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Resumo

A Teoria de Jogos pode ser definida como a andlise matematica formal de situagbes onde se observa
algum tipo de conflito de interesses. Os jogadores sdo assumidos, pela teoria classica, como racionais,
0 que significa que buscam sempre no jogo a maximizagao de suas utiidades esperadas. O jogo de 2
participantes conhecido por “Dilema do Prisioneiro” (PD) € considerado como o que melhor representa
a contradi¢ao entre 0 emprego da racionalidade individual e da coletiva. Na versao tradicional do PD, as
estrategias s@o sempre compostas pelas agdes elementares “Cooperate” (C) ou "Defect' (D). O jogo
iterado (IPD) constitui-se em um modelo que traduz com bastante fidelidade, e de forma simples,
inumeras questdes freqlientemente encontradas na realidade, quando pessoas, grupos ou empresas
disputam parcelas de recursos escassos ou limitados. A literatura disponivel sobre o tema é muito
vasta, e muitas analises do IPD, incluindo simulagbes através de torneios computacionais e uso de
tecnicas de inteligéncia artificial j4 foram efetuadas. Contudo, as estratégias consideradas no jogo estéo
restritas, na grande maioria dos estudos, a combinagdes deterministicas, condicionais ou probabilisticas
das agbes pontuais citadas, ou seja C e D. Nesta tese, uma nova verséo do IPD é desenvolvida,
chamada de Fuzzy fterated Prisoner’s Dilemma — FIPD. Este método, ao permitir que os jogadores
possam implementar agbes graduais, objetiva uma modelagem mais realista do confito de interesses
representado pelo jogo. Adicionaimente, no FIPD os agentes decidem com base em um raciocinio
qualitativo, traduzido neste trabalho pelo uso de sistemas especialistas difusos. A tese inclui dois
enfoques do FIPD. O primeiro, de carater exploratorio, consiste em um torneio computacional
confrontando os estrategistas assistidos pelo sistema de decisdo difuso entre si e com outros tipos de
jogadores tradicionalmente bem sucedidos em trabalhos anteriores (TFT e Paviov). O segundo
enfoque, bem mais elaborado e detalhado, trata de uma aplicagéo pratica a um problema de divisdo de
mercado, onde varias firmas atuam vendendo produtos ou servigos a uma populagéo diversificada de
compradores, que possuem diferentes poder de compra e preferéncias refativas a qualidade dos itens.
Esta abordagem imprimiu uma caracteristica altamente dinamica as interagdes, simuladas com auxilio
de um programa computacional orientado a objetos especiaimente desenvolvido. As estratégias
empregadas pelos participantes e seus desempenhos séo analisados e discutidos, especialmente na
segunda abordagem do FIPD, obtendo-se importantes conclusdes a respeito do problema.
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Abstract

Game Theory can be defined as the formal mathematical analysis of situations where some kind of
confiict of interest exists. The classical theory assumes that the players are rational, in the sense that
they always seek the maximization of their expected utiliies. The 2-person game known by the name of
“Prisoner’s Dilemma” (PD) is considered as the situation which best depicts the contradiction between
the individual and the collective rationality. In its traditional version, the strategies in the PD are always
composed by the elementary and dichotomic actions "Cooperate” {C) ou "Defect’ (D). The iterated
game (IPD) constitutes a model that mirrors, in a simple and direct manner, several problems often
found in the real world, when people, groups or companies are involved in a dispute over some limited
or scarce resource. The available literature regarding that theme is vast, and many comprehensive
analysis of the IPD have been already performed, including computational tournaments and the
employment of artificial intelligence techniques. However, the strategies considered in the game are
usually confined to deterministic or probabilistic combinations of the mentioned punctual actions C and
D. In this dissertation, an innovative version of the IPD is presented and developed, called Fuzzy
lterated Prisoner's Dilfemma — FIPD. That method, by allowing the players to implement gradual
actions, aims at attaining a more realistic model of the conflict of interested represented by the game.
Additionally, in the FIPD the agents decide based on a quaiitative system of reasoning, which in this
work regards the utilization of fuzzy expert systems (FES). The dissertation includes two approaches of
the FIPD. The first has an exploratory character, and consists of a computational contest where the
FES-assisted strategists confront each other and also other well known successful rules (TFT and
Paviov). The second approach, much more elaborate and perfected, is directed at a practical
application concerning a market share problem. There, several firms are present offering their products
or services to a diversified population of buyers, the Consumers, which on their turn possess different
buying powers and preferences relafive to the quality of itens desired. That method has the advantage
of imprinting a highly dynamic feature to the environment, which has been simulated by means of an
object-oriented C++ program especially written. The strategies employed by the participants and their
respective performances are extensively analyzed and discussed, mainly in the second approach, from
which many important conclusions have been drawn.
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Chapter 1

Introduction

Discovering the Prisoner’s Dilemma is
something like discovering air. It has
always been with us, and people have

always noticed it—more or less.

—William Poundstone, in Prisoner's Dilemma (1992)

1.1 - Preamble

Understanding the pattern of behavior of rational agents when they are confronted
by a mutual conflict of interest has been deserving a continuous and increasing attention by
researchers from various scientific areas. In classical Decision Theory the actors try to find
the best solutions to their problems when dealing with possible states of the world, that can
be deterministic, probabilistic, fuzzy, or even chaotic. That approach usually does not
consider specific or particularized reactions from one agent to the deeds of another. On the
other hand there is Game Theory, which has been developed aiming at explaining how
rational people ought to make decisions in antagonic situations, if they want to achieve a
particular goal. Game Theory is normative and not descriptive, in the sense that it does not

attempt to make predictions about how the agents will actually behave.

The observed fact that decision makers often fail to follow the theoretical
prescriptions regarding their resolutions towards the maximization of the expected utilities
raises some concerns about the real meaning of rationality and the adequate definition of
utility, mainly when the dispute cannot be modeled by a strictly competitive! game. In a

non-zero-sum game, the players (decision makers) may not have a strictly opposed

! Also called zero-sum or constant-sum games. See Chapter 2 of this work.
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preference of one outcome over another ( as in zero-sum games). If both players prefer the

same outcome over any other, the former is called Pareto-optimal [RAPO92].

In this work, the paradigm of a 2x2 game called the Jterated Prisoner’s Dilemma
(IPD) 1s explored. Taking into account the vast diversity of individual comportment, that
are guided by many factors (psychological, environmental, utilitarian, etc.), a mathematical
analytical model of a complex system composed of many PD players tums out to be
impracticable. Therefore, this dissertation approaches the problem using simulation

techniques, allied to a new fuzzy version of the PD.

1.2 - The Prisoner’s Dilemma

The Prisoner’s Dilemma game (PD), invented in 1950 by Melvin and Dresher
from Rand Corporation, is considered by many the quintessence of a conflict of interest, a
social trap that exposes In an eclementary and clear form the discrepancy between

individual and collective rationality.

In the PD, all three principles of individual rational decision, that is, dominating,
maxmin and equilibrium, point to the choice “Defection”. The players’ maxmin strategies
intersect in the same outcome, but that is not Pareto-optimal. Nevertheless, the collective

rational decision must be Pareto-optimal.

Herodotus® describes an early example of reasoning in the Prisoner’s Dilemma in
the conspiracy of Darius against the Persian emperor. A group of nobles met and decided
to overthrow the emperor, it was proposed to adjourn till another meeting. Darius then
spoke up and said that if they adjourned, he knew that one of them would go straight to the
emperor and fink on them because if nobody else did, he would himself. Darius also

suggested a solution - that they immediately go to the palace and kill the emperor?.

2 Cited in [RASMR9], p. 38, Note 1.2

3 Darius meant that defection (delation) is the move that vields the best payoff—the emperor’s gratitude
and expected privileges— when adopted isolated in the presence of collective cooperation (silence about
the plot). But if everyone goes to the emperor to delate the conspiracy—mutual defection, all will be
obviously worse off.



1.3 - Description of the Problem and Objective of the Dissertation

The Prisoner’s Dilemma is not about prisoners. Its use as an adequate paradigm to
model conflicts of interest is mirrored by a crescent number of applications in operations
research, economics, biology, sociology, political science, etc. Thus, the achievement of a
better insight of the dynamics of the PD game are of great value in predicting how

competitive systems might evolve.

The situation described in Herodotus fable above well illustrates the basic nature of
the PD. However, those circumstances reflect the dichotomic character of the classical
game, in which there are no intermediate actions: A player can only either cooperate (C) or
defect (D). But in real-life, practical problems, that is seldom the case, and the traditional
binary PD is not able to capture the nuances of the real processes being modeled. A
decision maker can almost ever employ gradual strategies, chosen from a continuous
palette of options between two limiting points. And even if the question alone does not
admit gradation concerning the final decision, the reasoning process that leads to the
concluding move certainly passes through a non-discrete process. Likewise, the world is
generally sufficiently diverse to allow a player to compensate for an extreme settlement

with another relaxed one.

A question that comes to mind is, what would happen in the IPD if one departs
from the traditional dichotomic actions C and D and the participants in the game may select
actions in a continuous range? Moreover, what if the players make their decisions based on

a qualitative method?

The attempt to offer a contribution to the comprehension of those questions
constitutes the main subject of this dissertation, which is the development of a model of the
IPD where the foregoing general assumptions are considered. In order to achieve that goal,
a version of the PD has been developed and implemented. It has been denominated the
Fuzzy Iterated Prisoner’s Dilemma (FIPD), and relies basically on fuzzy set theory and

fuzzy expert systems.

Why use tuzzy sets associated with the Prisoner’s Dilemma paradigm?
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Before offering a straightforward answer, let us consider the way a person drives a
car. Depending on the vehicle trajectory, the driver assesses the situation and reacts
steering to the night or left, with different emphasis. In this manner, though the driver
succeeds in maintaining the car under control, it does not know cither the exact angle and
other quantitative characteristics of its action conveyed to the wheels by the mechanical

system of the car, or the external physical numerical attributes of its path.

In the example above, the driver is using a qualitative method to make its decisions.
In the PD, on the other hand, the counterpart of a rational player is another rational player,
and they have conflicting (albeit non-strictly) interests. That situation is, in a sense, much
more complex, because some variables of very difficult and questionable quantification are
present in the decision process (e.g. rationality, preferences, utility, not mentioning moral
related attributes). Thus, the process is dlurry because the variables that take part in it are

also blurry.

Nevertheless, to handle this kind of situation, fuzzy set theory (FST) can provide a
adequate method to mirror the rules by which people manage and negotiate the perceptions
and actions involved in the game. Additionally, it has already been demonstrated by
numerous successful applications in many areas that the FST can augment, and eventually
exceed other more conventional mathematical techniques régarding the performance of an

obtained solution or control procedure directed at nonlinear or other complex phenomena.

Such is the problem of the IPD, and it is assumed, with confidence, that the IPD is

the case for an application of fuzzy set theory and fuzzy expert systems, which resulted in

the FIPD models.

Two approaches regarding the FIPD are investigated: The first regards a
computational tournament of the FIPD where 512 different fuzzy strategists confront
themselves and three other peculiar players, namely, 7it-for-Tat (TFT), Paviov, and also a
fuzzy version of TFT. The second consists of a practical application of the ome-sided

version of the FIPD.



Apart from other specific questions addressed, especially in the latter and more

elaborate model, the following topics motivated the research:

e How do the players perceive a opponent’s strategy and what are their

responses?

e What is the dynamic behavior of the whole environment, concerning the

conflict of interest embedded in the process ?

e Can an equilibrium be established? If it can, which are the characteristics

of the strategies that compound it?

e Which are the dominant strategies in terms of attaining the best results?

Are they stable?

A practical application of the IPD is developed along Chapter 6, where the problem
of modeling a competitive market is studied under the one-sided IPD approach. There, an
environment with a variable number of Firms (sellers) and Consumers (buyers) has been
designed and initialized. Each Firm arbitrates the advertising budget, the price and the cost
(associated to the quality) of its product or service, and offers it for sale in the market. The
population is composed of one thousand buyers, differentiated by their incomes and

preferences relative to the price and quality of an item.

While the Firms can fix their variables freely, which is done arbitrarily in order to
investigate the most successful policies, the consumers operate in a highly dynamic mode,
where the population’s consolidated decisions constantly influence each individual. It also

is affected by the tradeoft between its own expectations and concrete results achieved.

The final objective of the model contained in Chapter 6 is finding out how prices,
costs and advertising budgets are related concerning the achievement of the best economic
results, not only in terms of the market share but also of the net profit. It is important to
note that the consumers are not static in their decisions, because they are also rational in

the sense of seeking the greater benefits when dealing with the sellers. The subsequent
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chapter implements the One-sided Fuzzy PD(1SFIPD) through a simulation program with

several examples.

1.4 - Methodology

The performance of strategies in the dichotomic IPD has already been exhaustively
studied. The computational tournaments of the IPD accomplished by Axelrod [AXEL84]
greatly increased the knowledge about how cooperation evolves, and which are the
characteristics of the most effective strategies to be emploved. But all those conclusions are
entircly context dependent, and further research demonstrated that some very successful
strategies, like TFT, would not do so well if some other newly formulated rules (like
Paviov, or Generous TFT)* were included among the opponents. Even so, the alluded

tournaments relied entirely on previously formulated plans by human strategists.

The current direction of the research in the area is to employ soft computing and
artificial mtelligence techniques allied to intensive simulation methods in order to automate

the process of discovering new tactics to successfully playing the game.

In Chapter 5, the FIPD is outlined. Each playver is represented by a collection of
three fuzzy expert systems (FES). The FES have as inputs, or antecedents, three distinct
factors, which regard the relation between a playver and its opponent’s wealth (f;), the
zl.clvel"saly';s last three moves () and the relation between the trends of its accumulated
pavoff and that concerning the entire population. The outputs are given in terms of the
gradual action to be implemented in the current move, which varies between zero (total
defection) and one (total cooperation). The players using that decision process add up to
512, as a result of the combination of the different tactics employed for each factor.
Included in the participants are three other well known strategists, previously mentioned. A
computational tournament using a program in C++ language especially developed for the
simulations was accomplished, and several conclusions were drawn from the results

[BORG95].

4 See Chapter 3.



The primary purpose of that part of the dissertation is to investigate the
performance of the fuzzy players regarding their particular strategies. Because of the great
number of possible pairwise combinations (132355), the contestants were randomly
divided in groups, each confronting a specific opponent about 150 times, on the average.

The essence of the model included in Chapter 5 is fundamentally investigative, and

was developed as an inquiry about the effects of qualitative reasoning in the IPD.

The method utilized in Chapter 6 this work is rather distinct. Departing from the
usual recent approach of automating discovery of new effective strategies by means of Al
techniques [AXEL87], [FOGE93a], [FOGE94c], the procedure had a converse goal: How
can a player effectively choose its strategy when randomly confronted to adaptive, Al
guided players? Observe that the latter do not confront each other, so the iterations take
place only between the two types of players present in the planned market share game,
namely Firms and consumers. The paradigm employed was the one-sided IPD
[RASMS89], in which only one type of player—the Firms— is involved in a PD-like
situation. The iterations consist of randomly assigned encounters between buyers and
sellers’. Of course, the seller would prefer to sell a low cost item for a high price, and many
of them. On its turn, the buyer generically favors the value of its acquisition, choosing to
buy the best quality product or service for the least amount of money. A conflict of interest
is therefore formed.

The Firms may select their actions (price, cost and advertising budget) in a
continuous interval, which was manually done, aiming at finding the relations between the
selected policies and their performance. On the other hand, the Consumers, like in the
classical PD, have only two choices: buy or not from a given supplier. But in the model,
the Consumers are not at all equal in their resources and tastes, and they perform constant
updates in their decision processes, which are again based in fuzzy expert systems and

Belief theory.

3 The mechanisms used to pick a pair of players to interact are not random in the sense of “any pair is
equally alike™, but instead, depend on the advertising budget specified by each Firm.
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The game is divided into cycles where a fixed number of iterations is completed.
During each cycle the Firms’ variables remain constant, but they may be adjusted for the
next round.

A simulation C++ program has been developed to implement the iterations, and the

results are presented, discussed and analyzed.

1.5 - Structure and outline of the Dissertation

The dissertation has been divided in eight chapters. Chapters 2 through 4 contain a
bibliographic review of the topics of the theory related to the development of the research.
Chapters 5 through 7 approach the Fuzzy Iterated Prisoner’s Dilemma, new with this work

and constituting the core of the project. Chapter 8 presents the conclusions.
In the sequence, a brief description of each chapter’s content is given.

e Chapter 1: This introduction, where the outline of the work is disclosed, including
the motivation, essence of the problem approached, and the methodology

employed.

e Chapter 2: Contains a review of the fundamental aspects of Game Theory. The
text includes the characterization of a conflict of interest as a strategic game,
competitive (strictly and non-strictly) and cooperative games. Also discussed are the

concepts of rationality, dominance, equilibium and arbitration schema.

e Chapter 3: Embodies the analysis of the Prsoner’s Dilemma game, which
deserved a particular attention considering the fact that it constitutes the cornerstone
of the research. The history, applications and most important theoretical
developments of the PD paradigm are examined and detailed. Special mention is
made to the computational tournaments of the iterated PD, as well as quite recent
works using artificial intelligence (Al) techniques for the modeling of the problem.
To complement the review, the chapter includes topics of other significant PD-like

games, as the biological-oniented Hawk-Dove.
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Chapter 4. The model developed in the Dissertation compounds the PD with
Fuzzy Set Theory and respective tools. Therefore, a review of the related
techniques has been judged necessary. The chapter provides a description of the
methods relying on fuzzy logic, fuzzy measures and belief theory, which have been
taken advantage of in the formulation of the FIPD. Moreover, the working of the

fuzzy integral is presented, and a modification in that method is introduced.

Chapter 5: An ini/cstjgative version of the Fuzzy Iterated Prisoner’s Dilemma is
detailed and simulated with a computer program. The strategies emploved by the
players depart from the traditional binary restriction, and the process of picking a
move relies on fuzzy expert systems that take in consideration inputs other than the

usually adopted sequence of the opponent’s last moves.

Chapter 6: Consists of a practical application of the one-sided version of the FIPD.
In order to supply a realistic environment for the analysis of a conflict of interest
modeled by the FIPD, a market share game including buyers and sellers has been
designed, where the contestants exercise their strategies. The decision process of
the buyers has been intended to mirror, as far as possible, the behavior of rational
agents adopting qualitative reasoning. The experiments are accomplished by means
of a object-oriented C++ program, implemented by intensive simulation of the
interactions that take place between pairs of the agents, the Firms and the

Consumers.

Chapter 7: Includes a description of the program utilized to perform the
experiments, as well as the results attained by the computational simulation of the
market share game detailed in the previous chapter. The outputs derived from the
various situations assessed in the simulations are extensively examined, along with a

graphical presentation of the most outstanding results.

Chapter 8: Conclusions. An outlook of the research is depicted, including

limitations of the work and suggestions of topics for further development.
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1.6 - Main Contributions of the Dissertation

topics:

The most important advancements contamned in this work regard the following

Use of fuzzy reasoning in the Prisoner’s Dilemma Game;
Introduction of an adjustment process in the traditional fuzzy integral,;

Development of a method of aggregating multiple decision criteria using the

modified fuzzy integral and elements of belief theory;
Implementation of an application of the 1SFIPD to a practical problem;

Demonstration of the feasibility of using the IPD as a basis of building tools for
decision-making through simulation techniques.



Chapter 2

A Review of Fundamental Topics of Game Theory

2.1 - Introduction

The purpose of this chapter is to provide a background of the most vital and basic
aspects of Game Theory. It is usually accepted that the mathematically formal study in this
area began with Von Neumann’s papers published in 1928 and 1937 [NEUM?28],
[NEUM37]. Another author, Maurice Fréchet [FREC53], considers that this initiative
should be credited to Emile Borel [BORE38], although with some exemptions'. The book
“Theory of Games and Economic Behavior” is habitually referred as the first complete and
systematic approach to the subject [NEUM44]. Game theorv deals with situations where
two or more agents have some conflict of interest, about some limited or scarce resource. It
1s not a prescriptive theory, because it does not intend to tell how people behave or make
decisions, neither make predictions about their acts. If it were so, such a theory would be
also descriptive. The accuracy of a descriptive theory could be measured by the rate of
success with which it foresees what will be done in some particular circumstances by
rational agents. So, rather than descriptive or prescriptive, game theory aims to be

normative.

The goal of a normative theory is to inform rational people what they ought to do
to achieve the desired ends. Here a problem arises: What is it to be rational or not? The
concept of rationality is commonly associated 1o maximization of gains, which, by its tum

seems to mmply an egoistic and selfish conduct. Anatol Rapoport, from University of

! The exemptions regard the non-achievement of a proof for the Minimax Theorem, which is viewed as a
comerstone of Game Theory. Borel supposed that the Minimax Theorem was not generically vakid, being
only applicable in special circumstances. The merit of proving it for general conditions 1s owed to Von
Neumann.
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Toronto, presented a very good discussion of this theme [RAPO90], [RAPQ92]. It is
argued that there is nothing wrong with a gains-maximizing strategy. There are a whole lot
of things, concrete and abstract, that can be categorized as gains.. It can be money, power,
self-esteem, knowledge, recognition, etc. On the other hand, one less disputed definition, is
that of what consists a rational agent: It is someone who acts bearing in mind what the
consequences of its decision should be. However, to accomplish this objective, the agent
must be able to effectively choose among the alternatives, be aware of which consequences
each one of them will entail, and, ultimately, have the aptitude to establish its preferences

over the available choices.

Before the development of Game Theory, the theory of decisions under risk was
already established. Differently from the former, which is characterized, among other
important things, by the existence of multiple (two or more) intelligent agents, Decision
Theory involved only one actor and an uncertain situation, or probabilistic environment.

This situation is sometimes mirrored as “games against Nature”.

In that setting, the notion of risk arises from the fact that the decision maker cannot,
alone, or exclusively by means of its own acts, determine an. The result will be a
consequence of its acts and of the “state of the world” that comes forth, and can be
classified, according to the agent’s preferences, in an ordinal scale, from better to worse.

If decisions are to be made under certainty, all that has to be done by the agent is a
specification of the qualitative order of its preferences, with no quantitative measures
attached to them. But, given the stochastic feature of the environment, with probabilities
associated to the occurrence of events, a numerical scale must be introduced regarding the
possible outcomes. The combination of these pairs of quantities is defined as the expecied
gain, which, in short, is a weighted sum of all possible gains that correspond to a particular
decision, where the weights are the probabilities of each occurrence. This concept has been
established in the mid-seventeenth century, by Blaise Pascal and Pierre de Fermat’. Here,

the same normative feature present in Game Theory is also extant, because the method of

* The rigorous definition of mathematical expectation, that underlies the idea of Expected Gain, was first
given by Christian Huygens, m “The Rationalis in Ludo Alea™ . This work, published in 1657, contains
the correspondence exchanged between Pascal and Fermat about this matter (Op. cit. [RAPO90]).
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the expected gain did not intend to predict behaviors of the agents, as a descriptive theory
should. Empirical evidence showed that human agents hardly ever made decisions that
conformed to what should be called rational, that is, gains maximizing. The discrepancies
observed between the prescriptions of rational and actual choices were also extended to

what should be understood as “commonsense behavior”.

A very well known and dramatic instance of the foregoing situation is reflected by
the St. Petersburg Paradox’. The game contained in the St. Petersburg Paradox shows the
inadequacy of the method of maximum expected value as an explanation for rational
behavior. Hence, instead of value, what should be maximized is the wusility, which is

defined as a function that assigns a cardinal measure to an individual’s preferences.

Although the theory regarding individual games can be defined as the analysis of
situations where a conflict of interest between players is present, the conflict in itself does
not have a significant role in the modeling of the players’ comportment, but actually in the
individual results that are consequences of those comportment. In that case, the classical

theory presumes that:

i. The possible outcomes are perfectly characterized and known by all players;

. The available information is common knowledge among the players;

Additionally, it is assumed that every individual has ordered preferences for the
feasible outcomes, and that each also recognizes the other players’ rankings. The
preferences are represented numerically by an utility function for each player, which has as
arguments the variables that compound the possible results of the game.

The utility concept will be discussed in a subsequent section of this chapter, which

also examines other relevant themes of Game Theory, with the following structure:

- Representation of Strategic Games;

« Information Sets;

* The St. Petersburg Paradox is a game proposed by Daniel Bemnoulli in the mid-eighteenth century, where
the maximization of the expected value criteria seems to lead to an irrational decision. He also proposed
an explanation for the paradox, suggesting that the utility of money is not a linear function of the amount
obtained. For further information about the paradox, see [SAVA72].



+ Strategies;

+ The Minimax Theorem;

» Preferences, Utility and Rationality;
» Extensive and Normal Forms;

« Non-zero Sum Games;

« Nash and other Equilibria;

+ Cooperative Games and Arbitration Schemes.

2.2 - Representation of Strategic Games

Strategic games are distinct from parlor games because their outcomes are not
entirely dependent on random occurrences. In the former, the players’ decisions influence
or may even determine gains or losses to be achieved at the end of the game.

A strategic game can be represented in two ways:

a. As a connected graph, or decision tree, with nodes that symbolize decision points
along the game, and branches, which indicate the possible decisions that can be
adopted from each node.

b. By a complete collection of rules, that establish which player moves next, and the
feasible alternatives, for every situation that might take place.

2.2.1 - Decision Trees

The decision trees that represent games have a finite number of nodes and
branches’. The nodes of a graph may admit antecedents and successors and are organized
in various levels. A node without successors is called ferminal, and the starting node is
named root. A move is the decision made by a player, depicted by a branch. A maich is the
players’ sequence of moves. A particular stage of the match is denoted by a level. Level 0
is the root node.

The moves that have been reached by different paths along the graph are

discriminated. When a player finds itself in a node, it should implement its move. For that

* A distinetion should be made between this condition and the number of repetitions of a game, that can be
mfinite.



purpose it relies on an information set, which stands for the maximum available knowledge
to the participant at that stage according to the rules of the game. The extension of the
information set is a valuable advantage, for it includes the data that is legally allowed by the
rules that, which will aid the player’ choice”.

The players might be interested in exploring the game’s graph, so that they may get
aware of the most advantageous moves. The most common investigation techniques are the
width and depth explorations. The first hypothesis consists of an identification of all nodes
of a given level ;, before examining level i+1. In the depth exploration, the survey proceeds
from a node ; belonging to level 7 to another node % pertaining to level i+1, until a terminal
node 1s reached. When this task is finished, the search goes back to the previous level, and

the process is repeated until all terminal nodes are found.

It 1s convenient for a player to have a method to quickly compare possible
sequences of moves, indicating those most promising in terms of future acquisition of
favorable positions. The expression favorable positions is related to a multicriteria decision
problem, since it may regard potential gains, relative advantage, reduced exposition to
losses, more diversified oncoming choices, etc. The aggregation of all those principles can
be likened to a player’s utility function, but its assessment would require an extensive
search of the decision tree, and this is just what is opportune to avoid.

One viable way to establish the priorities for exploring the game’s graph is to
employ a sub-optimal function [SAMP76], which allows the plaver to predict, with some
statistical confidence, the consequences of an action, spanned to the future levels of the

game.

2.2.3 - Rule Sets

Depending on the number of nodes, levels and branches, it may be the case that the
representation of a game by means of a graph becomes impracticable. The decision tree for
Chess, for instance, is estimated to have 10'° nodes. So, a game can also be described by a

set of rules, which must completely and unambiguously specify the development of the

? One way to cheat in the game is to take possession of illegitimate information.
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game departing from every node. The antecedents, successors and the termination criteria®
must also be defined. The methods of exploration mentioned for the graphical

representation are also applicable in the current case.

2.3 - Usual Methods for the Evaluation of the Sub-optimal Function
2.3.1 - The Minimax Method (or Principle)

This is one of the most often used methods to measure the advantage of a set of
decisions in a game. Note that an evaluation method is as good as far it can “look ahead”,

which corresponds to the number of future levels that it considers.

In a game with two players, the Minimax method assumes that one of the
participants (say, the first), will attempt to achieve the greatest benefit for itself, whereas

the other will try to confine that benefit to the smallest possible amount.

Consider, for example’, the graph depicted in Figure 2.1. Levels {0; 2} and {1: 3}
contain the nodes where the first and second can be, respectively, in any instant of the
match. The branches indicate their possible moves. In the decision tree, the nodes of Level

3 show the payofTs, that were estimated by an arbitrary evaluation function.
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Figure 2.1 - Fragment of a Decision Tree with the Nodes’ Gains attributed by the Minimax Method

¢ A particular termination condition may be the number of levels.
7 The example was adapted from op. cit. [SAM76).



The current level is zero, where player 1’s decision shall be made. The gains
associated to the nodes of Levels 2, 1 and 0 were obtained using the Minimax procedure.
The method attaches to the first player’s nodes the highest possible pavoffs, and to the
second player’s nodes, the lowest gains. In Level 1, for instance, the first player’s gain can
be limited by the second to 8, or -2 or 10, in case the first plays B, L or S, respectively.
But if it takes into account that the other employed that reasoning, then the first should opt
for S, that will assure it a gain of at least 10. A variant of the same method is the Ainimum

Regret Principle [BLAC54).

2.3.2 - Alpha-Beta Cuts

The Minimax procedure can be improved by reducing the extension of the
exploratory search in future levels. One common way of accomplishing this objective is

using a process called alpha-beta cuts.

Assuming that the ﬁrgt player opted for move S, from Figure 2.1, it can be deduced
that the second player will favor T, discarding W, because this latter option implies in a
greater gain for the first player (35) than the choice T, which yields only 10. When
the available situations are investigated from W, one finds the value 35 in Y, higher than in
any other node, and of course the first player, if allowed to decide from W, would not
rationally select either X or Z. With this reasoning, the need to examine X, Z, and their
successors 1s eliminated. The value 10 in node W is denominated beta, which corresponds

to the minimum of the maxima found among the successors of a node.

The value of alpha is similarly determined, but then examining the decision levels
concerning the second player and picking the maximum of the minima. The reason behind
this procedure is that the second player is assured that the first would not select an option
that might result in a lower outcome. Referring to the graph of Figure 2.1, the exploration
of branches L and B from S turns out needless.

The combmation of those two mentioned processes is designated an alpha-beta cut.
It can be further enhanced by ordering the gains associated to the nodes, so that those with

better chance are investigated in first place.



2.3.3 - Other methods

Using heuristics, it is possible to reduce still more the number of nodes to be
weighed, by the introduction of an estimate of the probability that the optimal move is
discarded from the analysis when some nodes are not considered. With the same goal, that
is the decrease of the size of the region in the graph to be contemplated, the methods called

tapered forward pruning and convergence forward pruning can be cited".

2.4 - Information sets

An information set is the amount of knowledge allowed to a player in a generic
moment of a game, according to the game’s rules. It is depicted by a set of ditferent nodes
in the decision tree. Basically, in a game of strategy, without any random factors, a player
is able to know only the level where it is, but not the specific node. The smallest the
collection of nodes of an information set, the greater is the amount of information available
to a player. An important restriction regarding the information sets is that for the nodes in
the same set, the number of alternatives departing from it must be the same, for if it were
not so, the player could discriminate the particular region where it currently is by simply
counting the number of existent alternatives, therefore reckoning the sub-region occupied.

Regarding the information structure, a game can be characterized in four different

ways [RASMS9]:

1.a) Pertect
1.b) Imperfect

2.a) Certain
2.b) Uncertain

3.2) Symmetric
3.b) Asymmetric

4.a) Complete
4.b) Incomplete

4. Completeness

Table 2.1 - Information Categories of a Game

? A more elaborate discussion about those methods is beyond the scope of the present Chapter. See
[JACKk74]. :



+ Perfect information games are those where each information set has only one
node, that is, it is a singleton. In these games a player knows its exact position in
the decision tree. The moves are sequential, not simultancous, and any eventual

random moves played by Nature are correctly observed by the players.

+ In certain information games, Nature does not interfere (make any moves’) after
any player has moved. On the other hand, in a game of uncertainty’’, Nature’s

moves may or may not be revealed to the players immediately.

+ In a game of symmetric information, every player’s information set has the same
elements at any decision node or at the end node’. Under this category, Nature can
make its moves and concurrent progress is also allowed, although no player can
have privileged information. In the asymmetric type, a player might detain some
private information, in the sense that its partition data is different and not worse

than another player’s.

+ Complete information games are those where Nature does not move first, or, if
she does, the event is observed by the players. If a game is of incomplete
information, it must be also of imperfect information, because in the former case

some player’s information set is not a singleton anymore.

An important concept regarding information sets is that of common knowledge.
When this property is present in a game, any participant, besides being acquainted with the

decision tree, also knows that the others have the same learning'’.

2.5 - Strategies

Along a game’s match, the contenders make decisions that determine an unique
path in the graph, which goes from the initial to an end node. The collection of decisions

that each player 7 makes is called a strategy s;. In other words, a strategy s, is a contingency

® A Nature’s move configures what is denominated a state of the world.

' The definitions “game of uncertainty” and “games of asymmetric information™ have been introduced by
Rasmusen in op. cit. [RASMR9],

" The term common knowledge is employed to avoid an infinite recursion of the type “each player knows
that the others know that the others know...”.



plan that describes which action to take in every circumstance, from the beginning to the
end of the game.

A game can be played of several manners, depending on the strategy s; selected by
every participant. Each player possesses a strategy set S; that includes all possible
strategies that can be implemented. Then, a match will consist of a selection of adopted
strategies, or a strategy combination s={s,, s;,...,s,,) that implies in the outcome of the

game. This definition refers to strategic games, those where there is no chance involved.

2.5.1 - Saddle Points

Consider a strategy game with two players, P; and P,, which have strategy sets with
m and n elements, respectively. The outcome of such game is described by one of the (m
n) cells from the matrix A = (ajj ), where each cell corresponds to the payoffs to be
obtained by P, and P, when they employ the strategies 7 (i = 1, 2, ...m) and j (f = 1, 2,
....1), in that order. Suppose that the payoffs represent payments that P, must make to P,.
Negative values mean ‘that P; should pay an amount to P,. Each participant is seeking the
highest feasible gain, what means the maximization of a; for P, and the minimization of the
same quantity for P,. Given a strategy 7 chosen by P,, that player knows that its payoff is at
least min ay j=1, 2, ...,n. The criterion for the singling out 7 is the obtainance of max min
ag i < m, j<n Analogously, P, can anticipate at least max a; / < m, and therefore
impose a limit of a;, / < m to player P,, for any strategy ;. Because P,’s goal is symmetric
in relation to Py, it will choose j so that it can obtain min max ag / <m, j<n.

The gains expressed by max min a; and min max ay are connected to the strategies
picked by P, and P;,. It can be proved that those quantitics obey the following
relation] DRES81]:

max min az < min max ay Eq. 2.1

It may also happen that the inequality in 2.1 is transformed in an equation, that is:

max min ayz = min max ay= d Eq 22
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In those circumstances, P, can always select an strategy 7* such that guarantees for
itself a gain of at least d. Conversely, P, is capable of picking another strategy ;° that averts
P, from receiving more than d. If Equation 2,2 verifies, /* and  are optimal strategies for
P, and P,, which correspond in matrix A to the cell a;++. That element is denominated the
saddle point of the game and assumes the value d.

The optimal strategies /* and j* have the following properties:

e P, will always be able to obtain at least the payoff d if it chooses i*, independently
of P,’s choice.

e Playing ;* P, is in a position to confine P;’s gain to at most d, no matter which
strategy P, implements.

e If cither player previously announces that it will play its optimal strategy * or j*,
this fact does not bring any relevant information to the other, in the sense of
supplying it with additional advantages (raising or decreasing d, respectively for
player P, and P;).

The existence of saddle points is a characteristic of games with perfect information,
which may or may not be strictly strategic™.

In the hypothesis that chance moves occur, each player, when deciding about its
move, should take into account the possible outcomes from the random process, as well as

the consequences of the chance moves regarding the game’s development”.

2.4.2 - Pure and Mixed Strategies

An strategy is called pure when the players’ actions are deterministic and perfectly
specified for every possible conjuncture to appear during the game. Before its move is
implemented, any player occupies a position in a particular level of the decision tree, within
a certain informatioh set. To play, the participant has to opt for one of the branches that
depart from the node where it currently is. Given that each generic player / may be in one

of kinformation sets and discriminating by ¢ (¢ = 1, 2, ..., r) the branch it chooses, a pure

' Another form of characterizing games with perfect information refer to the knowledge that the players
detain, in each of their moves, of the game’s history: The available data must be complete, retrievable and
with no ambiguities. .

" Depending on the complexity of the game, regarding the quantity of nodes, levels and branches, the
optimal strategies, though theoretically existent, many times cannot be found, because of the
combinatorial expansion of the altermnatives when an in-depth search is performed. Chess is a common
example of that situation.



strategy s; is a another set with & elements, each defining the action g¢' to be accomplished
by the player for every one of the & information sets.

Generically, for » players, the collection of pure strategies that can be employed in
a match is S,={sy, Sy, ..., Su}.

Nevertheless, when it adopts a pure strategy, a player is granting additional
information to the others, since each will be able to spot, by the analysis of the foregoing
moves, in which node of the current level that pure strategist is located. That implies in a
deliberately conceded advantage to the opponents, which is a circumstance to be avoided in
competitive games. To face that problem a player can execute a procedure designated by
mixed strategy. This method consists in selecting moves dictated by a random process. In
this manner a player will elude its adversaries by barring them from recognizing its strategy
pattern'’. Note that not even the own player will be able to know by anticipation which its
next move will be.

Therefore, the collection of k actions with respect to the formulation of a pure
strategy needs to be modified, because it is not feasible to have a previous comprehensive
description of every player’s reactions to the different situations that may take place in the
game.

A mixed strategy for a generic player can be expressed by a matrix X = [xj], with
one column and as many rows as the number of alternatives for the moves. The elements x;
of the matrix X are the probabilities that the i-th strategy is emploved, i=1, 2, ..., m. Thus,
X stands for the probability distribution of the m strategies of a player. Each plaver will
have its own particular matrix, inasmuch as both the strategies and the probability

distributions are specified by the player itself.

" For the adequate implementation of the method, it is necessary that the moves be decided by means of a
randomizer. It i1s a well known fact that mental alternation of decisions is pseudo-random, always
containing some kind of regularity that may be detected by various mathematical techniques.
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The mixed strategy represented by X turns into a pure strategy when any of its
elements is the unity, hence implying that all other are zero. So, only one strategy subsists.

How should a player elect the probabilities x;? A possible answer is to maximize its
security level. For clarity, let us consider an example.

A game with two players has the following payoff matrix:

This game does not have a saddle point, because no single element of the matrix is
the minimum of a row and the maximum of a column at the same time. If the row player
(P) picks o, its security level is maximum, equal to a loss of -3, as opposed to o, .that
makes it vulnerable to the greater loss of -6. With an equivalent purpose, Py should play B;.
However, when P, performs this analysis, it is tempted into playing o, which brings it
better benefits when combined with B;. On its tumn, Py also reasons in the same direction,
thereby preferring B,. This tends to bring up a never-ending chain of meta-reasonings with
no final objective conclusion other than the existence of an indjfference of P, between the
two possible moves o4 and «,. To choose, P, may employ a random device with two

equally probable outcomes'’. Pg might also do the same.

' An interesting question is: If a player is indifferent to either strategy, then why use a randomizer, instead
of simply arbitrating it? The reason may lie in the fact that a randomn device supplies the opponent with no
specific clues, that could be built on discovering an opponent’s eventual personality bias. Furthenore, a
player might also want to allow different probabilities of occurrence to the outcomes, which is obviously
impracticable to be mentally implemented.
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A mixed strategy is therefore defined as a method of selecting moves by associating
pre-defined probabilities of occurrence to each of the available pure strategies. With this
definition as a basis, the Minimax Theorem is established.

2.5 - The Minimax Theorem

As mentioned in the preceding section, in zero-sum games where a saddle point
exists, it corresponds to a pair of pure strategies /* and 7 such that max min a; = min
max a;=d, for/ =1, 2,...mand ;= 1, 2,..., n. I that condition verifies, then the strategies
* and j* are said to be an equilibrium'®. Conversely, if two strategies /* and /* are in
equilibrium, it means that there is no other group of actions /° that is a better response than

i* to j*. The same is valid concerning /*.

Now let us contemplate a game without a saddle point, or equilibrium pair. In this
case both P, and P will employ each a particular mixed strategy, that is a probability
distribution over the pure strategies o; and P respectively. The column matrices M=[xi]
and N=[xg] stand for the probabilities that the pure strategies o; and B; are adopted.

Assuming that P, has selected a particular strategy i and that A=[a;] represents the

payofl matrix of the game, the expected gain g,; of player P, is given by Equation 2.3.
1
8a = D 24X g Eq. 2.3
J=l

Thus, for P, the expected gain depends on which strategy it decides to employ,

being depicted by the i-th row of the column matrix G,.

G = [8u] = [a3] # [Xy] = A = N Eq. 2.4

Analogously for Pg, its expected gain when practicing a strategy ; against P‘s

mixed strategy is

m
gﬁ_] :Zaij.xm, Eq. 2.5
=1

16 See section 2.9.



which corresponds to the j-th element of the row matrix Gg.
Gp=[xa] T x [a5] =M < A Eq. 2.6

If both players employ mixed strategies, the expected gain of the game, taken as

P.‘s payoff, is given by Equation 2.7.
n m
E(ga) =1\«'1T «xAxN= Zzau.XmXﬁJ = Gp x N :1\'1'1' * Ga s Eq' 2.7
Fli=t
where M is the transposed matrix of M.

