it is concluded that combining quantum based approach with 

classical swarm based search technique can help the swarm communicate with each other 

more effectively and thus come out of local minima and avoid premature convergence. 

However, also mentionable is the fact that this lower value of error comes with higher 

execution time and hence a proper trade-off is required depending upon the kind of 

application. 
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9. CONCLUSION 

9.1. INTRODUCTION 

In this work, swarm, evolutionary and quantum based intelligent optimization 

algorithms are used in system identification and to design digital filters. It was shown that 

the swarm based algorithms has many variants and has been hybridized with other 

algorithms to increase its effectiveness. It was also seen that by hybridization of the 

algorithms, best features of both the algorithms are retained and thus new algorithm so 

developed is more robust. In this chapter, a conclusion of all the chapters is provided. 

 

 

9.2. SECTION SUMMARY 

The first three chapters of the thesis cover the introduction to the problem. In 

Chapter 1, introduction to the thesis is provided. Chapter 2 covers the description of 

system identification. Introduction to the problem and traditional and modern methods 

applied to solve it are explained in this chapter. In Chapter 3, digital filter design is 

explained. This chapter also introduces to the problem of digital filter design and various 

traditional and new methods applied in the design.  

The next three chapters of the thesis describe the involved algorithms and their 

operation in detail. In Chapter 4, particle swarm optimization has been explained. As one 

of the pioneer stochastic search optimization technique based on the social behavior of 

bird flocking and fish schooling, algorithm of PSO has be described in this chapter. In 

Chapter 5, a hybrid optimization algorithm DEPSO has been explained. A combination of 

DE and PSO, it uses the differential evolution operation on the pbest of gbest particle of 

the PSO to mutate the particle and create an offspring. The chapter covers the detail of its 

operation. In Chapter 6, another hybrid algorithm, PSO-QI has been introduced. PSO-QI 

emerges from the infusion of quantum operation obtained from QPSO on the gbest 

particle of the PSO. Concepts of quantum particle swarm optimization and its application 

on the PSO have been explained in this chapter. 

In the next two chapters, the results obtained from the case studies have been 

presented. In Chapter 7, the results obtained from the application of different algorithms 
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in the system identification have been presented. These results show the effectiveness of 

the new hybrid algorithms in comparison to the traditional PSO. In Chapter 8, the results 

for the digital filter design are shown. This chapter shows the results of designing 

different kinds of digital filters using various algorithms described in the previous 

chapters. These results also suggest that the new hybrid algorithms are more effective 

than the traditional PSO. These two chapters present their comparison in terms of figures 

and tabulated data from different case studies. 

 

 

9.3. MAIN CONCLUSION 

The main focus of the thesis is in system identification and in the design of digital 

filters. The research work leading to the thesis is related to identification of an IIR 

system. This is achieved by modeling the unknown system with IIR systems of same or 

reduced number of orders. In digital filter design, Lowpass, Highpass, Bandpass and 

Bandstop FIR and  Lowpass IIR filters are designed using different optimization 

algorithms. The results for system identification as well as digital filter design have been 

shown. In this work, particle swarm optimization is used as the baseline algorithm. Two 

other algorithms are considered to improve the results obtained from PSO. These are 

hybrid algorithms based on differential evolution and quantum particle. The DEPSO 

algorithm performed better than PSO in system identification as well as in digital filter 

design. Results obtained from PSO-QI are better than both PSO and DEPSO and hence it 

has outperformed the other two algorithms in all the case studies of system identification 

and digital filter design. 

Fitness function based on passband and stopband ripples of the filter response is 

used to design both FIR and IIR filters where as the fitness function based on MSE is 

used to design FIR filters only. It is observed that all three of the algorithms are able to 

approximate the filter coefficients in a number of iterations but PSO-QI always 

performed the best among them. Figures and tabulated results all show that PSO-QI is 

more consistent in its performance and it can achieve a lower value of average error in 

either of the cases using two different fitness functions. Although it took longer for the 

algorithm to converge because of its computational complexity, it found much better 
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solution than PSO, DEPSO and QPSO. The results are not tabulated for QPSO because of 

the higher number of iterations and the results are clear from the figures. However, 

comparison has been made to confirm that PSO can not achieve the same amount of 

convergence even when allowed to run for the amount of time taken by PSO-QI. Hence, 

it can be concluded that swarm, evolutionary and quantum algorithms can be effectively 

used in digital filter design, and PSO-QI is a better choice. It is evident from the figures 

and results how the best features of two algorithms can be extracted and performance can 

be improved by the hybridization of these algorithms. 

 

 

9.4. FUTURE RESEARCH 

This thesis covered application of different optimization algorithms in system 

identification and digital filter design problems. However, there is more room for 

research. The most open ground for research is the improvement of the algorithms 

themselves. The parameters tuning is a big issue in the use of these algorithms and efforts 

are being made to reduce the number of parameters that determine the effectiveness of 

the algorithm. Apart from that, the hybrid algorithms leave a lot of room for research in 

how the hybridization should be carried out. In some cases, the gbest particle obtained 

from PSO is used; where as the whole population is mutated in other cases. The mutation 

operation is sometime applied to a random member of the pbest population where as 

sometimes on the gbest particle itself. These different choices affect the effectiveness of 

the algorithms differently and no fixed convention has been defined. It is up to the 

researcher to decide and apply his intuition and experience based on trail and error over a 

number of trials. Thus exploration of these areas in improving the effectiveness of the 

algorithms based on the best parameters and best approach to hybridization remains to be 

a work for future research.  

In this thesis, a quantum behaved particle swarm optimization was introduced 

whose concepts are radical to the classical concept of swarm optimization. However, it 

was shown that these algorithms are more effective than the classical PSO. So, it is also a 

ground for future research how new algorithms can be developed by borrowing concepts 

from different fields of science and applied to improve the existing algorithms. Apart 
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from that, the application of these and other various algorithms in other different kinds of 

real world applications also remains to be the work for future research. 

This research mainly focused on carrying out simulations on the computer using 

MATLAB. So, its implementation on a dedicated digital signal processor (DSP) on real 

data can also be looked at in the future. By implementing the digital filters on a DSP with 

actual data from various sources such as power systems, the ability of the algorithms to 

actually identify the filter coefficients and design adaptive filters could be tested. On a 

hardware environment, various other constraints such as memory, storage size, speed of 

the processor etc. will also come into the effect and hence design of algorithms according 

to these requirements will pose more challenge to the research. 

 

 

9.5. SUMMARY 

In this chapter, summary of all the chapters was covered. The chapter covered the 

main motivation of the thesis and briefly summarized how different algorithms are used 

in two different kinds of optimization problems in the research work. The chapter also 

concluded that the hybrid algorithms have given better results and also explained the 

remaining work that can be taken forward for the future research. 
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