49 research outputs found

    Stochastic models for biological evolution

    Get PDF
    In this work, we deal with the problem of creating a model that describes a population of agents undergoing Darwinian Evolution, which takes into account the basic phenomena of this process. According to the principles of evolutionary biology, Evolution occurs if there is selection and adaptation of phenotypes, mutation of genotypes, presence of physical space. The evolution of a biological population is then described by a system of ordinary stochastic differential equations; the basic model of dynamics represents the trend of a population divided into different types, with relative frequency in a simplex. The law governing this dynamics is called Replicator Dynamics: the growth rate of type k is measured in terms of evolutionary advantage, with its own fitness compared to the average in the population. The replicator dynamics model turns into a stochastic process when we consider random mutations that can transform fractions of individuals into others. The two main forces of Evolution, selection and mutation, act on different layers: the environment acts on the phenotype, selecting the fittest, while the randomness of the mutations affects the genotype. This difference is underlined in the model, where each genotype express a phenotype, and fitness influences emerging traits, not explicitly encoded in genotypes. The presence of a potentially infinite space of available genomes makes sure that variants of individuals with characteristics never seen before can be generated. In conclusion, numerical simulations are provided for some applications of the model, such as a variation of Conway's Game of Lif

    Game theoretic modeling and analysis : A co-evolutionary, agent-based approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    Full text link

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Physical modelling of epithelia: reverse engineering cell competition in silico

    Get PDF
    Cell competition is a phenomenon in which less fit cells are removed from a tissue for optimal survival of the host. Competition has been observed in many physiological and pathophysiological conditions, especially in the prevention of tumor development. While there have been extensive population-scale experimental studies of competition, the competitive strategies and their underlying mechanisms in single cells are poorly understood. To date, two main mechanisms of cell competition have been described. Mechanical competition arises when the two competing cell types have different sensitivities to crowding. In contrast, during biochemical competition, signaling occurs at the interface between cell types leading to apoptosis of the loser cells. However, rigorously testing these hypotheses remains challenging due to the difficulty of obtaining sufficient single cell level information to bridge scales to the whole tissue. In this thesis, I present metrics aimed at characterising competition at the single cell level. Then, I demonstrate the development of a multi-layered, cell-scale computational model that I use to gain understanding on the single cell mechanisms that govern mechanical competition and decipher the "rules of the cellular game". After benchmarking cell growth and homeostasis in pure populations, I show that competition emerges when both cell types are included in simulations. I then investigate the impact of each computational parameter on the outcome of cell competition. Intriguingly, the outcome of biochemical competition is controlled by topological entropy between cell types, whereas the outcome of mechanical cell competition is exclusively controlled by differences in energetic potential between cell types. As 90% of cancers arise from epithelia and a number of genetic diseases present symptoms of epithelial fragility, I anticipate that my model of realistic implementation of epithelia will be of use to the biophysics and computational modelling community
    corecore