While the players can have control over the parameters that they picked for the
probability distributions concerning their respective mixed strategies, the effective sequence

of moves shall be a consequence of the global random process. If P, selects a

mixed strategy M, its final payoff in the game will be at least minM ! x A x N. Because
N

P, is secking the highest gain, it will choose the mixed strategy M*, so its payoff will

become max min M*T x AxN. Symmetrically, Pg‘s goal is to make P, ‘s gain as small as
M~ N

possible, thus choosing a mixed strategy N*. The advantage that P, is able to achieve is

bounded by Pg‘s tactics and equal to minmax MT xA xN*.
N M

It can be proved that

max minM*T x AxN < minmax MT x A xN". Eq. 2.8
M" N N M

The Minimax theorem'’, which is considered one of the most important results of

Game Theory, establishes that there will always exist a value vy that satisfies simultaneousty

the intents of both players, that is,

max minM*T x AxN = minmax MT x A xN"=y Eq. 2.9
M N N M

Y For a proof of the Minimax Theorem, see op. cit. [LUCES7] p. 391, or [DRESS1].



2.6 - Preferences, Utility and Rationality

Although Utility Theory does not refer exclusively to the Theory of Games, it is
known that its modern version was developed by Neumann and Morgensten [NEUM44] as
a background to the latter.

The concept of utility and its respective maximization represented a progress
towards the characterization of what consist a rational conduct. Even so, the controversy:
has not dissipated. As the meaning of rafionality interests such diversified areas as
Philosophy, Psychology, Economy, Sociology, the underlying concept of utility has
become a topic of ardent discussions among prominent scientists of these areas. Several
questions arose from the discussions, but above all, remained these two issues: First, how
does a rational agent builds its utility function, thereby being able to assign a numerical
value to the set of events gains or losses under consideration? Second, provided that a
person possesses, in a way or another, a successfully constructed utility function regarding
its predilections, is it always rational to make decisions using the criteria of expected utility
maximization?

Before addressing the second point, it is necessary to approach the methods of
determining the cardinal utility scale for an agent. This topic was first examined by
Neumann and Morgenstern [NEUM44]. Basically, their method relied on the preferences
manifested over nisky choices, or more specifically, Jotteries. To illustrate their technique,
consider an individual who has ordinal preferences denoted by R; - R; > R, is confronted
with three mutually exclusive choices: A or B. A designates the sure-thing non-monetary
prize, R;; B is a loftery ticket which enables the player to receive either R, or R, , both also
non-monetary prizes. Whether the lottery yields R, or R, depends on a probability
distribution over these two alternatives. The agent, before determining its pick, will be
interested in knowing what are the odds of getting R, or Rs;. Assume the probabilitics are p
and (1-p), respectively. Furthermore, let O be the utility that corresponds to Rs, the least

desired outcome, and 1, to R;.
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Starting from the principle that the agent is acting rationally in the sense that it will
choose the option that maximizes its expected utility in situations involving risk, Equation

2.10 follows:

u(Ry) = pu(Ry) + (1-p)u(Rs). Eq. 2.10

The term #(R,;) stands for the utility assigned - to R;, and because R, was set to 1
and R; to 0, it can be said that p turns out to be the utility associated with R,. The
utilization of that method presupposes p being varied until Equation 2.10 verifies. At that
point, it is said that the agent is indifferent between the exclusive choices A and B.

The success in using the described process is subject to some restrictions. Mainly,
there must be a consistency among any pairing of choices. For example, if a fourth
alternative is introduced, say, Ry, the same procedure can be used to determine its utility,
substituting R, for R, in Equation 2.10. If doing this results in p’ = w(R,), the same
conclusion must also obtain from Eq. 2.11, where #(R,) is now derived by means of a

lottery including R, and R..
u(R,) = (1-g)u(Rs) + qu(R,) Eq. 2.11

Since it is known from the previous computation and assumption that «(R,) = p and
u#(R3) = 0, it follows that p’ = pg must be satisfied in order to provide the desired

consistency to the method just described. Unfortunately, it is not always the case.

2.6.1 - Fundamental Axioms of Utility Theory

¢ Axiom 1: Ordering of Alternatives

Between any two prize values A; and A it is always possible to establish a
preference order, indicated by either A; = > Aj or A; » > A;. Both preference and
inditfference are considered as transitive relations so that if A; = > A and A; = > A, then
A= > Ag
& Axiom 2: Reducibility of composed lotteries

It is always possible to establish a relation of indifference between any composed

lottery and a simple lottery which prizes are A; with the respective probability of
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occurrence equal to p;, i=1, 2, ...,r. The relation is expressed by Equation 2.12, where I

are simple lotteries of the type p'.A,, and q; arc the probabilities of their occurrence.

{qlLla (12L2= e QsLS}” {plAb PZAZ: ey prAr} Eq. 2.12

¢ Axiom 3: Continuity

In a lottery with prizes A;, A,, ..., A", a number k; € [0, 1] exists such that for any

A, the indifference relation of Equation 2.13 verifies.
A [kiAy, (1-k)A] = Ri Eq. 2.13

It should be observed that the indifference denoted by A; » Ki does not mean that those

two quantities are equal. Quite on the contrary, they are two rather distinct values.

O Axiom 4: Substitution

~

Given that A;~ A;, A ; can be substituted for A, in any lottery L, yielding:

—~

(PIAI:---: pilxip teey prAr) & (plAh"': pl*Alﬂ sy plAf) Eq. 2.14

Axiom 3 and 4 taken conjointly form another axiom, denominated independence of
irrelevant alternatives. It implies that the indifference between A; and A; is valid not only
when they are secluded, but also when the former is replaced by the latter in any
compounded lottery. Stated in another way, any other alternatives p;A; present in a lottery

altogether with A; are immaterial in relation to the mentioned substitution"’.

" It is assumed that the preferences are ranked Apsr Agss> s> AL

' Regarding social choices, the independence of irrelevant alternatives is the Condition #3 of Amrow’s
Impossibility Theorem. It 1s referred as the only one, among the five conditions of that theorem, that can
be questioned without provoking an evident modification of the subject’s essence. The rejection of
Condition #3 would allow the mclusion, in the set of possible decisions, of hypothetical alternatives
specifically selected with the objective of evaluating the preference intensity over the truly viable options.
However, if the decision makers become aware that the hypothetical alternatives are impracticable, they
may deliberate on their authentic propensities and whence make their “moves™ as if they were part of a
strategic game, Then, the outcomes may be distorted in relation to the original goal, which is the search
for an aggregated expression of the collective preference, or social satisfaction function (Welfare
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¢ Axiom 5: Transitivity of Preference and Indifference Relations

This axiom is an extension of Axiom 1, generalizing the transitivity concept to any
number of prizes A;. Several studies, as those performed by Allais [ALLAS53] and Tversky
[TVERG69], [TVER74] have shown that the condition of preferences transitivity cannot be
always taken for granted when making decisions under risk. Furthermore, there are some

situations where an individual simply will not be able to rank the alternatives presented to

b

it®,
¢ Axiom 6: Monotonicity

A lottery Ly:[pA;, (1-p)A,] is preferred or indifferent to another lottery Ly:[p’A;,
(1-pM)A;] if and only if p > p’, given that A; ~ >A, = ~...x A,

Although Utility Theory is a successful model to explain decision making under
risk, there are controversies about generalizing it to all circumstances of this kind. An

important research on this matter is the Prospect Theory, that is discussed in the sequence.

2.6.2 - Prospect Theory

One of the postulates to the application of the expected utility method is the risk
aversior", which asserts the concavity of the utility function, that is, #"’< 0. Risk aversion
can be characterized by the preference to a certain positive gain A in opposition to a lottery
with an expected gain E(A). In the expected utility approach the utilities are weighted by
their respective probabilities of occurrence. Kahnemann and Tversky [KAHN79] have

made a criticism of that method by showing several empirical results which demonstrate its

Function). The obtainance of that function was proved impossible under the five conditions of Arrow’s
Theorem {ARRO31].

“ A startling example of that situation is in a game discovered by the mathematician Walter Penney,
presented by Martin Gardner [GARD74].

*! The other two are (1) Expectancy: U(Aipy; ...; Ap,) = pru(A+. +pu(A,), and (2) Aggregation of utilities:
a lottery (Aipy; ... Apo) 15 said to be acceprable from a previous ownership of an asset w if
Ulw+ Aipr; ... Ap.) > u(w). The debate about risk aversion presented in Prospect Theory has been cited
in many other more recent works, like for example [LINV91] and [JOSE92}.
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transgression in various instances. They have proposed, as a substitute to the former, what

they called prospect theory.

Prospect Theory focuses on some behavioral features called effects, which are

associated to the transgression of the expected utility principle. Those are:

Certainty effect: When a positive gain tends to 100% of certainty, it is generally
preferred over other risky options, even if they can vield a higher prize, within
some variable limit. An experiment composed of two problems, each with two
lotteries. Problem 1 had lottery A:(4000, 0.80; 0, 0.20)* and lottery B:(3000, 1). In
problem 2 consisted of the lottery C:(4000, 0.20; 0, 0.80), and D:(3000, 0.75; 0,
0.25). Over 80% of the 95 individuals consulted in the poll preferred B in problem
1, but in problem 2, 65% selected C. Those results contradict the criterion of
selecting the alternative that yields max E(U). An explanation provided by
Kahnemann and Tversky for this behavior lies in the attractiveness that the

certainty of the prize $3000 exerts on the decision.

Reflection effect: If instead of gains the choice regards losses, there is an inversion
of the certainty effect, and the majority of individuals usually opt for “gambling”, in
despite of a likely greater loss, also within some variable limit.

Isolation effect: Consists in a tendency to make decisions based only in parts of a
compounded lottery. For example, consider a lottery with two stages: L;, with 75%
of chance of ending the game with zero gains, and 25% of proceeding to the
second stage, where two sub-lotteries are available, L, ;:(4000, 0.80; 0, 0.20) and
L,,:(3000, 1). The behavior of 141 individuals was investigated, and 78% of the
sample opted for L;;. This result is opposed to the conclusion obtained in the
choice problem regarding the certainty effect, which nevertheless is the same as the
present after the combining the probabilities of the two stages.

Kahnemann and Tversky suggest that the variable that mostly affects the valuation

of the Utility Function is the change that a risky prospect may impose to a pre-existent

amount of wealth. They conjecture that this factor surpasses the importance of the final

position to be achieved through the game.

# The notation (4000, 0.80; 0, 0.20) means a lottery that yields $4000 with a probability of 80% and zero
with a 20% chance.
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Prospect Theory has been developed with the objective of explaining the observed
violations of Utility Theory. The model distinguishes two basic sequential phases in the
decision making process. The first is called the Edition Phase, which aims at organizing the
available options and comprises the operations coding, combination, segregation,
canceling, simplification and dominance detection. Those procedures attempt to make
more explicit to a player the options represented by the lotteries, without altering their
respective relations between gains and losses. For instance, the combination operation
would transform a lottery L:(10, 0.3; 10, 0.4) in L’:(10, 0.7).

The second phase is the evaluation, whose purpose is to establish an attractiveness
measure for each previously “edited” lottery™. The measure employed in the Prospect
Theory is two-dimensional and utilizes the scales (1) and w(a)™, that are subjective
evaluations of the probabilities and prizes.

A lottery is denominated regular if (p+q)< 1, or a;>0>a,, or if a;< 0< a,. If it is
regular, the basic equation of Prospect Theory follows, which establishes the final value V

of the lottery as a function of n(.) and v(.).

V(a,, p; &, ) = 1(p) = W(a;) + 1(q) x Way) Eq. 2.15

The appearance of function v(a;) is a concave line for positive values of a; (gains)
and a convex line for negative values (losses). Its gradient also decreases as the absolute
value of a; increases.

The function ni(p) is not a probability measure, but instead a measure of sow the
decision maker perceives the probabilities, being called “decision weight”. To illustrate the
difference between a probability value and m(p), consider the game of tossing a fair coin,
depicted by ($1000, 0.50; $0, 0.50). Empirical evidence hint that in this case 7(0.50)<
0.50. If a gambler is offered an option of picking a sure prize instead of tossing the coin, it

would eventually settle around $350, which means that n(0.50) = 0.35. 7n(p) is

% The formulation presented by Kahnemann and Tversky refers to simple lotteries of the type (a].p:. 22, q;

0, (1-p-q)), where p+q < 1.

* n(p) does not obey the axioms of Probability Theory. In general, n(py+ n(1-p)<1.

% In that model, the prizes a; are the deviations of the absolute prizes A, in relation to an arbitrated reference
point A*.



monotonically increasing in its domain [0, 1] as well as its gradient, indicating that small
probabilities (near zero) tend to be overvalued, the inverse occurring with high
probabilities, that are usually undervalued®”. However, it has been observed that n(p)
presents an erratic behavior for very small or very high values of p, contradicting the
pointed property in the sense of either a neglecting small probabilities or attributing

certainty to very low or very high values of p, respectively.

2.6.3 - Rationality and the Maximization of Expected Utility

As seen, the determination of a quantitative measure of utility is accomplished
through the observation of choices by a given agent in risky situations. This agent is
expected to be acting in accordance to the principle of rationality that dictates the
maximization of expected utilities in every circumstance. This assumption entails the rise of
a tautology, because expected utility is defined as that which is maximized [RAPO90].

The requirement concerning the consistency of choices among lotteries for the
determination of an agént’s utility function is also another problematic factor, because it is
not always endorsed by observed evidence. Therefore, the association between irrationality
and inconsistency is intimately related to the method employed just described for the
determination of the cardinal scale of utility.

Maurice Allais posed important questionings to the expected utility hypothesis.
According to his view, the historical development of the theoretical concept of the pure
psychology of risk has passed through four successive stages [ALLA79]. Given a random
prospect, composed of various amounts of gains, its value V is represented by the

following equations in each of the considered stages:

e Stage one: Mathematical expectation of gains expressed in monetary units
n
V=7>"pg;, Eq. 2.16
=

where g are monetary gains and p; are objective probabilitics of occurrence

associated to each g;.

“ That phenomenon may partially explain why people bet in lotteries or make insurance.
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e Stage two: Substitution of psychological values (utilities) for the monetary units in

Equation 2.16.

n
wV) =3 p;u(g;) Eq. 2.17

=

where u(g) and u(V) are the utilities, or psychological values, of the
alternatives and of the combined prospect, respectively. This approach was

originally developed by Bernoulli, in order to expose his St. Petersburg paradox.

¢ Stage three: Substitution of subjective for objective probabilities in Equation 2.17.

n
uv) = Zl—)iu(gi) ) Eq. 2.18
i=1

where p;are the subjective probabilities of occurrence of each of the outcomes
g and u(V)is called the neo-Bemoullian formulation of the expected utility and
was also employed by Neumann and Morgenstern in their work on the Theory of

Games.

e Stage four: Inclusion of the dispersion of the utilities, taking into account the

probability distribution of their psychological values around the mean.

V) = £(¥(7) Eq. 219

where v=u(g), y(y) is the probability distribution function of v, fis a functional of

w(y) and T(V) 18 the revised expected utility.

Allais supported the view contained in stage four because he sustained that the neo-
Bemnoullian method (stage three) could give margin to inconsistencies. The demonstration
of this fact is illustrated by Allais’ classic example of choice involving risk, as follows.

Consider the two independent situations 1 and 2, each with two choices A and B:



| $10 000 with 100% certainty

| $50 000 with probability 10% , or
$10 000 with probability 89% , or
| $0 with probability 1%.

Table 2.2 - Allais® Situation 1

$10 000 with probability 11% , or

$0 with probability 89%

$50 000 with probability 10% , or

| $0 with probability 90%

Table 2.3 - Allais' Situation 2

When confronted to the choices depicted in tables 2.2 and 2.3, many persons
prefer A to B in situation 1 and D to C in situation 2. But, if the agents are rational, that
should not happen, because this pattern of preferences is inconsistent with the principle of
choice in accordance to the maximum expected utility. The inconsistency is independent of
the utility attributed by the agents to the monetary amounts”. Nevertheless, it cannot be
said that people who choose in this way are irrational. They are only not using the criteria
of maximizing the expected utility in their decisions, what is quite different. Thus, this
principle is not appropriated to define rationality.

One of the basic premises of the traditional approach is that each player will always
be able to select the alternative that maximizes the expected value of its respective utility
function, among the options involving risk or uncertainty. This condition refers to the
concept of rationality of the plavers, which is a very strong assumption with broad
implications. Nevertheless, if this condition is satisfied, how should each participant decide,

taking into account that the others’ actions will also be rational?

¥ For an explanation of the details of the inconsistency, usually known as the “Allais Paradox™, see
[RAPO90], p.96.



For example, suppose a game played by two contestants, P, and P,. The sets
X={x1, Xz5--sXmp and Y={vi, ¥2.....¥au} represent their available actions. The convenience
of P, to adopt a particular x; depends on which y; P, will choose, and conversely. However,
being P, and P, both rational, the situation is symmetric. This reasoning leads to the
conclusion that a rational choice depends on itself, thereby constituting a looping that does

not explain the process [BACH87]. On the other hand, some situations may arise where

there are mutually preferred alternatives, expressed by the utilities U;(xi | y))=max and

Us(yi| xc)=max. The pair of actions (xy, y;) are said to be a Nash equilibrium’.

2.6.4 - Other Criticisms to the Maximum Expected Utility Method

An interesting aspect of decision making regards the role that an individual assumes
during that task. In an experiment performed by Bimbaum et al. [BIRN92], some
volunteers were separated in three distinct groups with the role models of buvers, sellers
and umpires. Depending on its respective characterization, each group showed diverse
preference profiles even when the same individual was confronted with the same decision
problem. Bimbaum’s experiment consisted in asking each individual to attach a “just” price
to lotteries, respectively assuming one of the role models at a time. The assignment of
values, which indicated the preferences, varied according to the assumed role. For
example, the lottery (8, 0.5; 80, 0.5) had a higher value than the lottery (32, 0.5; 40. 0.5)
under the seller’s point-of-view. However, that appraisal was inverted when the decision

regarded buyers.

Exploring another angle of the non-general applicability of Utility, Gul [GUL91]
introduced a model that he called Theory of Disappointment Aversion. The theory has
equally the same objective as the previous methods, that is to supply a better explanation of
how rational agents make decisions under risk, and it has three basic features:

a. It Includes the traditional Expected Utility method as a particular case;

b. Ttis consistent with Allais Paradoxes™;

c. It is the most restrictive model that satisfies (a) and (b) conjointly.

3 For the definition of Nash and other equilibrivun concepts, see section 2.9.
** In his paper Gul presents an example of preference inconsistency owed named 4%ais Ratio Paradox -
op. cit [ALLA79}.



In Gul’s approach, the individual preferences are represented by a parameter u

(utility function) and a real number b, b>-1, which is associated to attitudes toward risk™.

2.7 - Extensive and Normal Forms of a Game

iv.

V.

2.7.1 - Extensive Form

A game In its extensive form is characterized by the following set of rules:
Representation by means of a finite graph tree, with nodes standing for decision
points and branches indicating the available alternatives departing from each node;
Partition of the set of all nodes in n+1 subsets, n of them corresponding to the
players nodes, plus another set referring to moves made by any random process;
Existence of a probability distribution associated to every node where the move is
performed by the random process, thereby establishing the chance of each
particular branch being selected;

Grouping of the decision points of each player in information sets,
indistinguishable one from another in terms of the number of branches that diverge
from cach of the their nodes, due to incomplete information;

Equivalent identification of the branches that depart from the same node, so to
avoid the categorizing of the alternatives;

For every player there exists a linear utility function defined over the terminal nodes

of the graph tree.

Conditions i-vi aim not only at defining the rules of the game, but also have the

objective of designating the preference patterns of the players through the mentioned utility

function. In this manner, distinct preferences manifested by any player over the outcomes

of a game imply in a different game regarding its extensive form. The main motivation for

defining a game in its extensive form is checking the existence of an equilibrium point for

pure strategies.

* The variable b in Gul’s model is similar to the function m(p) in Kahnemann and Tversky’s Prospect
Theory, though the former is presented in a more mathematically formal and elaborated context.
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2.7.2 - Normal Form

A game in its normal form consists of the reduction of the extensive form into only one
move, expressed by the selection, by every one of the » participants, of an available pure
strategy. The utility U, for a player 7 that yields from a set of pure strategies s; employed by
the » players can be defined by

Ui (Sh 82y -eey sn) = Ui ((X) ] Eq' 2.20

where o is the collection of moves represented by the pure strategies picked by the
participants. If the choice of strategies is not deterministic, then it can be assumed that a
specific match o of the game will happen with probability p. In that case the utility U; is
described by Equation 2.21.

Ui (Sla 82 eeey Sll) = ZP(O‘) I-Tl (a) Eq' n
a .

In that way, the function Uj(.) altogether with the set of strategies {s;}, 7 =1, 2, ...,
n, determine for each player i its gain in the match of a game. This simplification, that can
be applied to any game, is called the normal form. That concept can be extended to the
hypothesis of mixed strategies. The gain of a player is then defined by the value of its
Expect Utility — albeit the controversy” — and for the probability distributions of each

player’s pure strategies.

Besides the extensive and normal forms, a game can still be modeled according to

its characteristic function, not reviewed in this dissertation’-.

2.8 - Competitive Non-zero-sum Games

When two players P; and P, participate of a strictly competitive game, given its
zero-sum attribute, the benetit that each one obtains is always accomplished by imposing a
loss to the other. In other words, any preference about the outcomes will be the inverse for
each other. When this condition does not verity, a game is no more strictly competitive,

and the utility functions of the players do not add up to zero.

* See section 2.6.
*2 For an explanation of the Characteristic Function, see op. cit [LUCES7] and [BLAC54].



Several differences exist between the analysis of zero-sum and non-zero-sum
games. A first aspect to be mentioned regards the significance of the information derived
from divulging or knowing previously which strategy a player will adopt. In strictly
competitive games, it has been seen that the participants, when acting rationally, should not
announce which particular strategy they would implement, because that contained valuable
information, which could be used by an opponent to secure more advantageous positions
and greater gains in the match. As a consequence of the zero-sum feature, the player’s
benefit would decrease. However, this restriction is not applicable in non-zero-sum games.
It is even feasible that the anticipated disclosure of a player’s intended may imply in mutual
gains, if the revelation is perceived by the other as authentic, inducing it to take a
compatible action, and if the strategy is actually fulfilled. It must be noted that revealing the
strategy should not equal a negotiation process, which only takes place in cooperative
games™. The best known non-zero-sum competitive game is the Prisoner’s Dilemma, that
is reviewed in greater detail in Chapter 3 of this dissertation.

Another significant contrast between zero-sum and non-zero-sum games regards

alterations in the concept of strategy equilibrium, that is reviewed subsequentty.

2.9 - Dominant and Nash Equilibria

Consider a game with the following payoff matrix:

Player B
B B2
Player A ! (10, 4) (0,0)

Figure 2.2 - Payoff Matrix of a Non-Strictly Competitive Game

The strategy pair (o, ;) and (o, B;) are in equilibrium, because o, and o are the

best moves against By and B,, respectively. On the other hand, neither (o4, B2) nor (0, B1)

¥ See section 2.10.
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are in equilibrium, and those pairs do not yield equivalent payoffs to the players. In zero-
sum games, if two pairs of strategies (o, B,) and (0g, B;) are in equilibrium, so are (o,
B2) and (on, B1)™. ,

If the players decide to employ mixed strategies, in order to obtain their respective
security levels, those would be the maxmin strategies, namely the combinations (%ocl, $0,)
for player A and (3p,, 3B.) for player B. In that case, the security levels are 10/3 and 8/3. It
must be noted that the maxmin strategies do nof constitute an equilibrium, so those
decisions are not the best reply against each other’s feasible actions. For example, assuming
that the player A deduces that B will use its maxmin strategy, A should play B;, whence
attaining an expected gain of 16/3. If A understands that reasoning, it should opt for o,.
But A can also guess that B is going to use minimaXx, and in this case A must play o,
which yields an expected gain of 20/3. It can be seen that a reasoning loop arises, and this
is an inherent difficulty of non-cooperative, non-zero-sum games. If the game were iterated
and cooperative, in the sense that a pre-play negotiation is allowed, then the players could
reach an agreement where the pairs (o, By), (0, B2) would be used a certain proportion of

35
matches each.

2.9.1 - Dominant Strategy Equilibrium
A strategy s* 15 a dominant strategy if it is a player’s strictly best response to any
strategies the other players might adopt. This means that s;* yields it the greatest payoff in
any circumstances of the game [RASMB89]. Otherwise, a strategy is called dominated.
u(si™, 8) > ulsi’, §), V=l Vos* s Eq 2.22
When all players employ their respective dominant strategies, the resulting
combination is denoted a dominant equilibrium.
If * is no smaller than any s, V j # i, and greater for some j’s, then it is

denominated a weakly dominant strategy. An iterated dominant strategy equilibrium is

* Furthermore, in zero-sum games the utilities associated to any pair of pure strategies are the same.

* The proportion could be arbitrated based on the criterion of equalizing the accumulated utilities. In the
example, that proportion is 3 for (o, B,). This is a very maive solution, which presupposes linear
properties for the ufilities and neglects the eventual distinet bargaining power of the players.
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found by excluding a weakly dominated strategy from one of the players, recalculating to
check the remaining weakly dominated strategies of all players and repeating the process

until only one strategy is left for every participant.

2.9.2 - Nash Equilibrium

In 1951, the game theorist John Nash proved that any 2-person nbn—cooperative
game with a finite number of strategies has at least one pair of mixed strategies in
equilibrium®. The majority of games do not have even an iterated dominant equilibrium,
but they may possess a Nash equilibrium, which is the “... most important and widespread
equilibrium concept” [RASM89].

A strategy combination s* is a Nash equilibrium if no player has incentive to
deviate from its choice provided that the opponent maintains its position. Every dominant

strategy is a Nash equilibrium, but the inverse is not necessarily true.

Given two equilibrium pairs, this does not necessarily mean that the expected gains
of each player are equal. However, if it is the case, that is, E(ug(ou, B1)) = E(ug(os, B2))
and E(u,(oy, B;)) = E(up(os, B1)), the pairs (oy, B1), (0g, B2) are said to be equivalent, and

also called interchangeable if (o, B,) and (0, By) are in equilibrium™ .

The proof of the existence of at least one equilibrium pair of mixed strategies in
non-cooperative games is associated to the concept of so/ution of a game. In Nash’s sense,
a solution exists if any equilibrium pair is interchangeable. Thus, a game’s solution is the

set of all strategies that obey the latter condition, which must not be equivalent.

For clarity, consider the game™ represented by the payoff matrix of Figure 2.3.

* Partly due to this work, Nash received the 1994 Nobel prize in Econonics, altogether with J. Harsanyi and
R. Selten.

*’ From that property, in a strictly competitive game, each pair of equilibrium strategies is both equivalent
and interchangeable.

* The example was obtained from [LUCES7]. That game has an interesting (and frustrating) feature. Each
player’s gain is completely determined by the other’s choice, therefore implying in a total indifference
regarding a participant’s own move. Observe that the pure strategy pair (a,, by) would be the obvious pick
if a previous contract between the players could be sealed.
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Player B
Bl [32
Player A o0 2, 5) 4, 5)
0o (2, 6) (4, 6)

Figure 2.3 - Payoff Matrix of a Non-Strictly Competitive Game

It can be seen in this game that all possible pairs of pure and mixed strategies are in
equilibrium. Hence, the game has a solution in Nash’s sense®. However, the expected gain
for two different pairs of strategies are not equal. The resulting payoffs, depending on the
strategies employed are 4 (o, B2) or 2 (oy, Bi), for player A and 6 or 5, for player B. It is
clear that both players would rather have the outcome (o, B,) than (o, B;). In that case it
is said that the former pair of strategies comjointly dominates the latter, which is called
comjointly inadmissible. On the other hand, if there exists another combination of strategies
that is not conjointly dominated by any other pair, then it is named conmjointly admissible,
and only in this case. ‘

If among the conjointly admissible strategies of a non-cooperative game there is at
least one equilibrium pair, and if all those strategies are simultancously equivalent and
interchangeable, then the game is said to have a solution in the strict sense. In this way; the
concepts of solution in Nash’s and in the strict sense differ. A non-cooperative game may
be solvable according to one interpretation, but not to the other. Let us consider another

example, shown m Figure 2.4.

* The literature often mentions the games Battle of the Sexes, Boxed Pigs and Pure Coordination as usual
examples of the application of the Nash’s equilibrium concept.



Player B
P B,
PlayerA +7] (17 2) ('17 '1)
Oz (0, 0) (3, 4)

Figure 2.4 - Payoff Matrix of a Strictly Solvable Competitive Game

The strategies (o4, Pi) and (o, P2) are in equilibrium, but they are not
interchangeable since u, g (04, B2) # s p (02, Bi) and thus no solution in the Nash’s sense.
Nonetheless, the game has a solution in the strict sense because (op, B,) conjointly

dominates (o, By).

2.10 - Cooperative Games

Accor(.ling to the postulates of Game Theory, Cooperative Games are those where
the players may communicate before the match begins. This interaction has the objective of
allowing the accomplishment of some kind of agreement regarding the strategics that each
contestant will implement in the game.

That relaxation of the foregoing restriction present in competitive games (either
strictly or not) adds several new factors to the analysis, therefore increasing their
complexity. The first aspect refers to the influence that the number of participants exerts in
the investigation. While in competitive games the plavers are isolated from each other, and
can rely only in their respective reasoning and intuition to decide about their moves®,
cooperative games admit the possibility of forming coalitions with many structures® . Other
aspects regard the agreements’ characteristics, including their detailing levels, eventual

ambiguities, and mainly, its enforceability™.

“ In repeated competitive games, the sequence of outcomes from past iterations can be seen as a kind of
mtormation exchange, even though there is no explicit negotiation among the players.

! The way the structures are formed may be affected by the allowance for threats or future concession of
advantages to the opponent(s) (side payments). Furthermore, the coalition formed for the first match may
not endure along the rest of the game, due to changes in interests and perfortmances achieved.

“In "The Prince” Maquiavel suggests that a wise sovereign does not have to abide to his or her word,
when doing that is contrary to the prince’s own interest. In "AMaximes pour le Dauphin” Louis XIV
recommends that in every Treaty, a clause that can be easily violated by the other side should be
meluded, so that the whole agreement can be tumed void, whenever such act is in the State’s interest
[SFORS3).
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Bargaining power can be derived from ditterent utility tunctions, 1rom the access to
relevant information, from the capacity to absorb temporary losses and from the capacity
of formulating credible threats, among other factors. Bargaining power has a great
influence in the development and conclusion of a cooperative game, especially when the
game is repeated and has no deterministic defined end known by the parties involved. That
point-of-view is strengthened if one understands that in social relations, be they between
individuals, between companies or even nations, the consequences of the repeated

character of the transactions will play their roles in the participants decisions.

This repetition, even it occurs in non-identical circumstances, has the dynamics of a
very complex supergame, where the agents, interests, conjuncture, coalitions and even
rules are ever-changing. Under this view, it may be assumed that some type of cooperation

will always be present in the game.

It is of fundamental importance to stress that the meaning of cooperation, in that
approach, totally departs from the usual definition, and on that account it must not be
interpreted as a synonym of altruism, justice, good will or other qualities induced by the
players’ wish to self-renounce to prospective advantages that may be obtained by
indepcndenf actions™®,

In accordance to the model developed in this dissertation, the focus of the research
is centered in games involving pairs of players, although the population that takes part in

the interactions is composed of multiple players®™.

2.10.1 - Two-Person Cooperative Games

In this section, the following conditions are assumed:

i.  Communication between players is total and unambiguous, and each participant
learns what is stated from the other without any distortions or misunderstandings;

“ As a matter of fact, it seems too rigid to classify the games in cooperative or not. In most practical
situations, the communication between the players can assume various degrees, ranging from nonexistent
to total.

* Chapter 5 consists of a investigative model of the Fuzzy Iterated Prisoner’s Dilemma with a population of
515 distinct types of players, and in Chapter 6 presents an application of an one-sided Fuzzy PD to a
market share sinulation, involving 1000 buyers and variable number of sellers (Firms).
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ii. The games have fixed rules, which are mandatory, particularly regarding the

obedience of agreed contracts;

ii. The preferences about the feasible outcomes are not susceptible to alterations due

to the course of negotiations;

In some real world situations, in spite of condition (iii), it can happen that a

participant might refuse to take part in the pre-play negotiations on account of strategic

reasons. The explanation for such behavior is the avoidance of getting exposed to

intimidation that may possibly come from an adversary. Plausible threats, which are

allowed in cooperative games, refer to the announcement of retaliations in case some

player declares that it will play in an unsatisfactory way, under the point-of-view of the

opponent that instated the threat.

But if there is actually a potential threat in perspective, why should anyone avoid

being explicithy and directly informed of it? The principal motive, apart from other moral

considerations, lies in the fact that a threat becomes common knowledge upon being stated

and understood, and that event exerts a significant influence in the players’ decisions®.

2.10.2 - Von Neumann and Morgenstern Solution

Player B
P B2
Plaver A &4 2, 1) (-1,-1)
o (-17 '1) (17 2)

Figure 2.5 - Payoff Matrix of a Cooperative Game

The solution proposed by those authors for cooperative games is based on the

determination of what is called the negotiation set. That set excludes all points that

represent pairs of payotfs relative to conjointly dominated strategies, and also other points

“* In Martin Gardner’ s Mathematical Games column once presented in Scientific American [GARD78], an
example involving a logic game clearly and simply demonstrates how the existence or not of common
knowledge among the participants can dramatically change the outcomes, leading to an apparent paradox

if that aspect is neglected.
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which imply in the achievement, by any player, in gains that are inferior to those that could
be obtained without any agreement. For clarity, let us reflect on the payoft matrix depicted

in Figure 2.5.

The cells in the secondary diagonal are obviously undesired by both players. In a
repeated game, a plausible sequence of moves would be alternating, in phase, of the
strategies (o, 1) and (o, B,), what would yield for each participant an average gain of 3.
But if the game is played only once, this value is not supposed to be achieved without a
previous stage where an arrangement between the players is agreed. In the hypothesis a

negotiation betides, (o, B;) and (o, PB.) could obtain from a random device vielding a

wn

(%-50% probability for each pair.

The negotiation set for this game is illustrated if Figure 2.6

Player B's payaff Tw BA .
24 / 1.2
/
&
‘f/’.{/;‘

e JERCRY
./[ 3

(144,174 f,:;j’*

" I "

1 2 & AB
Player &'s payoff

Figure 2.6 - Negotiation Set R for the Von Neumann and Morgenstern Solution of a
Cooperative Game with Two Independent Mixed Strategies.

The shaded arca R contains all the points which embody the pairs of payoffs (aas,

bpa) defined by the adoption of a pair of mixed strategies (o, Bg), Where:



oa= {[(pact, (1-pa)o], pa € [0, 1] Eq. 2.23(a)

Bs = [psPs, (1-ps) B21}, ps < [0, 1]. Eq.2.23(b)
The correspondence between any pair (0, Bs) and (aas, bpa), and vice-versa, is unique.

The point that represents the payotfs (2, 2) does not belong to R. That average gain
cannot be reached when the players decide on the values of p, and pg to be used in their
respective mixed strategies (o, Pp) independently, as in a competitive game. Conversely, if
the game is cooperative, then it is possible to the players to assent on a pact which product
is a conjoint mixed strategy. That scheme incorporates a specific probability distribution
over all the possible pairs of pure conjoint strategies (o4, By), =1, 2; =1, 2.

Regarding the example, a common payoff of 3 is brought about by the conjoint
mixed strategy designated by [% (0, Br), 00y, Ba), (0, By), 3(0k, Br)] = &, )

Designating a generic conjoint mixed strategy by @as=(xs, Pg), and by Q the set

that contains all feasible ©,4p, the expected gains (utilities) associated to Q are

VA = 38,5 = DU, (Pap-Wap), ©ans O, Pas € [0, 1), Eq. 2.24(a)
A.B AB

up(C2) = ZbAB = ZuB (Pap-@ap)> @an€ €2, pas € [0, 1], Eq. 2.24(b)
A,B AB

where asp, bap are the utilities that derive from a particular conjoint mixed strategy w45 and

Pas 1s the probability of electing a particular ® ap.



Noting that wa.s is an argument of the utility functions u, and ugp, the pairs
(aas, bap) that derive from each ®ap can be mapped in a convex region R’ configured by

- the points p, q and r shown in Figure 2.7.

Player B's payoff | bas p
(

3—

4B
Flayer &'s payoff

Figure 2.7 - Cooperative Solution Set R’ and Pareto’s Optimal Set

A point (a,z.b,;) e R’ is said to be conjointly dominated by another point
(ay5,by)e R if ajy >a;; and by, >b,, simultancously. Having in mind that R’
stands for the players’ utility values or expected gains, the participants, being rational, will
seek the maximization of their respective pavoffs. Hence, all pairs (axs, bas) that are
conjointly dominated shall be in due course discarded by them. The pre-play negotiations
will then close in upon the selection of conjoint mixed strategies which outcomes only
include the points that belong to R’ that do not have the former characteristic. Those points
correspond to the line segment depicted by pq in Figure 2.7, which is called Parefo’s
Optimal Set. When the players agree in restricting their strategies to those associated to pq,
the possibility of acquiring higher payoffs by means of further negotiations is exhausted,

because beyond that settlement the preferences become strictly opposed. In the example,
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player A prefers q and B prefers p, that correspond to the conjoint mixed strategies
wyp = (U, 8), 0(cy,8,)] and wiip =[x}, 8;), H,,B,)], respectively.

However, not all points from the Pareto’s optimal set are achievable, in terms of
realistic plausible expectations. For instance, consider a game whose region R’ is bounded

by the polygon abed 1n Figure 2.8.

Flayer B's payoff . -
LT paye Negotiation Set vew
b I S

=
Player A's payoff 4B

Figure 2.8 - Pareto's Optimal Set and the Negotiation Set

In Figure 2.8, Parcto’s optimal set is defined by the line bed. Supposing that the
point (s, t) stands for the payoffs when the players implement their maxmin strategies, in
the non-cooperative version of a game, it is out of question that none of them would accept
a deal that would yield an inferior benefit. Accordingly, Von Neumann and Morgenstern’s
solution space for the cooperative game of Figure 2.8 is the subset vew from Pareto’s set,

denominated Negotiation Set (N).

The subset N is often viewed as the limit, in terms of mathematical treatment, for
the imposition of restraints that could shrink the solution space for a cooperative game. The

selection of a particular point in N would then depend in other extrinsic attributes™.

& ¢ - . . .
* Some extrancous factors regard the players® psychological aspects, their bargaining power and

conjuncture variables.
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In the example, the symmetry of the payoff matrix hints that the proposed
cooperative solution (3, 2) is quite reasonable. Nevertheless, it scems that idealizing a
perfect, equitable settlement is seldom within reach in realistic situations. This is so because
each player’s role' greatly affects a solution that might be collectively accepted as just.
Therefore, the asymmetry in games may be present not only in the payoff matrix, but also
in the players’ capacity to achieve successful compromises, in the resources to make

credible threats, etc.

What can be deduced from those arguments is that the concept of solution to be
found by the participants of the game themselves is not satisfactory, even when the solution
is restricted to N. Therefore, a need to the introduction of a third party’s arbitration

scheme arises, whose goal is to establish an impartial arrangement.

2.10.3 - Arbitration Schema®

An arbitration scheme™ is a criteria for settling a conflict of interest, where a third
party, not directly involved in the dispute, stipulates the strategies that must be obeved by
the players in a non-strictly competitive game, so that a special point in the negotiation set
N can be reached. The characteristic of that point is that it might be considered impartial

or just, and therefore produces a values of payotfs which are accepted in advance by the

" For example, one party could be an union an the other a Company; The negotiator could be representing
its own interests or be a deputy.

“ The arbitration schema delineated is this section refer to 2-person games. The solution of a n-person
game involves the concepts of imputation (axioms of individual and group rationality), characteristic
Junctions and core of a game, which are also associated to methods of coalition forming. Another
method for solving n-person cooperative games is the Shapley Value, which in general gives more
equitable solutions than the core does. The analysis of those topics are beyond the scope of this work,

_and a good introduction to the subject can be found in [WINS95).

It should be emphasized that an arbitration scheme, in the present sense, regards a collection of rules that
are expected to be followed by the players, aiming at the achievement of a solution for the conflict of
interest, and it does not refer to exacting compliance from the contenders, which are supposed to abide to
the norms preseribed by the umpire.



2.40

players. The special point is not always unique. But any alternative must obey certain

conditions, in order to be considered equitable and free of ambiguities™.

iv.

The arbitrated solution of the game must be depicted by a point in N, which means
that each player’s gain has to be at least the value that it would obtain when acting
non-cooperatively;

The unit of measure used to build the players’ utilitics must have no influence

whatsoever in the selection of the arbitrated solution;

The identity of the participants shall not act upon the contention, this property
representing a symmetry”’;

The variations in the solutions pointed out by an arbitration schema should be small
when the differences among the games to which they refer are also small. In other
words, the arbitrated solution points should not be subject to notable changes
caused by negligible transformations A of the payoff matrices™;

The potential capacity of the players to implement strategies that result extremely
unfavorable to their' opponents must be taken into account by the arbitration
schema.

2.10.4 - Nash’s Arbitration Scheme

In a bargaining problem, possible solution space may be represented by a convex

closed region R in the plane defined by the axes U and V, which denote the scales of the

players’ utilities. Every point (u, v) in that region corresponds to a pair of utilities

associated to a specific agreement C. Given two feasible contracts C’ and C”, a lottery

mnvolving them is pictured by a line segment joining the points (u’, v’) and (u”, v"). There
g P A Zm g the p

exists in R a point (u°, v°) that symbolizes the status guo, that is, the achievement of no

compromise, denominated A°.

* Mathematically, a generic and plausible arbitration scheme J Nis — N, where s stands for the status quo
preceding the realization of the game.

*! FIT(N), T(s) = T(F(N, 5)), where T(x, y) = (¥, X).

E LA (N), A s ))=A(AIN, 5)).



Vi Playet B's utdlity

Flayer A's ubility u

Figure 2.9 - Space of Feasible Agreements with the szaties que point (u°, v°)

Nash’s scheme objectives the determination of a function fthat operates on (R, (u°,
V")) to reach another point (u*, v*) such that in a transformed region R, obtained by the

change of the axes’. origin to (v°, v°), the following relations verify:

u*, v e R, u*>0,v* >0 Eq. 2.25

b ki

W vV zuxv), Y, v)eR,uz0v>0% Eq. 2.26

The point (u* x v*) is called Nash's Solution to the bargaining problem
(R’, (0, 0)), which can be easily converted to (R, (u°, v*)). Nash’s Solution is the only
arbitration scheme that has the properties:

1. Immunity to linear transformations of the utility scales;
. Itis optimal, in Parcto’s sense (equal or greater payoffs than the status quo);

iii. Independence of irrelevant alternatives™;

% u*v* is the maximum of all products uv.

* Consider two games with regions R; and R;, If R, ¢ R;, and f (R, , (w°, v')) € Ry, then
SRy, @, v =7(R,, @, v"). Put in words, if new contract possibilities are appended to a former
bargaining problem in such way that it brings no change to the preexistent status quo, then, regarding the
new setting, either the solution remains unaltered, or the new solution will belong to the added collection



v. Symmetry (Equal gains for symmetric players’ roles.

2.10.5 - Criticisms to Nash’s Scheme

Nash’s model still is the standard approach to the treatment of conflict of interest
between two players, especially when concerning economic problems (JANDES9],
[DOWRE9], [HOELS0], [LESL90]). In spite of its prestige, Nash’s scheme has been often
criticized, predominantly because of (a) the change of scales origin feature ((MYER77],
[KALA77]), (b) the observation of some divergence between theoretically obtained results
and real life data ([NYDE74), [ROTH79]) and (c) the irrelevant alternatives
independence axiom (ALEX92)).

Myerson [MYER77] also showed that in practical circumstances, evidence can be
found that the players do accomplish interpersonal comparison of utilities, and this
condition is excluded from Nash’s solution by its compliance to the axiom of irrelevant

independent alternatives.

2.10.6 - Other arbitration Models

Nash’s axiomatic treatment has been widely emploved by several other authors to
modeling strategic negotiation processes, though with some alterations. Harsanyi,
[HARS56], [HARS77], starting from a vintage Zeuthen’s work [ZEUT30]%, modified it in
order that the bargaining procedure is accomplished through only two phases. In the last
stage, the player which attains the littlest disadvantage in conceding the other’s demand

grants its request.

Rubinstein [RUBI82] devised another model where the negotiators propose a

sequence of offers and counter offers, whose values are systematically reduced by a

of possible contracts. An arbitration scheme that abides to that prescription is defined as possessing
_independence to irrelevant alternatives.

* Zeuthen modeled the bargaining process as a sequence of small concessions from the player which incurs
in the least significant loss when doing so. That method results mathematically equivalent to the
maximization of the product uv in Nash’s procedure, but with the advantage of attaching a plausible
psychological component to the negotiation.
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discount factor, what induces to obtaining a settlement. Although this process may be
potentially infinite, Rubinstein proved that it has an unique perfect equilibrium®, which is
readily recognized by the players after the first bargaining phase.

Kalai and Smorodinski presented a strategic model of negotiation that implements a
solution through a proportionality method. In that method, the axiom of irrelevant
independent alternatives is replaced by another principle, called monotonicity axiom. It
establishes that, if the negotiation set is enlarged in such way that when the gain of a player
i increases, also does player’s j, then the latter player’s gain in the expanded game must
not be inferior to the payoff it would achieve in the original configuration. The authors
claim that this axiom, contrarily to Nash’s, allows the participants to perform interpersonal
comparison of utilities, what is more in accordance to the empirical evidences mentioned in

[MYER77].

In a more recent work, Lootsma [LOOTS89] proposed a methodology for the
resolution of two-party conflicts using a procedure with two stages. In the first, each player
examines its attitudes régarding possible concessions that could lead to a mutual agreement,
and subsequently, the information obtained relative to the preferences and to the
correlation between latent strategies is utilized to reach a reciprocal attractive contract. A
criticism of Lootsma’s approach was prepared by Bogetoft [BOGE92], where he argues
that Lootsma only detailed the second phase of his model, and unduly assumed that the
players always tend to express their true preferences in the first phase. This last
supposition, although feasible when the contenders are looking forward to setting up a deal,
is not realistic when the adversaries do not value sincerity or when the nature of the conflict

overcomes that norm™.

** A perfect (Bayesian) equilibrium is a strategy combination § and a set of beliefs p such that at each node
of the game: (1) The strategies for the remainder of the game are Nash (equilibria) given the beliefs and
strategies of the other players; and (2) The beliefs at each information set are rational given the evidence
appearing that far in the game. Using this idea, Kreps and Wilson introduced the concept of sequential
equilibrium, applied only to games with discrete strategies, where a third condition imposes further
restrictions on the players beliefs. From op. cit. [RASMS9], p. 109-110.

> In bargaining processes, the submission of false indications regarding preferences is a sort of strategic
behavior. In the majority of real cases, this conduct can be expected from the negotiators, except when
the mediation plan accounts for incentives designed to curb such comportment. Bogetoff (op. cit.
[BOGE92]) concludes that the cited unfaithfulness is likely to take place more frequently when the



2.11 - Cournot and Bertrand Games

2.11.1 - Cournot Theory

In 1838 Cournot proposed a new theory to explain the economic behavior of an
oligopoly. The original problem considered the sale of water by two well owners in a small
town. The product of each seller (water) is indistinguishable from one another, and hence
both should be offered to the consumers for the same price. However, the price would
fluctuate depending on the total quantity of water available daily. It consisted of the sum of
the amounts ¢ and ¢, amount pumped out from the ground by the suppliers 1 and 2 in a
given day [CASE79]. In this manner, the average price p should be a decreasing function f

of (q1 + g2), shown in Equation 2.27.
P=Aq1+d2)=a-b(q: +qz) Eq. 2.27
Supplier i‘s revenues r; are

r,=aq;- bq i (Q1 + CIZ); i=1,2. Eq. 2.28
Making q, = a—bl and substituting in Equation 2.28, comes:

a2 g2 Eq. 2.29(a)
= n X(x-x(x+y))=—xT(x,¥)

b

a’ | . a Eq. 2.29(h)
RIS (y=y(x+3)) = 5" 2 (%, ¥),

where x, v are the players’ actions and the function 7, and m, correspond to the way the
payoffs of the game G™ are related to the players’ actions x, ¥, which must be non-negative
numbers.

G can be concisely represented by the players’ following objective functions™:

participants are pessimistic in relation to the achievement of a satisfactory arrangement prior to the outset
of the process.
** G is a Cournot game played by the well owners 1 and 2.



9
i<y
)]

o DPlayer 1: maximize 7 (x,y), st.x20,y=0;

e Player 2: maximize T,(x,v),st.x20,y 20,

Differentiating 7, (x, v) and 7, (x, y) using Equations 2.29 (a) and (b), comes

in (xy) = i(x —x(x+y))=1-2x-y Eq. 2.30(a)
Ox Ox

1%, .0 . -
— 7, (xy)= —(y—y(x+y))=1-x-2y, Eq. 2.30(b)
ay Ox

. . . - 1-y
which by making Zx (x,y)=0 and 2 p (o \yo0 vields w6) = =2 and
ox ay 2
l-x : . . . )
yx) = Y The optimal action for player 1 is depicted by Equation 2.31.
¥ —g_:_l)i Eq.2.31

Figure 2.10 illustrates the reaction functions x*(v) and y*(x). The term reaction®™
comes from the fact that the convergence path is delimited by those functions, tending to
the point (x*, ¥*). That point, located where the lines cross, is denominate the Cournot-
Nash equilibrium. A property detained by the (x*, ¥*) equilibrium is stability, because a

player’s best response to another opponent’s move always closes in upon it

* Strict maximization of the players’ objective functions in G is impossible without a coalition or
cooperation between the participants; Nevertheless, each player can try to make its revenues as large as
possible.

* The name reaction must not be understood literally, since the participants of the game do not act in a
sequential way, but simultaneously instead. Thus, a player has no opportunity to mull over the
opponent’s move in order implement its own. As a matter of fact, the reaction functions depict the
manner how would the process evolve, in case the moves were successive.

®! The stability feature present in the Cournot-Nash equilibrium does not necessarily always occur in Nash
equilibria found in other games.
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Figure 2.10 - Reaction Functions in the Cournot Duopoly Game

A variation® of the Cournot game occurs when the rule regarding simultaneous
(and therefore previously unknown) moves is relaxed, allowing that one of the players be
able to know in advance which was the adversary’s action. This conjuncture leads to

another sort of counterpoise, called the Stackelberg equilibrium [STAC52].

2.11.2 - Bertrand’s Model

The theory developed by Cournot remained virtually unnoticed for about half-
century, and in 1883 it was reviewed by another French mathematician, J. Bertrand®. An
objection raised against Cournot’s model was that the sellers might actually control both
quantities (by accumulating inventories of the product) and prices. In this way, Bertrand
proposed an alike model, whose solution (as currently known) was based on a Nash
equilibrium in prices, rather than in quantities. In spite their similarity, the conclusions

derived from each version resulted entirely different.

* Cournot’s model can be extended to n-players (op. cit. [CASE79] ).
¢ Almost at the same time, Cournot’s work was discovered by other economists (Walras, Edgeworth et al.),
who divulged the theory to the economic community.




In Bertrand’s game, the strategy space are the prices that each seller decides to

charge for its merchandise, that are still indistinguishable. Once they fix their prices, the

players will try to sell as much as possible, with no production capacity constraints®.

Furthermore, it is assumed that the buyers are completely aware of the prices otfered by

the competitors, and, in the duopoly situation, they will buy all the quantity they need only

from the supplier which has the smaller price. The Equations that represent Bertrand’s

game follow from the foregoing Cournot’s theory.

o K (p1<p2) = q2=10, gy = D (total market's demand);
. D
0 II(P1:P2):’Q1=Q2=:,—;

o If(p1>p2)=q1=0,92=D.

Using Equations 2.27 and 2.28, the guantities sold by player 1 are:

a-
g1 = bp1=D, when py < P2
a-p, _D
G =02 = .,§‘=—,,—>whcnp1:pz

Q1 =0, when py>p2

Accordingly, player 1’s revenues (payofls) are given by Equations 2.33(a)-(c).

I =Py% (a 'bp"J » When py < p2

r, =0, when py > p2

Eq. 2.32(a)

Eq. 2.32(h)

Egq. 2.32(c)

Eq. 2.33(a)

Eq. 2.33(h)

Eq. 2.33(c)

* This characteristic of Bertrand’s original model is quite unrealistic, and output rationing can be assumed.

See section 2.11.3.



In the Bertrand game, taking into account that a seller captures the total market
demand if is its price is only slightly inferior to the competitor’s, this situation originates a
unique Nash equilibrium of both prices equal to zero. Why? The answer is based on the
previous assumptions™ and on the very essence of Nash equilibrium, which is a position

from where no player has any incentive to deviate, provided the other(s) remain fixed.

One strange charactenistic of Bertrand’s model is that a seller profit can abruptly
change from a market share of 0% to 100% after even a small price cut, provided that it
becomes lesser than the other player’s. To downgrade this lesser-than-realistic feature,
some modifications have been proposed for Bertrand’s model, that have some impact in

Coumot’s method as well. They are briefly mentioned in the next section of this work.

2.11.3 - Some Variations on the Bertrand Game
I. Capacity Constraints

In Bertrand’s approach, if the production capacity of the players is limited to L, it
could be the case that the seller with the low price entices more customers than it can
supply, because all will try to buy from it. Under that hypothesis, there will be a fraction of
the market that shall be forced to deal with the high-price competitor®™. While the specific
rationing rule employed to divide the consumers into two groups is unimportant regarding

the low-price seller’s profits, it has a great influence on the other’s revenues.

Three of the most common rules are [RASMS89]:

*> No production costs, no product differentiation, consumers’ total knowledge of the market prices and
~ willingness to buy only from the seller that charges less.
% Provided that no consumer may abdicate of bemg served.
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o [Intensity Rationing: The buyers with more intense demand (values the product

most) make the greater efforts to buy from the low-price seller. The competitor
stays with the residual demand, that is, (D-L).

o [Inverse Intensity Rationing: The opposite of the former situation occurs. Those

consumers which are mostly willing to purchase the item but not to wait to be
served, buy the expensive product, and the rest of the demand ends up the low-
price firm.

» Proportional Rationing: Every consumer has the same chance of buying from low-

price supplier. That means that if M buyers want to pay the low price

(M > L), then of each type of customers (M; (D-M)) will be compelled to

pay the high price.

One consequence of the capacity constraint is that the former Nash equilibrium for
the price (0, 0) does not hold any longer. Indeed, there is no pure strategy Nash
equilibrium® in that variation, but a mixed strategy Nash equilibrium can be determined

[LEVI72], [DASGS6).

ll. Product Differentiation

The reason why the classical Bertrand’s model leads to a (0, 0) price Nash
equilibrium is the complete buyers’ indifference to the quality of the products offered by
either supplier. Thus, if one of the prices is only slightly inferior to the other, it is a
suflicient motive for that seller to absorb the whole demand, if the production capacity is
not constramned. However, if product differentiation is considered, or if the consumer’s do
not detain complete and perfect information on the prices being charged, the equilibrium
becomes different. The quantities to be sold by each firm now will depend from both
prices that are present in the market, py and p2, and can be depicted by the linear functions

of Equations 2.34(a) and (b).

*' That circumstance is known as the Edgeworth Paradox [EDGE97].
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g, =a- b'p,+c'p, Eq. 2.34(a)

qQ, =a’'- b’p, +c'p, Eq. 2.34(h)
The difference between the price coefficients b’ and ¢’ represent the degree of the product
brands’ substitutability. In those circumstances, the resulting payoffs are

n=pi@- bp,+cp,) Eq. 2.35(a)

n=p2a- b'p,+c'py). Eq. 2.35(b)
.. , . . orn . . e
Maximizing player 1’s payoff by making — = 0, one arrives at its reaction function.
P4

a +c'p,

= Eq. 2.36
P =2

Player 2 has a parallel condition, so the equilibrium price shall be Pequi = P1 = P2.

p, T Reaction Functions
2
Player 1. [» = I,
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Figure 2.11 - Bertrand Reaction Functions and Equilibrium Price with Differentiated Products




2.11.4 - Concluding Remarks

The applications of game theory to economics are numerous and regard many
diversified problems. For example, one could mention location models [GREE75],
switching consumers [KLEM87], predatory pricing [KREP82] and others. The review of

all those models involves extensive details and is bevond the scope of this dissertation.



Chapter 3

The Prisoner’s Dilemma Game: A Survey

3.1 - Introduction

In 1950, scientists Metvin Dresher and Merrill Flood, from Rand Corporation,
thought up a little odd game, that later became known by the name of “Prisoner’s
Dilemma”. This game, according to some authors, has become the most famous of all

nonzero-sum games [BACH77].

The denomination “Prisoner’s Dilemma™ (PD) was first given by Albert Tucker',
another Rand Consultant. In May 1950, attending an invitation from the Department of
Psychology of Stanford University to give a lecture on Game Theory, Tucker decided to
discuss the game that Dresher had recently shown him. Considering the little background
that the audience of psychologists had in Game Theory, he invented the anecdote of the
prisoners. Flood, when confronted with the question of whether he realized the importance
of the PD at the time it was introduced, he responded that “I never foresaw the tremendous

impact that this idea would have on science and society...”[POUN92].

Many PD-like situations have been mentioned in the literature since ancient times”.
Nevertheless, none of the referenced archaic instances can be considered a valid precursor
to the modern PD as defined by Dresher and Flood. Since its inception, a lot of research

on the PD has been done, because it is a mathematical construct and mirrors many real

! Albert Tucker was a Princeton mathematician and knew both von Neumann, who pioneered in the formal
and systematic mathematical approach of Game Theory, and John Nash, who was Tucker's former
student and became one of the winners of the 1994 Nobel Prize in Economic Science.

* Early versions of the “Golden Rule”— “In everything, do to others what you would have them do to
you”, attributed to Jesus in the Gospel of Matthew, appear in the writings of Seneca (4 B.C.-65 A.D.),
Aristotle (384-322 B.C.), Plato (4279-347 B.C.) and Confucius ( 551- 479 B.C.). Also in Hobbes’
“Leviathan” (1651}, the Prisoner’s Dilemma turns up [POUN92].
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world situations where a conflict of interest exists. Price wars between competing
companies, the Cuban missile crisis in 1962, the arms race, and overpopulation problems
are examples of PD-like circumstances [KAND96]. Also, biology[SMIT82], ecology
[CAST95], evolutionary studies [SIGM93], sociology [GLLAN94] and behavioral sciences
[RAPO65], [NOWA95] have also benefited from the PD paradigm. Therefore, the
methodology dealing with the PD has received a great deal of research attention. As a
matter of fact, as early as 1971, close to 800 papers have already been published about the
PD’ [RAPO74].

The story of the prisoners, as originally conceived by Tucker, involved monetary

prizes and punishments rather than prison terms, and goes like this:

Two men, charged with a joint violation of law, were arrested and held by the

police in two different cells, from where they cannot communicate with each

other. They are told, one by one, that:

1) If one confesses and the other does not, the former will be given a reward,
and the latter will be fined;

2) If both confess, then both will be fined;

3) If neither confesses, no evidence is gathered, so both go clear.

Over the years, the Prisoner’s Dilemma has been described with other “dressings”,
but its essence remains unaltered. One of the most absorbing versions was contributed by
Douglas Hofstadter [HOFS85]. In that story, instead of prisoners, there are two dealers
who agree to trade some merchandise for money, and cach agent is expected to leave its
part of the deal in different places, known to both. The dilemma is: Should one cooperate
and abide to the agreement, whence making a reasonable profit from the transaction? Or
should one defect, failing to fulfill its admitted responsibility in the deal and greatly

increasing its gains by collecting the other’s share without reciprocating?

* In a posterior survey, the number of articles on the PD rose to approximately 2000 in 1977, and since the
now famous experiments on this subject conducted by Axelrod [AXELB80] were divulged in 1980, there
has been a surge in the quantity of scientific publications on the theme.
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A single iteration of the traditional PD involves two players, and is characterized, in

its normal form, by the general payoff matrix depicted in Figure 3.1.

Player B
Cooperate (C) Defect (D)
(Do not Confess) (Confess)
Cooperate (C) (R, R) (S, T)
Player A (Do not Confess)
Defect (D) (T, §) (P, P)
{Confess)

Figure 3.1 - Generic Payoff Matrix of the Prisoner's Dilemma

To constitute a Prisoner’s Dilemma, the values represented by T, R, P and S in the

cells of the matrix must obey the following relations:

. T>R =P=§; Eq. 3.1(a)
. T+S
i. R> Eg. 3.1(b)
T+S
>P. Eq. 3.1(c)

-

The values often adopted for the payofts are T=5, R=3, P=1 and S=0. If the game
is to be played a single time, only the relation (i), ranking the payoffs in order of preference
is needed to characterize the PD. However, if the game is going to be played repeatedly
—thus constituting an [terated Prisoner’s Dilemma - IPD — then the cardinal valuation
of the gains must be designated. Condition (ii) is necessary to avert the prospect that the
plavers’ eventual strategy of mutually alternating between C and D may result more

advantageous than playing reciprocal C’s in a row'. Condition (iii) is less frequently

* Alternating C’s and D’s advantageously in terms of the resulting sum of payoffs would transform the
dispute in a Coordination Game. There, the players may use correlated strategies, (that might be reached
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mentioned in the literature, but it aims at characterizing the move DD as the worst possible

in terms of the sum of the payoffs.

In its classical form, the PD is seen as a difficult choice problem because it gives
tise to a striking contradiction between rationality and commonsense reasoning. The
attempts to solve it involve mainly alterations of the rules, allowing pre-contracting
schemes, threats and side benefits, bounded rationality of the players and reputation effects

in the iterated version [BICC93].

The PD is also a true paradox, because the MINIMAX strategies of both players
intersect in the lower left cell, that is, mutual defection (DD), which corresponds to the
unique Nash equilibrium in the game. Neither player has any grounds to regret the
MINIMAX choice, because it is also the dominant strategy for both, therefore appearing that
this option (DEFECT) is in the contenders’ best interest, independently of which decision the
opponent might make. What really happens, however, is that each player, by selecting this
individually “rational” move (D), ends up with the payoff 1, hence worse than it would,
should both depart from rationality and cooperate (C), in which case the gain for the two

would be 3, according to the usual numeric values of the payoff matrix.

The gist of the paradox in the PD is just the strife between individual and
collective rationality. And what is more impressive is that when the pair of players fogether
forsake their greed and choose cooperate, the outcome will be better for both individually,

not only in the aggregated sense of the collective.

The quantity of available scientific material related to the Prisoner’s Dilemma is
very large, ranging from purely theoretical developments [HUBE93], [GRIM94], to
operations research [FOGE93a] and political science [HARD82]. The subsequent sections
of this chapter provide a review of some of the most salient and up-to-date aspects of the
research that has been developed on the Prisoner’s Dilemma, which will include the

following general topics:

by means of a randomizing device), which bring about a correlated equilibria. See Chapter 2 of this work
and op. cit. [RASMS9], p. 32-37.
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+ The Prisoner’s Dilemma in the context of 2 x 2 games;

« Axelrod’s computational tournaments;

- Evolutionary, Spatial and Al techniques approaches of the PD;
+ The One-sided PD;

« Applications of PD-related games to economic problems;

3.2 - The Prisoner’s Dilemma in the context of 2 x 2 games

The traditional PD, as formulated by Flood and Dresher and obeyving the conditions
stated by Equations 3.1(a)-(c) is only one of a large family of games. As a matter of fact,
cach possible type of 2 x 2 games is straight connected to the valuation of the payofls T,
R, P and S. If only the ordinal ranking of the payoffs is acknowledged, 78 distinct games
can be formed, which are differentiated from cach other by the players’ strict preference

ordering over the four outcomes’ T, R, P and S [RAPO66].

In order to provide a more convenient and formal representation of general 2 x 2
games, let us designate the actions COOPERATE and DEFECT as a, and a;, respectively, for

the row player (A), and b, and b;, for the column player (B).
3.2.1 - Some Peculiar Social Dilemmas

If a 2 x 2 game is symmetric, which is equivalent to saying that both players agree
in the order of preference of the payoffs, there are 24 possible rankings® of the payotfs
which are determined by the feasible pairs of actions apby, apb;, a,bo, a;b;, not considering
the existence of “ties”. Not all of these games are dilemmas, since in many of them a
simultaneously advantageous strategy can be easily found by both players. To pose a true
dilemma, the following restrictions apply:

1. aphy > aghy;

1i. a}bg > a;bi-;

* A “tie” is a situation where the players may manifest some type of indifference between two or more
possible outcomes. If ties are allowed in the payofls, like, for instance, the ordermg T-R=P>-S, 726 games
are possible [GUYEG8]. ‘

$ This quantity corresponds to 4!, the number of permutations of @ybg, aph;, a;bs, aib;.
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i, a;b@ 'P‘agbo',

v. ab; > agh;

From the original list of 24 combinations, only four games remain, which have

special denominations and are shown in Table 3.1.

Ranking of preferences Name of the Game
aby > aib) = aphy > agh, Prisoner’s Dilemma
aby > aohy = a,b; = agb Deadlock
aby = achy = ach; = a,b; Chicken
aphy = a;bo = aib; - agb; Stag Hunt

Table 3.1 - Four Distinctive 2 x 2 Dilemmmas

The four games of Table 3.1 represent quite prevalent real-life interactions among
rational agents, and are much alike each other, although the Prisoner_’s Dilemma may be
seen as a kind of “core”, with the others occupying the outer layers [POUN92). The
Prisoner’s Dilemma will be the object of an extended discussion along this chapter, so

some comments are provided about the other related games.

e The deadlock game cannot be considered properly a true dilemma, and mutual
defection (a,6;) is a Nash equilibrium. Both players do not really want to
cooperate, each just wishes that the other does. The often observed failures in arms

control treaties, for example, may be contemplated as a deadlock game.

e In chicken, the two players drive fast cars along a straight road, headed to each
other in a route of collision. If both sustain the course (DEFECT), a mutual
destruction happens for sure, which is obviously the least desired outcome for
etther player. Each one prefers that the other swerves (COOPERATE), which means
assuming the chicken role ( but still preferable to dying). Mutual cooperation (both
swerve), though not bad if the two players adopt it concurrently, has a payoff that
is inferior to the defector’s gain in the DEFECT- COOPERATE conclusion. There are
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two Nash equilibria in this type of game, namely a,6, and agb;, which, curiously,
mean that each player would rather do the opposite of what the other does’.

e The stag hunf refers to a situation where two hunters, searching for food in a
forest, can coordinate (COOPERATE) and succeed in capturing a stag, which, even
being equally shared, provides the best gain for both. But each can also forsake an
agreed compromise in the conjoint chase and act isolated (DEFECT), thereby being
able to catch a hare, which represents a quicker and safer of obtaining food, but in
a much smaller amount. In case the second player, who cannot determine what the
other is doing, insists in the stag hunt, which he cannot accomplish alone, he gets
nothing. Here, mutual cooperation (a.by) is clearly the Nash equilibrium. The
temptation to defect arises when the rationality of the other player is put in doubt,
bringing the belief that he will abandon the compromise. This dilemma may be

more relevant and intense when the stag hunt is played by large groups’.

3.2.2 - The Effect of Preferences in 2 x 2 Games

The classical PD assumes that both players are rational, in the sense their
preference functions are identical, and that they decide their moves always seeking the
maximum gain. These gains are represented by the payoff values that appear in the payoff
matrix, which stand for the utilities that the contenders may obtain in a given iteration.
These numeric values of the utilities are fixed, and the players’ preferences are ranked

from the greatest to the smaller number.

An alternative and instructive approach, usually not taken into account in the
analysis of the conflict of interest modeled by the PD among individuals belonging to a
diversified population refers to the choice principle of the players. If the utility functions

vary, it may well be the case that the dilemma dissolves. The dissolution is caused by the

7 A multi-person version of the chicken game is called the volunteer’s dilemma, in the sense that some
tough job must be done, and it will benefit all. But everybody would be equally in trouble if nobody
enrolls.
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variations in the players’ predilections over the payoffs. The new resulting games, though

maintaining the numeric values of payoffs, depart from the original PD.

Note that the changes in preferences do not occur in the absolute sense. Rather,

they are related to the existence of an opponent and regard the conjoint outcome of the

game. Frohock [FROHS87] recalls that

“.. Prisoner’s Dilemma is a game plaved in conditions of uncertainty,
and this uncertainty can extend to knowledge of what principles the
opposing plaver is using. If compatible principles are found in the
Prisoner’s Dilemma, then a Pareto outcome is the saddle point" . But like
principles may not be compatible, and different principles (compatible and
opposed) are possible conditions of Prisoner’s Dilemma games. Even in
the original game the importance of pairings is clear: egoists play to a
suboptimal outcome, altruists play to an optimal equity outcome. [f
structures are formed from compatible pairings, no conflict between

individual and collective rationality occurs.”

Frohock describes seven types of “personalities”, that are listed with their ordering

of preferences in Table 3.2.

¥ The denomination “stag hunt™ is owed to the philosopher Jean-Jacques Rousseau, who cited it as a
metaphor in.4 Discourse on Inequality (1755).

? If some benefit can be achieved only by the actuation of the majority involved (but excluding the non-
participants), then the efforts consumed by the minority are wasted. If the non-participants may also
enjoy the benefit, then a firee-rider situation occurs [HARDS2].

¥ See Chapter 2 of this Dissertation - 4 Review of Fundamental Topics of Game Theory.
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The traditional PD player: seeks | a,b > @ib; > acho > agb;
exclusively the satisfaction of its
self interest

Acts  to  maximize the | aph; = aghy = a;b; > a;by
opponent’s gain.

Prefers the least possible retumn | agb; > a,b; > adby > aho
for itself.

Wants the highest and equal | apby > a;6; > agh; » a;b,
gains for both. If equality is not
feasible, favors the adversary.

Fancies the highest total gain. a;bo = a;b; =~ aphy = agh,

Chooses to minimize the other’s | a,;b, = a;b; = agho = agh;
gain.

Gives priority to the greatest | a,by > aib; = aphs > aph;
difference between its payoff
and the opponent’s.

Table 3.2 - Types of Players and their Ranking of Preferences

Depending on the choice of the pairing of players, 28 distinct situations can betide.
In several of them, no conflict of interest arises at all, because the priorities each player

regarding the desired outcomes convey to mutual contentment.

The elective strategies for every possible combination of plavers’ types are depicted
in Table 3.3. The strategies marked with (x) consign those outcomes which result from a

flawless rapport between the players’ proneness.
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Table 3.3 - Possible Pairings of Players and the Resulting Joint Elective Strategies

It is important to note that perhaps the greatest difference between a static PD
(which is defined by a game played cither only once or repeatedly, but with no memory of
former iterations) and an iterated PD is that, in the latter, the structural change brings in an
increasing insight about the other player’s attitudes and pattern of behavior. This means
that the prior uncertainty (about the opponent’s preferences) that influences the decisions is
progressively lessened by the knowledge that is acquired through the repetition of the
process [FROH87].



3.2.3 - Other Related 2 x 2 Games

Even though the Prisoner’s Dilemma is considered the best-known 2 x 2 game,
several others within this category are regularly cited and discussed in the Game Theory
literature as important models of conflicts of interest. In those versions, the players’ actions
are not necessarily described as a COOPERATE versus DEFECT choice, though they are still
bmary. Moreover, their payoff matrix do not comply to the requirements established for
the PD. For this reason, those games diverge from the main subject of this chapter and do
not pertain here. Yet, aiming the expansion of the bibliographic review on this important
category of games, mentions to some outstanding instances of these representations were
made in Chapter 2 of this Dissertation, as a framework for the presentation of essential

equilibrium concepts of Game Theory.

3.3 - Computational Tournaments of the Prisoner’s Dilemma

3.3.1 - Overview

The scientific curiosity about the frame of decisions, choices and strategies in the
circumstances denoted by the Prisoner’s Dilemma in its iterated version (IPD) has been
increasing since 1979. In that year, Robert Axelrod, a political scientist working in the
University of Michigan , conducted a computer tournament'’, where 14 entries submitted
by game theorists from diversified areas (economics, biology, political science,
mathematics, psychology and sociology), and an additional random rule* were ran against
each other in a round robin contest. All the strategies were composed solely by
combinations of the elementary actions COOPERATE (C) and DEFECT (D). Subsequently, a
second tournament was designed and implemented and this time 62 players competed,
some of them the same as before. All the contestants received a report with the previous

results attained and the respective analysis .

' This tournament's results were published in [AXEL&0a] and [AXEL80b]. The implications of the results
obtained gave origin in 1981 to another paper [AXEL&1] with the title "The Evolution of Cooperation”, to
which was awarded the Newcomb-Cleveland Prize by the Amencan Assoctation for the Advancement of
Science in 1981,

'* The random strategy consisted of equal chances of choosing COOPERATE or DEFECT in each move .
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A basic notion that should be well understood by all participants was the irrelevance
of the number of individually favorable iterations that each player would get. It was
stressed that what really mattered in that contest was the overall fitness of each strategy in

the described context, and so the strategies should be selected with this fact in mind .

Axelrod's studies of the IPD, his tournaments and further extensions of the subject,
including later contributions, have had a great impact in the development of game theory
altogether with its applications in a variety of scientific fields. They have been the origin of

the present research work and were the starting point of this doctoral dissertation.

3.3.2 - Aspects of the Tournaments’ Dynamics

Axelrod's project began with the desire to investigate when or in which
circumstances a decision maker in a situation of conflict of interests should COOPERATE™

aiming mutual benefit or DEFECT, trying to get an edge over the others.

In his book "The Evolution of Cooperation” [AXEL84] Axelrod describes the rules
and results of the computer tournaments of the IPD and analyzes the ecological evolution
of strategies by means of a simple criterion” of reproduction and extinction. The

proportion of individuals using each kind of strategy is a measure of its success.

In that class of simulations the possibility of occurring mutations affecting the
original rules was not allowed. This is the same as saying that, given an nitial collection of
rules, their specifications remain fixed, without any alterations during the simulation, and
only the relative participation in the total population changes along the iterative process.

The payoff matrix employed by Axelrod is represented in Table 3.4.

31t must be noted that COOPERATE, in the IPD's context, means altruism, and should not be confused with
the term "cooperative” used in game theory to admit the possibility of negotiations among players before
the moves in a game.

' The score attained by each strategy in accordance to the payoff matrix in the first round divided by the
total score of all players is the measure of "success” of a rule and corresponds to the expected number of
copies (using the same strategy) in the next generation.
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Column Player

Defect (D)
S=0; T=3
P=1;P=1

Table 3.4 - Payoff Matrix of Axelrod’s Computational Tournaments of the IPD

Line Player

The pairs of numbers in the cells of the matrix are the Line and Column Players’
gains, respectively. The letters R, S, T and P correspond to the payoffs regarding the
individual roles assumed in a single iteration, namely "Reward" (mutual cooperation),

"Sucker" (deceived), "Temptation" (Profiteer) and "Punishment” (mutual punishment).
The tournaments’ rules were the following:

1. The players may not make enforceable threats or commitments. Therefore, each
must consider that any strategy is available to the other, and there is no way to
be sure of what will be done by the opponent until the game takes place.

ii. The only information that the players can have are the previous results of the
iterations performed.

. Refusal is not permitted, so no player may get away from an iteration or force
the other to do so.

iv. The payoffs relative to a particular pair of elementary actions are constant.
v. The only communication permitted to the players is that achieved by the
sequence of moves in the games.

The first tournament consisted of 24 000 iterations, with each of the 15 strategists
running 200 times against each other and itself. The winner was the strategy "TIT-FOR-
TAT" (TFT)"”, with the average score of 504 points. This strategy starts cooperating, and
thercafter simply repeats the opponent’s last move. The 8 best classified rules were all
"nice", that 1s, never defected first. A curious fact observed from the final outcomes was
the influence that two particular strategies, which ended in the bottom half, had on the
relative ordering of the top half. Axelrod called them kingmakers, because they didn't

perform very well for themselves, but made it possible to others to gather a higher number

' Submitted by Anatol Rapoport, professor of the Department of Psychology, University of Toronto.



3.14

of points. The most important kingmaker was the strategy called DOWNINGY, whose'
decision to opt by C or D was taken according to a predictive model it made of each
opponent’s behavior, which estimated the probability of its cooperation after having
received a D. The final purpose of DOWNING was to maximize the accumulated payoff
in the long run. When the IPD simulation began, DOWNING's appraisal of this probability
was 7; This induced it to always defect in the first two moves and allowed it to receive two
P's on account of some wrongly modeled strategies. On the other hand, not every nice
strategy was provocable, as explained below, for TFT and other similar rules lost many
points when they met DOWNING. In the end, DOWNING finished in the 10th position,

with an average score of 391 points.

The complexity of the 14 entries submitted, in terms of the size of the program
which represented each strategy, ranged from 4 to 63 lines of code. Surprisingly enough,
the winner "TIT-FOR-TAT" was the simplest of all.

According to the analysis of the results of the tournament, three characteristics had

a crucial role in determining the success of a strategy:

1. Being nice, that is, never defect first;

. Being provocable or intolerant, and retaliate promptly when receiving a
defection;

iii. Being forgiving, which means having the ability to accept an apologize and
restore mutual cooperation if an opponent also demonstrated to wish the same
thing.

In addition to these three features, TIT-FOR-TAT still has another special
charactenistic, claritv. TFT was simple enough to be quickly recognized and well
understood, what avoided misinterpretations and misperceptions from its opponents and,

moreover, insured stable mutual cooperation when this was also the other player's aim.

It should be observed that TFT is not the best strategy in the absolute sense. Its

performance is strongly context-dependent, and in the first round-robin tournament, there

' Proposed by Leslie Downing , (Psychology) , who had previously published a paper on the Prisoner's
Dilemma [DOWN7S] .
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would be three other rules which could do better than TFT, should they have been
included in that group".

The second tournament was performed within a completely different environment,
not only because the diversity of participants, but also because the results of the first
contest had been made public by means of the report sent to all new contestants. This
account was used by the applicants to subside the formulation of their second tournament's
strategies. Furthermore, the length of the game was not any more fixed, as prevailing
originally. Instead, the number of iterations became probabilistic, governed by a parameter
w = 0.99654, that stood for the chance that there would be still another round (involving all
players)®. Five repetitions of the simulations were performed, and the average number of
iterations per simulation cycle was 151. Quite unexpectedly, "TIT-FOR-TAT", which had

been re-submitted by the same person, was again the winner".

Although a detailed analysis of each strategy's success or failure was made, those
results referred to a particular environment where the simulations occurred. So, in order to

verify the general performance of each rule, new tournaments have been simulated.

The representativeness of every strategy in the next rounds was now function of the
previous relative success, that is, how well it performed before. The players that were
present in a group from which all pairwise iterations were accomplished formed a
generation. By this method, the number of individuals using the same rule in the next
generation was proportional to the product of the previous number of representatives and
their score, which, by its turn, was the frequency weighted average amount of points in the

0

iterations with the other rules®.

7 Those were: "TIT-FOR-TWO-TATS" (answer with a D only after receiving two D's in a row from an
adversary); "LOOK AHEAD" (analogous to search algorithms in graph trees, resembling some
techniques used m chess playing programs), "DOWNING*" (a revised version of the original
DOWNING, where the tactics of playing D in the two initial iterations was inverted to C).

'® The parameter w mirrors the importance given to future games' payoffs, and it can also be seen as a
discount factor, because the strategies were fixed.

' Although TFT could have been surpassed by another rules in the first tournament, these same rules didn’t
succeeded in doing so in the second, on account of the changes in the environment that took place due to
the presence of a new breed of contestants.

** The simulation had 1000 generations , and TFT finished with the greater relative frequency, around 14%.
1t should be noted that a good performance in the initial generations does not mean that a final success is
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The described process simulates the ecological performance of the rules. In this
approach, the best adapted strategies tend to proliferate, and those less fitted will become
extinct. The ecological simulation deals only with changes in the frequency distribution of
types, since the specification of every strategy remains fixed. On the other hand, in a
adaptive process, the rules can be modified, by means of the introduction of new
proceedings or through mutation of already existent rules. The dynamics of Axelrod's
mentioned tournaments’ regard the former category of simulations, but he also investigated

the latter in a subsequent work, which is explicated in section 3.4.4-Il.

With the results of his tournaments as basis, Axelrod proved the following
propositions and theorem AXEL81], JAXEL84], which turn out to be a essential aspect of

his research:

o Proposition 1
If the discount parameter w is sufficiently large, there is no independent strategy
that can be better than the others.

o Proposition 2 | :
If w2 max [(T-R)/(R-S), (T-R)/(T-P)), and if all players adopt the TFT strategy,
the Tterated Prisoner's Dilemma has a Nash equilibrium, and in this case TFT is
called a collectively stable strategy, which means that it cannot be invaded” by any
other rule if every member of the population uses it.

o Characterization Theorem™
The interpretation of this theorem is that the move C or D implemented by a rule
X in any point 1 of the sequence of iterations is completely defined by the game's
previous history, in order to X be collectively stable. While the inequality above is
not satisfied, X may choose C or D freely without loosing its collective stability.

When a rule interacts with itself (X|X), the circumstances where the largest quantity

expected. This is so because when a rule runs against every other in the beginning and gets many points,
it must keep the same competence with the surviving strategies, as those less apt get excluded of the
game.

*! The concept of invasion in a ecological IPD expresses the proliferation, by copy, of more successful
strategies, regarding the accumulation of points. The "invasion" takes place when the ability of a native
strategy to gather points is surpassed by another.

* A strategy X is collectively stable if and only if X plays D in the n-th iteration every time the number of
points accumulated (Vn) by an opponent Y until that moment is such that V, (Y|X) >V(X|X)-w*'«[T+
wP/(1-w ). For a proof, see op. cit. [AXELRI1].



of points is amassed are when both are. Therefore, nice rules detain the greatest
potential of keep on playing C, even when they are threatened by row-nice
invaders. The important advice embedded in this theorem is that anyone willing to
adopt a collective stable strategy should only cooperate when its possible to absorb
an exploitation and still maintain its mightiness.

e Proposition 3
A strategy X that has a non-zero probability of cooperating in the first iteration can
be collectively stable only when w > (T-R)/(T-P).

e Proposition 4
A nice strategy is collectively stable only if it is also provocable, that is, retaliates
immediately after receiving a defection.

e Proposition 5
The rule "ALL D" is collectively stable.

This means that a population W made up exclusively of "ALL D's" cannot be
mvaded by any other strategy Z that is implemented by a newcomer. However, if
the invaders using Z come in clusters and discriminate their opponents by means of
establishing a certain proportion p of all iterations that are implemented with
members of their own species, invasion becomes possible. Hence, a p-cluster
invades a population W if pV(Z|Z) + (1-p)V(W[W) >V(W|W)=.

e Proposition 6

The smallest value of p necessary for a specific strategy to be able to invade an
"ALL D's" population in a cluster is accomplished by the strategies called
maximally discriminating. These rules eventually play C for the first time even
with those opponents which have never cooperated before. From this point on, the
mutual cooperation is established (a sequence of (C,C) takes place) only with a
strategy that is behaving in the same way. Therefore, the maximally discriminating
strategies never play C again with an "ALL D".

# Axelrod observes that the pairings are not supposed to be random, because if this were so, a small group
of Z's would have little chance of interact with each other in an environment with a great majority of W's.
Considernng the values from the standard payoff matrix (T=5, R=3, P=1 and $=0) and w=0.9, a group of
Z's succeeds in invading the original population W if as few as 5% of all its iterations are within the
group. If, however, the pairings are random, a strategy Z thrives whenever its overall proportion ¢q is
above 1/17, with the other parameters as before, See op. cit. [AXELB4], pages 211-213.



e Proposition 7

If a nice strategy cannot be invaded by a lone newcomer which acts differently, it
will be also immune to clusters of the same kind of individuals.

e Proposition 8

If a strategy is collectively stable, it is also zerritorially stable.

This proposition refers to the spatialized IPD™, which regards the dynamics of
systems that are modeled by regions made up of cells, whose occupants interact
with their "neighbors” and imitate them, on condition that their performance is
better. The territorial stability is associated with the immunity that a location has
against modifications of its original strategy provoked by imitation of an invader.
The specifications of what consists a neighborhood and the criteria that make
imitation possible can vary, and have a great influence on the way a territory is
occupied. In these kind of systems, the "nice" character of a rule does not assure
that it will be not invaded, specially if the parameter w (the shadow of the future) is
small®.

Axelrod re-examined the problem of cooperation in the context of the IPD in a
later paper [AXEL88]. That article reviewed the previous work and presented short

commentaries on several topics, suggested as lines of further investigations, including:

+ Iterations: Multiple players - " n-person PD" - NPD:

+ Moves: Possibility of inclusion of one more elementary act: get away, meaning
refusal to play, that can be spontaneous or forced (ostracism);

+  Payoffs: How the solutions can be affected by changes in the values of the matrix;

+ Noise: Accidental faulty implementation of strategies (frembling hand) or
misperception (blurred minds)™;

+ Shadow of the future: Its implications in the strategies adopted and their equilibria
when the length of the IPD is finite or the discount factor w varies with time;

+ Population dynamics: Differences between Nash equilibria and ESS's™;

* An extended discussion of this approach is given in section 3.4.2.

* Axelrod illustrates the invasion of a temritory solely composed of TFT's "inhabitants” by ALL D's ; the
IPD parameters used in this example were T=56, R=2, P=6 and $=0, with w small, equal to 1/3.

** In a homogeneous population of TFT's, the noise affects considerably the results. Regarding the factor
noise, Nowak [NOWA92] mentions that, for an error rate less than 1%, the accumulated gains by each
mdividual (fitness) 1s reduced by about 25%.

" Evolutionary Stable Strategies - See section 3.4.1.



+ Population structure: How the “clustering effect” can influence the possibility of a
homogeneous population to be invaded by some other strategy.

Axelrod’s computational tournaments of the IPD and the insights that they brought
can be considered indeed a landmark in the study and comprehension of the mechanisms
that govern conflicts of interest and the benefits of mutual cooperation. In its foreword to
the 1990 edition of Axelrod’s book The Evolution of Cooperation, Richard Dawkins™
states that “The world'’s leaders should all be locked up with this book and not released

until they have read it. This would be a pleasure to them and might save the rest of us.”

3.4 - Evolutionary Games, Spatial and Al Techniques Approaches of the PD

3.4.1 - An Evolutionary Biological Application: The '"Hawk-Dove' game

The first explicit application of Game Theory to evolutionary biology was given by
R. Lewontin [LEWO61]. His work, followed by numerous other related papers, examined
how a species plaved against nature to minimize its probability of extinction. However, a
much more interesting an important contribution on that area was provided by the biologist
John Maynard Smith [SMIT82], who explored the way members of animal species play
games against each other. In this case, both the population dynamics and equilibria are
considered and analyzed, mainly by means of a special kind of game devised by Maynard
Smith: The Hawk-Dove (HD) Game. Though not retaining the same structure of the PD’s
payoff matrix, HD has various similar features regarding the choice of strategies, and was
used to introduce the important concept of the Evolutive Stable Strategy - ESS, that
consists in a new class of equilibrium in games. Also, in Maynard Smith's model, the
criteria of rationality and preferences stated in classic Game Theory are replaced by those
of dvnamic stability of populations and Darwinian adaptation (“The survival of the

fittest").

In the Hawk-Dove game the players are considered to be individuals from animal

species which, like the participants of a PD, have basically two eclementary actions

# Author of The Selfish Gene (1976) and The Blind Watchmaker (1986), among other works.



available, namely Hawk (H) = Escalate or Dove (D) = Display, to be adopted onc at a
time. The dynamic evolution of the strategies employed is analyzed in the course of several
generations, from the assumption that each species aims at maximizing its expected
accumulated adaptive gain, which depends on the behavior of its adversaries. This
adaptive gain refers basically to the possibility of free (without competition) exploitation of
the resources offered by the environment where the species already lives or intends to
establish itself.
The HD payoff matrix is represented in the Table 3.5.

Column Player

Line Player

1SP. 0 V2
Table 3.5 - The Hawk-Dove Game’s Payoff Matrix

The values in the cells correspond to Line Player's adaptive gain. V is the payoff of
Hawk (H), when the other plays Dove (D) and C consists of a loss, associated to a 50%
probability that a H strategist suffers injuries when meeting another H. When a dispute

takes place, the net expected adaptive gain is equally shared.

Assuming that when both players start a game they have an equal adaptive gain W,
the accumulated payoft by cach species after the game (fitness) will be noted by W(D) and
W(H), provided that the relative frequency of H's in the whole population of the species

involved is p.
W(H) = W, + p E(H,H) + (1-p) E(H,D) Eq.3.2(a)
WD) = W, + p E(D,H) + (1-p) E(D,D) Eq. 3.2(b)

E(.) is the Line Player's payoff in an iteration between any two type of strategists.
Along the iterations, the players reproduce (create "offsprings”), which quantitics are

proportional to their respective achieved fitness.
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Calling p' the proportion of H's in the next generation, the population dynamics is

described by Equation 3.3.

.W(H —
p= PV e W= p W) + (1-p) WD) Eq.3.3

Knowing the values of V, C and p, (initial proportion of H's), it is possible to

determine the evolution of each species' relative frequency p and (1-p). An inquiry that
remains is to discover if stable states can exist, and if the answer is atfirmative, which

specific characteristics they have.

Definition: A strategy I is said to be stable if, being adopted by the majority of the
population, its adaptive gain is greater than any other strategy, and so its

invasion by mutants will not be possible.

Supposing that p << (1-p) is a small proportion of mutants using strategy J, which

interact with strategists I, the respective fitness are depicted by Equations 3.4(a) and (b).
W(I) =W, +p EQLL) + (1-p) E(LJ) Eq. 3.4(a)

W(J) =W, + p EJ.I) + (1-p) EJ,J) Eq. 3.4(h)

If T is stable, W(I) >W(J), and, as p <<1, it is necessary that at least one the

conditions (a) or (b) below are verified, v J = 1.

a) E(LI)>E(J,I)
b) E(LD=E(QJ,J) and E(L)) ~E(J,J)

Any strategy 1 which obeys the inequalities (a) or (b) is called Evolutionary Stable
(ESS)”, and it is such that if all members of a population employ it, no other rule will
succeed in invading it and thrive [MOLA92]. In the "Hawk-Dove" game, D (Dove) is not
an ESS, because a population of D's can be invaded by H's (E(D,D) < E(H,D)). On the
other hand, H is an ESS if 1/2(V-C)>0 or V:>C. In this case, for (H,H) the probabilitics of

** The pre-conditions imposed by Maynard Smith for the existence of ESS's are: a) infinite population; b)
the iterations are between two individuals at a time and these are indistinguishable of each other regarding
strategies that will be selected before an iteration happens (symmetiic games); ¢) the reproduction is
asexual.



getting V or C are 50% for both players, and if V >C, it is worth running the risk of

receiving an injury (C) to achieve the gain V.

Besides mixed strategies involving H and D, several conditional behaviors are also

considered in sequential HD games, such as:

e Retaliate: Start with D, but change to H if opponent escalates (adopts H);
e “Bully": Start with H and retreat to D if opponent escalates;
e "Bourgeois": Play H if owner (of the territory) and D if intruder;

Asymmetric games are also analyzed, thus relaxing one of the previous conditions
assumed for the existence of ESS's. In this mode, the players are separated in categories
according to some attribute which indicates strength, such as bigger, better, etc., while the
other has opposing characteristics. Also, every player is perfectly aware of its own
characteristics. However, the strategies that are employved are supposed not to be

correlated either with this information or with the results of the previous iterations.

Reinhard Selten [SELT80] proved that if a game has at least one asymmetry which
1s common knowledge to the contestants, then it cannot have a mived ESS*. Assuming
that one or more asymmetries exists, another type of behavior is considered, called
Assessor. An assessor (A) chooses H it it finds itself in a better position than its adversary,
and selects D conversely. The acquisition of the information™ concerning the other's
characteristics can be supposed to have a cost ¢* for the assessor strategists. In a iterated
game involving the strategies H, D and A, A is an ESS if (a)}c <3V and
(b)Cx »V(1-x); H is an ESS if (a)c <3(V-C) and (b) Cx <V(1-x), where x is the
probability that the privileged plaver wins a (H.H) dispute. Alternate behaviors H and A

cannot take place in an iterated game with the same values of the parameters V, C, ¢ and x,

** In the human case, this decision rule generally does not apply. Katmeman e Tversky, in their "Prospect
Theory” [KAHN79] show empirical evidences that players' concems for losses are greater than those for
gains.

*! Taken in the traditional sense, as, for example, select an action A with probability p or another action B
with probability (1-p). In the case mentioned, however, pure ESS's can exist.

** Presumed with no ambiguities. If there is a chance of errors in the assessor's process, Selten's theorem
[SELT80] is no longer valid.

* ¢ < C, that is, the cost ¢ of acquiring the information about the adversary's strength is smaller than the loss
C related to an eventual injury.
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for if an assessor discovers that it is in inferiority™, it gives up this strategy and chooses H

or D depending on the mentioned parameters.

Maynard Smith notes that A has advantages that help it to be an ESS, because if ¢
is small relative to C, the eventual privilege of a better relative position is a reliable indicator
of success (x 1) if a (H,H) dispute takes place. It should be observed that x does not need
to approach 1 in order to A be an ESS. Even if x << 0.5, A is an ESS when C >>V. This

fact gives rise to a kind of paradox, because it means that a player uses H if inferior and D

it in advantage.

Several other contingencies can have a role in the evolution of asymmetric games.
One factor worth citing is the Resource Holding Power (RHP), which should be
mterpreted as the demonstration, by a player, of the amount of resources available to it that
can influence the outcome of a dispute. The RHP is a kind of a measure of power and has
a relevant effect on the behavior of an opponent that uses the assessor rule. Specifically, in
the same way a cost ¢ was assigned to information gathering, it can also be assumed that a
similar expense will be associated to power exhibition™ with the purpose of intimidating an
opponent. How accurately (level of perception) a threat is represented by a displayed RHP

is a factor equally important in the strategies' formulation and in their evolution®.

. Although the Hawk-Dove game had its original aim as a paradigm for the
treatment ot biologic problems, it has been quite influential in the general development of
Game Theory. In fact, the work of Maynard Smith [SMIT82] marks the advent of
Evolutionary Game Theory [WARND935]. Iis significance in the area can be measured by
the great number of citations in the specialized literature, e.g. [COLL91], [GODF92],
[NOWA92], [NOWA93], [BEND93], [FOGE93], [SIGM93], [ATMA9%4], [FOGE95].

* Regarding the strength attribute, not the rule H or D.

** The "Power display” must not be backed by the existence of the advantages; it may be a "bluff”.

** In human relations, a typical example of how misperception of RHP's can be hazardous to all refers to
the intemational political situation known as "cold war”. Each side involved m this kind of dispute
attempted to show the maximum RHP possible (at high costs), so that no doubts might exist about its
military retaliation power (MAD:. Mutual Assured Destruction policy). This was so because an
underestimate from the other side could take it mto believing that “playing tough” would be
advantageous, and this would almost certainly bring an escalation obviously feared by anyone.
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3.4.2 - Spatial Models of the IPD

An spatialized model of the iterated Prisoner’s dilemma has all the characteristics of
the classical version, plus a new feature, that is the embodiment of the dimension space in
the game [NOWA92(a,b)}], [MAR93], [HUBES3], [NOWA94]. According to some rule,
that can be random or not, the players are scattered in a field, usually a two-dimensional
grid. There can be more than one manner by which the participants may interact. In the

most common mode, the contestants compete with their “neighbors™’

, that is, those
players which occupy adjacent cells in the grid in a round-robin tournament, where each
plays once with one another. A completed round is called a generation, and at this point
each cell copies the most successful strategy of its neighborhood. The evolution of such a
spatial grid is dependent on the values of payoff matrix. Even if the binary IPD is played,
with only pure cooperators and defectors, C and D actions allowed, quite complex
dynamics may result. It is possible that cooperators are extinguished, but often shifting
mosaics occur, with mixtures of pure cooperators and defectors coexisting indefinitely in

unsteady proportions. Nevertheless, recent studies performed mainly by Nowak found that

the average composition of the population is predictable [NOWA95].

Besides the method described above, other approaches using the basic spatial
paradigm of the IPD appear in the literature, It was emploved, for instance, n the
philosophical issue of demonstrating the pervasiveness of the Godelian notion of
mathematical undecidability in more practical, less abstracts problems [GRIM94T".
Another example is provided by Weeks et al. [WEEK96], who simulate a spatial [PD in a
playing field with “walls” and random matchings. In this work, variable payoffs are
considered and the players are represented by cellular automata machines, which evolve

their strategies with the aid of a genetic algorithm.

* Those players which occupy adjacent cells, usually eight in a chessboard-like grid, or four, if diagonals are
not included. An hexagonal-patterned field may also be considered.

% Grim [GRIM94] argues that some formerly pure mathematical philosophical concepts, like Godel's
undecidability, Rice’s theorem i recursion theory, and recent Chaitin’s theorem m information theory,
which are coming closer to more practical applications in physics, engineering, economics and theoretical
biology.
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The spatial models of the IPD are proving extremely useful as a new method of
simulating and analyzing how cooperative behavior and mutual help can influence species
evolution and the coexistence of diversity when territorial location is significant. It has been
aiding studies in environments that range from the molecular and genctic level to

phenotypic and social structures [CAMP85], [NOWA95], [LLOY95].

3.4.3 - Singular Reactive Strategies

The strategies that decide their moves taking into account the opponent’s previous
actions (C or D) are denominated reactive. In their simplest form, those rules only consider
the last iteration. The best known of those kind of strategies is the famous Tit-for-Tat
(TFT), which proved quite effective and robust in Axelrod’s computational tournaments of
the IPD, and since then, also in many other subsequent inquiries on the subject. For this
reason, TFT is regularly included in experiments regarding simulations of the IPD™. It has
been serving as a kind of a reference parameter in the investigation of other strategies’
proficiencies. TFT has been used also as a basis for some related variations, as for
example, the Suspicious TFT, whose only difference is that it starts defecting instead of

cooperating.

Employing another type of reactive strategies, Nowak and Sigmund [NOWA92]
analyzed the infinite IPD* under the aspect of ecological development performed by
heterogencous populations. In that model the players employ reactive strategies represented

by E; = (v, Pj» qj), Where y is the probability that a player cooperates in the first move and
p; © q; are the conditional probabilities of cooperating (C) after having received a C or D in
the previous iteration, respectively.

Several simulations of this model of the IPD were accomplished, where 99 distinct
reactive strategies (whose parameters p; and q; have been randomly chosen from uniformly

distributed values in the interval [0, 1]) participated together with TFT* — almost TFT—

* In the Fuzzy Iterated Prisoner’s Dilemma, whose model is presented and detailed in Chapter 5 of this
Dissertation, the traditional (dichotomic) TFT has been included in the population of strategies, along
with a gradual version (Fuzzy-TFT) and also another celebrated reactive strategy, PAVLOV.

“* The probability of occurring a next iteration, in that case, is taken to be equal to 1.
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(parameters p; =0.99 and q; =0.01 and Eqpp+= (0.99, 0.01))*. The pavoff matrix was the
same of Axelrod’s tournaments. The determination of the relative frequency x;' obtained by

particular strategy was given by

X = x./1(%) Eq. 3.5
f(avg)’

where xj is the frequency of i in the present generation, fi(x) the average gain of E; in the
existing population and f;wg =2 xifi(x) is the average gain of the whole population.

The ecological evolution observed during 1000 generations was rather interesting.
Starting the process with a diversified composition of strategies, around the 100%™
generation the rules that hardly ever played C (Earp = (0,0)) added up to practically 100%
of the population. By the 150" generation, the so-called Gemerous TFT* — GTFT
reappear. In the end, the winner was Egrer =(0.99, 0.33). The authors comment that the
final success of GTFT was only possible because a small group of TFT* survived near the
100" generation, when Eu;p had almost taken over. Hence, in this case TFT* performed

as a kind of catalyzer, making the victory of GTFT possible. In the generations above the

300t the average payoff of an iteration was about 3 (the reward R for mutual
cooperation), because at this time almost the entire population had already tumed to
Egrer's, implying in a high probability (0.99) of moves (C,C).

An equally remarkable contribution on the field was also given by Nowak and
Sigmund, regarding the robustmess of TFT in noisy™ environments [NOWA92],
[NOWA93b]. Those researchers found that TFT does not endure in simulations which,
mirroring real-life conditions, some mistakes are made [BEAR93]. Instead, another

strategy, employing the criteria [#in-Stat, Lose-Shift, succeeded in dominating the modeled

4! Because an infinite duration (w =1) is assumed, the memory of the first move will vanish, and so the
parameter y can stay out of the notation of E;.

* Generous is the generic denomination of the strategies whose p; and ¢ values are near 1 and 0,
respectively.

** The term noise refers to erroneous implementation or perception of strategies, e.g. trembling hand and
blurred minds. See section 3.3.2.
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populations in the long run. This reactive rule, dubbed PAVLOV, has a modus operandi
as straightforward as TFT, and it can be translated in the following: If in the previous
iteration both players made the same move (either CC or DD), PAVLOV cooperates.
Otherwise (CD or DC), defect.
For its performance, PAVLOV counted on four main advantageous attributes:

i. It is able to maintain cooperation (CC) and continuously receive the reward payoff;

. Itis provocable, defecting after receiving the sucker’s payoft (CD);

ui. It tries to restore mutual cooperation, playing C after a DD, but it is non-

exploitable, because it turns to defection after an eventual failure in its objective.

tv. It takes advantage of the exploitable partners, stockpiling points from all-out
cooperators (DC).
PAVLOV has the ability of quickly correcting errors. One drawback is that it fails

against an All-D*, because in this case an alternation of DC’s and DD’s would occur.

Still more recently, in simulations of the IPD with variable degrees of noise, Wu
and Axelrod [WU95] showed that the reactive strategy Contrite TFT* (CTFT) performed
better than both PAVLOV and GTFT when the noise level exceeded about 1%. Those

authors also argue against the robustness of PAVLOV in the investigated environments.

3.4.4 - The IPD with Finite Automata and Al-aided players

Lately, some lines of research regarding the performance and evolution of adaptive
strategies in the IPD have been increasingly making use of automata and several Al related
tools. The efforts in that direction include the use of Finite State Machines, Genetic
Algorithms, Evolutionary Computing and Neural Networks. This section reviews a

representative sample of these techniques applied to IPD simulations.

I - The IPD played by a pair of Finite State Machines (FSM'’s)

* Nevertheless, a population composed of PAVLOV strategists cannot be invaded by All-D’s if PAVLOV
is slightly less cooperative after a P than after a R. This behavior is mirrored by the conditional
probabilities of cooperating after each of the four possible previous outcomes, like, for instance
P(CICCE0.999, p(CICD)=0.001, p(CIDCHF0.001, p(CIDD=0.995 [MILIO3].

3 CTFT cooperates after the other player had defected in response to a previous CTFT defection.
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One of the first attempts to embed automatic decisions in IPD players mentioned in
the literature was contributed by Rubinstein [RUBI86], who simulated an IPD supergame™
with two FSM’s. In each iteration the players selected moves that depended on the
previous sequence of outcomes. A player’s global strategy contemplated all possible
histories of results, implementing decisions that have been formulated exclusively by its

respective FSM.

An FSM can represent a higher-order Markovian Process, and the finite machines

that took part in the cited supergame had the following characteristics:

1. A finite number of states, with an initial one;

ii. An output function, which defines the move (C or D) to be accomplished in the k®
iteration;

iii. A transition function that determines the (k+1)™ state depending on the k™ state and
opponent’s move.

In this model, the players’ problem is reduced to the choice of their FSM’s, since
the moves are completely determined by the selected machines. Under those conditions it is

also possible to find a pair of gains that is a Nash equilibrium®.

Besides the attainable results, another concern is the degree of the complexity™ of
the chosen FSM’s. A simple measure of this attribute is proposed, calculated only as a
function which associates operational costs proportionally to the number of internal states

of each FSM. The costs are independent from the utilization of the states during the game.

The type of FSM employed is a Moore Machine®, denoted M; for player i and

represented by a four-tuple {Q,, q7, As, i}, where

% A "supergame" is a game that is repeated an infinite number of times. Each iteration s also denominated a
period.

*" The PD does not have a_jointly admissible pair of strategies; Therefore, the game is not soluble in the
strict sense, though it is soluble in Nash’s sense. This result extends to the iterated PD. See Chapter 2 of
this Dissertation — .4 Review of Fundamental Topics of Game Theory.

* It is possible to specify more elaborated FSM’s complexity measures, as those dependent on the

automaton’s type of the transition function.

Moore Machines are automata whose output, at any time, is a direct function of the state to which the

machine transited. A more general class of automata are the Aealy Machines, in which the outputs derive

from the transitions that occur from state to state. The path followed (the sequence of states) until a

particular state may be ditferent, therefor mnfluencing the output. A Mealy machine can be always

logically replaced by a Moore automata, though requiring a greater number of states.
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« Qs the finite set of internal states of M;;

« q} € Qis the initial state;

o A QS with S; being the set of available strategies for player i

« Xi(q;) is player i’s strategy whenever M, is in state g;;

o i QixS; = Q (1)), meaning that 1y represents a transition function which defines
the next internal state with basis on the previous state and opponent’s move.

The choice of two particular FSM’s M; and M, completely define the sequence of
outcomes, as long as the introductory move is settled by a zero-length string (no results yet)
and the initial internal state ; of the machines. For example, player i’s first move may be
si=A(qi’) € Si. After j plays, M; changes its internal state to q’=pi(q;’, 5;").

A diagram is a convenient way of depicting a Finite State Machine. Figure 3.
portrays a FSM that uses the TFT strategy, with the characteristics Q={qc, qp}; q°= qc;
1e)=s and L(qe)=qs, for s(state)={C, D}.

C O
/.«--""— "\\" '/.-"‘ \,\\
\ﬁ( TN, ) 4 / Y )
START ——> l\ ¢ | k i |
J D N v
C:\‘n__rf" \‘\;ﬂ"‘[']
(output)ﬁ“\__ cC {output)

Figure 3.2 - A FSM that plays TFT in the IPD

After a certain number of iterations, being finite, the FSM’s will necessarily repeat
a pair of previously assumed states. Calling q'=(q,', q,), t=1, 2, ... the sequence of states of
M, and M,, there will come an occasion t;, t;>t; such that q" = q"*. The period t, is the
last of the cycle, because in t;+1 the machines go back to the state they had in t,. The

length or duration of the cycle is T= t,-t;+1.



3.30

Two types of equilibrium are considered: Nash’s and the semi-perfect, the latter
concept introduced by Rubinstein in the paper. Both equilibria regard the players’ ranking

of preferences in the choice of the FSM’s.

Defining the sequence of moves as s'=(s;, §;), t=1, 2, ..., the average pavoff =; of
S H ? 3 2 t=) p R

player i per cycle is given by Equation 3.6.

Ll

1 2
ni(Ml,Mz)=¥ > (s Eq. 3.6

t=t
1

For a generic FSM, M= (Q, ¢°, A, 1), M| denotes the number of states that exist in
the set Q, and M(q) is the machine whose initial state is q. Calling >y the lexicographic
order in ®’, the definition in Equation 3.7 means that a player’s ranking of preferences
regarding a feasible pair of machines is established first, by the greatest average payoff it
can achieve, and second, by the lesser number of states of its machine, provided the payoff

is not inferior.

(M, M) > (MY, M) if {m(My, M), - M| > (ML, M), - MY} Eq. 3.7

Two FSM’s M,” and M, are a Nash equilibrium if there is no other machine M, or

M, that verities either one of the relations depicted by Equations 3.8(a) and (b).
(M, M) M, M) Eq. 3.8(2)

(M}, My)= (M, M) Eq.3.8(h)

The main definition of the paper regards the semi-perfect equilibrium (SPE), which
asserts that a SPE holds if there is no iteration t, no M; and no M, that confirm the

inequalities of Equations 3.9(a) or (b).
My, M) M1(g'), M'x(g72)) Eq. 3.9(a)

(M 5(q'5), My)>2 (M'1(q"), M'2(g%)) Eq. 3.9(h)
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When a SPE occurs, there is no phase of the game in which one of the players
might want to alter its preference concerning the pair of FSM’s in order to accomplish its
next move. The distinction between the Nash and semi-perfect equilibria is that in the
former, the concept of optimality is linked to the selection of the machines at the beginning
of the game, while in the latter the preference about the FSM’s endures throughout the

game, before every iteration.

The solution of the game consists in finding a pair of machines for which the SPE
holds. For all stages of the process, each FSM must satisfy the conditions:

1. Neither player is able to increase its expected gain by unilaterally replacing its
machine;
ii. No player can reduce the number of internal states of its machine;

The approach of the IPD replacing conventional rational players by finite state
machines is quite interesting, and has been giving margin to several further developments.
In a subsequent paper, Abreu and Rubinstein [ABRE88] extended the analysis of the IPD
plaved by FSM’s, exploring aspects of Nash equilibrium and refining the notion of
machine complexity, with its respective implications in the costs, gains and optimal
machine selection.

Il - Genetic Algorithms

Using the Al technique Genetic Algorithms (GA) developed by John Holland
[HOLL75], Axelrod examined the IPD where the population of players was submitted to
an evolutionary adaptive process. The GA method performs varation and selection of
individuals, taken as possible candidates for an optimal solution of a problem. Under the
GA approach the level of abstraction considered is the Genotype, usually represented by a
binary coding.

" In contrast to his previous tournaments, the restriction of fixed strategies was
relaxed [AXEL87]. Each entry was denoted by a string with 70 positions (bits, or genes),
that could be zero (DEFECT) or one (COOPERATE). The criterion for designating a generic

strategy took into account all the possible combinations of the three previous moves, which
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were employed to define the current action™. The resulting total number of strategies is 27°.
This number is so huge, that it is intractable even to brute strength computing. Axelrod
commented that, “if a computer had examined those strategies at the rate of 100 per
second since the beginning of the umiverse, less than one percent would have been
checked by now.” So, the idea was to initialize a set of entries that would evolve by means
of selection by relative fitness and generation of offspring by crossover and mutation. One
of the main objectives of the experiment was to find out whether the GA could discover

the TIT-FOR-TAT strategy [LEVY92].

Again, a computational simulation was programmed and implemented. The
population of players to take part in the simulations comprised 20 random strategies, plus 8
other selected representatives, which were picked from the best performing strategies from
Axelrod’s second computational tournament”. A round of simulations involved 350
generations with 40 trials, each comprising 24000 iterations. Each game consisted of 151
moves per player, the same average from the original tournaments. The most successful
strategies were coupled after all iterations in a given generation had been accomplished.

The criterion employed by Axelrod was to allow one coupling for the average rules
(those inside the interval +1 standard deviation), two couplings to rules with upper
punctuation (above 1 s.d.) and no couplings to the inferior strategics. Each couple
generated two offspring, by means of the crossover GA operation. The other GA operator

used was mutation (changing a C for a D and vice-versa)™.

Two different series of simulations were run. In the first, the 20 randomly selected
strategies confronted only the eight mentioned representatives, which remained static. For

this series, the flowchart of operations subsumes the following steps:

* The 70-position chromosome resulted from a string of 64 bits, which responded for the 4°=64 possible
combinations derived from the four attainable outcomes (CC, CD, DC and DD) in the preceding three
interactions, plus six additional bits regarding the player’s move for the initial combinations of under
three interactions. Thus there were 27° possible strategies.

! The second tournament (see section 3.3.2) had 62 entries, and the eight chosen rules have been
considered as a reasonable account for how well a given strategy did with the entire set [FOGE94]. Their
special feature was the "representativeness” | under the view that the score that a particular rule would get
when ran against all others was highly correlated with the gain that could be obtained with the eight
representatives.

3% Crossover and mutation probabilities averaged one and one-half per generation, respectively.
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1. Imtuialize a population of 20 randomly sclected strategies;

2. Perform a round-robin tournament of each random strategy against the 8 special
representatives and record the weighted average payoff;

3. Determine the number of offspring from each parent policy proportionally to their
performance;

4. Create offspring by crossover and mutation;

5. Return to step 2.

By the end of the experiment, Axelrod noted that the GA method evolved
populations whose median performance, in terms of accumulated gains®™, was about the

same as TFT, with behaviors also resembling it.

The second sequence of experiments consisted of ten trials and required that the
evolving policies played facing each other, now excluding the eight fixed rules. The
complexity of this new environment greatly increased, because now the players confronted
opponents that were also concurrently evolving. The highly competitive process meant that
a rule might either match its adversaries’ ever increasing efficacy or become extinct by the

selection mechanism.

As a general outline, the population departed from initial cooperation, but inclined
towards equal replication whenever a cooperative partner was recognized. The population’s
average score raised along the process, what meant that the maturated participants in the

game developed the skill of differentiating cooperators from defectors.

Il - Evolutionary Programming

Another important contribution to the IPD as played by logical stimulus-response
devices was provided by Fogel [FOGE93a]*, [FOGE94a], [FOGE94b], [FOGE9%4c¢],
[FOGE95], who studied the evolution of strategies in a population of FSM’s. Fogel
employed the Al technique known as evolutionary programming (EP) [FOGE66] to

evolve the finite machines’ behaviors along the iterations.

** The payoff matrix was the same employed in the original contests.
> An update of this paper is provided by Harrald and Fogel [HARR95].
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Like Genetic Algorithms (GA) and Evolution Strategies (ES)”®, Evolutionary
Programming is one of the lines of investigation in the broader field of Evolutionary
Computation. Given its characteristics, EP has been successfully applied to simulated
evolution in games, operating directly on finite populations with varying mutation rates. On
the other hand, ESS analysis requires infinite populations and no mutation, just ecological
selection [SMIT82].

Regarding the Prisoner’s Dilemma, EP, in contrast to the GA approach, does not
use a mapping of the previous moves as a background for formulating the players’
strategies. Instead, EP depicts the behavior of evolving individuals emploving Finite State
Machines (FSM’s) [FOGE%4c]. As a sequence to an earlier investigation [FOGE91],
Fogel performed simulations of the IPD with FSM’s according to the following procedure

[FOGE93a):

1. Imtialize a population of 100 FSM’s at random starting with 1 to 5 states, but being

allowed to possess a maximum of 8 states™ in the course of the process;

[

Pertorm a round-robin tournament with 151 iterations per player, what constitutes

a generation (the maximum number of generations allowed per trial was 200);
3. Assign the respective payotls to the competitors;
4. Evaluate fitness, in terms of the accumulated payoffs;

5. Select the 50 best ranked machines to become parents of an equal number of
offspring, which replace the 50 machines with the lowest punctuation in the next
generation;

% Developed by Schwefel [SCHW65] and Rechenberg [RECH73]. The essential differences between ES
and EP are: (1)ES rely on strict deterministic selection. EP typically emphasizes the probabilistic nature of
selection by conducting a stochastic tournament for survival at each generation. The probability that a
particular trial solution will be maintained is made a function of its rank in the population. (2) ES typically
abstracts coding structures as analogues of individuals. EP typically abstracts coding structures as
analogues of distinct species (reproductive populations). Therefore, ES may use recombination
operations to generate new frials [BACK93], but EP does not, as there is no sexual communication
between species [FOGE93b].

* Fogel argues that “Eight-state FSM’s do not subsume all the behaviors that could be generated under the
coding of Axelrod [AXEL87], but do allow for a dependence on sequences of greater than third order.”
Furthermore, “this limit (of eight states) was chosen to provide a reasonable chance for explaining the
behavior of any machine through examination of its structure.” Op. cit [FOGES5], p. 209.
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6. Apply mutation to the parents in order to originate the offspring — one offspring
per parent. Mutation could be one of the six modes [FOGE66]:

Change an output symbol (C or D)”;

Change a state transition;

Change start state;

Add a state;

Delete a state;

Change start symbol for the first move.
7. Go to step 2.

In that experiment, in despite of an initial tendency to mutual defection, after 5 to
10 generations, the evolution of the machines brought about the traditional reciprocating
behavior, in which the players cooperate with equivalent policy holders and defect
otherwise. Such an evolved environment turned out to be quite inhospit to defectors, which
were not able to persist. Those conclusions follow the same pattern found by Axelrod

[AXELS$7].

To find out whether the population size affected the rate at which cooperative
behavior evolved, Fogel accomplished another set of experiments, with variable population

sizes: 50, 100, 250, 500 and 1000 parents.

Figure 3.3 shows a diagram of the best evolved FSM for a population of 50

parents.

7 The input symbols are (CC), (CD), (DC) and (DD).
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Figure 3.3 - Schematic Diagram of a Best Evolved FSM with Seven States

The IPD with FSM players utilized the traditional dichotomic form of the game,
with only the discrete inputs and outputs composed exclusively of C’s and D’s. However,

in a subsequent work, Fogel investigated a modified IPD with continuous actions between

those two extremes, that is discussed next.

lIl - Evolutionary Simulation of the IPD with Neural Networks

In the IPD, a strategy can be considered a transfer function, which transforms a
given sequence of inputs into an output. In the preceding case, the FSM’s were an
adequate representation for evolving strategies because of the discrete characteristic of both
input and output. But if those variables are allowed to vary continuous within an interval,
the problem of representing players by means of logical stimulus-response devices cannot
be handled by automata with a finite number of states. To overcome that restriction, Multi-

Laver Perceptrons™ (MLP’s) can provide an effective form of replicating the contestants.

® A Perceptron is a feedforward network with one output node (or meuron) that leams a separating
hyperplane in a pattern space. The simplest model of the perceptron has two layers, one for the mputs
{activations) and another for the outputs (signals). When hidden (interinediary) layers are added, the term

Mudti-Layer Perceptron is used [ROSE62], [ANDES8], [KOSK92].
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Using this method, Fogel [FOGE94¢] and Harrald [HARR95] performed simulations of
the IPD. Each player’s strategy was depicted by an MLP with 6 input nodes, a prescribed
number of hidden nodes and a single output node. The output
(t = current move) was determined having as basis the three preceding interactions

(t-1, t-2, t-3). Figure 3.4 illustrates the Multi-Layer Perceptron employed™.

“w— player
(0=

/-f/ompnt node

Figure 3.4 - A Multi-Layer Perceptron for the IPD with continuous actions and Payoffs

A planar approximation function supplied the payoffs, which varied in the interval
[-0.25, 4.75]. The payoffs were calculated as a function of the players’ pair of actions o
(player A) and P (player B). o and B assumed values between -1 and 1, which correspond
to full defection and full cooperation, respectively™. The payoff to player A is supplied by
Equation 3.10.

* From [FOGE%4c].
% The nodes (or neurons) act as functions, transducing an input activation into an output signal, bounded to
a specified interval. An example of a sigmoidal function is the differentiable logistic function

S(x) = 1—_m , which approaches the threshold function (non-differentiable) when the constant ¢
+e

increases. S(x) transduces negative activations to zero signals, and positive activations to the unity signal.

Zero activation corresponds to the threshold value, that can be arbitranly transduced to 1, 0 or the

previous signal value. In Fogel’s model, all nodes of the MLP used sigmoidal filters scaled to {-1, 1]. Op.

cit. [KOSK92], p. 39-40.




Ao, B)=-0.750 + 1.758 + 2.25. Eq. 3.10

The routine for the evolutionary simulation involved five main steps [FOGE94c]:

1. A population of a chosen number of networks (MLP’s) was initialized at random,
with all weights and biases starting uniformly distributed over [-0.5, 0.5];

2. Each parent network generated an offspring, which was done by adding a standard
gaussian random variable to every weight and bias term;

3. All networks played against each other in a round-robin toumament with 151
iterations per competitor, constituting a generation. The fitness of each MLP was
taken as its average payoff per iteration;

4. After ranked according to their respective fitness, the top half was selected as new
parents;

5. The procedure returned to step 2 until 500 generations had been executed.

Two sets of experiments were accomplished employing this method. The first used
networks with 6 input neurons, 2 neurons in the hidden layer and one output node (6-2-1).
The second framework had an increased complexity, with 20 nodes in the hidden layer,
and the same input/output configuration (6-20-1). For each setting ten trials were
conducted, with populations sizes of 10, 20, 30, and 50 parents.

At the end of the series of experiments, the following general results were achieved:

e The 6-2-1 MLP’s did not show a tendency for cooperative behavior for any
population size;

e When the population size was above a minimum value, a mutual cooperation trend
was likely to develop in the 6-20-1 networks. In one of the trials (#4), the average
score reached about 2.9 points for the (6-20-1) MLP with 50 parents.

e Even when a cooperative tendency arose, it did not incline towards complete
cooperation.

e Although total and imreversible defection was generally associated with the
stmulations using the (6-2-1) networks, it was also likely to be acquired by the
networks of the (6-20-1) setting.



)
')
O

The simulations provided several significant findings regarding the tradeoff between
methodological features of the process employved and other broader aspects of the IPD.

Some of the conclusions are listed below.

e Mutual cooperation required a minimum complexity for the players (MLP’s),
which is equivalent to the availability of flexible behaviors;

o The (6-20-1) networks were capable of reasonably sustainable cooperation, but not
the (6-2-1) MLP’s.
o The level of cooperation lacked both completeness and stability, with the parents’

mean payoff peaking at about 3.0 and declining thereafter, as the number of

generations grew. Total and unrestricted cooperation would have yielded 3.25.

e No level of cooperation seemed to show stability. The more steady evolved policy
was mutual defection, with a very scarce tendency towards the restoration of

cooperation.

o The pc;pulation size appeared to affect the chance of the development of
cooperative behavior in (6-20-1) networks, though quick instability in the mean
payoff could be observed even in populations of 30 or 50 MLP’s.

Fogel suggests further research on the subject. One point that remained unsettled,
for example, was that the average payoff fluctuated between nearly complete cooperation,
neutrality and nearly complete defection within one or only a few generations. He
speculates about the reason why that happened, that could be the result of parents
interacting with diverse offspring or simply caused by the replacement of the parents by

their offspring.

3.5 - The One-sided Prisoner’s Dilemma

The traditional PD is a symmetric game, in the sense that the players have the same
available set of strategies and also the payoffs are equivalent, if the actions are reversed.
However, there are other games with resembling properties in which an identical dilemma
persists for only one of the players, which have been termed omne-sided Prisoner’s
Dilemmas (OSPD) [RASM89]. The OSPD does not obey the specifications of the
original PD, because neither the strategies nor the payoffs are symmetric. In the OSPD the



pair of actions (C, C) is strictly preferred by at least one of the participants, what departs
from the usual favored (D, C). The product quality game® is an example of an one-sided
PD. Its simplest version is presented in Figure 3.5 in its normal form with arbitrarily

selected numeric payofls.

Seller

Figure 3.5 - Normal Form of the Product Quality Game - An one-sided PD

For the game depicted above, if it is played only once, it is easy to see that the
Consumer would like that both parties cooperate (C, C), while the Seller values (D, C)
most. The Seller has two options (strategies): Be sonest (COOPERATE), offering a product
of adequate quality, or deceit (DEFECT) by supplving an inferior article. The Consumer
cannot discern the quality before the purchase is effectuated. If the information is
symmetric, that is, if the Seller also does not know the Consumer’s decision, an one-sided
PD is present. It would be better for both if the Seller cooperated, but its Weakly Dominant
strategy is deceit, hence the Consumer boycotts. Therefore, the OSPD possess (D, D) as
both Nash and Iterated Dominant strategy equilibria, though not a Dominant equilibrium®.

In case the OSPD is iterated with a finite number of repetitions, the equilibria found
in the one-shot version remains valid, as demonstrated by Selten in his paper “The

Chainstore Paradox™ [SELT78]. On the other hand, if either infinite repetitions are

®! From op. cit. [RASMS89], p. 95.

€ See Chapter 2 - .4 Review of Fundamental Topics of Game Theory

5 In that paper, Selten discusses the occurrence of inconsistencies between logical reasoning (backward and
forward induction), as prescribed by Game theory, and plausible human behavior. Selten states that *...in
this game, well informed players are expected to disobey the theoretic normative recommendations.”.



3.41

allowed or a reputation effect” is to be considered, the Chainstore Paradox does not apply.
In the former case, diverse equilibria can hold, as a consequence of the Folk Theorem®.

The one-sided PD is specially important for this dissertation, because it is the basic
paradigm adopted in the model developed in Chapter for the practical application of the
Fuzzy IPD.

3.6 - Applications of PD-related Games to economic problems

Aside from other scientific areas of study already broached, the Prisoner’s
Dilemma is likewise quite pervasive in economic models. It is often considered the
archetypal choice problem, because it contraries some basic tenets of liberal economics®™,
and “..is arguably the most influential discovery in game theory since its inception.”
[POUN92].

In this section, although a comprehensive review is impracticable, given its extent, a

few salient applications of the PD to economic problems are considered.

3.6.1 - International Trade Tariff Policy

If a country that has an important share in international commerce, it can
manipulate prices in its own advantage by the adequate setting of imports and exports
tariffs. But if two countries simultaneously decide to impose protective tarifls, the outcome
may be unfavorable for both. For any participant in this dispute, the most preferred result
is that it can establish high restrictions while the other keeps its tariffs low. This situation
corresponds to a DEFECT-COOPERATE outcome in a traditional Prisoner’s Dilemma. The
next best desired outcomes are (C, C), (D, D) and (C, D), in that order. In this PD-like
conflict of interest the equilibrium requirement would make the nations ending up with a

mutual defection that us disadvantageous for both [MCMI92]. It should be observed that

* See op. cit. [RASMS9], p. 94-98.

® See op. cit. [RASMS9], p. 91-93.

6 Liberal doctrines claim that the group welfare is furthered by the independent pursuit of individual
interests op. cit. [BACH77], p. 63.
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even if agreements are reached, they are unable to be enforced by any authority, and,
hence, self-enforcement must be present.

The self-enforcing mechanism, in that case, is provided by the rules of GATTY
organization. They specify that whenever a participant departs from the contract and raises
its rates, an immediate and proportional retaliation from the affected countries should be
accomplished, which is done by also raising their own tariffs on the defector’s exports.

Although the mentioned sanction procedure is sometimes seen as negative, it is in
fact the only basis for supporting the cooperative agreements’ abiding, therefore being in
the collective interest of the treaty’s signatories. One of GATT’s goals is to make its
regulations easily observed and understandable by its members, thereby assuring the
transparency of the process. Accordingly, the retaliatory strategies in the iterated game are

effective only if eventual deviations can be detected, which is ensured by clear norms®.

3.6.2 - Share Takeover®

Assume that a company is being mismanaged, and in those circumstances, a share
is worth v. If the management team is dismissed, the share’s value would raise to (v+x), but
no sharcholder has enough shares to take that action alone. Suppose an outside bidder
makes a tender offer, valid for any number of shares offered, but conditional upon
obtaining a majority, that is, more than 50% of the shares. Any bid p per share between v
and (v+x) is attractive to both bidder and shareholders.

What might happen is that the sharcholders will not accept the offer. This is so
because the bidder would not make any profit if it bids more than (v+x), therefore those
are dominated strategies. On the other hand, an individual shareholder would be willing to
hold out for the new (v+x) value, hence refusing p (p< (v+x)). This constitutes a typical
[free-rider situation, where every participant is refusing to take part in the arrangement, but
expects to enjoy the resulting advantages when the deal is accomplished, thanks .to the

efforts of others who accepted less.

% General Agreement on Tariffs and Trade.

% If some non-cooperative conducts can be concealed and put in practice, the equilibrium point of the game
would tend towards the traditional defective solution

% This example was provided by Rasmusen, in op. cit. [RASM89], p. 301-302.
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A Prisoner’s Dilemma plight turns out in takeovers if the bidder employs a fwo-fie
tender offer. For instance, suppose the firm’s value is 30, and a monopolist bidder
proposes 10 for 51% of the stock and 5 for the other 49%, conditional upon succeeding in
obtaining the control of the company. If a sharecholder does not tender, it may lose the
opportunity of being included in the 51% who received 10, and will get only 5 afterwards.
Sell, which stands for DEFECT, is a weakly dominant strategy, and all would profit refusing

in block to accept the offer.

3.6.3 - An Oligopoly Game

For this instance, let us consider the simplest form of oligopoly, the duopol, in
which the number of participating sellers is two. In this environment, a similar product is
offered in the market by both firms A and B. The Cournor model is assumed, in the sense
that the competitors choose their quantities and the price is a function of the total number
of units produced. The selling price of a firm affects the other regarding its market share.

A numerical example™ is provided in order to illustrate the game, with the cost and

market demand (market clearing price) functions given by Equations 3.11(a), (b) and 3.12.

ca=4-gatgs  (A'scost) Eq. 3.11(2)
cs=5-gp+qp (B’s cost) Eq. 3.11(b)

p=10-2(gs + gp)  (market demand) Eq. 3.12

The strategies of the duopolist firms is independently select a quantity output’. The
available outputs were arbitrarily chosen as 0.92, 0.94 and 1.17 for ¢, and 0.41, 0.74 and
0.94 for gs. .

’® The example was borrowed from op. cit. [BACH77], p. 66.

"' A continuous output would vield an infinite collection of strategies; To avoid this, the strategy set 1s
discretised, which consists in an approximation that gets better as the number of possible strategies
increase. Also, the utilizy of each player is taken as the monetary profit attained.
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Using those values and Equations 3.11(a), (b) and 3.12, the payoff matrix of Figure

3.6 results.
gB
(3.14, 1.06)™ (2.53, 1.38) (2.16, 1.26)
qa (3,16, 1.04) (2.54, 1.35)%¢ (2.17, 1.23)
(3.21, 0.85) (2.44, 1.01) (1.84, 0.78)%

Figure 3.6 - Payoff Matrix of a Cournot Duopolistic Game

The cell marked EQ is the only Nash equilibrium pair, because neither player would
want to unilaterally deviate from it, provided the other remains fixed. On the other hand,
the pair JM stands for the joint maximum profit. Should a collusion be made possible,
meaning an arrangement between the players that would split the total gain, both could be
better off’”. In this way, the top left sub-matrix (marked in bold contour) likens a PD”,

because the dominance principle impels the players to EQ.

The cell with the EP superscript corresponds to the efficient point, in the sense that
it represents the combination of productions such that marginal cost equals price, and it is

only possible by outside ruling.

The current example has assumed no reciprocal effects in-the total production costs
of each firm. Nonetheless, even if the quantities produced by one firm influences the costs

of the other, a quasi-PD again may result, though with non-symmetrical payoffs’.

7 The total profit in EQ is 3.89, whereas in JM it is 4.20; The additional total gain of 0.31 could be shared in
some way that would be certainly advantageous for both duopolists.

* There is just a resemblance with a PD, not an identity, because B has only the prospect of reaching an
effective agreement with A regarding the extra profits, and not a possible gain as those derived solely
from the game’s rules. In a PD, besides the dominance force, the cooperative outcome (mirrored by JM
in this example), is actually Pareto-better (see chapter 2 of this dissertation).

™ See op. cit. [BACH77), p. 74.



3.7 - Concluding Remarks

The existing and potential applications of the PD paradigm to scientific and
practical problems are numerous. In many situations, the model may not be a real PD in
the traditional sense, with its respective rules. But in most instances the essence of the same
dilemma persists, with intuition defying rationality, as in the 2 x 2 games Chicken or Stag
Hunt, briefly discussed in section 3.2.1. This is also the case of the one-sided PD (section
3.5) and of the economic applications featured in section 3.6. The potential is vast. For
instance, Hardin [HARD82] provides a comprehensive account of the free rider and the
provision of public goods, under a multi-person PD approach, and Rasmusen [RASM89]

llustrates several problems regarding Industrial Organization using PD-like paradigms.

Under a more theoretical point-of-view, but still with a orientation towards the
understanding of practical questions, Brams recently developed what he named “Theory of
Moves” (TOM) [BRAM93], where the PD is employed as one point-of-reference and the
addition of a dynamic dimension to classical game theory is proposed. TOM also focuses
on interdependent strategic situations in which the outcome is conditional to the choices
that all players make. Furthermore, it radically alters the rules of playing, enabling the
participants in the game to look ahead —sometimes several steps— before making a move.
Using TOM, in the PD there are two nonmyopic” equilibia (NME’s) which are (D, D)
and (C, C). This angle of the PD was well explored in a paper co-authored by the author
of this dissertation [KAND95].

One of the most important restrictions for the use of the original PD in modeling
real-life problems is its dichotomic feature, with only two actions permitted. To overcome
this difficulty, this author proposed a Fuzzy IPD, in which the game could be played with
moves varying continuously in an interval whose extremes coincide with total cooperation
and defection. In addition, the players would make their decisions based on gualitative
reasoning, using fuzzy expert systems as a decision support system. Employing this

method, some investigations regarding the robustness and effectiveness of acclaimed

7 A nonmyopic equilibrium is associated with the players’ regard at the future consequences of their
actions, including the impact that they might have on the opponents’ reactions [BRAM94].



strategies such as TFT and PAVLOV against other general rules were performed using a
computational simulation program. The description and detailing of the whole procedure
was made in a paper co-written by this author [BORG95] and is also presented as the

Chapter 5 of the present Dissertation.



Chapter 4

A Review of Fuzzy Set Theory and Expert Systems

4.1- Introduction

The introduction of the notions pertaining fuzzy sets was first made by Lotfi Zadeh
[ZADEG65], and consisted in a extension of the previously existent concepts regarding the
theory of crisp sets. As a comerstone of fuzzy set theory is fuzzy logic. In the classical
approach, a statement can only be either true or false, therefore assuming truth values of
zero and one, respectively. Notwithstanding, in the realm of fuzzy logic the truth value
attributed to any assertion may range continuously between these two extremes, thus
having as its underlying foundation a multivalued logic [YAGE94]. For example, given a
declaration P, it can be said that it has a truth value of p, which can be modified, in the
same way as in the traditional theory, by the usual operators such as NOT, AND, OR,
IMPLIES and IF AND ONLY IF [STEW93].

Fuzzy logic can represent a form of uncertainty and deals with qualitative
characteristics of an object, which may be vague or lacking precision, such as high, low,
expensive, etc. Some of its most common and successful applications regard decision or
control problems where perceptions, intuitions, subjective judgments and adjustments are
involved. Also, it is ofien the case that a system under analysis can only be described by
nonlinear relations and very difficult to be mathematically modeled. In this area, too, fuzzy

logic may prove to be a powerful tool, vielding quite satisfactory results.

In this chapter a review of the fundamental concepts of tuzzy logic, fuzzy measures
and fuzzy expert systems are presented. The objective is to provide a background of the

theory which is employed in other subsequent parts of the Dissertation, particularly in a



fuzzy approach of the Prisoner’s Dilemma (Chapter 5) and in a model of this game
directed to an application to a practical problem (Chapter 6).

The structure of the survey included in this chapter includes the following main

topics:
a) Fuzzy Measures, Belief and Fuzzy Set Theory;
b) Operations on Fuzzy sets;
¢) Fuzzy Expert Systems.

The development of the theory regarding each of the mentioned topics has already
reached a very advanced and specialized level, and the quantity of related technical material
is vast. So, for the sake of objectiveness, only the paramount and specific aspects of the
mentioned subjects are addressed. A list of bibliographic references is provided, where in-

deep knowledge of the themes can be found.

4.2 - Fuzzy Measures and Fuzzy Set Theory
4.2.1 - General discussion

Since its introduction, along its development, and even presently, the fuzzy set
theory has been criticized by many scientists and rescarchers. A large portion of the
resistance against this field seems to derive from the idea that the results that can be
achieved by means of modeling problems with the tools provided by fuzzy set theory may
also be reached employing statistics and classical probability theory, and therefore there is
no case for fuzziness'. Nevertheless, lots of successful and efficient practical applications in
a wide range of products and problems have demonstrated that the use of fuzzy sets can
yield better results in many circumstances. Most certainly, there should be no reasons for
such (sometimes) fierce dispute. Both fields of study have their merits and there are
numerous specitic areas of scientific interest where one approach is able to perform better

than the other. The key proposition for the resolution of the controversy may lie in the fact

! Many critics claim that fiizziness can be replaced by subjective probability, which is usually defined by the
degree of belief a person has that an event will occur [SMIT87]. This thought is a basis for Bayesian
reasoning, whose adepts are some of the most critical of fuzzy set theory [STAL77], [LINDg2].
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that the concept of fuzzy sets represent a distinctive class of uncertainty that is not
probabilistic in its essence. Furthermore, one has also to consider the notions of ambiguity,
generality’ and vagueness. Then, how should fuzziness be distinguished from those
concepts? Zadeh [ZADE76], [ZADE79] claims that fuzziness is one component of

vagueness. He gives an example using two statements™:

1. “Ruth has dark skin and owns a red Porsche.”

2. “Ruth lives somewhere near Berkeley.”

In statement 1. the adjectives “dark” and “red” are fuzzy because they have gradations, but
they are not ambiguous. On the other hand, “somewhere near” in phrase 2. contains an
ambiguity, since in this case, rather than gradation, the imprecision refers to Ruth’s
location. Following Zadeh’s definition, vagueness is a combination of both fuzziness and

ambiguity.

For clanty, consider a universe of discourse X and a subset S < X. The
characteristic function ug(x) is a mapping us: X — [0, 1]. If S is a crisp subset of X, ug(x)
can only assume the values 0 or 1, meaning that x cither is or is not a member of S. If S is
a fuzzy subset of X, than ug(x) is usually called the membership function of S, and the

values it assumes are grades of membership of an element X in S.

It is important to make a distinction between the grade of membership in a fuzzy
set, that has unsharp boundaries, and the degree of certainty with which a given element
belongs to a crisp set. The latter is termed a fuzzy measure, and its concept was first
presented by Sugeno[SUGE77]. There are several classes of fuzzy measures, but they are
always defined by a function which assigns to each subset of the universe of discourse X a

number between zero and one.

Also called nonspecificity.
Op. Cit. [SMIT’7], p.11.

5
2
3
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4.2.2 - Fuzzy Measures

A fuzzy measure is defined by a function g: P(X) — [0,1], where P(X) is the
power set of crisp subsets of the universe of discourse X'. The function g then maps every
subset A € P(X) in the interval [0,1], and must obey the following three axioms of fuzzy
measures” [WANG92]:

e Axiom gl (boundary condition). g(0)=0 and g(X)=1;
e Axiom g2 (monotonicity): ¥V A, B € P(X), if A C B, then g (A) < g(B);
» Axiom g3 ( continuity): For every sequence (A,, i <N) of subsets of X, if either

AjC A, C ... or A2 A; D ... (that is, the sequence is monotonic), then

lim g(A;) = glim(A;)
The diagram shown in Figure 4.1, extracted from op. cit. [WANG92], illustrates

the relationship among the main classes of Fuzzy Measures.

Fuzzy Measures

Probability Plausibifity
Belief Weasures Meosures Measures
b
™= Mathernatical
Theoty of Luidence

Figure 4.1 - Relationship among the Main Classes of Fuzzy Measures

* The power set P(X) is the collection of all subsets of X, and can usually be replaced by a Borel field B or
sigia-field defined on X [KOSK92].
* Axiom gl means that independently of the amount of evidence, any element does not belong to the empty
set and belongs to the universal set.
Axiom g2 states that the evidence of the membership of an element in a subset should be less or equal
than the evidence of the membership of that element in a set which contains that subset.
Axiom g3 requires that g(.) be a continuous function.
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In this part of the dissertation, the presentation will be restrained to some of the
fundamental topics regarding Belief and Plausibility Measures, since those are the
techniques that were adopted for the formulation of the model of application included in
Chapter 6.

4.2.3 - Belief and Plausibility Measures

The application of Belief and Plausibility Measures has its origin in the Theory of
Ewvidence, also called Dempster-Shafer Theory, after its founders [DEMP67], [SHAF76].

Both belief and plausibility measures consist of a mapping of the power set of X in

the interval [0, 1], that is:
Bel: P(X) —> [0,1], and
P P(X) — [0,1].
Additionally to Axioms g1, g2 and g3, the following axioms for Be/ and P/ must be
satisfied, respectively, where A;, A,, ..., A, are subsets of A.
Bel(Ay 1 Az mA) 2 3 Bel(A) - 3 Bel(Aim A) + ..+ (1™ Bel(A; ~ Ay ... A
| - Eq. 4.1
PUA M Ar A S 3 PIAY - 3 PAIO AD + .F D™ PUA, U Ay ... UAY)
| - Eq. 4.2
Making n=2, Aj= Aand A, = A (the complement of A), Equations 4.1 and 4.2
vield the basic inequalities of belief and plausibility measures, respectively.
Bel(A) + Bel(A) < 1; Eq 4.3

PKA)+PKA )= 1. Eq. 4.4
Belief and plausibility measures are associated in the manner depicted by Equations

4.5 and 4.6.
PIA)=1-Bel(A) Eq.45

Bel(A)=1-PI(A) Eq. 4.6
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A function m(.), such that m: P(X) — [0,1], m(&)=0 and " m(A) =1 can be
4 P

used to express Bel(.) and PI(.). Considering the existence of uncertainty in the proposition
that a particular clement of X belongs to A, m(A) stands for the degree of evidence that
supports that claim, often called a mass function or a basic probability assignment. There
1s an important distinction between the meaning of m(A), which is defined on subsets A <

P(X), and that of probability distribution functions, defined on elements x < X%,

It can be seen (see footnote 6) that m(.) does not satisfy the axioms of fuzzy

measures, but it is used to determine Bel(.) and PI(.).

Bel(A) = z m(B) Eq. 4.7
BcA
PiA)= > m(B) Eq. 4.8
B AZQ

The connection between m(A) and Bel(A) is that the former denotes the degree of
evidence that a particular element x € X belongs precisely to a set A, while the latter
designates the total beliet that x belongs to A together with other specific subsets of A.

PI(A), on its turn, includes the amount of evidence assigned to Bel(A) plus the
belief that x belongs to other subsets whose intersections with A are not empty sets, that is,
overlap with A. From these definitions it can be verified that the measure PI(.) is less

restrictive than Bel( A), consequently entailing the relation PI(A) = Bel(A).

A set A is denominated a focal clement of m if m(A) > 0. This definition means
that the _evidence denoted by m refers to A, its focus. A bodv of evidence is a list of the
focal elements of s with their associated values m(A).

The values Bel(A) and PI(A) can be viewed as the lower and upper bounds of a

probability interval assigned to a focal element A = X. A notable feature of the Theory of

¢ The function m(.) has the following characteristics:
e Itis possible that m(X)1;
e [tis not necessary that m(A} < m(B)if A c B;
e m(A)and m(A ) may be unrelated.
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Evidence is that it can denote degrees of ignorance about a proposition. From Equation

4.3, one can see that a certain amount of belief regarding a set A does not imply that the

remaining belief should be assigned to the complement of A, A [YEN90].

A very illustrative example of the use of Belief Functions is supplied by Thomas
Strat [STRAT90]. This author uses the term support instead of belief to designate the
lower bound of the probability interval’. The denomination support (Spt) is also adopted in
the present work, notably regarding the elaboration of the decision process of the

Consumers participating in the game described in Chapter 6.

Consider a Carnival Wheel with ten equivalent sectors, yielding the gain printed in
each sector. Assume that there is a hidden sector, marked with a “?”, that can carry any of
the other wisible values. The problem is to compute an estimation of the prize that should
be expected trom such gambling device, and compare it with a fixed cost associated to the

privilege of spinning the carnival wheel.

Figure 4.2 - Carnival Wheel with a hidden sector

The space X of possible outcomes is {1, 5, 10, 20}. The mass function, support
and plausibility for the Carnival Wheel® of Figure 4.2 are listed in Table 4.1.

7 The upper bound remains with the usual denomination, i. e., plausibility (P).
¥ Note that the {1}, {5}, {10}, {20} and {1, 5, 10, 20} are treated as focal elements.
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m({1})=0.4 [Spe({1}}, PI({1})] = [0.4, 0.5]
m({5})=0.2 [SpH({5}}, PK{SH] = [0.2, 0.3]
m({10}) = 0.2 [SpH({10}}, PI{10})] = [0.2, 0.3]
m(£203) = 0.1 [Spi({20}}, PK{20})] = [0.1, 0.2]
m({1, 5, 10, 203) = 0.1

Table 4.1 - Mass function and Belief intervals for the Carnival Wheel of Figure 4.2

In respect to the hidden sector, there is a certain amount of ignorance about its real
value. It is only known that it ranges from the most pessimistic number (in the view of the
gambler who is paying for the privilege of spinning the wheel), 1, to the most optimistic,
20. Then, the expected value interval of the prize is defined as:

E(x) = [E«x), E ().
E.(x) and E'(x) are the lower and upper bounds of the interval, given by:

E(x)= 3 inf (A) * m(A)

A X

E'(x)= 3 sup (A) » m(A)°
A cX

Computing E(x) using the numerical values of the example results in
E(xy = [5.50. 7.40]. If E(x) is the parameter used by the gambler to make a decision on
whether to accept or not the game, it can be said that the answer is definitely yes for a
premium (the price of the bet) less than 5.50, and clearly no if it is greater than 7.40.
However, what should be done if the premium lies in the interval [5.50, 7.40]?

Assuming that a probabilistic treatment shall be used to solve the problem, one
could resource to the generalized insufficient reason principle [DUBOS82]. This method
proposes an equal distribution of the 0.1 probability assigned to the hidden sector among
all its possible values, which would result in £(x) = 6.30".

* inf(A)) and sup (A, designate the smallest and largest element in the set A;c X (op. cit. [STRAT90] ).
' Another criteria could be assigning to each possible values the same probabilities observed in the visible
sectors, in which case Efx) = 6.0.
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Alternatively, Strat suggests an approach where the belief regarding either the
pessimistic (1) or the optimistic outcome (20) are parametrized by an unknown probability

P, ensuing:
probability (hidden sector contains 20) = p
probability (hidden sector contains 1) = 1- p

Taking into account the known frequencies and the parameter » and performing a
simple calculation, the expected value of the prize is E(x) = 5.50 + 1.90p. Using E(x) as the
decision criteria, the gambler would have to compare the premium with the prize that
results from an estimated p. In the example, the feasible interval of the prize to be yielded
from the carnival wheel corresponds to p=0 and p=1, that is [5.50, 7.40]. The two extreme
values correspond to the most pessimistic and most optimistic assessment, respectively.

In the referred work (op. cit. [STRAT90]), the author proves that the expected

utility E(x) attained from a prospective interval is given by
E(x) = E«x) + p[E(x) - Ex(x)] Eq. 49

where E«(x) and E.«(x)] arc the most pessimistic and most optimistic appraisals, in that

order, and p is the probability of the occurrence of the most favorable outcome.

According to this procedure, F(x) has the role of a distinguished point within the
feasible interval, bounded by Ex(x) and E'(x)".

The question now turns to the adequate selection of p. In the original approach,
the probability p is supposed be obtained from previous data. In the model that is
developed in Chapter 6 of the present work, the assessment of p'’, though still based on
the available evidential information, has a different connotation. It is interpreted as a
parameter that the decision maker employs to predict the degree of intensity with which a

future event will be in its favor. It is important to stress this distinction, since the method

" E.(x) and E (x) are taken as the Support and Plausibility of x, respectively.

i

12 In Chapter 6, the corresponding variable is termed A e -
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that is adopted to forecast p in the cited model does not rely on statistically significant data,

but on incidental figures dynamically conveyed from the simulation process.

4.2.4 - Fuzzy Set Theory

The underlying concept of a fuzzy set is quite simple, vet intuitively appealing for
the modeling of real world situations and problems. The advantages of the use of fuzzy sets
are greatly amplified when one is trying to mirror the way an human decision maker
reasons. For example, if a person is confronted with a purchase decision, it will most likely
translate the present numeric variables to a qualitative scale, like expensive, affordable,
dependable, etc, operate them in this environment and finally make the decision. If the item
under consideration is indivisible, the solution will be dichotomous, whereas otherwise an

arbitrated amount is the output of the process.

Given an universe of discourse X and a subset S X, an element x& X may belong
partially to S. This is equivalent to saying that the boundary of S is not sharp, therefore
ensuing different possible degrees of membership of x in S. More specifically, S can be
associated to a characteristic function which maps any element x¢ X in an interval [0, 1],

that is,
us: X — [0, 1]

So, a fuzzy set S is described by a set of ordered pairs {x, [is(x)}, where [i5(x) is
called the membership function of the ¢lement x in the fuzzy set S. When the universe of
discourse X is the real line, ngy(x) can be represented by a functional form. If X is a set of »
discrete points x, 1 =1, 2, ..., n, Ms(x;) must be expressed by the set of pairs
{ () xy, Ps(x2)/%, ..., Hs(x0) X, }, which is also a form of representation of the fuzzy set

S. Figure 4.3 illustrates some common classes of membership functions.

The triangular and the trapezoidal shapes are by far the most customarily utilized

forms of depicting a fuzzy set . One reason for that preference is the convenience of
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designating Lig(x,) by linear functions, that, nevertheless can be modified by the
introduction of linguistic hedges'. Furthermore, the form of the fuzzy set representing a
certain domain should not be a crucial aspect of the technique, hence the widespread use of

simple linear shapes'.

()

X

Figure 4.3 - Seme shapes commonly employed for the membership function pg (x) representing a
Fuzzy Set S.

Definitions

¢ I there exists at least one element x belonging to the universe of discourse X
such that its membership grade in a fuzzy subset B — X is equal to 1, then B is

denominated normal; otherwise, B is called subnormal®.

O The largest membership grade of any element of a fuzzy set B is the height of
B; Therefore, if B is normal, its height is 1.

Loy

Given a fuzzy subset B, all elements x whose grade of membership pip(x) = 0
constitute a crisp set called the support of B, being denoted by

Y Linguistic hedges, or modifiers, operates on an original fuzzy qualification, expressed by an element’s
membership grade in a fuzzy set, and yields a new characterization for the element. See section 4.4.

™ Going still further, if a system is too sensitive to the form of the membership fimction at some point,
maybe it should be the case to consider using an alternative process for the solution of the problem being
meodeled ( Classroom notes from lectures on Fuzzy Sets given by Dr. A. Kandel, University of South
Flonda, Tampa, FL, Sept. 1994).

Y After op. cit. [YAGE94].
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Supp(B) = [x pa(x) > 0, x& X) Eq. 4.10

<

The core of a fuzzy subset B Y is the crisp set of X whose elements obey the

condition:

Core (B) = [x| up(x) > 1, xe X] Eq 4.11

¢ Assuming B and C are two fuzzy subsets of X if pup(x) > po(x) vV xe X, than C
is a subset of (or contained in) B, C — B. On the other hand, if pp(x) = pe(x) v
x& X, B and C are said to be equal. Consider, for example, B={0.3/r, 0.2/s,
0.6/t} and C={0.2/r, 0.2/s, 0.5/t}. In this case, C < B, or C is a subset of B, but
B is not a subset of C. The implication of this definition is that neither fuzzy
subsethood nor supersethood admits gradations, hence insinuating an
accruement of the old black and white paradigm. This interesting question was
addressed by Kosko [KOSK92], where he proposes an alternate approach,

making use of the concept of a fuzzy set as a point in a hypercube.

& The power M(A) of a fuzzy subset A is equivalent to its cardinality, sometimes

called S-count (sigma-count), denoted by':
n
M(A)=2,uA(xi). Eq. 4.12
=

Although the successful and efficient application of fuzzy set theory in several
fields is an already established fact, a certain dispute between the latter and the classical
probabilistic approach to uncertainty is expected to endure. Yet, some efforts have been

aimed at reconciling these two concepts, in the sense of correctly identifying the situations

' The cardinality, or power, of a fuzzy subset A must be distinguished from the power set of A, denoted by
2* and defined as the set which contains all subsets of A.
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where it is the case for using one or the other, as, for instance, the notions of fuzzy

probability and fuzzy random variable, introduced by Kwakernaak [KWAK78]".

4.3 - Operations with Fuzzy Sets

4.3.1 - Basic Concepts

¢ Unionof Aand B: A« B=C.

Ho(x) = Ha(x) v pa(x) = max [pa(x), pue(x)), vx e X Eq. 4.13

O Intersection of A and B: A ~ B = D. The union operator corresponds to the

logical and, denoted by, such that

Hp(x) = Ha(x) A pa(x) = min [ua(x), pp(x)], Vx € X. Eq. 4.14

The union and intersection operations, performed by the max-min operators are of
great importance in the fuzzy set theory, and have several distinguished properties.
Some of them are listed below, where a, b and ¢ are membership grades of an arbitrary

element x € X in the fuzzy sets A, B and C, respectively.

« min (0, a) = 0 for any a = 0;

+ max(1,a)=1foranya=]l;

« min (a, a) = max (a, a) foranya=1;*

« min (a, b) = min(b, a); max (a, b)= max (b, a); = Commutativity
« min (min (a, b), ¢) = min{a, min (b, c)) = min(a, b, ¢), and

. max (max(a, b), ¢) = max(a, max (b, ¢))= max(a, b, ¢); = Associativity'’

"7 These notions are based on what is called degree of reafization of a certain condition. For example, if
fever is associated with influenza, then each condition (fever and influenza) can be described by an
observer or expert as “moderately fulfilled”, “hardly fulfilled”, etc. So, one can calculate a fuzzy
probability that a patient has a high fever given that the influenza is hardly realized [BECK95].

BAUA=A nA=A

PAr(BrO=(ArBNnC=AnBNCAU(BUO=AUuBwC=AUBLC.
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-+ min (3, max ( b, ¢) = max (min (a, b), min (a, ¢)), and
+  max (a, min( b, ¢) = min (max (a, b), max (a, ¢)); = Distributivity”®

O Bounded sum: D = A ® B, which means that the bounded sum of the fuzzy
sets A and B is the fuzzy set D. The grade of membership in D is the sum of
memberships in each fuzzy set A and B, with an upper limit of 1*:

Hp(x) = min (Ma(x) + pa(x), 1) Eq. 4.15

If A and B are crisp sets, than A & B would be reduced to A U B.

Figure 4.4 illustrates the behavior of the min, max and bounded sum operators.

bounded sum {a, {Lg(x1)

Halx) 1

max(a, Hp(x))

min(a, Wp(x))

Wp(x)
1
Figure 4.4 - Comparison of min, max and bounded sum operators

¢ Negation (or complement): not-A = A =X - A;

/J«g(_x) =1 - pa(x) Eq. 4.16

PAN(BUCI=ANBUANC; AuBAC)I=(AUB) A AUC).

! Smith (op.cit. [SMIT87] ) designates the bounded sum, as defined, as an union operator, but he also
considers the intersection or and-bounded sum, which is defined as up(x) = max (0, pa(x) + pg(x)-1). In
the latter case, if A and B are crisp sets, D= A ~ B. '
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De Morgan’s Law:
max (pa(x), Pa(x) = 1 - min ((1- pa®®)), (1- pa(x))™ Eq. 4.17
Product operators: analog to those defined for joint probabilities of two
independent events. For two fuzzy subsets A and B, comes:
Intersection: AB = pa(xp) * up(xy) Eg. 4.18(a)
Union: AUB = pa(x) * pia() — HaGe) * pa(x) Eq. 4.18(b)

O-level set: Given a fuzzy subset A < X, the a-level set of A (also called a-

cut), denoted by A, is a crisp set containing all elements x whose membership

grade in A are equal or greater than o, o [0, 1]°. Therefore,

Ao = {x| (a(x) 2z o, ¥ x € X}. Eq.4.19

With the concept of an a-level set, it is possible to represent any fuzzy set by
means of crisp sets corresponding to its o-cuts [WANGI2], [YAGE94].

Defining a fuzzy subset F = oA such that

[a if xeF
L (x) = i x) = 4 : for any o {0,1].
Rr() = haa ) =00 4p oo F
then
A= JeA,
agq0.1]
Example:

2 The following properties also hold under De Morgan’s Law: not-(A'B)= (not-A) ~ (not-B),
not(AnB)= (not-A) U (not-B).
2 A a-strong cut is described by A, = {x | (Lalx) > o, Fx = X,



o=0.4

X={p, q, 1, 5, t}; A= { 0.1/p, 0.3/q, 1/r, 0.6/s, 0.9/t};
oA =F = {0/p, 0/q, V/1, 0.6/s, 0.9/1} (Fuzzy subset);
Ay = {1, s, t } (Crisp subset).

If o varies, assuming its possible values in [0,1], the union of all crisp sets A,

will then result in the fuzzy set A.

4.3.2 - The Extension Principle

The extension principle is an important notion of the Fuzzy Set Theory. It provides

a rule for associating the elements of two or more fuzzy subsets.

Suppose X and ¥ are crisp sets, A and B two fuzzy sets and fis a function such that
fXo>Fandfixy=v,xeX,ve F.If AcCX, AA)is a fuzzy subset of I with the
property

AA) = U {(ax)/ fx)3- Eq. 4.20

The basic concept that underlies the extension principle is a supremum of pairwise
minima [KOSK92]*. In a more general and formal definition, the extension principle
performs a mapping: £ F(2¥) — F(*"), where F(2), F(2") are the fuzzy power sets™ of X’

and 7Y, respectively.
Example:

Assume X" ={$1, $4, $9} (prices of an item), and ¥ ={VERY LOW, LOW, MEDIUM,
HIGH, VERY HIGH} (perceived characteristics of the price of an item). Suppose that the

function fis defined as:

A =LOowW

* In this work, Kosko criticizes the extension principle, arguing it is complicated, «... with the tendency to
push fuzzy theory mnto largely inaccessible regions of abstract mathematics...”, and “...achieves generality
at the price of triviality.” (op. cit., p. 300).

# The sets of all fuzzy subsets of.Y and ¥, respectively.
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A4) = MEDIUM

A9) = VERY HIGH
subset A = { 0.6/1, 0.8/4, 0.1/9}. Then,
AA)={0.6/ Low} {0.8/ MEDIUM s {0.1/ VERY HIGH}

AA)= {0.6/ Low, 0.8/ MEDIUM , 0.1/ VERY HIGH}

Denominating B = f{A), then B is a fuzzy subset of Y, suchthat vy € T,

He(y) = max_ [((x)].
4.3.3 - Triangular Norms and Co-Norms

Triangular norms (t-norms) and co-norms (t-conorms) are operators T and S that
perform an aggregation of fuzzy subsets, so that they induce a mapping from a pair of
membership grades into another, at this time regarding the fuzzy set that was originated

from the respective aggregation operation.
T: [0, 1] x [0, 1] = [0,1] (t-norm)
S: 10, 1] = [0, 1] — [0,1] (t-conorm)

The min and the intersection product operators are examples t-norms, while the

max, union preduct and bounded sum are instances of t-co-norms.

Given a and b, two arbitrary membership grades in two different fuzzy sets,

a t-norm T(a, b) operator must have the properties:

*

T(a, &) = T(b, a) (Commutativity);

*

T(a, T(b, ¢)) = T(T(a, b), ¢) (Associativity);

*

T(a, b) < T(a, ¢) when b < ¢ (Monotonicity),

*

T(a, 1) = 1 (One Identity).
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A t-conorm (also called s-norm), denoted by S(a, b), shares identical properties
with the t-norm, with the exception of the One-Identity, that is replaced by the Zero-
Identity, so that S(a, 1) =0.

The conditions of distributivity and idempotency are not present in t-norms and s-
norms. Other pairs of T(.) and S(.) operators are cited in the literature, such as the Log

operators™, the Lorentzian operators” and the Yager operators™ [SMIT87].

4.3.4 - The Fuzzy Integral

The fuzzy integral is intimately related to the concept of fuzzy measures, presented
in section 4.2.2. It was introduced by Sugeno [SUGE77] is a convenient way of
aggregating multiple quality factors of an object, with the objective of yielding a single
synthetic evaluation index [TAHA90}, [WANG92] [YAGE93].

Suppose V= {v;, v, ..., V,} is a finite set of factors regarding all the aspects, or
qualities, of an object under appraisal. V is the factor space of the object. Now, the global
evaluation is supposed to be reached taking into consideration the assessment of each
aspect of the factor space V, which are not equally important. One of the most common
solutions for this kind of problems is the weighted mean, which is based on the assumption

that the factors are independent and therefore additive.

If a real number g(E) in the interval [0, 1] is associated to each subset E C V,
indicating its importance in the global evaluation, this number should reflect the best
judgment that could be made of the item considering only the factors that are present in the
subset E. The function g(.) obeys the conditions g(&)=0, g(V)=1 and if E c F — 'V, then

2(E) < g(F)”, and is a fuzzy measure on (V, 2V).

% T(a, b= log,[1+{(s> 1)(s*-1))(s-1)] ; S(a, by= 1-log,[1+ ((5"* -1)(s"™* -1))/(s-1)].

Y T(a, by= ab/(2-a-b+ab) ; S(a, b= (a+b)(1+ab).

“ T(a, b= L-min{1, [(1-a)' + (1-bY]™, S, by=min(1, (" + bH™ ], for t = 1. In the Yager operator, when t=1,
it becomes the bounded sum pair (see footnote 21) and when t—w, it transforms into the min-max
pair.

¥ (s the empty set; In Chapter 6 the functions g(.)and A(.) are designated ¢(.) and a(.), respectively.
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In the object’s judgment process, for each of the factors v; € V, a score A(v)) <
[0,1] is settled by the examiner. Then, g(v;) and /(v;) are compounded by means 6f a fuzzy

integral, denoted by J;__h dg ™, corresponding to a synthetic evaluation of the item.

[79g=max [min (min(A(v)), g(E))] Eq. 4.21
EcCV ve E

A good explanation for the workings of the fuzzy integral is given by Yager
[YAGE94]. The function g(E) is a measure of how the subset of factors E fulfills the
importance concept, characterized by g. Note that g(E) should be estimated independently
and ahead of the examination of the specific object under appraisal, therefore consisting in
a widely accredited postulation. On the other hand, 4(v) regards the degree of satisfaction
of a particular subset of qualities pertaining the object. Thus, 4(V) corresponds to the score

to be attributed to that subset. The opération min /(v) over all the elements v € E supplies
the extent to which these elements satisty /. The portion [min (min(A(v)), g(E))] of the

fuzzy integral matches the degree to which all v € E carry out the demands brought into
the process by the functions g and / simultancously. Finally, the max of all minima

concerning the subsets E is taken, vielding what is called the object’s synthetic evaluation.

The fuzzy integral plays an important role in this dissertation, since it was the
method of aggregation chosen to compound the factors concerning the judgment of an
item by a Consumer, according to the model described in Chapter 6. For this reason, an

illustrative example™ depicting the modus operandi of the fuzzy integral is presented.
Example

Suppose a potential buyer is evaluating a certain model of a car, and the features

that are being taken into consideration in the analysis are performance (P), comfort (C) and

** In Chapter 6, the fuzzy integral is depicted by J;T(x a¢.

*! The example was inspired and is an adaptation of the problem of “evaluating a Chinese dish”, in op. cit
[WANG92], p.185.
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price (M). Hence, these are the qualities or factors v, i=1, 2, 3, of the object, the car,
and V= {P, C, M}. The set function g({.}) appoints an importance measure to the subsets
that result from the possible combinations that can be formed employing the individual

factors P, C and M. The arbitrated values of g(.) for the example are:

g({P}H) =02 2({P, C}) =03
g({C}) =10.0 g({P, M})=0.9
g({M})=0.6 g({C, MH =0.7

and g({VH =1

The values of g({.}) do not have the additive property, that is present in the
traditional weighted mean method. The explanation for the assignment of zero to g({C}) is
that the factor comfort, taken isolated, does not have any importance in the item’s
appraisal. Conversely, another peculiar aspect is that the factors can exhibit a mutual
reinforcement effect when taken together, as shown by the pairs {P, C}, {P, M}, {C, M}.

Then, to each factor, a score A(v;) is adjudicated, assumed as

A(P) = 0.4 HC)=0.6 h(M) = 0.7.

min /(v;) = A(P) = 0.4; min #(v;) works as the parameter o of an a-level subset E, of V,
such that E, = {v | h(vi) = o }. In other words, E, is the collection of importance factors
whose scores are greater than or equal to min A(v;), which obviously correspond to the

whole set of importance factors, V. Therefore, g(Eq—.4) = g(V)= 1.

The other values of g(E) for o = min A(v;) are determined in a similar way, so

Egmos =V - P = {C, M}; 2(Eas) = 2(C, M) = 0.7 and g(M) = 0.6.

[ 9g = max [min[0.4, 1], min[0.6, 0.7}, min[0.7, 0.6]]
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j;h dg = 0.6, which stands for the overall rate, or synthetic evaluation of that

particular car”’.

4.3.5 - Modification of the Fuzzy Integral

Regarding the previous example, a remarkable characteristic of the basic fuzzy
integral can be noticed: The resulting value of the synthetic evaluation is not affected by
some particular changes in the scores. To advocate this discussion, let us consider an

horizontal axis where the significant values of the variables used for the computation of the

fuzzy integral are plotted.
g({M}) = 0.6 g({C, M})=0.7
{ 1
0 1 T
W(P) = 0.4 WC)=0.6  HM)=0.7

The synthetic evaluation of the car in the example that has been yielded by the
fuzzy integral is j;h dg = 0.6, which may have been originated from either [A(C) A g({C,
M})] = min[0.6, 0.7], or [A(M) ~ g({M})] = min[0.7, 0.6]. The values of g(.) are fixed
for the evaluator and independent of the assignment of scores to the object under appraisal.
Hence, the variable that is actually governing the synthetic evaluation for the range set of
the example is #(C) = 0.6, because neither A(P) nor A(M) are having any influence
whatsoever on J;h dg until the benchmark established by [H(C) A g({C, M})] = 0.6 is

surpassed.

But it appears that, although the overall influence of each score in the computation

of the tuzzy integral should still remain bounded by its respective befitting importance

* The fuzzy integral is only one of a number of several techniques for multicriteria decision making, A
particular mention is made to the method of Ordered Weight 4veraging (OWA) [YAGES4), [YAGEDSS).
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factor, an adjustment inL_h dg should be promoted to contemplate some variations in the

attributes A(C). For instance, suppose fhat in the example presented, the value of A(P) has

assumed a different value. In this case, 4(P) could lic anywhere between zero and #(C) =

0.6, without having any impact on Lh dg = 0.6. Therefore, if an evaluator relies solely on

the value yielded by the original fuzzy integral, it would be completely indifferent, in the

situation depicted, to two items with scores regarding those extreme points [0, 0.6]. In

order to overpass this intuitively undue feature of the original fuzzy integral, a correction

composed of an increment (A") and a decrement (A7) is proposed. The reasoning

concerning this correction is as follows:

1.

o

As the fuzzy integral is defined as a maximum operation over two or more minima,

which on their turn are always represented by intersections of two fuzzy measures

(score and importance), the final value vielded by j‘FIz dg must be necessarily equal to
one of those minima, which is henceforth designated as the governing value of

J;:h ag ™.

The variations of the scores concerning the non-governing measures, which originally
do not affect J;h dg if their associated minima are less than the governing value, will
be now accounted for. The ranges of relevant variations are always restrained by (a)
the governing value (4°(.) or g°(.)), (b) the other scores (A(.)) and (c) the importance
factor g(.) that is associated with the score under consideration.

Each relevant vaniation may consist of either an increment or decrement over J;_h dg,

depending on whether it is greater or lesser than the governing value, and taken as the

difference between it and the nearest of (a), (b) or (¢) described above™.

** If there are two or more equal minima, each of them is separately picked as the governing valie.
** In other words, the absolute value of the relevant variation to be accounted for is the minimum of the

absolute values of the differences between the attribute under consideration and each one of (a), (b) or
(c).
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4. The increment (A") and the decrement (A7) to be added to L_h dg results from

weighting each relevant variation to a function of the importance factor isolatedly

associated to it>.

5. The final synthetic evaluation of the item shall then be given by j;h dg + AT+ A

Example:
Taking the governing value of J;:h dg as [H(C) ~ g({C, M})] = min[0.6, 0.7] = 0.6,
(a) = h(C) = 0.6;
(b)={ WP)=04; A(M)=0.7 };
(¢) = g(C, M) = 0.7 and g(P) = g(V) = 1 (because 4(P) = min(A(P), /(C), h(M))
and the weights as g(.) themselves, comes:
AT (M) = g(M) x max{0, (A(M) — max(#(C), g(M))] = 0.6 = (0.7 - 0.6) = 0.06;
A (C)=g(C) = nﬁn[O, (A(C) — min(A(C), g(Cy] = 0.7 < (0.6 - 0.6) = 0.0;

A” (P) = g(P) x min[0, (4(C) ~ min(A(C), g(P))] = 0.2 = (0.6 - 0.6) = 0.0;

Then, the final synthetic evaluation of the car of the example would be

fhog+ AT (M) = 0.6 + 0.06 = 0.66.

Discussion:

The increment A™ (M) = 0.06 resulting from the method proposed above tries to
mirror an extra advantage that the evaluator is assigning to the car due to its score of Price
A(M). That gain represents the difference 0.1 relative the actual score and an inferior one,

(which for the present purpose is limited to the governing value of 0.6), that could have

3% The function can be the importance factor itsielf. In the Chapter 6, this method has been applied using the
weights g(.) for the increments (gains) and g()* for the decrements (losses).
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been assigned to A(M) without interfering with the basic L_h dg = 0.6. It has weighted by

g(M) = 0.6, thus yielding 0.06.

Considering that the original fuzzy integral consists only of minima and a maximum
operations, its possible values must necessarily be one of the intervening variables 4(.) g(.).
With the proposed method, an hybrid approach is performed, with the convenience of
making intermediary results possible. This system of performing a synthetic evaluation of
an item with fuzzy measures will be employed in the application of a one-sided fuzzy

iterated Prisoner’s Dilemma presented in the Chapter 6 of this Dissertation.

4.3.6 - Linguistic Hedges

The imprecise terms usually employed to denominate fuzzy sets, such as HIGH,

LOW, ATTRACTIVE, etc., can also undergo alterations by linguistic modifiers or hedges.

Formally, a linguistic hedge ¢ operates on an original fuzzy qualification Q;
accomplishing a new characterization R= 4Q;). For example, the label “expensive”
describing the price of an item can be reinforced by the hedge “very™®. The resulting
concept “very expensive” is still fuzzy, but with a different mapping rule from the
numerical value of the price to the interval [0, 1]. Conversely, one can arrive at the notion
“moderately expensive” using a symmetric line of reasoning, In this latter case, the hedge
“moderately”” functions as a weakening modifier [ZADE72]. The new membership grade
of an element of the universe of discourse in an fuzzy set altered by a linguistic hedge is
generally expressed by a power of the original grade. The exponents 2 and 7 are usually
employed to represent “very” and “moderately”, respectively. In this way, Lgi(x) = [Uei(*)]
for ¢ = “very” and ppi(x) = [in(x)]% for ¢ = “moderately”. The graphical representation of a
standard fuzzy set and those resulting from the applications of those linguistic hedges is
shown in figure 4.5.

* In the application model detailed in the Chapter 6 of this work, the term “very”, rather than a linguistic
modifier, is utilized to design an autonomous fuzzy set, when attached to other adjectival
denominations, such as high or sensitive, for instance.

*7 Also equivalent to “more or less” or “sort of ™.



MODERRTELY CHEARP /

12
[.“[K1” //

/
T/ VERY EXPENSIVE // /

-

oy
N\, EXPENSIVE #(xgl,x\ /
o _'—___'4\ 'X /

7 A
N /
e I
7 i
S !
S M)
X X 2 X
med 2 Xmay Price

Figure 4.5 Example of Fuzzy Sets that result from the Application of Linguistic Hedges

Linguistic hedges can have basically two kinds of effect on the original concept:
Concentration, like the modifier “very”, which brings about an infensification or
reinforcement of the foregoing trait, and dilation, that consigns an expansion or
weakening of the object’s primary feature. The generalization of the concentration and
dilation operators admits any exponents other than the original 2 and 1/2. When the
exponent is greater than 1, a concentration effect betides, and smaller membership degrees
result. On the other hand, an exponent smaller than 1 implies in a dilation of the basal
qualification, which produces greater membership values. The points X, and x; in Figure

4.5 illustrate the former and latter operators, in that order.

An elaboration of the idea of expanding and contracting basic fuzzy sets has been
adopted in Chapter 6. There, a Consumer’s perceptions regarding the price and the quality
of an item are affected by linguistic-like operators that act on the fuzzy sets employed to
quality these attributes, in the form of exponents taken as functions of the specific

characteristics of an individual.

In addition to the better known concentration and dilation hedges, Zadeh
[ZADE72] also explored contrast intensification and contrast diffusion modifiers. In the

former, a fuzzy set is made less fuzzy by increasing membership values above 0.5 and
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decreasing those below 0.5, thereby moving all membership degrees closer to either zero or
one. In the latter, the membership values are headed for 0.5, and in this case boosting the

fuzziness of the set [SMIT87].

In theory, there are no formal rules defining the exact quantitative influence of
linguistic modifiers over fuzzy sets, and it can be said that the assignment of a numeric
value to an exponent associated to a hedge is a quite subjective matter. Table 4 [COX95]

lists a sample of feasible hedges.

Table 4.2 - A Sample of Linguistic Hedges

An outstanding feature of linguistic modifiers is their ability in providing means of
approximating a fact intended as a premise of a rule. In this way, in the realm of fuzzy
logic, a conclusion can be deducted even if the premise is only roughly or incompletely
satistied [BOUC92]. The topics of implication rules and fuzzy expert systems are

approached in the next section.



4.4- Fuzzy Expert Systems

4.4.1 - General Discussion

The initial project for developing artificial intelligence systems was quite ambitious,
and the objective in the early sixties was to build general problem-solving programs, like
the system proposed by Newell and Simon [FEIG63]*. Due to preliminary unsuccessful
attempts in this direction, the focus turned to the discovery efficient algorithms capable of
dealing with large and complex data structures, but limited to specific subject domains
[FOGE95]. So, the term expert system was coined, and its functioning relied on
information that had been previously retrieved from human experts and stored in the form
of a program in a computer, usually employing the language LISP (1962) and later
PROLOG (1972).

An expert system consists primarily of a knowledge base and an inference engine,
which searches the former in order to check if there are any facts that match the queries

posed to the system.

Example of representation of facts and a rule in pseudo-Prolog code:

» high(Price, Price = 5); = fact
« very_sensitive(S, S > 2.5); = fact
o if {(Price = 5) and (S = 2.5)} = rule

then attractiveness(Price, unattractive);

When a query such as ? - attractiveness(Price, X)”, the inference engine explores
the structure of facts and rules to determine the category of X.

If the elements in the knowledge are comjectures, rather than facts, and diverse
truth values (or degrees of confidence) are ascribed to those elements by specialists, than a
collection of production rules of the type { IF premise THEN conclusion ) can be created
and assessed in order to answer a variety of queries posed to the system, even though the

conjectures are matched only partially.

* “GPS: A Program that Simulates Human Thought”
* X is a linguistic variable that qualifies the numeric variable “Price” in terms of “attractiveness.
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The first program to use this schema was DENDRAL®, started in the mid-sixties
and improved along the subsequent years. The well-known medical program MYCIN"
used several ideas successfully introduced by the DENDRAL project. Another outstanding
expert system was PROSPECT, which was employed as a geological exploration aid and
had more than one thousand rules [FOGE95].

Despite their relative success and accomplishments, expert systems have been
sometimes criticized in their ability to represent human intelligence. One point often
mentioned regards the difficulty of capturing the behavior of complex cognitive systems
with an assortment of facts and rules. As a reply to those critics, it should be said that
perhaps too much is being expected from expert systems in terms “intelligence” as only
mirroring what is generally accepted and understood as the human course of action.
Unquestionably, a human decision maker, while much more versatile in the mental
manipulation and association of facts, hypothesis and conclusions, usually falls behind the
performance of an expert system when the decision tree has too many branches and levels.
In those circumstances, the computer on which the expert system is running is then playing
the role of a fucts-and-rules-cruncher, in substitution of the customary denomination of
number-cruncher, and this task is significant in the treatment and solution of an a great
number of problems in assorted areas of interest. '

A question that has been recently occupying the thoughts of researchers in the field
of artificial mtelligence is the counterpoise of expert knowledge and general intelligence.
Hofstadter [HOFS95] comments about what he calls the expert systems trap, “... the idea
that the key to all intelligence is just knowledge, knowledge, and ever more knowledge.”
He admits that “some domain knowledge is necessary to get off the ground” but
understands intelligence as having “a powerful, general and abstract knowledge-

0 42

independent core™.

“ DENDRAL is a chemistry program that provided information about the molecular structure of unknown
compounds, based on their mass spectral and nuclear magnetic response data.

*I MYCIN diagnosed bacterial infection in hospital patients.

“* Hofstadter testifies that he has known “many people who were fountains of knowledge yet seemed to
lack all insight™.
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The capacity to adapt itself to dynamic environments and learn from experience are
also important attributes in proficient expert systems®. Furthermore, in most instances, the
achievements of expert systems can be greatly enhanced by associating them with other
up-to-date soft computing techniques, such as neural networks, genetic algorithms and
fuzzy logical inference, yielding what is commonly called a Aybrid system [HALL94).
Some fundamental topics regarding fuzzy logic and inference are presented in the next

section.

4.4.2 - Fuzzy Logic and Fuzzy Inference

In the same manner that fuzzy sets are an extension of ordinary sets, Fuzzy Logic
is, in most aspects, a generalization of classical logic, and many of the basic concepts of the
latter are also valid for the former.

Consider that X and Y represent, respectively, the universes of discourse of the two
variables price (x) and quality () of a product being sold in the market by a Firm. Suppose
that x is qualified by the predicates {4;}, =1, 2, ..., m and y by {B;}, j=1, 2,..., n.

A statement involving x and g for example, could be: x is a,. In traditional binary
or Boolean logic, a statement can only be either true or false. Under this assumption, the
truth-value t5(x) of any statement S regarding x equals 1 if S is true, or 0, if S is false.

A composite assertion I; comprising at the same time the varables x and » of the
type

I: IF xisd; THEN yis B,

| NI WO ——'4

statement P statement Q

“* An example of a dim-witted biological expert system is given by the French naturalist J. H.Fabré, cited in
Gould and Gould [GOULS8S] and [FOGE9S]. When the female wasp Sphex flavipennis must lay its eggs,
it builds a burrow and paralyzes a hunted cricket with venom. The cricket is intended to serve as food for
the grubs after the eggs hatch. Itis then taken to the entrance of the burrow and before dragging it inside,
the wasp enters the lair for inspection. If the cricket is moved from the place where the wasp put it while
it was inside the burrow, the wasp repeats the same procedure of placing the cricket in a particular
position and entering the hole for a new inspection, no matter how many times this is done. The wasp
uses a rule based system that is incapable of leaming with the experience, “astounding us with its
extraordinary intelligence, and, in the next moment, surprises us with its stupidity, when confronted with
a simple fact that departs from its ordimary practice.”
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is denominated a production, inference or implication rule. The first part of I, [statement
P] is designated antecedent or premise; the second segment [statement Q] is the
consequent or conclusion. 1, is an example of classical meodus ponens, the most simple
inference rule [GRIF87].

Table 4.3 presents a list of the Boolean truth-values regarding the statements P, Q,

the disjunction (PAQ), the conjunction (PVQ), and the implication rule P—>Q.

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Table 4.3 - A Boolean truth-table for the statements P, Q.

Restraining the possible truth-values to only zero and one conveys an immediate
repercussion, that is the Law of the Excluded Middle. The operator not (denoted by the
symbol —), when applied to a Boolean proposition, reverses its truth-value from one to
zero and vice-versa. This entails no possibility of a statement S to be simultaneously true
and false. Nevertheless, philosophical considerations about logical paradoxes caused by the
Law of the Excluded Middle were one of the factors that led the polish logician Jan
Lukasiewicz to the development of a three- valued logic, with truth values of {0, 3, 1},

which was subsequently extended to all values in [0,1].

If the restriction of confining the potential truth-values to {0, 1} is abandoned and
1s(x) is allowed to assume any point in the interval [0, 1], then the modus ponens inference
rule can be generalized, ensuing fuzzy implication rules. This generalization signifies that a
perfect match between an observed fact and the rule’s premise is not anymore required to

its firing. Furthermore, the predicates 4;, B; may be fuzzy variables or fuzzy numbers.
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In this way, an approximate likeness between a fact and a rule’s antecedent is a sufficient
condition for the rule’s activation. But this activation is not restricted to @/ or nothing
either, and the conclusion’s truth-value will depend on the antecedent’s degree of
confidence. That schema elicits a number of fuzzy implication rules. Zadeh’s original

proposal for implication defines [SMIT87]
IF P then Q else O™

as either (P and Q) or (—P and O)*.

The grade of membership of an element in a fuzzy set may correspond to the truth
value (%) of a proposition P—>Q. #_.q, besides depending on % and 1, is also a function
of the particular implication rule taken into account. A fuzzy implication can be interpreted
as describing a relation between two fuzzy sets [MUNA94]. Some important fuzzy

implication rules and their correspondent truth-values are displaved below.

o Ipog= max(min{ &, fy), 1- &) ( Max-min implication )
o tpo=max(1-f, 1) ( Arithmetic implication )
't
Q iy
P . I3 .
o tpag=H ( Goguen’s implication )
1 otherwise
o lpoqg=min(1-fp + i, 1) ( Lukasiewicz’ implication )
+  pq=min (%, f) ( Mamdani’s implication )
1if £ 2t
1_‘ - = . 4 -‘ . . .
¢ Ip=Q to ofherwise (Godelian implication )

* A synthetic expression for “If P is true, then Q is true, otherwise R is true™.
> If O is not specified, it is interpreted as the universe, and (=P and O) becomes simply —P.



f Lif 1 21 ( Rescher’s implication)
TPl otherwise
o Ip=l-Bthxig ( Reichenbach’s implication )

The input of a modus ponens inference rule may be composed of multiple

antecedents, which are linked to each other by a connective, usually AND or OR.

The steps to perform a fuzzy inference from P to Q are:

1. Define the implication rule, e.g. IF P (xis 4;) THEN Q (yis By), x € X,
yeY.

2. Determine the truth-value # of P, which corresponds to the grade of
membership of x in the fuzzy set 4;: u A, (x) (fuzzification of x),

3. Induce the degree of membership of v in B;: tp, (»")), applying the pertinent
fuzzy relation between 4 and B, which is defined by the Cartesian product®
Aj M BI

4. Perform a defuzzification of Y (7)), obtaining »".

4.4.2 - Defuzzification Methods

The tuzzfication procedure consists in determining the membership grade of an
element in a fuzzy set applying the respective pre-defined function. If multiple inputs are
involved, chained disjunction or conjunction operations are performed, depending on
whether the connectives are AND or OR. On the other hand, the reverse process, that is,
given the membership grades of the variable in the applicable fuzzy subsets, find the
numeric value »”, can be accomplished by various methods. The problem is always to
select an algorithm that can perform in the most appropriate way, the task of converting

membership degrees in a single output on the real line.

YamB={min[p, (%), pp 0]/ |xeX, ye Y}
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There is not such a thing as the best method. The ivantages fg&mgg.gfne over
another regarding the quality of the results depend heavily on the characteristics of the
system that is being modeled.

Among the methods that are mostly often found in the literature and employed in
the actual fuzzy systems [YAGE93b] are™:

e The Center of Area Method - COA (also called center of gravity or centroid):

o [oyes()d

y — . Eq.4.22
[ #ONy
e The Mean of Maxima Method - MOM:
v 1
y =—>maxug(¥), Eq.4.23
m Bl )

where m is the cardinality of By|3 K, () =0.

When the COA defuzzification method is implemented, it is quite often the case
that multiple rules are fired, so that the conclusion is described by two or more fuzzy
subsets that overlap. In these circumstances the centroid may be calculated either
considering the area regarding each subset as independently contributing to the
computation, or avoiding double-counting the intersection, thus eliminating the overlapped
portion of the area. In the program built to simulate the model of the market share game in
Chapter 6, the former alternative was selected [KOSK93].

The defuzzification process can be significantly simplified if the singleton method
is adopted. Instead of the center of gravity of an areq, like in the COA method, the
centroid 1s determined taking into account the rules’ strengths and the corresponding points
on the horizontal axis. Hence, a singleton is a single vertical line that stands for the

membership function [VIOT93]. Generally, the point on the horizontal axis that

7 As a matter of fact, defuzzification methods are constantly being refined and enriched by new techniques.
For a recent and illustrative survey, see op. cit. [YAGE®4], p. 313-355.



corresponds to the membership grade is not unique, so the middle points of each segment

are chosen as the x value of the particular activated fuzzy set to which the segment belongs.

fuzzy set A
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L(x) 0 fummed sets
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Figure 4.6 - Example of Three Criteria for determining the Centroid using the Center of Gravity
Method (COA)

Figure 4.6 illustrates the defuzzification procedure using the center of gravity
method, with three alternatives regarding the computation of the centroid. There is not a
big difference between criteria I and II. The singleton vields quite distinct results if
compared to the former values of x, which, nonetheless, might also be appropriate
depending on the system being modeled. For the sake of objectiveness and minimization of
computational burden, the defuzzification method employing singletons was selected to
promote the simulations of the Fuzzy Iterated Prisoner’s Dilemma game—FIPD—, to be

presented next, in Chapter 5.




Chapter §

A Fuzzy Approach to the Prisoner’s Dilemma

5.1 - Introduction

In this part of the dissertation, a model of the Fuzzy Iterated Prisoner’s Dilemma is
presented and developed. The objective that is aimed with this treatment, allowing the
players to depart from the traditional dichotomic moves is the achievement of a deeper
understanding of more realistic PD-like situations. The possibility of acting within a
continuous range of choices is much more similar to those commonly found whenever a

contlict of interest arise than the usual restriction to only two mutually exclusive selections..

The traditional IPD assumes a binary choice for the players, either cooperation(C)
or defection(D). The implementation of the strategies generates sequences of these two
kinds of moves. The resulting payofls are numerical values specified in the cells of a payoff
matrix according to a particular pair of decisions made by the participants. Some
researchers have considered the departure from the binary choice. For example, Hardin
(1982) takes gradual cooperation into account mainly in the pursuit of divisible public
goods, and Harrald and Fogel [HARR95] employ a planar approximation of Axelrod’s
payoff matrix as a basis for an evolutionary simulation of the IPD, but use neural networks

to represent the players’ sirategies.

Much of the present interest in the IPD derives from Axelrod’s computer
tournaments [AXEL84], where diversified strategies were confronted with each other and
the winner, TIT-FOR-TAT (TFT), proved robust in several other simulations of the IPD.
Axelrod, in a subsequent work [AXEIL87], used a genetic algorithm to determine if TFT

could evolve from a random set of strategies.
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The Fuzzy Iterated Prisoner’s Dilemma - FIPD diverges from the usual classic C
or D binary form, and thereby the moves selected by the players are mapped in a scale
ranging from 0 to 1, these extreme points corresponding, respectively, to full defection and
full cooperation. Since the inputs of the game are no longer discrete, a payoff function

consisting of two intersecting planes is used as a substitute of the payoff matrix.

Allowing the moves to vary continuously in an interval brings a wider range of
possibilities to the IPD. But the main subject to be explored in this Chapter is the
representation of every player by a specific fuzzy expert system (FES). The participants will
perceive and implement the actions pertaining to the game only qualitatively, according to
individual rules. Then, the expert systems transform the qualitative strategies into numerical

values, which will be the inputs of the payoff function.

The underlying idea resembles the way a person drives a car. Depending on the
vehicle trajectory, the driver assesses the situation and reacts steering to the right or left,
with different emphasis. In this way, though the driver succeeds in maintaining the car
under control, it does not know the exact angle and other numerical characteristics of its
action conveyed to the wheels by the mechanical system of the car. Here, likewise, the
players are represented by their respective FES, which will sense, measure and implement
the actions that belong to the game, where the moves, though gradual, are still labeled as

cooperation (C) or defection (D).

However, considering' the subjective interpretation of these two concepts (C and
D), they have been replaced by the game payoffs, taken under three different fashions, as
the players’ sole inputs to generate their decisions. Three FES’s are assigned to every
participant, cach one having as input a distinct deterministic factor based on the payoffs
that take place during the game, and as the output ecither COOPERATE or DEFECT, but
with variable strength.

The universe of discourse of each input factor is divided into three fuzzy sets, and
this schema yields 2° = 8 different strategies for any particular FES. The total number of
strategies for all three FES is then 8° = 512, which corresponds to the population of fizzy
strategists or fuzzy plavers. In addition, both the “Paviov” [BEAR93] and the TFT
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strategists are present in the tournament. The purpose was checking how well these well-
known successful strategies fare when confronted to the standard players considered in this

paper, that is, those whose actions are guided by the respective FES.

5.2 - A Payoff Function

The payoff matrix of the classical IPD game is shown in Table 5.1 [AXEL84].

Column Player’s Decisions (Player 2)

Row Player’s Decisions {Player 1) Cooperate Defect
Cooperate R R S . T
Defect T | s P . P
I

Table 5.1 - Usual Payoff Matrix of the PD game

The pair of values in the cells represents the payoffs of the row and the column

players, respectively. The meaning of the letters standing for the payoffs are:

R: Reward for mutual cooperation
S: The “sucker’s” payoff
T: Temptation to defect

P: Punishment for mutual defection

To represent a IPD, the values T, R, P, and S in Table 5.1 must obey the Equations
5.1and 5.2. In the classic IPD game, a commonly adopted set of payoffs is

T=5R=3,P=1,and S=0.

T>R>P=>S8§ Eq. 5.1
T+S Eq. 5.2
; <R

But in the FIPD, instead of punctual choices, COOPERATION and DEFECTION are
considered as two non-overlapping fuzzy sets, and a particular move, or action (a) is

defined by the degree of membership |\-(a) or Lip(a) in one of these sets.
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Figure 5.1 - Fuzzy sets describing possible actions in the FIPD

The universe of discourse of the actions has been divided into only two mutually
exclusive triangular fuzzy sets C and D, but other shapes could be adopted. For instance, a
fuzzy set expressing INDIFFERENCE, centered on ¢=0.5 could have been added, as shown in
Figure 5.1'. The degree of membership of an action in either fuzzy set COOPERATE or

DEFECt is given by Equations 5.3(a) and 5.3(b), respectively.

2a -1 ; whena 2 0.5

pe(a) = Eq. 5.3(a)
0 otherwise

po(a) =

-2a + 1 ; whena < 05
Eq.5.3(b)

0 otherwise

Now, once the players can make moves anywhere in the interval [0,1] (DEFECT,
COOPERATE), the typical payoff matrix shall be replaced by a linear function of two
independent variables that stand for each player’s action. The output, as shown in Figure

5.2, consists of the resulting payoff for player 1, depicted by two intercepting planes.

' Using two fuzzy sets to characterize the actions generate 8 rules for each decision factor (See section III).
Since there are three decision factors, the total number of strategies will be 512 (2°:2%<2%). If a third fuzzy
set were added, this number would increase to 19683 (3°x3°x3%), each one comresponding to a different
player n the game.
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Figure 5.2 - The FIPD's payoff function

The payofls corresponding to the combinations of the extreme actions C and D
(rc(a@)=1 and pp (a)=1, respectively) were arbitrarily chosen as T=5, R =3, P =1, and
S = 0, which correspond to commonly employed values. The players’ gains are given by

Equations 5.4(a) and 5.4(b).

a) Player 1’s payoff (p, ):

Eq. 5.4(a)

1-2a1+4az;, whena: < az
b= .
1-a1+3az; whena: 2 @

b) Player 2’s payoft (,):

1-2a: +4ar;, whenaz < ai

> = Eq. 5.4(h)
P {1 ~ar+3a1, whenaz > a:



5.3 - Fuzzy Decision Rules

A quite common criteria to model the players’ strategies, also used here, is to base
them on the sequence of the opponent’s last moves. Nevertheless, two other variables that
seem to be related to the player’s choices are added to the present model. The variables are

represented by f; /> and £, henceforth called decision factors, and defined as:

/12 Relation between the accumulated wealth of the player and his opponent’s;
/> Last iterations between the parties;

/50 Relation between the overall trends regarding the acquisition of wealth,
expressed by the player’s average gain per iteration divided by the global payoff

mean of the whole group.

In the sequence, each factor is detailed, including how they were modeled into

fuzzy sets and fuzzy decision rules.

5.3.1 - Relation between accumulated wealths: /|

One of the criteria that might affect a player’s decision is the relation between his
own wealth and that possessed by the opponent. The idea that underlies the adoption of the
factor f; comes from Maynard Smith’s Hawk-Dove Game [SMIT82]. There, an element
called Resource Holding Power - RHP, which stands for a contender’s measure of size,
strength, weapons, or other kinds of power symbols, plays a significant part on the

resolution of a dispute.

The RHP component influences the formulation and efficacy of strategies. If a
plaver knows, for instance, that its opponent has a much higher wealth, it is intuitively
aware that this fact can act upon its partner’s decisions, perhaps making it more daring
because it is confident of its relative ascendance. On the other hand, a favorable relation
can also be used by the player as a hint that it is performing fairly well with its strategy if

compared to a current competitor. Also, a player with a high £ can implement strategies



with less concerns about temporary losses. Equation 5.5 considers the relation between a

player whose wealth is w, and an opponent with w,.

- _ W -
ﬁ - m’ ﬁ < [0~ 1]3 v W, Wy Eq. 5.5

To qualitatively characterize f;, three fuzzy sets have been designed: MUCH LOWER
(LW), SIMILAR (SL), and MUCH GREATER (GT), which are the same for all players (Figure
5.3). |

H
&
T A Tttt
— N\ é- S
‘ . i
. s"\ 1
i i
— i I
i a
7] it
— . L "‘ {
, e 4 !
T MUCH '\ {1} /MUCH !
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Figure 5.3 - Fuzzy Sets for the qualitative description of f;

In the fuzzy set SIMILAR, io(;=0.5)=1, and the left and rightmost points
(tq(1 )= to(fi”)=0) were arbifrarily chosen as f;°=0.44 and £,"=0.57, trying to mirror an
asymmetry usually found in human reasoning. This means that a player would restrain its
concept of equivalence within an interval where its wealth is 20% lower and 30% greater
than the opponent’s (i.e. points w,=0.8w; and w,=1.3w;). For a similar reason the third
fuzzy set greater starts at /,=0.55, which results from w,=1.2w,, approximately. The degree

of membership of £, in each of those fuzzy sets is given by Equations 5.6(a) - 5.6(c).

“2f, +1 for 0<f, <050

- Eq. 5.6(a)
How(ly) {0 otherwise ’
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nf -2 for 0.44 < f, <050
pg (f) =121, ~ 571 Jor 050< £, <057 Fa- 560
0 otherwise
ter(fy) = FH-% for 055<f <1 Eq. 5.6(c)
ety 0 otherwise

The factor # is used as an antecedent in a set of fuzzy production rules, whose
consequents are either gradual COOPERATION or DEFECTION. The same mechanism is
employed for the other two decision factors f; and f;. The conclusions yielded separately by
each expert system relative to f;, 4 and f; are partial, and the final decision shall be made
conjointly, as will be explained in the sequence. Regarding f; alone, the possible

combinations of rules are listed in Table 5.2. For each strategy S'Af1 the possible

consequents (C or D) are shown in the shaded cells.

Strategies

Wealth
Relation | g! s? s st s> st Y st
fi Iy I R 71 I

MUCH LOWER

SIMILAR

MUCH GREATER

Table 5.2 - Fuzzy Production Rules involving the wealth relation £; and an action g

: Si,-1 - Strategy i in relation to the factor f;



5.3.2. Last Iterations Between The Parties: f;

The factor f; refers to the influence of the recent history of a contender’s moves. It
consists of a relation between a weighted average of the payoffs obtained in the last three
iterations and the maximum achievable payoff, i.c., 5. When it is the case that two specific
players have not met three times yet, the default values specified by Equations 5.7(a)-

5.7(c) are used.

No previous mutual iterations:

f2 =04 Eq. 5.7(a)

One previous mutual iteration:

t-1
7 =P Eq. 5.7(b)

o Two previous mutual iterations:

pi™! Eq. 5.7(c)

t-2
£ =04xPi_ioexPi_
5 5

o Three previous mutual iterations:
pi? pi Eq. 5.7(d)

t-3
/s =0.1x£ig— +03x——

t-v
i

The terms (v=1 2, 3) stand for the relations between the gain that a player

obtained and the maximum payoff admissible in previous iterations.

The factor £, belongs to [0, 1] and accounts for the relative gain achieved in an
iteration. It is described by the attributes POOR, FAIR, and HIGH, which correspond to the
respective fuzzy sets shown in Figure 5.4 and membership grades given by Equations

5.8(a) to 5.8(c). The points f, = 0.2 and 0.6 were determined with a fixed payoff p=1 and
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p=3, respectively, which conform to the pairs of dichotomic moves CC and DD. As to f; =

0.4, it was calculated with p;=2, originated from pc(a)=pn(a)=0 for both players’.

/i
X
1.0 jﬁ -------- ity
=" o o1
4" s FAIR !
v )
-~ | !
! _,f :
8.5 | !
14 ;
P
Jrocr N HIGH E
] : ‘ I
0 i o
T T T T T T T 1T
60 02 04 0B 1.0

Figure 5.4 - Fuzzy Sets for the qualitative description of f,

The tuzzy expert systems which employ £ follow the same pattern adopted for #,

only substituting POOR, FAIR and HIGH for LOWER, SIMILAR and GREATER in Table 5.2.

, -25f,+1 for 0< f, <040

Kpoor (f2) = . Eq.5.8(a)
0 otherwise
5f, -1 for 020 < 1, <040

tram (f2) =5/, +3 for 040 < £, <060 Eq. 5.8(h)
0 otherwise
5,0 7 ~ ) .

L 15/ -3 for 040< £, <1 )

Paeu(fr)=43"% 7 ) Eq. 5.8(c)

0 otherwise

? From this point on, with any combination of actions a player will receive a greater payoff than its
opponent. For this reason, £, = 0.4 was chosen as the limit between the POOR and the HIGH fuzzy sets.
As to fiizzy set FAIR its hmiting points have been determined under two assumptions: First, a f, below
0.2 means that the player 1s being exploited by the other party and, thus, cannot see the outcome as
“fair”. Second, in an opposite sense, if it obtains more than 3 points (2 > 0.6), this reveals an
advantageous sifuation over the opponent, implying in gains that might not be considered “fair”.



511

5.3.3. Relation Between The Overall Trends Of Wealth: f;

The third factor /3 is a linear relation between a player’s (Ef) and the population’s ( 7"
average payofls per iteration. This relation intends to portray the current trend in the

accumulation of gains.

k R n .
> N N

—k =t —n  j=1 i _ wr

wr = W= —— J3=0—
Tk 2n e
Eq. 5.9(2) Eq. 5.9(b) Eq. 5.9(c)

where:

w) is the wealth of the player r at the ;" iteration,

;",( is the average wealth per iteration that the player has received until iteration
k

.k is the number of iterations already performed by the player 7,
#" is the average wealth per iteration that the whole population has received
after n iterations,
n s the total number of iterations until the present instant,

1 € P, P:{players who have already played}

The fuzzy sets designed to represent the qualitative concepts associated to f, are
similar to those shown in Figure 5.3, and eight fuzzy production can be generated in the

same manner as depicted in Table 5.2.

. 21, +1 Jor 0<f, <050
prw(ts) = 0 Eq. 5.10(a)

otherwise
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2f,-% for 0.44 < f, <050
o (fz) =412, +3  for 050<f1, <057 Eq. 5.10(b)
0 otherwise
. 0f .U or 0.55<f, <1
par(f)=4°7"7° % T Eq. 5.10(c)
0 otherwise

5.4 - Determination of a Player’s Action in 3 Move

The evaluation of f,, £, and £ vields three separate partial conclusions about the

intensity of cooperation/defection to be adopted. To accomplish the aggregation of the

three limited results, the present model employs a procedure that takes the maximum of the

outcomes derived from the rules related to each factor. The general steps to be followed by

a player » ( = 1 to m) are valid for every factor fé‘, (g corresponds to the type of the

factor (g= 1, 2 or 3 ) and j to the iteration (j = 1 to »)).

ss
il

jii.

o i
Determination of fq
Fuzzification offé'r;

Activation of the fuzzy rule(s) matched by the fact (according to the player’s
strategy S, );

. Consolidation of the partial conclusions yielding the final conclusions (g, py);

2
?

H

Every player is characterized by a set of 9 fuzzy rules (three for each S,,, g=1
3). The inference process will fire the rules matched by the fuzzified decision
factors. Each factor can originate either one or any pair of the possible partial
conclusions C or D, with its associated strength (membership grade ). The
integration of the partial conclusions is made through the fuzzy union, using the
Join operator v (fuzzy maximum), for the same class of conclusion. Hence, the

final result to be derived in terms of cooperation and defection will be a sole pair

of conclusions, taken as max( ,ug“ ) and max ( pg‘ ), q=1,2and3.
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v. Defuzzification of the final conclusions to determine the final player’s action 41'
The final conclusion will consist of a pair of membership grades in either one or
both fuzzy sets COOPERATE and DEFECT. However, in order to find the payoffs in
an iteration, the players’ actions cannot be fuzzy. A defuzzification procedure using
the singleton method’ translates the qualitative conclusions into a crisp value for

each player.

5.5 - Example of an Iteration of the FIPD

5.5.1 - Identification of the Players

The diagram depicted in Table 5.3 shows how a player is distinguished by the set of
strategies it uses. Each player has 9 rules defining what it will do according to the value of

each decision factor. Let us assume that one of the players randomly chosen is Pys,. The

subscript 764 means that it uses the strategy SZH with respect to fi, S?ﬂﬂ for f; and S?-a for

/£, as indicated by the shaded cells.

J £

w POOR
SL FAIR
GT HIGH

Table 5.3 - Strategies used hy the 512 different players of the FIPD’

5.5.2 - The Iteration Process

Assume that the other player, also randomly selected, was P,;;. The iteration
process is as follows: First, each player determines its decision factors. Every f is

qualitatively described by its corresponding fuzzy sets, and the rules that have been

4 A singleton is a membership grade value represented by a single vertical fine that intercepts the horizontal axis in only one
point [VIOT93]. In our case, there will be two singletons, one for each fuzzy conclusion, COOPERATE and DEFECT.
The final action is determined by the point where the resultant of the two singletons crosses the horizontal axis. This

_ point is calculated balancing the moments of the two singletons and of the resultant. See Chapter 4, section 4.4.2.

YA player is a strategist with three rules for each of the three decision factors. Thus, the total of players is 8 x 8 x 8 = 512.
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activated are added to the knowledge base. After the three factors have been considered,
the fuzzy inference takes place using the fuzzy rules previously fired, vielding a player’s
final action. With both final actions as inputs, the payoffs are calculated using Equations
S5.4a and 5.4b. The entire decision process for plaver P is described below (P,

implements a similar process to reach its action).
5.5.3 - The Decision Process for Player P,
The data assumed for the player P, is:

. wi, = 36 (wealth reached after 24 iterations)

. Wy = 96 (wealth reached by the current opponent after 30 iterations)

o we=15 (average wealth per iteration after 24 iterations - Eq. 5.9a)
. " =2.5 (current population’s average gain per iteration - Eq. 5.9b)

. Previous Iterations with the player P177:

a) Determination of the partial conclusions based on factors f;, f; and f;
. factor f

36
36+96

= 0.273

calculation: Eq. 5.5 = f =

qualification: Eq. 5.6(a) = piowsr(0.273) = 0.454
rule fired (strategy Szﬂ ):

IF fi is MUCH LOWER THEN DEFECT = DEFECT (0.454)

. factor £,

04x32 N 0.6x2.6
5

qualification: Eq. 5.8(b) = prar (0.568) = 0.160

calculation: Eq. 5.7c = £, = =0.568




Eq. 5.8(¢) = pmen (0.568) = 0.280

rules fired (strategy S?-z ):

- IF f, is FAIR THEN DEFECT => DEFECT (0.160)

IF f,1s HIGH THEN COOPERATE —> COOPERATE (0.280)

. factor £

L. 0.375

calculation: Eq. 5.9(¢c) = £, = =
e d (© 5 15+25

qualification: Eq. 5.10(d) = ppw(0.375) = 0.250

rule fired (strategy S§-3 ):

IF f; is MUCH LOWER THEN COOPERATE => COOPERATE (0.250)

b) Combination of the Partial Conclusions (C and D)

L= max{COOPERATE (0.280), COOPERATE (0.250)} = COOPERATE (0.280)

Hp= max{DEFECT (0.454), DEFECT (0.160)} = DEFECT (0.454)

¢) Determination of the Final Action of the Player P4,

I.vL/'\
1 G —::' —————————————— 'I
0.8 o \DEFECT () A

06
04
SO B

00 02 04 06 0S8 10 ©Z

e (a) = 0.280 -.a=0.640 (Eq. 5.2(b))
1o (a) = 0.454 -.a=0.227 (Eq. 5.2(a))

4rT= (A-ppl@)xpupla)+(A+pc(a) X pc(a)
! 2pc +ND)-




A50=0.413
5.5.4 - Computation of the payoffs

a) Player P4

using Eq. 5.3(a) =

b) Player P,

netl nel
- .
Al?? - A?Ea s

using Eq. 5.4(b) =

5.16

— 3. 40t . r+1
Prss — 1- ZXA;“ + 4>~-A.]77

D764 = 1 - 2)(0473 + 4X0532

P64 = 2.182

— net T, nel
Pir=1- A, + 3w,

i = 1-0.532+ 3%x0.473

P = 1.887

5.5.5 - Update of the Population’s and Players’ Parameters

accumulated wealth (Pey):
accumulated wealth (P,77):
average payoff per iteration (Pyg,):
average payoff per iteration (P;;7):

population’s average payofl per iteration:

Wi = (36 + 2.182) = 38.182
Wi = (96 + 1.887) = 97.887
wies = 38.182 + 25= 1.527 (Eq.5.9(a))
wi = 97.887 + 31 =3.157 (Eq.5.9(a))

w" = 2.5 (Eq. 5.9(b))
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5.6 - Simulations

The computational tournaments were implemented using a custom C++ program,
specifically written for the implementation of this model of the FIPD. To run the
simulations, the 512 fuzzy players were divided in groups of 16 participants each. Along
the four different phases of the tournament, every group included also the three non-fuzzy
strategists, that is, the traditional TFT, the generalized TFT® (TFT-g) and Paviov.

In the first phase there were 32 groups, each with 19 contenders. After running
30000 iterations per group, the competitors were ranked by their average payoff. For the
second round, the eight best fuzzy players from each group were then selected, and eleven

new groups were formed from the original 32, by mixing the participants by chance.

The third phase involved five groups, again picked from the foregoing best
performers. The 16 final best fuzzy strategists, along with TFT, TFT-g and Pavlov played
the last dispute. The total number of iterations per group was kept constant in 30000 in
every phase, and there no player performed less than 3000 iterations. This means that, on

the average, everyone encountered the same adversary in about 166 occasions.

Tables 5.4 to 5.7 display the results obtained in the four phases of the simulations,

always referring to groups.of 19 players each (16 fuzzy and the three non-fuzzy).

® The Generalized TFT strategist starts cooperating and, in the next iterations, repeats the previous punctual
action of the opponent. Another possibility could be to consider the opponent’s action as an o-cut in the
fuzzy action (C or D) and use a defuzzification procedure to find 1ts decision.



Group | Winner's Avg. Group’s Smallest Group Winner's Avg, Group’s Smallest
Number Payoff Avg, payoff’ Number Payoff Avg payoff’
Payoff Payoff

1 453 2.54 217 1.93 17 PAVLOV 248 2.11 1.75
2 PAVLOV 2.54 2.16 1.94 18 546 2.66 218 1.90
3 453 2.54 2.14 1.88 19 454 2.59 2.18 1.95
4 436 2.61 2.18 1.94 20 515 233 2.14 1.96
5 PAVLOV 2.61 212 1.83 21 PAVLOV 2.51 2.10 1.65
6 566 2.60 2.20 1.73 22 745 2.61 2.16 1.69
7 PAVLOV 243 212 1.87 23 PAVLOV 2.51 2.14 1.90
8 664 2.53 217 1.85 24 476 2.58 2.16 1.54
9 353 2.58 2.16 1.95 25 356 2.56 2.15 1.89
10 PAVLOV 2.53 2.11 1.85 26 PAVLOV 2.50 2.10 1.84
11 355 2.55 2.19 1.90 27 354 2.54 217 1.94
12 436 242 2.13 1.93 28 446 2.69 2,17 1.98
13 554 2.53 2.14 1.81 29 PAVLOV 2.63 2.08 1.79
14 PAVLOV 2.69 2.16 1.77 30 556 2.60 2,15 1.71
15 PAVLOV 249 2.10 1.75 31 553 2.54 2158 1.84
16 555 27 2.16 1.91 32 PAVLOV 2.83 2.14 1.92

Table 5.4a - First Phase: Groups 1 to 16

Table 5.4b - First Phase: Groups 17 to 32

Group | Winner | Winner's Group’s Smallest Group Winner Winner's Group's Smallest
Avg. Avg payotl Avg. Avg payof!
Payoff Payoff Payoff Payoff
TFT 2.24 1,76 142 1 TFT 2.09 1.68 1.35
2 556 2.21 1.92 1.31 2 TFT 2.23 1.66 1.17
3 TFT 2.10 1.83 1.19 3 TFT 2.18 1.63 1.28
4 554 2.22 1.86 1.29 4 TFT 2.08 1.62 1.17
b TFT 2.18 1.80 147 5 TFT 1.76 1.56 1.05
6 TFT 2.16 1.86 135 Table 5.6 - Third Phase
7 TFT 1.94 1.70 1.14
8 TFT 2.10 1.75 1.25
9 TFT 2.15 1.82 1.26
10 TFT 2.01 1,72 1.34
11 445 2.39 2.05 1.41

Table 5.5 - Second Phase
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Table 5.7 - Fourth Phase (Final)

5.7 - Discussion of the Results

Except in the final phase, all groups played two simulation rounds. As expected, the
ranking order for each group showed variations, because the pavoffs accumulated during
the iterations are dependent of the sequential random selection of pairs. The tables

depicting the results refer to the round in which the greatest average payoff was obtained.

An extra round involving all the 512 fuzzy and the 3 non-fuzzy players in a sole
group was also performed. However, though the group played one million iterations, the
results obtained were not conclusive, because the participants played only about 7.5 times
with each particular opponent, on the average. This small number of iterations between the
same pair is not enough for a player to reach a stabilized pattern of behavior with his
opponents’. The winner of this round was the fuzzy player 555 (the fuzzy “all-D"). TFT
ranked 237" TFT-g and PAVLOV finished in 317" and 374" places respectively. An
interesting feature observed was that the 9 first contestants had “S” (which means defection
in every circumstance) as the middle digit. This position corresponds to the factor /> and
refers to the decision rule regarding the pavoffs previously obtained. In the limited
experiments performed, the “all D” characteristic had an edge over the other players,

possibly because it exploits their “nicer” decision rules.

The first phase
In the 64 (2x32) runs, the digit 5 appeared at least once in 36 of the 64 winners. In

28 cases it was the middle digit. Also, in 15 groups, the same fuzzy player won both runs,

" A 486SX 33MHz computer was employed, and the program run in a virtual disk during about 100 hours
uninterruptedly, or more than four days.
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and 13 of them contained the digjt “5” at least once in some position. Excluding the fuzzy
players, PAVLOV performed quite well in this phase, winning 14 times. TFT arrived first
3 times.

The second phase

From the 32 groups, 176 fuzzy players have been picked, forming 11 newly
arranged sets. The criteria was to select the individuals which appeared simultanecously
among the eight best ranked fuzzy players in both rounds, along with some other players
that, although not having this feature, also performed well. This time, TFT won 17 of the
22 rounds. Surprisingly, the PAVLOV strategist abandoned the success it had in the first
phase and scored poorly. Its best positions were a second and fourth place, ranking in the
lower half of the groups most of the times. The explanation for this fact seems to lie in the
cognitive rule adopted by PAVLOV, which interprets an opponent’s action as only totally
cooperative or defective, though the fuzzy players seldom, if ever, come out with the
extreme actions 0 or 1. Those circumstances entailed many C’s from PAVLOV, against
less cooperative decisions from its adversaries, and consequent lower payoffs. Why, then,
was PAVLOV so successful in the first phase? The answer may be the fact that the
“DEFECTION biased” strategists were scattered among all the groups, and in the end they
became present in a larger concentration, since they emerged as winners from the
preceding level of the tournament. On the other hand, TFT retains a tradition of being
good in handling defectors, definitely reciprocating with zero whenever it meets another
player with a tendency of deciding towards defection, even if it is only a mild disposition.
As i the second phase the players with a defective mood outnumbered those more
cooperative, TFT thrived, because in a pair of actions, the one nearest to zero receives the

greatest payoff.

The third and final phases

As can be seen from the respective tables, the third and final phases turned out to
be only a confirmation of the tendency that had already been initiated by the increasing
exclusion of the “nicer” rules. Nevertheless, a fiercer dispute really has taken place in the

last phases. This observation can be confirmed by the average payoffs achieved by the



521

players, which steadily drop as the tournament evolved. This assertion is valid for both
winners and losers. Again, TFT ended in the first position, though closely followed by the
555 fuzzy strategist.

5.8 - Conclusions

The purpose of the model of the IPD presented in this Chapter of the dissertation
was essentially the introduction of a fuzzy model of the IPD. Departing from the classical
approach where only al/ or nothing decisions could be implemented, the conflict of interest
embedded in the game is treated as a problem allowing a continuous interval of strategies,
represented by membership grades in the fuzzy sets COOPERATION and DEFECTION which
now characterize the players’ actions. Additionally, the participants’ decisions were guided
by fuzzy expert systems that took into consideration other variables besides those related to
the history of previous iterations, which are usually employed to assist the strategists. In this
framework, a computer tournament was performed, and some results achieved were
shortly discussed. Given the importance of the concepts introduced, the interest in further
extending the investigation of the FIPD is explored in Chapter 6 of this dissertation, where
a subsequent theoretical development as well as a practical application of the paradigm are

implemented.



Chapter 6

An Application of the Fuzzy Iterated Prisoner’s Dilemma

6.1 - Introduction

In chapter 5, a theoretical model incorporating fuzzy expert systems as a basis for
players making decisions in the Iterated Prisoner’s Dilemma (IPD) games was presented,
simulated and analyzed. As could be seen, allowing the contenders’ actions to depart from
the traditional Boolean resolutions COOPERATE and DEFECT brings new and important
modifications in the game. Moreover, the fuzzy logic approach employed to describe the
way the players reason and perceive the stimuli from other players and also from the
environment is much nearer real life situations than the former schema. Another significant
feature included in the model was to take into account a diversity of variables, other than
the usually employed history of previous iterations. The computational tournaments
performed using these paradigms brought new light on the manner rational agents might
behave when submitted to situations that have a resemblance with the conflict of interests
mirrored by the Iterated Prisoner’s Dilemma Game.

In this part of the dissertation, many of the ideas extracted from the theoretical
developments presented in chapters 4 and 5 will be exploited. The aim is to demonstrate
how the structure of a Prisoner’s Dilemma game can be applied to a practical problem in
the domain of Industrial Engineering, where an evident conflict of interest is present and
where the decisions are made by rational agents. Uncertainty, incomplete and/or
ambiguous information, risk and subjective perceptions will be still extant in the material
that follows. But in the realm of game theory, differently from standard optimization and
decision problems, it is possible to combine random events, or states of the world, with
actions that are entirely governed by the participants. This characteristic usually brings new

difficulties for the decision makers in achieving their desired goals, mainly because a
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player’s action can always be opposed by a counteraction from the other part, and
everyone is simultancously trying to achieve their own specitic goals, which can be

opposing (but not always strictly contradictory, though this is not seldom the case).

The Prisoner’s Dilemma (PD) is an adequate paradigm to model and understand
what happens when rational agents are exposed to those kind of circumstances. It
reproduces the contradictions that arise from instances taken from everyday life where the
simultaneous search of the individual optimum frequently leads to both individual and
collective poor outcomes'. However, given the qualifications of the problem to be
approached, an alternative structure, which partially deviates from the traditional definition
of the Prisoner’s Dilemma Game, will be employed here. Instead of considering a fwo-
sided PD, an one-sided” version [RASM89], allied to a fuzzy decision broccss by one of
type of players shall be used to model the problem, which consists of a Market Share
Game. A detailed method is thoroughly developed, preceded by a description and
discussion of the approached problem. A methodology overview, including a simplified
outline of the proposed system, is also included. Along with the detailing, an example is
supplied, applying the concepts just introduced. The current Chapter ends with a summary
of the algorithm.

The information about the computational simulation process and the results

obtained is deferred to Chapter 7.
6.2 - Description of the Problem

Among the most important questions that must be tackled by a profit-
secking company ( the F irm) operating in a competitive environment, is the estimation of its
revenues. |

More often than not, the emphasis of the decision process is concentrated in
internal aspects of the Firm. These aspects, in general, deal with topics which regard

mainly production planning and control, financial management, quality control of products,

! This paradox is the essence of the Prisoner’s Dilemma Game. For an enlightening discussion of the theme,
see [HOFSR3).
¢ See Chapter 3 of the dissertation for an explanation of that class of PD’s.
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technology employed, investments, relationship with suppliers, sales policy, advertising
budget, etc. But a crucial factor influencing a company’s performance with respect to its
ability to generate profits is the market share it detains. The market share is mtimately
related to the internally manageable variables mentioned above. Nevertheless, an accurate
measure of the impact or effects that projected or just implemented alterations in the
attributes of a product, such as quality, price and advertising, will have on the market share

is still hard to determine.

The analytical models, generally based on empirical data, constitute an attempt to
solve the problem. Unfortunately, the static models suffer from the same plague that beset
other economic-related questions: the highly dynamic character of the process and the
capacity of evolutionary self-adjustment of the agents involved. This often causes an
unsatisfactory performance of traditional static or analytical models, which may turn out to
be become either mathematically intractable or unattractive under the point-of-view of the
intended precision. In other words, because of its implicit nature, market share problems
belong to a class of issues that do not yield easily, in terms of the reliability of results, to

standard treatments, such as analytical or even econometric models of prediction.

Computational simulation methods provide an excellent alternative to approach the
problem of market share determination. Because of their iterative capabilities, they are able

to capture the dynamic and interrelated processes that permeate these kind of questions.

The problem considered in this dissertation is an application of the Fuzzy Iterated
Prisoner’s Dilemma (FIPD) to a practical situation. It allows the acquisition of new insights
of the processes that take place in a competitive market formed by suppliers of products or

services and Consumers. The main general questions to be addressed by the model are:

e What are the relationships between the market share of a Firm’s product or service
and the price, quality and advertising budget the company assigns to it?
¢ How do the Consumers perceive changes in the attributes of a product or service,

and update their decision functions?
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* Given the Consumers are diverse regarding their buying power, feature orientation
and sensitivity to price and quality, how can the competitors identify market

opportunities (niches) and conveniently explore them?

¢ What is the dynamic behavior of the whole environment, concerning the conflict of
interest embedded in the process, both among competitors (sellers) and among
Consumers and Firms?

e Can an equilibrium be established? If it can, which are the characteristics of the
strategies that compound it?

e Which are the dominant strategies in terms of attaining the best results (profits) for

the Firms? Are they stable?

Those questions, along with other additional related analysis, will be the object of a
simulated repeated non-cooperative game between Firms and Consumers, both taken as
individuals. The iterations will always be pairwise, but the results achieved by both sides
will also influence their decisions regarding different contenders. The main goal of this
application is the determination of a Firm’s market share when operating in a competitive

environment, and having rational agents as customers.

6.3 - Methodology Overview

6.3.1 - The Basic Game

The Fuzzy Iterated Prisoner’s Dilemma paradigm, in its one-sided version, will
serve as the basis for modeling the game. It is considered suitable for the investigation and
resolution of the problems posed by the previous questions in the sense that in the relations

between a Firm and a Consumer, both sides can COOPERATE or DEFECT.

In the case of a Firm, the degrees of cooperation or defection are expressed by the
compromise between the price and the quality of the item offered in the market for sale.
Under a Consumer’s point-of-view, a Firms’ decisions may range from one extreme,
denoted by price = LOWEST and quality = BEST (COOPERATE), to the other,

price = HIGHEST and quality = WORST (DEFECT). On the Consumer’s turn, it will go
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through a fuzzy-based decision process, but the possible moves will be still dichotomic and
expressed by the decision to buy or not the product or service® when the opportunity to do
so appears. While the COOPERATE move implemented by the Consumer means that the
transaction has been effectuated, DEFECT implies that it will have to search for another

supplier.

Differently from the classic two-sided PD game, in which both players possess the
same strategy set and symmetric payotYs, the one sided PD to be employed here does not
fit the usual definition of a PD, because the strategy sets for each participant are different

and because neither the payoffs nor information sets available to the players are symmetric.

In order to better clarify the mechanisms that will be used to model the proposed
application with the one-sided Fuzzy Iterated Prisoner’s Dilemma, let us consider for a
while, as a simplification, that only the dichotomic punctual choices COOPERATE and
DEFECT are allowed for both players, as in the standard game. In this hypotheses, given a
typical iteration between any pair of players involved in an iteration, only the four usual
feasible outcomes CC, CD, DC and DD may result, regarding the combination of the

decisions from the Consumer (potential buyer) and the Firm (potential seller).

The simplified qualitative one-sided PD used in this example is an adapted version
of the one introduced by Rasmusen’. It can be represented, in its normal form, by the
payoff matrix shown in Figure 6.1. The payotts for the Firm are expressed qualitatively by
the terms high (HIG), medium (MED), LOW and Jowest (LWT), in decreasing ordinal ranking
order. On the other hand, the Consumers’ gains are reduced to only three possibilities: Aigh

(HIG), neutral (NTL) and LOW. This occurs because when the Consumer does not buy the

* It could be the case that the consumer, too, might be able to decide in a continuous interval, instead of
only the two punctual choices buy or not buy. This would happen if the product offered by the supplier is
divisible and the consumer were to select a certain quantity in a given iteration. Although of interest, this
relaxation will not be approached in the present work, and is left as a suggestion of future developments.
See Chapter 8 - Conclusions.

* Op. Cit. [RASMS&9]. The difference between the version employed here and Rasmusen’s is the existence,
i the former, of a row player's weakly dominant strategy and the consequent iterated dominant
strategy equilibrium, not present in the current game.
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product or service, the quality of the item is unobserved, and its payoff will always be

neutral ( NTL) in this case. Also, the payoffs are not interpersonal comparable”.

Consumer
C D

C [MED,HIG LWT,NTL
Firm
D |HIG,LOW LOW,NTL

Figure 6.1 - Normal Form of the Simplified One-sided PD with Qualitative Payoffs

In the matrix cells, the first term refers to the row player. The criteria for assigning
the qualitative payoffs shown in fig. 6.1 is explained below. They are always taken as a
function of the pair of moves selected by the contestants. The first letter, C or D, refers to

the row player, the Firm, and the second stands for the column player.

e CC: The Firm cooperated in the sense that is offering a product or service
of suitable quality at a fair price. The Consumer also cooperated by means of
carrying out its decision to purchase from the Firm involved in the iteration.
In this situation, the Firm receives a reasonable, or medium (MED) payoff,
because it accomplished the sale, but the profit margin embedded in the
transaction is not too high. This result derives from the assumption that
production costs of good quality products are higher. On the other hand, the
Consumer gets a high (HIG) payoff, for having succeeded in achieving a

product or service of suitable quality, at a convenient price.

* Interpersonal comparison of utilities is one of the crucial problems of Game Theory. Some theorists, e.g.
[BACH77] admit that it is not possible at all. Fortunately, in the present imodel, this feature is not
requared.



e CD: The Firm’s behavior is the same as in the previous case, but now the
Consumer opts for not taking the offer. The Firm’s payoff is the Jowes?
(LWT), as long as it is not being compensated (consummate the sale) by the
Consumer for its efforts in offering it a good deal, in the Firm’s point-of-
view. The buyer, having refused to purchase from this Firm and possibly
having lost an opportunity to achieve a good valued item, will receive a

neutral (NTL) payoff.

e DC: The Firm’s article is of inferior quality and expensively tagged, vet the
Consumer buys it. As a consequence, the Firm gets a high (HIG) payoff, while
the other player ends up with Low, for evident reasons.

¢ DD: The article’s attributes are as above, unfavorable to the prospective
buyer, and it decides to refuse the deal. Regarding the seller, its gain will be
almost as low as in a CD outcome, but because the efforts involved in
offering a poor quality and high priced item are much lesser than in the latter
case, the loss will be somewhat smaller. For this reason, a /ow payoff will be
assigned to it. The Consumer is also in a position similar to the one that
happens in CD, however it must be satisfied for having avoided the worst,
with its refusal to accomplish an adverse acquisition. Recalling the features
possessed by the one-sided PD®, it is important to mention that only the row
player is confronted with a dilemma equivalent to that which takes place in
the standard two-sided PD. This is so because in the one-sided PD at least

one of the players prefers CC mostly.

Though in the qualitative payvoff matrix both the Firm and the Consumer have
identically labeled gains with ordinal equivalence, they do not stand for equal cardinal
values. In the one-sided PD, this asymmetry i1s the main relaxation of the rules that define

the usual two-sided PD. Neither player has a dominant strategy, and so there is no

% See Chapter 3.
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dominant strategy equilibrium. Nevertheless, a unique DD Nash equilibrium persists. A

summary of the players’ actions and associated gains are presented in Table 6.1.

After meeting a Firm, according to
a specific selection mechanism, the
Consumer decides to purchase the
] product or service being offered, also
' conforming to a particular criteria.

The payoff it receives is Aigh or

low, depending on whether the

| purveyor cooperated or defected.

Independently of being chosen or
not, the policy adopted by the Firm is
to offer products or services with
good quality at fair prices. Its payoff
initeration is medium or lowest, if
the Consumer cooperated or defected,

respectively.

After choosing a Firm, according
| to aspecific selection mechanism, the
Consumer opts for NOT to buy from
this supplier, and will have to look

for another one. The payoff 1is

neutral (zero).

Independently of being chosen or
not, the policy adopted by the Firm is
to offer poor quality and expensively
priced products or services aiming a
high unitary profit. The payoff it
receives is Aigh or low, if the
Consumer cooperated or defected,

Tespectively.

Table 6.1 - Actions and Payoffs in a Simplified One-sided Market Share PD

6.3.2 - Basic Iteration Process

In order to implement the model, a hypothetical setting is initialized, and a
simulation program will be run to generate the iterations. The components of the process

are summarized in Table 6.2.



(=
&

Table 6.2 Main Components of the Market Share Game
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6.4 - Detailed Formulation of the One-sided PD Market Share Game
6.4.1- The Sellers (Firms)

In a competitive market, a small number of sellers offer a similar product or service
for sale to a population of Consumers. The number m of Firms present in the game is
arbitrary. In this applicé.tion, the simulations will be run with m < 6, but this number can be
altered. The products or services offered by the Firms are differentiated from the
Consumers’ point of view, by their respective prices pyg, and qualities qy, i = 1, 2,...,m,
g =1, 2, ...k. The quality and cost of an item are closely interrelated, so that each of these
variables can be expressed as an increasing function of the other’. These variables are
entirely governed by a seller’s decisions, and are perceived in distinct ways by the
Consumers. When a pairing between a Firm i and a Consumer j takes place, the latter
distinguishes the price p;, before it makes its decision of buying or not the item. The quality
Qig, though, is unobserved by the customer unless it purchases the product or service in

perspective.

A third factor, also controlled by the companies, is the advertising budget a;,;. While
playing an important role in attracting potential customers, the amount spent in publicity
does not influence the product quality, but will effectively contribute to the Firm’s overall
costs. When the game starts, each competitor defines the variables p;, ¢;, and a;, which
can be modified in the course of the simulations depending on the results attained. The
sellers’ global goal is the maximization of their profits. The profit of a Firm during a given
period is a function of those three variables, and also of the quantity of items sold. On its
turn, the volume of sales is determined by successful iterations with the customers,
symbolized by their Cooperation in the one-sided PD, as previously explained. In this
version of the model, no restrictions are being imposed on the production capacity of the

competitors, taken as unlimited. All these variables will be explained in the sequence.

’ The index g refers to the cycle of the game. See Sections 6.4.2 and 6.4.3.
? See Section 6.4.4 - The Firm's Revenues, Costs and Profit.
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6.4.2 - The Advertising Budget

Before the iterations start, along with the price p;; and the quality q;,, cach Firm i
also defines an advertising budget a; that remains constant during a fixed period, called
cvcle g, denoted by a specified total number of iterations scheduled to take place in this
period of the game. It is assumed that the Firms know the size of the potential market, I,
and a is a number between zero and one, taken as a percentage of the maximum
theoretical possible revenues that would be conjointly achieved by all Firms in the limiting
hypothesis as explained in section 6.4.4. Regarding only the random selection process of
the Firms, the total absolute value allocated to the publicity of the items being sold by each
Company is not relevant in this aspect of the simulations performed®. Instead, the relation
between the amounts are considered.

The publicity expenses have an impact on the sellers’ overall costs, and the
parameter that will be used to account for this fraction of the costs will be the maximum
price of an item considered in the game, max py,, arbitrarily fixed in 10 monetary units, as
will be further made clear.

The selective process of a particular Firm to take part in an iteration is random,
according to a probability distribution derived from the various advertising budgets a;,. The

probability s;; of a supplier i to be selected during a cycle g will be given by:

S aig

m X (1=3), Eq. 6.1

™
o
o

The idea that underlies the formulation of s;; by Equation 6.1 is that any Firm can

S
be picked by the random selection process with a probability ; even though it refrained

from spending in advertising. In other words, in the hypothetical market there will always
be a probability s, arbitrarily fixed at the beginning of a cycle g, independent of the Firms’
advertising budgets a;,. That probability will be shared by all the m competitors, that a Firm

interacts with a consumer. Obviously, the more a seller spends in publicity, mirrored by the

* However, the absolute value of the advertising budget chosen by the suppliers is consequential in the task
of establishing the net profit of a Firm during a cycle of the game. See section 6.4.4.
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value attributed to a,, the greater are its chances of being chosen more times as a potential

supplier, but that advertising effort will actuate only on the remaining probability (1- ).

As mentioned before, the cost incurred in advertising does not have any efficacy in
improving the quality of the product or service and consequently a Consumer’s
predisposition in purchasing it, but this decision will affect the seller’s total profit achieved
at the end of each cycle’®. The profit can be positively or negatively influenced, as long as
there is a trade off between the capacity of pulling in a larger number of potential
customers, mirrored by an enhanced chance of a Firm being selected when s; grows, and
the increased costs when ay; is raised. Also note that the efficacy of ay is relative, not
absolute. In this manner, if every Firm elect exactly the same value for its advertising
expenses in a given cycle, its expected number of iterations will be the same as if none had

spent anything"'.

6.4.3 - The Size of the Potential Market

The global game will be partitioned in k cycles of identical length. The length of a
cycle is defined by an elective expected number of iterations per Consumer present in the
game. When a cycle is completed, the Firms will be allowed to modify their previous
decisions regarding the price, quality and the advertising budget. The criteria used to alter

those variables is the pursue of optimum economic results, namely, the profit.

The size 1 of the potential market of the product or service is constant during each
cycle of the game. It is given by the totality of Consumers (n) times the expected quantity
of purchase opportunities per Consumer E(b) per cycle. This means that I random pairings
will occur between sellers and  buyers. It is important to recall that a pairing does not
necessarily mean that a transaction was completed, what only occurs if the Consumer

cooperates, or decides to accomplish the purchase. In every cycle g, the number of times a

1 See next section for the definition of this parameter.

Y To avoid a division by zero error in the simulation program, that hypothesis will be withdraw from the
options to be rum.
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particular Consumer j, j =1, 2, ...,n interacts with a Firm i, i =1, 2, ...,m, will be defined as

big;, and the absolute frequency of cooperations per Consumer shall be called B@.

I=3>>b, =nxEb). Vg Eq. 6.2

j=li=l

The quantity of items sold by the Firm i during a cycle is vy, and the aggregated

effective demand for all sellers is V.

Eq. 6.3
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6.4.4 - The Firms’ Revenues, Costs and Profit

|. Revenues

Each time a Firm meets a Consumer, basically only two things can happen: either
the customer purchases the item offered (cooperates) or declines (defects). On the other
hand, at the beginning of every cycle the seller has a continuum of options™ regarding its

policies towards the combination of price and cost of its product or service.

The revenues that a Firm receives in the course of every cycle of the game are
originated from its payoff function. The inputs of that function are the moves performed
by the Firm and the other player. If the Consumer cooperates, the payoff ry; to the Firm
shall be defined as the umtary profit (py - ¢ig). Otherwise, the Firm is penalized by

receiving a negative payoff. Here, the penalty payoff was discretionary fixed, consisting of

"2 The choice of prices, costs and advertising budgets for each Firm is made by the researcher.
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two fixed parts t,, t, and a portion proportional to the ratio it | which can be interpreted
pig

as a Firm’s degree of cooperation.

Defects (does not”buv

»

v c
Tig = Pig - Cig rig=_(tl+t2xc—i5‘)
pig

Table 6.3 - The Firms' Payoffs

This scheme is consistent with the assumption that the loss associated with an
eventual non-consummated sale is greater when the Firm cooperated in a larger degree,
which means producing and selling an item with a lower unitary profit margin. Defection,
though capable of bringing better short-term benefits to the Firm, also has its risks, since in
the long run it will generally drive away would-be buyers, as will be explained in section
6.4.6.

The introduction of the subscript g to represent a particular cycle of the game is
necessary because the Firms can alter the variables py, ¢z and a,; when a new cycle g
begins. This possible modification in the sales policy can bring different results in terms of
the revenues achieved, and shall constitute a subject of interest for the analysis of the
simulations.

Concerning the variables pyg, €ig, and qq it is necessary to establish some important

rules that must be obeyed by during the game: drive away
® pigand ¢, are expressed in monetary units;

e The quality attribute q;, is directly related to the cost of the item;

e No Fim is allowed to decide on a price that is inferior to the cost of item

(Pig= Cig):



o All prices are subject to a maximum and a minimum, that have been selected as 10
and (0+e) monetary units, respectively, for the purposes of this model

((0+8) =pyg <10);

¢ During a cycle of the game, py, qi; and a;; remain constant.

The total gross revenues obtained by a Firm i after the end of a cycle g, g=1, 2,

K18

cig H

= - ; B . . 6.5
Rig =(Pig —Cig) X Vi -(t, T, x—)x [ijig Vig Eq
. =

ig j=]

Il. Costs and Quality

Two kinds of costs are present in each cycle g of the game:

a) Unitary production cost ¢g, and

b) Advertising cost a;,.

The total operational cost of a Firm i in a cycle will be a function of its current
item’s price, cost, the fixed parameter t, the number of iterations in which the Firm took
part (that could be called “customers’ visits”), the number of consummated and non-

consummated sales and the amount spent in publicity.

a) Unitary Costs and Quality

Because of the structure adopted for the simulation model, the operational costs
will be considered as embedded in the payoff function of each Firm, and to avoid
redundancy, they will not be treated separately. Thus, when selecting p;g and ¢4, the Firm
is deciding on its own payoff function, and, in a way, also partially on the Consumer’s.

This occurs because the quality qyg that the buyer assigns to the item is taken into account



in the model as a crescent function of the cost ¢y, settled by the seller to the item in a cycle
g", that is, qi=f (Cig).

Note that, as the quality q, is not observed by the Consumer unless it purchases
the item, the information in the game becomes asymmetric. This is so because while the
seller knows with anticipation its gains for any move that the other plaver eventually
chooses, the same privilege is not granted to the buyer, whose access to this knowledge is
denied beforehand. In this manner, only the advertising costs are considered apart from the
payoff function.

According to the basic regulations established for the ranges of ¢;5 and pyg (section
6.4.4 - | ), c;g must be less or at most equal to py. As will be seen in the sequence, each
Consumer, depending on its own sensitivity parameters regarding price and quality, will
assess these two variables with the aid of two specific groups of fuzzy sets.

The sensitivity parameters have opposite signals but the same absolute value, and as
quality and price have reverse affinities, a mutual cancellation of effects takes place, so the
fuzzy linguistic classifications of these attributes are equivalent. Thus, if q;, 1s taken simply
as equal to ¢, the Consumer’s perception of the quality of any item would be at most as
favorable as the price, in the extreme hypotheses when c;=p;. This situation, though
allowed by the game’s rules, is unrealistic, since the Firms must have some unitary mafgin
of profit in their products or services, and they must be seen by the Consumer as
appropriate if a deal is to be accomplished. With those considerations in mind, a crescent
relation between cost and quality is proposed.

The grounds for the formulation of qi.=f (cig) come from the presupposition that
every Consumer will assign a quantitative measure of quality q;, to an item greater than its

cost ¢;g. In this manner, the quality q;, of an item is expressed as a nonlinear function of its

' This assumption is, of course, a great simplification. The list of factors that have influence in the quality of
a given item is very extensive and diverse. Operational and administrative efficiency, technology,
availability of materials and of a trained labor team, experience, can be cited as some of the less apparent
components of quality. Furthermore, there is still the subjective perception of the user. In the more recent
specialized literature on marketing, (e.g. [MCMI92}) a holistic view of the process is usually employed,
where cost and quality are dissociated and sometimes even inversely correlated. Nevertheless, regarding
unitary variable production costs, it is generally considered that a strong correlation between cost and
quality can be assumed for most kinds of products and services. So, for the sake of tractability, making
the variables cost and quality directly interrelated in the model has been heeded as a reasonable approach.



production cost ¢, plus an increment, as shown in Equation 6.6. The increment is a

fraction of the cost c;g, depicted in Equation 6.7.

Eq. 6.6
Gig = o q
1+—2
10
2 3
cig
10x{3x| —2| -2x|-—-&
x[x[ ] []’
Increment = , ~ Cig Eq. 6.7
Cig
1+
10

The increment of quality over cost was formulated having as basis an arbitrary
polynomial function with a S-shaped curve. The criterion for choosing the parameters of
Equation 6.6 was to pick the simplest form that fitted the desired effect (obtaining a S-
shaped curve). It was accomplished by using the polynomial y=3x" + 2x° (3, x [0, 1] ) as
the starting point. Then, the parameters were mathematically adjusted, so that when the
increment 1s added to the second member of the linear equation guality = cost, the range
of the final function q;; would be inside the same interval of the cost ¢, that is, [0,10].
The introduction of an increment with that specific mathematical behavior is based on the
assumption that the gradient of quality, though always positive in the interval, is crescent

until a certain limit, thereafter decreasing'.

The hypothesis sketched above mirrors the presumption that the products or
services which are of superior quality (and consequently most of the times higher priced)

generally require a disproportional larger effort to produce in terms of cost. In other words,

3 . L . i
H -E,"— = 0 occurs at ¢, = 2.5992, and the maximum value of the increment is 1.8034 at ¢;; = 6.18034.

acig"
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the model is assuming that the quality of an item, as judged by the Consumers, increases
with the associated cost of production initially at a crescent pace and then at decreasing
rates. This conjecture is in accordance with the seemingly willingness of wealthy buyers to

pay imbalanced more expensive prices for items with high-end features.

The relation between the cost ¢ and the quality q;, (function q;,=f (cig) - Equation

6.6), and the absolute value of the increment (Equation 6.7) are illustrated in Figure 6.2.

+%ig Increment of Quality over Cost
19
9 4
g 4
Quality
? . e e P
o
_.? e COSL _ ‘
EREE — Suality
< ~—— (Jualty incrernent
4 4
34
2 4
4
8 ’
6 1 2 3 a4 5 6 1 8 9 10 Yg
Cost
Figure 6.2 - Relation between the Quality q;; and the Cost ¢,
b) Advertising Costs

In order to determine the absolute value, in monetary units, of the advertising

budget, the following method will be adopted:
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1) The total number of potential sales per cycle is I. In the limiting case, the
maximum unitary profit (py;-Cig) a Firm i can achieve per item sold in every cycle g is 10
MU. This could happen in the extreme (and highly improbable) hypothesis when py = 10
and ¢ = 0. If pyg - ¢z = 10 for all i, then the maximum theoretically attainable total
operational profit is 10 x I for every cycle g.

ii) Using the limit amount 10 x I as a reference, the absolute value A, allocated to

the advertising expenses by a Firm i in a cycle g shall be represented by

A= ag x 10 x I, Eq. 6.8

lll. Profit

Each Firm’s profit P;; will be computed at the end of each cycle g. It is expressed
simply by the difference between the algebraic sum Ry, of the payoffs received, or the

revenues, and the advertising expenses.

Py =Ry - A, Eq.6.9

The profit achieved by a competitor in each cycle shall be the most important factor
that a Firm can use to revise its decisions regarding the policy to be adopted in later cycles.
It must be recalled that the sellers are considered rational agents, and will act accordingly in

the pursuit of the best possible results.

6.4.5 - The Consumers

The population of buyers interacts with the Firms with the objective of purchasing
the product or service that they offer in the market. As it was already disclosed, the
Consumers are not all alike. They differ regarding their preference functions regarding the
price and the quality of the item in perspective. This is equivalent to saying that they have
distinct utility functions regarding these attributes, and they will act to maximize it. The
individualization of each Consumer taking into account all the plausible factors that

contribute to each own utility function is a very hard task. Nevertheless, regarding the
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buying decision of similar purpose items, it can be said that the vast majority of individuals
would give preference to achieve the best possible value for the money spent. It is also
reasonable to assume that the income (or wealth, buying power) has a decisive role in the

profile of preferences of a Consumer.

With those considerations in mind, it is proposed here that the Consumers be
characterized by their income or buying power, which by its turn will affect their respective
sensitivities to price and quality of a product or service, and generate the rules that they will

apply to make their acquisitions.
I. The Frequency Distribution of the Consumers’ Income

The population of Consumers will consist of 1000 individuals. They are classified,
according to their income, in ten classes, approximately following a Beza probability density
function, arbitrarily selected to represent the dispersion of the incomes. The absolute value
of this variable does not have influence in the game’s process and results. So, all
individuals have incomes which are normalized in the interval (0, 1). Note that a buying
power nearby zero does not contain any indications about an individual’s absolute wealth,
or income. All potential customers present in the population are supposed to detain a
minimal wealth, which is immaterial to the purpose of the simulations to be run. What
really matters, then, is the Normalized Income, which represents the differences among

Consumers under the aspect of sensitivity to an item’s price and associated quality.

When the game is being played, the selection process of a Consumer from the
population is made randomly, according to distribution of Incomes. No two players are
exactly alike, since the criteria for generating the wealth of every player was to find one
Normalized Income for each of the 1000 levels of the accumulated probability, calculated
for equal steps of 0.1%. The reason for grouping the players in ten classes is linked to the
adequate formatting of data aiming the convenience required for the posterior analysis of
the results concemning the Consumers’ behavior.

The relative frequency, as well as the limits considered for the classes of the

population’s Normalized Incomes are shown in Table 6.4.



0.00 - 0.10

0.10-0.20 13.7 21.7
0.20-0.30 15.5 37.2
0.30 - 0.40 15.6 52.8
0.40 - 0.50 14.3 67.1
0.50 - 0.60 12.2 79.3
0.60 - 0.70 9.6 88.9
0.70 - 0.80 6.6 95.5
0.80 - 0.90 3.5 99.0
0.90 - 1.00 1.0 100

Table 6.4 - Relative Frequency Distribution of the Consumers' Income

The frequencies shown have been approximated from a probability density function
of a Beta Distribution, with parameters a = 1.6093 and b = 2.41395. A complete tabulation
of the Normalized Incomes to be used in the simulations is in Appendix (a). The frequency
histogram corresponding to Table 6.4 and the respective Beta density function curve are

fllustrated in Figure 6.3.
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Figure 6.3 -Consumers' Income Frequency Histogram with the Respective Beta Distribution
Fitting

Il. Characterization of the Consumers’ Income by Fuzzy Sets

The universe of discourse of the Consumers’ Normalized Income, defined by the
interval (0, 1) will be divided into fuzzy sets, which in this case are all either of trapezoidal
or triangular shapes. The main motives for this simplification are two: First, the volatility
and subjectivity of the criteria for the classification of this kind of data, even when real
figures are available, which is not the case in this research model. Second, it is a well
acknowledged fact the one of the advantages of the fuzzy logic tools is its remarkable
ability to yield very satisfactory results even when the characterization of the data is not
precise. In other words, the fine tuning of the shapes of the fuzzy sets responsible for

modeling the information should not be a critical point for achieving success in the proper
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working of the system built. If the outputs are too sensible to this approach, then maybe
another more suitable tool should be found to deal with the problem. The same can be said
about the points which define the fuzzy sets. Here, the criteria employed to determine the
limiting and central points of the linguistic variables qualifying the Consumers’ Income

was based on its accumulated frequency distribution f,..

Trapezoidal 0.00 0.00000
0.10 0.11609
0.25 0.22145
Triangular 0.10 - 0.11609
0.30 0.25369
0.50 0.38140
Triangular 0.30 0.25369
0.50 0.38140
0.70 0.52183
Trniangular 0.50 0.38140
0.70 0.52183
0.90 0.71354
Trapezoidal 0.75 0.56203
0.90 0.71354
1.00 1.00000

Table 6.5 Specification of the Consumers' Income Fuzzy Sets

The vanable w=f(f,.) is the Nommalized Income, and the argument, f,, is the
accumulated relative frequency. Figure 6.4 depicts the Fuzzy Sets selected to qualify w; ,
with the degrees of membership u(w;) shown in the vertical axis. Five levels of Income
have been designed to accommodate the Consumers’ wealth.

Why five fuzzy subsets? As will be seen subsequently, the domain of the several
variables used in the current model is always partitioned in five linguistic qualifications. The

reason for doing so is not grounded on theoretical or empirical evidences, but emulates a
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criterion commonly found in the literature for designating the number of membership
function labels, which are generally limited to seven (e.g. [INFE91], [MUNA94],
[KOSK93], [HALL94], [VIOT94], [DEBO94]). On the other hand, around five is
frequently the number used for classifying economic groups. The tuning of fuzzy expert
systems in control problems regarding the definition of the fuzzy subsets employed can be
achieved by an automated process, ¢. g. genetic algorithms [NOMU94], [COX95].
However, the model concerns human perceptions regarding a mental decision process, and
it does not appear plausible neither that a much larger number of qualifications for the
variables involved would be adequate, nor that the agents might implement Al-aided

methods.

‘u(wj )

Figure 6.4 - Fuzzy Sets Qualitatively describing the Consumers’ Normalized Income w;=f(f;,)

Equations 6.10(a) to 6.10(c) determine the degrees of membership of w; in the

fuzzy sets defined by the points 7, chosen.
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0 if O0<w; 20116
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0 if w < 0.562
Uyg(w)=4¢6.600w - 3.709 if 0562w <0714
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Ill. The Consumers’ Sensitivities to Price and Quality

Eq. 6.10 (a)

Eq. 6.10(b)

Eq.6.10 ()

Eq. 6.10(d)

Eq. 6.10 (e)

Every Consumer is individualized by its Normalized Income, and that attribute will

be used to establish sensitivity parameters to the price pyg and the quality q  of a product



or service in prospect. To accomplish this objective, an universe of discourse for those two

parameters is established, and qualitatively described by fuzzy sets.

The sensitivity parameters will serve as references to modify the way each buyer
perceives the price and the quality of the item being sold. Whereas the price p;; can be
appraised by the customer, and solely by it, before the decision to buy or not the product or
service is made, the complete appreciation of the quality q;; only can be properly

consummated if and after the Consumer bought the item.

Nevertheless, regarding the quality, the players will be able to have access to some
partial information transmitted from the other customers who previously had a concrete
experience with products or services purchased from Firm i, with which the present player

1s considering to deal. This topic of the model will be explored in detail ahead.

The price of a product or service item being sold in the market, when evaluated by
any two Consumers with different Normalized Incomes is classified in distinct manners.
This seems to be a natural approach, since in realistic situations people with a greater
wealth may find some price “reasonable”, while a less affluent individual is likely to assess
it as more costly. Thus, the sensitivity parameters that are being introduced in the model

have as objective the accounting for those individual differences in perception.

Each sensitivity parameters sy, sq; represented in the horizontal axis of Figure 6.5
will be determined, for every Consumer, by means of a set of fuzzy production rules,
which have as antecedents and consequents the fuzzy sets illustrated by Figures 6.4 and

6.5, respectively.
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Figure 6.5 - Fuzzy Sets describing the Consumers' Sensitivity to Price and Quality

The values of s,;, sy are obtained through the defuzzification of the linguistic
attributes  u(spy), u(sy; ) of the Consumer’s sensitivities to price, quality. The general

expression for the defuzzification of s;; is depicted in Equation 6.11.

Aygxd, + A x0.25+ A x0.5+ A x0.75+ A xd,
Ays +Agpr T Ay +Ag + Ay

Eq.6.11

Spi~

In Equation 6.11 above, the vanables Ays, Agr, ..., Ay conform to the areas of the
triangles representing the various fuzzy subsets, truncated at the height of the
corresponding degrees of membership yielded by the production rules from Table 6.6. The
variables d,, d;, and the numeric values are the distances of the centers of gravity of the
several areas to the point s; = -5. The defuzzification method chosen was the center of

gravity of area (COA), as was explained in Chapter 4.

The other parameter regarding quality, sq;, will be taken as the opposite of s,;, that
15, Sg = -Sp;. The rules listed in Table 6.6 are similar for these both parameters, only the

consequents are reversed. This means that a wealthy individual, besides being more tolerant
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in relation to price, is also more demanding when it focuses on quality, and conversely.
Due to the fact that the labels of the fuzzy sets that designate the sensitivities to both price
and quality are the same, the reversal of the fuzzy conclusions became necessary, and the
defuzzification will simply vield parameters with identical modules and opposite signals.
The reason for this differentiation between qig and pyg is the criterion chosen to modity

cach buyer’s perceptions of price and quality.

The essential idea that underlies the implementation of the proposed method is to
promote modifications in a basic pattern of fuzzy sets that designate the non-fuzzy data
pertaining price and quality. The alterations will consist in shifting consistently the
reference points that define the fuzzy sets in the horizontal axis and promoting specific
dilation and concentration operations, in a similar manner to adjectival hedges
[ZADET72]. As a result, every Consumer will be particularly characterized, and its decisions

regarding the same circumstances may be different from other individuals.

The determination of the sensitivity parameters is done with the support of two
similar and simple fuzzy expert systems. The only differences in the production rules are in
the consequents, which are symmetrically opposed. Table 6.5 displays the rules for both

price and quality sensitivity parameters.



Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

If Income (w;) 1s Fery High (VH) then the sensitivity to price (quality)

parameter s, () 18 Very Insensitive (VI) (Very Sensitive (VS)).

If Income (w;) is High (HG) then the sensitivity to price (quality) parameter s;
(84y) 1s Insensitive (IS) (Sensitive (ST)).

If Income (w;) 1s Medium (MD) then the sensitivity to price {quality) parameter

85 (8qp) 1s Medium Sensitive (MS).

If Income (w;) 1s Low (LW) then the sensitivity to price (quality) parameter sy;

(sqy) 15 Sensitive (Insensitive (IS)).

If Income (wy 1s Fery Low (VL) then the sensitivity to price (quality)

parameter s,; (sq) 1s Pery Sensitive (Very Insensitive (VS)).

Table 6.6 Rules used by the Fuzzy Expert System that associates a Consumers’ Income w; and

the Sensitivity to Price and Quality Parameters s and s respectively.

The application of the rules from Table 6.6 will determine the output (consequent)

Sensitivity to price (quality) parameter sy (sq;) from the input (antecedent) /ncome (w;) for

every Consumer j. Then, the basic configuration of the fuzzy sets that describe both the

price pi; and the quality q;; of a product or service, illustrated in Figure 6.6, will be

updated. This procedure generates a new specific pattern of fuzzy sets for each Consumer

Jj, with which it will perceive the price being charged for the item by any Firm i during a

particular cycle g of the game, and the respective quality, if and after the product or service

1s purchased.

The alterations promoted by s,; and s in the basic patterns are of two kinds. First,

all the reference points in the horizontal axis (u(p;;)=0) will be consistently displaced to the

right or left'”, of a distance s,; from their original standard location. With this manipulation,

> The displacement of the reference points is made to the right or leRt, depending on whether the signal of s
1s posifive or negative, respectively.




the resulting group of fuzzy sets are vertically sectioned at either one of the right or left

extreme points (0 or 10) of the universe of discourse, losing the outer portion.

Second, the membership functions are adjusted by either a dilation or
concentration operator, which by their turn are also functions of s,; and sy;. The criteria
proposed in the process is to dilate or concentrate the membership functions which refer to

points in the domain of p;g or q;g lesser than 5 + sy (or 5 + s4), with the operators:

) A 1
Dilation: 0y = 5] Eq. 6.12(a)
1+ -2
5
Concentration: x. =1+ ]S;‘f} Eq. 6.12(b)

The direction of the shifting (left or right) and the application of the hedges §; and
«; Will depend on the sensitivity parameters determined for every player (buyer), according

to the criteria listed in Table 6.7.

The choice of the denominator of |sy| was arbitrary, but taking into account the
range of values that the resulting expression would yield, and the possible shapes of the

ensuing curves.



Ipil if 0 Ua(pig) = [u(pi)]” Ucon(Pig) = [u(pi)]”
Spil + = Spi =
” » if pig< (5.0 + 85) if pig > (5.0 + sy))
Ispi 1 <= ifsp< O Ua(pig) = [W(pi)]” Ucon(Pig) = [U(pig)]”
Spil 1 = Spi <<

» " if pig > (5.0 + 5)) if pig< (5.0 + 5,9)
0 ifsp= 0 none none
oo ifen0 Uai(qig) = [u(qig))” Ucon(Pig) = [U(Gig)]”
Syil - = Sqi >

4 N ifqig > (50 - Sqi) ifqig< (50 - Sqil)
o s < 0 ai(G) = [u(qg)l” eon(Cig) = [0(q)]"
Sail - Sai <

N 4 if Q< (5.0 - 5) if Gig > (5.0 - 5¢5)
0 ifsg= 0 none none

Table 6.7 - Operations for modifying the Fuzzy Sets that depict the Consumers’ Perceptions of Price

and Quality

u(pig),n( O3) degree of membership

LR

0ol
0.00

y pig.qig
10.00 prics, guality

..... Y

2.50 5.00 750

Figure 6.6 Basic Fuzzy Sets describing the Price p;, and the Quality q;,.




The equations for the Basic Fuzzy Sets in Figure 6.6 are not of interest because the
standard configuration is only a starting point for designing the conclusive modified fuzzy
sets that will represent the sensitivity parameters. Instead, the equations that determine the
degree of membership of p in the adjusted group of tuzzy sets are given. Two cases must
be considered: s, = 0 or sg< 0 and sy< 0 or sg>0. The equations for each situation
regarding the price are 6.13(a) to 6.13(e) and 6.14(a) to 6.14(¢), respectively. The same
formulas apply to the quality, substituting | s | for s,; and gy, for py.

Spjzo orsqjsO

0 1 if Dig S5,
U (Pie)= ) 8; . , . < ,
vi{Pig »:[O,&J-(spj——pig )+1] j S, < Py <8, +25 Eq. 6.13(a)

1 0 otherwise

] " ) .

[0~4(Pig = Spj .)]c’ if Sg < Pig S8y +2.5
. . ) 5. o -~ P
U v(pig)= [0‘4 (Sp; ~ Pig )+ 2] i if s, + 25< P, <8, + 50 Eq. 6.13(b)
0 otherwise

L

[0‘4 (Prg = Spy) = 1]65 if Sy +23<p, <5y +50
uMI:»('pig): ) [0 4 (Spj - Pig )+ 3]11 if Spj +50< p:g < Spj +75 Eq. 6.13(c)
0 otherwise

[04 (Pig — spj ) - 2]11 ]_t S}.\j + -0 Z ptg = sm + 7.-,

Uzo(Pig)™ [04(s, —pig)+ 4]:u if Sy T 75<p, 210 Eq. 6.13(d)
otherwise
iy o ATt e '
Do)~ [[04(ig - 5,2 3|7 it sy +75<p <10

) Eq. 6.13(e
0 otherwise 1 ©



Spj<0orSqj>0

152
93]

Uvi(Pig)™

Uw(pPig)=

Un(Pig)™

uHG(pig):

U Pig)=

[0.4(spj —Pig )+ 1] 4
0

, [0-4(pig - Spj )]X‘J

[0.4(s55 - pig) + 2]
0

,[0.4(])"2; - Sm'_) - 1]1j
5.

[0.4(spj ~Pig)t 3] !
0

[0.4(pig - s5p5) - 2]‘?j
[0.4Csp5 - pig) + 4]
0

‘pj)_3]6j

[04(p;, -
1
0

if

if
if

if

if
if

0< py, <sy5+25

otherwise

A 425
O<p, <5, +25
42

5, +25<p, <5, +50

otherwise

25<p. <5, +5(
Sy +23<p S5, +50
5 +30<p, <5, +75

othervise

S5y +30<p, <5+ 75
+75<p_ < ;.
Sy +75<p, <10+,

otherwise

Spj + 1.5 <Pjg £8p5 +10
$pj +10<pjg

otherwise

Eq. 6.14(a)

Eq. 6.14(b)

Eq. 6.14(c)

Eq. 6.14(d)

Eq. 6.14(¢)

For clarity, an example of the application of the method proposed to modify the

Consumers’ perceptions is given.

Example:

Suppose a Firm i and a Consumer j, both picked at random from their respective

frequency distributions, are paired for an iteration. Let us assume that pyz = 6.78, ¢g=5.67



and w; =0.456. The first step is the qualification of the Normalized Income w; employing

the respective group of fuzzy sets (fuzzification) - Equations 6.10(a...¢).

Income

Uy (W= 0.456) = u(0.456) = uyg(0.456) = 0
Unp(W= 0.456) = 0.468773
ung(w= 0.456) = 0.531227

Applying the rules of Table 6.5, comes:

Sensitivity to Price

Uys(Spj) = Ust(Sp;) = Uy Sp) = 0
Uns(Sp) = 0.468773
uls('spj) =0.531227

and

Sensitivity to Quality

uVS(Sq]') = uST(Sqi) = uV[(Sql) = 0
Uyis(sy) = 0.468773
Usr(s,y) = 0.531227

To perform the defuzzification, the method used is the superimposing center of
gravity of the areas'® [KOSK92], [KOSK93], [VIOT93b]. The procedure employed here
takes the areas of the fuzzy sets activated in the consequents of the production rules
separately, therefore counting twice the overlapping regions to compute the centroid. The

calculations yield the centroids s;=1.3021633 and sq= -1.3021633, representing the

' That method simplifies the arithmetic operations made by the simulation program. The elected option was
found adequate, considering the great munber of iterations to be performed during the simulations and,
given the investigative character of the research, the lack of empirical data to check the sensitivity of the
defuzzification method.



a
)
<h

Consumer’s sensitivity parameters for price and quality, respectively. Figure 6.7 illustrates

the defuzzification process regarding sy;. As to sq, the method is analogous.

u(p;;) degree of membership
1.0
Wy {spj) =0.531227
\i
Upre (Spj) =0.468773 .
- X
0.0 N L Spi N
>0 2.5 5.0 sensitivity
Ispj=1.3021533
centroid

Figure 6.7 - Example of the Defuzzification of the Sensitivity to Price Parameter

Next, it is necessary to determine qg from ¢ using Equation 6.6, which vields

qi=7.447.

The parameters s,; and sg; will alter the basic fuzzy sets which describe the
perceptions of the price py and the quality q;, according to the guidelines of Table 6.6.
The universe of discourse for those variables remain unchanged in [0, 10]. The modified
group of fuzzy sets for the price are illustrated in Figure 6.8, with a similar procedure is
performed for the quality.

sp; = 1.3021633; sy = -1.3021633

1
Dilation operator (Eq. 6.12(a)): 6; = 13001633 ~ 0.7934
1+

5

13021633
Concentration operator (Eq. 6.12(b)): xj =1+ ———~5———= 1.2604



Then, to the Consumer chosen for the example, whose income is w;=0.456, the
price and the quality of the product or service in perspective offered by Firm i shall be
qualified by the respective modified fuzzy sets, using equations 6.13(a...e) and 6.14(a...¢).

Price

UvL(Pi=6.78)=uLw(p=6.78)=uwn(pi=6.78)=0; (Egs. 13(a,b,e))
unp(Pig=6.78) = 0.7654 ; (Eq. 6.13(c))

Unc(Pip=6.78) = 0.1242 ; (Eq. 6.13(d))

u(p;q) degree of membership . —L__ - o (1402604
3 [ulp )] TR309 [y Y]
1.0 ~ .

-.; B | VH
o “/
0.0 7 .
000 | 2.0 500 750 1000 19
l——l Pig=6.78 pnce
Fshiﬂ

$pi=1.3021633

Figure 6.8 Modified Fuzzy Sets according to a Consumer's Sensitivity to Price

Quality

uvi(Qig™7.447)=upw(qQis™7.447 )=uvn(qi=7.447)=0; (Egs. 6.13(a,b,e))
uvp(qi=7.447) = 0.4622 ; (Eq. 6.13(c))

unc(q=7.447) = 0.3737 ; (Eq. 6.13(d))



1
[u(ayp)] (1+0.2604) RCH)
1.0 i £

uld;g) degree of membership (140.2604)

ool
0.00 _J 2.50
1 shift

I syjl=1.3021633

Figure 6.9 - Modified Fuzzy Sets according to a Consumer's Sensitivity to Quality

The Consumer’s perceptions determined regarding the price and the quality of the
item being sold by Firm i found in this example will be saved for further illustration of the
market share game, which is going to be presented along the detailing of the proposed

model.

The next steps to be approached are the item’s evaluation by the Consumer
(presupposing it purchased the merchandise), the assignment of payoffs and the final

Consumer’s decision (to buy or not the item).

6.4.6 - The evaluation of a product or service by the Consumer

The payoff a Consumer will receive in an iteration with a particular Firm depends,
in a first basis, on its decision about buying or not the product or service offered. If it does
not buy, its payoff is zero, independently of the price py, and quality q;, assigned by Firm i
to the item in perspective. On the other hand, if the Consumer purchases the item, it will

have the opportunity to observe its quality, and will receive a payoff that will be a function



of its subjective evaluation of the deal. The criteria and mechanism employed to perform

that evaluation are explained in the following section.

Let us suppose that a Consumer has decided to buy an item from a particular
supplier (Firm)'". After the purchase has been consummated, the buyer observes the
quality of the merchandise, and with its own perceptions achieved for the factors price and
quality, it will then perform an evaluation of the deal. This appraisal will serve as the basis

for the assignment of payoffs to this category of playvers.

In order to carry out this objective, each of the perceptions of the two mentioned
factors will again constitute the inputs of a fuzzy expert system, each of which yields as the
output a new variable, to be called the attractiveness ogy of the price pyg, and of the quality

O.q; as perceived by the Consumer j.

The vanables oy and o, likewise other former parameters present in the game’s
model, shall be described qualitatively by fuzzy sets. The universe of discourse is the
interval [0, 1], which is divided into similar fuzzy sets for both attributes ou,; and ag;. The
mapping of p; into oy, and g, into oty will be made with the aid of the fuzzy production

rules listed in Table 6.8 and 6.9, respectively.

Figures 6.10 and 6.11 depict the fuzzy sets qualifying the attractiveness of the price
pi; and of the quality q;, both modulated according to every Consumer’s sensitivity

parameters sp; and sg;.

' The explanation of how the Consumer has arrived at that decision is deferred to a subsequent section of
this work. See 6.4.7.
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Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

If the price pyg is Very High (VH) then the attractiveness of the price ow,; is Very
Unattractive (VU).

If the price pyg is High (HG) then the attractiveness of the price oy, is Unattractive
(NA).
If the price py is Medium (MD) then the attractiveness of the price oty is Neutral
(NT).
If the price pyy is Low (LW) then the attractiveness of the price ay; is

Attractive(AT).

If the price pyg is Very Low (VL) then the attractiveness of the price ot is Very
Attractive (VA).

Table 6.8 - Rules used by the Fuzzy Expert System that associates the Price p,, as perceived by a

Consumer to its correspondent Attractiveness

degree of membersinp
- ll\ an)
1.0¢

0.0 0.25 . 1.0 p;
S

3
attractivenass of &

)

e price Pig

Figure 6.10 - Fuzzy Sets depicting the Attractiveness of the Price p,,
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Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

If the quality qyg is Very High (VH) then the attractiveness of the quality oy is Very
Attractive) (VA).

If the quality qi 1s High (HG) then the attractiveness of the quality o is
Attractive (AT).

If the quality qig is Medium (MD) then the attractiveness of the quality ay 1s
Neutral (NT).

If the quality qi is Low (LW) then the attractiveness of the quality oty is
Unattractive (NA).

If the quality q;g 1s Very Low (VL) then the attractiveness of the quality o is Pery
Unattractive (VU).

Table 6.9 - Rules used by the Fuzzy Expert System that associates the Quality g, as perceived by a

Consumer to its correspondent Attractiveness

degree of membersinp
. U 0gj)

&

L 4

c.a 0.25 0.5 0.75 1.0 &g

Figure 6.11 - Fuzzy Sets depicting the Attractiveness of the Quality q,

Applying the fuzzy production rules of Tables 6.8 and 6.9 and defuzzifying

the results obtained from the respective group of fuzzy sets, the method will generate one
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specific value for each of the variables oy and oty It is rather intuitive that the payoff to be
assigned to a player should reflect, as well as possible, the usility, or level of satisfaction
that is obtained from the product or service purchased. It can also be claimed that the
evaluation of the item by means of the attractiveness factors may be considered a
reasonable approach to that problem. So, the payoff which results from an accomplished
transaction depends on a trade-off between the attributes price and quality. The problem
consists in the assessment, by an individual referee (the Consumer), of the gain obtained
with the purchase of the item (object). In the present case, the object has an attribute space
X={price, quality}.

One traditional approach to that evaluation problem is the method of the weighted
mean. Although still largely employed, this technique relies on the presupposition that the
attributes of the object (attractiveness of price, quality) are independent of one another, and
that their individually assigned scores may be added to provide a final conclusion.
Nevertheless, as pointed out by Wang and Klir [WANG92]), “( )... in most real problems,
these effects are interactive...; If we adopt a nonaddititive set function (a fuzzy measure) to
characterize the importance of the two factors and, relevantly, use Fuzzy Integrals as a
synthetic evaluator of the quality ... a satisfactory result may be obtained.”

Following the procedure proposed by Wang and Klir, each subset price, quality of
the attribute space X' is connected with a real number G(price), d(quality), $(.) < [0,1},

that will stand for the importance'® of each respective attribute.

Given any generic subsets of the attribute space X, e.g E and F, the function ¢(.)
must obey the conditions:

o H(D)=0and p(X)=1;

e ITECFcX, then ¢(E) < ¢(F)

The sole attributes of the product or service being judged are price and quality, and

they do not have sub attributes. So, only one space exists in this model.

'® The set function corresponds to the weights in the weighted mean method. However, ¢(.) does not have
the additive property, so, for instance, ¢{x; } + ¢{x,) # ¢(x; + x2). See Op. Cit. [WANGO2].



An important characteristic of Wang and Klir’s method is that the sum of the
relevance measures of any attributes taken alone is not equal to that of the combination. In

other words, the object’s properties reinforce each other.

The tuzzy integral j . o 99 | where o is the attractiveness of the object (product or

service) being evaluated, may be employed for the aggregation of the attributes price pj,

and quality q,; regarding their respective importance mirrored by the set function ¢(.).

To compute §(price) and P(guality) once again the Consumers’ respective Incomes
will be used. This criterion has been preferred rather than an arbitrary setting of constant
numeric values because it allows the individualization of every evaluator (Consumer).
Therefore, each Consumer is made unique by its sensitivities to price and quality (sp;, Sq)
and also by its importance factors {(price) and ¢p(quality), which are expressed as ¢(sy)
and ¢(sg). The importance factors have been designed to lie in the ﬁlt.mw’al [0.1, 0.4], and
their sum is not constant, since the idea derived from the proposed use of fuzzy integrals is
that the importance of the attributes are mutually strengthened if they are contemplated

conjointly.

In order to implement the assignment of values to ¢(s,) and ¢(sy), they shall be
defined as an increasing functions of (Wya - W) and (W - Wyy,) respectively, as shown in

Equations 6.15 and 6.16.

101 Eq. 6.15(x)

(W - Y=L s
_Wew ) %03 Eq. 6.15(b)

and (s .)
¢\,sq})

W

mes

Figure 6.12 shows the curves illustrating the behavior of the functions.
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Figure 6.12 The Importance Factors of the Attributes Price , Quality.

The combined importance of the two atiributes s,; and sq; taken conjointly is 1,
which refers to the importance of the whole attribute space X, that is, (X) = (s + 5¢) =
1. Following this procedure, an item shall have its basic synthetic evaluation Gy’ given by

Equation 6. 16.

O igi = L_ Qo¢ = [min(o, o) A G(sp + sg)] v [max(o;, o) A §(sg or'” s Eq. 6.16

' The argument of ¢(.) to be used in the second fuzzy intersection operation inside the basic fuzzy integral
1s the attractiveness index o with the subscript pj or q¢j which is different from the one that resulted from
the previous min operation.
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Taking into account the discussion contained in Chapter 4 of this Dissertation, the

final synthetic evaluation Gg of the object with the basic fuzzy integral "y = L_ Q 3¢ of

the attractiveness indexes oy, and oy with respect to their importance measures ¢(s,;) and

$(sq) will be modified from its original formulation. According to the alteration proposed,

the final synthetic evaluation oig will then consist of a sum of three values: (1) the original

fuzzy integral (Eq. 6.16); (2) an increment (A"), which corresponds to the gain obtained by

an eventual better score of an attribute (price or quality) that is not affecting the original

fuzzy integral, and (3) a decrement (A7), relative to a loss derived from an prospective

worse feature that is not critical on the value yielded by the original fuzzy integral. The

increment has been taken proportional to ¢(.) and decrement proportional to [(b(‘.')];-‘. The

reason for this approach regards a presupposed greater concem to losses than to gains. As

both ¢(s) and ¢(sg) mirror the importance a particular Consumer assigns to the price and

quality of an item, the influence exerted on (A") and (A”) will be compatible.

Condition Increment (A") & Decrement (A™)

Oty = Olgj A" = d(sq) » {max [0, (0~ max (o, max(a’y, ¢(sq))))]} Eq. 6.17(a)
Oy > Ol A" = d(sy) » {max [0, (o - max (o, max((og PPN | Eq. 6.17(b)
0y < g A™ = (sy)* x {min [0, (o - min ((sq), o]} Eq. 6.17()
0> g A = (sq)! x {min [0,(cg - min ($(sp), o)} Eq. 6.17(d)




Then, the final synthetic evaluation is depicted by Equation 6.18.

Cig=0Cigt A +A Eq. 6.18

The values of oy will be mapped into the final payoffs, after a scale transformation
that equals the minimum and maximum attainable values of oy to -1 and 1, respectively.
The determunation of the Consumer’s payotf iigiz" in a gven iteration vV,
v =1, 2, ...,by; with Firm i in the cycle g if (and only if) it purchased the product or

service is provided is explained in the next section.

6.4.7 - The Consumer’s Payoffs

Once the item has been evaluated by means of the transformed fuzzy integral,
being ascribed a value of o.g, a payofl must be assigned to the buyer, reflecting its personal
gain (or loss) with the effectuated transaction. However, the link between the product or
service’s synthetic evaluation oy, and the correspondent Consumer’s payoff z,4 is not
straightforward, so a discussion of this matter is needed in order to armive at an adequate

scale for z,55. For this purpose, some considerations about the range of oy are necessary.

First, it is important to recall that the attractiveness indexes oy, and o are obtained
through the application of a group of fuzzy production rules regarding an item’s price and
quality. Since the characterizations of price and quality depend on the Consumer’s
sensitivities s and sy, the mappings pi; & o and q — o will be different for each
particular buyer j. The importance measures §(sy;) and ¢(sq) are also individualized per

Consumer.

" The assignment of the three subscripts igj to the synthetic evaluation ¢ and the payoff z was necessary in
order identify the particular pair of players (i, j) as well as the cycle g to which ¢ and z refer. Still, to
preserve the history of the iterations” results to be generated in the simulations, a fourth superscnpt p
regarding the iterations’ sequence order will be added to the payoff z. On the other hand, the
attractiveness indexes o, o, do not need those expedients, since they are used only momentarily, and
can be dynamically erased and updated by the program during runtime.



6.46

Second, the basic fuzzy integral depicted in Equation 6.16 can yield only four
possible results, depending on the values of oy, g, ¢(sp;) and ¢(sq). The feasible values of

Oig are shown in Table 6.10, according to every workable hypothesis.

Hypothesis L o 09 °

d(sg) > o > Ay (0 A 1) Vv (0 A D(sg))

gy > Ol Olgj > (8> Oy (0 A 1) v (ot A D(8))

gy > Opj > P(Sg) (o5 A 1) v (0 A P(S¢)

B(Spi) < Oy < Ol (0tgy A 1) v (0 A (sp))

Qg < Oy Qg < Blsp) < oy (g A 1) v (0 A D(8p3))

Oy < Oy < B(Sp) (oG A 1) v (05 A D(sg))

Table 6.10 - Possible Values of the Basic Synthetic Evaluation o“'i

While ¢(sg), P(sq) are parameters not related to a product or service’s attributes
and depend only on each Consumer’s Income, the variables o, oy, besides influenced by

spi and sy, are obviously also a function of an item’s correspondent characteristics.

As an illustration of the process of determination of oy, a sample of the curves
showing the variables and parameters involved is shown in Figure 6.13. The example
illustrates the situation relative to the Consumer with s, = 0, which corresponds to the
median Income of the population, henceforth to be called #vpical. In the graph, the point
where og=0.y; coincides with the maximum score™, regarding the synthetic evaluation oy,

that can be assigned by this specific buyer to any product or service.

*! This situation does not necessarily occur for every value of s,;,



Note that, according to the rules of the game, a supplier can set any cost to the item

it is currently selling, only provided that it is less or at most equal to its price.

The curves showing the behavior of oy; and o for other sensitivities values are

included in the Appendix®.

o Attractiveness of Price, Quality for a typical
i’ "0 Customer (8,730, $is,;)= $is4)=0215)
10

&

Attractiveness of Price, Quality ( x 1)

o
—
[
w
Fay
o
(22}
E
[ay]
o
-
Lo}

Figure 6.13 - Attractiveness Indexes o, a.45, and the Range of the Synthetic Evaluation Oig;

As can be seen from Figure 6.13, the behavior of oy, oy is far from a smooth
curve, even in the simplest case as displayed, of the fypical Consumer. The same can be

said of ojg;.

The maximum and minimum values of o that can be assigned to any item for

every combination of price and quality are listed in Table 6.11. They were determined

“ The curves were obtained employing the fuzzy expert system (Tables 6.8, 6.9) regarding the qualification
of price and quality and defizzifying the comresponding attractiveness (Figures 6.10 and 6.11). The
caleulations were performed using a spreadsheet.
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applying Equation 6.18 for eleven points regarding s,. Figure 6.14 illustrates the

corresponding graph.

Table 6.11 - Maximum and Minimum Values for the Synthetic Evaluation of an Item

ftermn's MAX & Min Synthetic Evaluation

Synthetic Evaluation Ranges

d.

0.5

—— MIAX
-l N

&

M Oy

D1 oo et 00T

G L ! 1 I A 1 'l i
5 4

)
P2
——
[
-
P2
[W8)
S
[y
[
=
i
t
n
Q,
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Figure 6.14 - Ranges of the Synthetic Evaluation as a Function of the Consumers’ Sensitivities to

Price
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A convenient range for the payoffs is the interval [-1,1]. In order to associate the
values of the synthetic evaluation to that scale, the minimum and maximum values that may
be assumed by oy for each s, shall correspond the extreme points -1 and 1, respectively.
In this manner, each Consumer will have an individual scale, and consequently, a specific
linear transformation to perform the mapping iy — Zg. The quantities MAX Oig and
MIN oiq are non-linear functions of (s, sg), but to avoid unessential computational
burden, these values will be inferred from linear regressions for ten intervals of variation of
the sensitivity parameters s, = -sq. Table 6.12 lists the respective regression equations,

calculated from the data contained in Table 6.11 and Figure 6.14.

[-5, -4) 0.171379 + 0.016304 s, 0.547475 + 0.09495 s,
[-4, -3) 0.142639 + 0.009199 s, 0.507731 - 0.000441 s,
[-3,-2) 0.165835 + 0.016931 s 0.625640 + 0.038862 s,
[-2,-1) 0.141339 + 0.004683 s, 0.595290 + 0.023687 s,
[-1, 0) 0.083333 - 0.053323 s, 0.581965 + 0.10362 s,
[0, 1) 0.083333 + 0.053248 s, 0.581965 +0.015030 s
[1,2) 0.141320 - 0.004739 s, 0.591281 + 0.005714 s,
[2.3) 0.177014 - 0.022586 s, 0.611647 - 0.004469 s,
3. 4) 0.120173 - 0.003639 s, 0.708553 - 0.036771 s,y
[4.5) 0.170257 - 0.016160 s, 0.807345 - 0.061469 s,

Table 6.12 - Regression Equations for the Exireme Values that may be assumed by 6, as a

Function of s




6.50

With the MIN and MAX values of oy available, the mapping Oig; —> Zig, With zg
€ [-1, 1] is forthright, using the general linear transformation of Equation 6.19.

oigj _Mmaigi

_1 Eq. 6.19

Zyg =2x

Table 6.13 presents the specific equations for each range of s

O, —0171379-0.016384 s,

Ty~ 0.08333 - 0‘053248591
0,1) 257 - ~1
0249316 0.0191 15Sm

_ - z..= -1
=3, -4) | %= g i5Roas — 000344 s,

| o, — 0142639 - 00091995,
[-4,-3) | %4~ . — -1
0182546 — 0.004825s,

o~ 014132+ 004739,
0224981+ 0005227,

I [1, 2) g =

O — 0177014 + 0.02586s,,
[2,3) T T T p. — -1
0217317 + 0.090393pj

[-3: '2) Zigj

—0229903- 0010966,

| &~ 0120173+ 00036395,
3.4 | 2a=—7 00les -1
029419- 0016575,

o, — 0141339 - 0.04683s,,
J u -1

[-27 '1) Zg = e
0226976+ 0095025,

12l

_ T 0165835~ 00169315, B l

)
.H
=)
N
~y

o —008333+0.05332s ¢, — 0170257+ 0.1616s
i 21 [4,5] | fe -1
% 0249316+ 00318435, ' 0.3185444 - 0.02265s,,

Table 6.13 - Consumers’ Payoffs as Linear Functions of o, and s

As the Consumers’ payoffs zg belong to the interval [-1, 1], the midpoint zero

means inditference, neither a gain nor a loss.
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It should be observed that the Firms’ payoffs, already established in Section 6.4.4-l,

23

belong to a quite different interval, namely [-(t;+ t;), 10)~. As a matter of fact, the distinct
intervals chosen to contain the feasible payoffs for each category of players (buyers or
sellers) do not have to be alike. In this model, the problem of comparison of utilities
between the two categories of players is not relevant, so the scales with which the payoffs
are measured can be independent for Firms and Consumers. However, the cardinal
valuation of the gains have a significant role in the decision making of each class of
contenders. The Consumers will take their payoffs into account to arrive at the decision of
whether to purchase or not an item, and for the Firms, the gains accumulated in the course

of the iterations are the measure of the degree of success they are reaching with their

policies of cost, price and advertising. The game’s payoffs are summarized in Table 6.14.

f(Gigj s Spj)

Table 6.14- Summary of the Game's Payoffs

In order to consolidate the concepts just presented, the example developed in
section 6.4.5 will be extended incorporating the item’s evaluation and the determination of

the Consumer’s payoft.

* The parameters 1, and 2 are intended to have the default values , = 0 and 2 = 0.1, but they can be
differently arbitrated before the game commences, and remain constant throughout the simulations in a
cycle; They represent a calibration of the penalty that is imposed to a Firm when its product or service is
refused by a customer.
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Example (continued from page 6.33)
Recalling the perceived characteristics of the item purchased:

Price

Uv(Pig=6.78)=urw(pig=6.78 )= uyu(pi=6.78)=0;
Up(Pie=6.78) = 0.7654;

Unc(Pis=6.78) = 0.1242.

Quality

W Qig=7. 447 )= urw(qi=7. 447 y=uvi(qis=7.447)=0;
uyp(Qi=7.447) = 0.4622;

Unc(Qis=7.447) = 0.3737.

The next phase is the calculation of the attractiveness indexes for the item.
Applying the rules from Table 6.8 and 6.9 in the fuzzy sets shown in Figures 6.10 and

6.11 respectively for oy, and oy, comes:

Attractiveness of Price

Uy (0= U4 T{ 0 )=Uvp{0)=0;
unt{(0g) = 0.7654;

Una(04y) =0.1242.

Attractiveness of Quality

Uvur{ i) = Una( Olpj) =y ( 0)=0;
unt(Cg) = 0.4622;

ar(0yg) = 0.3737.
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Defuzzifying oy, and o using the method of the center of gravity of area yields:

o = 0.4506 and

0y = 0.6152.

As mentioned before, a,; and ag are the scores the Consumer assigns to the
product regarding price and quality separately. To reach the final, or aggregated evaluation
of the item, these two scores must be integrated ( in a fuzzy manner) with respect to the

importance factors ¢(sy) and ¢(sq).

The Consumer’s sensitivity parameters are: $,;=1.302163; s4=-1.302163; Referring to

Equation 6.135, comes:

d(sy) = 0.192437,

P(sq) = 0.239039 and

b(spit 8q) = 1.
Aggregating the scores and importance factors using the fuzzy integral of Equation 6.18,
the basic fuzzy integral yields:

Clig = L @ 39 = [min(oy, o) A P8y + 5q)] v [max(og o) A sy or 5]
= max{[min(min(0.4506, 0.6152), 1], min[0.6152, 0.239039}]}

=0.4506

The increment A™ and decrement A™ are, for (0 < Olgy):

A" = lsg) x {max{0, (ot - MAX(0hy, MAN('g;, P(sq)))]}
= 0.239039 % {max[0, (0.6152 - max(0.4506, max(0.08333, 0.239039))]}

=0.03934582
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A= ((sg)! * {min[0, (ot - min((sq), o))}

0.192437* x {min[0, (0.4506 - min(0.230939, 0.6152))]}

The final value for the synthetic evaluation will be:
Oig= Oig+ A + A =0.4506 + 0.03934582 + 0 = 0.489946

According to Table 6.13, the payoff 7,5 will be obtained through the equation

-~ —

Oy — 014132+ 00047395,
T8 0224981+ 00052275,

which corresponds to the range of s,= 1.3022.
Then, substituting for s,;= 1.3022.and o,y = 0.489946,

2i= 0.368904

One important point to mention is that the Consumer’s payoff which derives from a
completed transaction is not directly related to the amount paid for the product or service
purchased. This fact is quite comprehensible under the assumptions used in the model,
which ascribe different wtilities for the monetary unit, depending on the individual’s
sensitivity to price. In the current example, a payoff zero, besides being obtainable when
the deal is not accomplished, could also be attainable by a product with a synthetic
evaluation i = 0.37249". Considering that the price pi;=6.78 did not change, the decrease
in the synthetic evaluation is necessarily implied from a reduction in the quality of the item.
Using the curves for ag from the Appendix and linearly interpolating, a cost ¢z = 3.2

would result for the item as the one that corresponds to z,=0. In other words, this

* Using the correspondent equation for 5¢,=1.302 from Table 6.13.



particular Consumer is indifferent in buying for 6.78 MU an item which cost 3.2 MU to

the supplier to produce, or not acquiring it at all.

6.4.8 - The Consumer’s Decision

A crucial phase of the game is the Consumer’s decision whether it will or will not
consummate the transaction which is being offered to it by Firm i. To arrive at this
important conclusion, when confronted with the mentioned dichotomic choice, a potential

buyer j will basically take into account two inputs:

a) An estimate of the payoff that it would obtain i it buys the product or
service. Note that this appeasement is performed under incomplete, or
partial information, because the buyer can have direct access to only one of

the item’s attributes, that is, the price p;,”".

b) A reference value, valid for this specific occasion, to which the Consumer
will match its estimate. This reference has the role of a threshold for the

Consumer’s decision making.

The result that outcomes from the cited comparison will indicate whether the
transaction is accomplished. The two mentioned inputs will be separately discussed in the

sequence.
I. The payoff estimate

As demonstrated in section 6.4.7, the payofl 7y is a linear and increasing function
of oig. This transformation of scale became necessary in order to establish a common
reference measure of the gains /losses achieved in the iterations for the whole population of

Consumers. Recalling that the synthetic evaluation o, is determined by the modified fuzzy

integral, Oy = L @ 96 + A" + A7, it should be noted that, since d(sp), P(sq) are fixed for

25

Recall that the product or service’s quality g5, is not accessible to the potential Consumer in this stage.
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each Consumer j, ¢(sy; + Sqi) =1 and oy = fpig, i), all variables involved are known by the

time the Consumer is estimating Oigj, with the exception of ;.

From Table 6.10, it can be seen that, whichever situation occurs, the basic synthetic
evaluation G’y from a consummated purchase can only be one of the four values ¢(s,),

$(sq), O OF O™, But ay; is inaccessible to the Consumer at this point, and even the space

of possible alternatives cannot be completely described.

To surpass this restriction, a resort to an Expected Value Interval (EVI) of the
payofl z, using belief functions [SHAF76] is proposed. The EVI method to be employed
here is based in a paper by Thomas Strat [STRA90], and it was found to be appropriate to
the present case, where tuzzv reasoning is being employed. This is so because a frequency
or probabilistic original approach to the problem would require a greater number of data
points in order to assess the chance of occurrence of each element from the frame of
discernment (outcome space), which is not feasible to the Consumer as demonstrated

above.

According to the theory [SHAF67], given a subset S contained in the space of
outcomes Q (S < Q), the beliefin S is bounded by two limiting points: a lower limit, called
support, denoted by Spi(S), and an upper limit, the plausibility, represented by
Pl(S)=1-Spt(S)*.

Following the above definition, the payoff that would be ascribed to the buyer from
a consummated transaction will be between the suppori and plausible values, that is,
between Spl(zig) and Pl(zig). The method presented by Strat considers only these two

extreme points, that are interpreted as the least and most favorable possible outcomes,

¥ 1t should be observed that it is not possible that a basic synthetic evaluation can be one of the importance
factors d(s,,) or ¢(s,y) when the one associated to the greatest attractivity (o, or o) is either greater than it
or smaller than the smallest attractivity. In those circumstances, there will be only one type of adjustment
in the basic fuzzy integral, either an increment, Af, or decrement, A~ , but not both at the same time.

7 8 is the complement of S. Also, in most texts, the term Belief is used instead of Support denoting the
lower extreme of the Belief interval. See Chapter 4 of this work - A Review of Fuzzy Set Theory and
Expert Systems - and op. cit [STRA90].
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respectively. In the sequence, a probability A is assigned to the occurrence of the alternative

which is most desirable to the decision maker™.

In the present model, the meaning of A shall be adjusted to the circumstances.
Here, it will be assumed that 7, rather than a probability, is a prediction of the degree of
cooperation of the supplier i in a particular iteration y of a cycle g of the game, mirrored
by the item’s quality qig = f{c;,) (the method for the assessment of A is explained ahead).
Furthermore, the payoffs may lie anywhere in the interval bounded by Pl(zy) and
Spt(zig). The analogy with the probabilistic approach is straightforward, since a greater

value of 2 implies in a bigger benefit, or payoff, to the Consumer®.

To figure the predicted payoff, the consumer must find a point within [Pl(zig),
Spt(zig)], with the aid of . Instead of mapping directly in that interval, a function
associating 2. — E*(zig) has been designed. For that operation, both pessimistic (Spt(zg))
and optimistic (Pl(z5)) assessments act like attractors for the desired point E', which is

O\.—_ Spt(ﬁg,"f’, ) — plays in spotting E’ (z,5) inside the
Pl(zigj) - Spi(zigj)
interval delimited by Spt (z,55) and Pl(zg).

mirrored by the role that the ratio

(N — Spt(zg))
Pl(zigj) - Spt(zigj)

The ratio

is taken relatively to 0.5, which stands for 7. located at

the middle point of the interval [(PNz), Spt(zig)). The resulting expression, that yields

Pl(zg)) - Spt(zgj)
2

-~

values in the range [-1, 1], centered in zero for A = , 18 a measure of the

predicted fulfillment of expectations for the current iteration.

In this manner, the estimated payoff for the current iteration, denoted by

E*(_z,g'), is given by Equations 6.20 (a, b).

% Although here it is not the case, because A is settled by a rational agent, that is, the Firm, 2 could also be
interpreted as the Narure 's move, in a situation of tandom occurrences not governed by preferences.

* Note that, even in the One-sided Prisoner’s Dilemma, as the dichotomic choice C or D by the seller has
been relaxed, its total cooperation, while extremely favorable to the buyer, implies in a zero unitary profit
to the Firm. On the other hand, a continued and significant grade of defection implemented by the Firm

will keep its potential customers refraining from consummating their purchases.
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F | (A Selag)) | s
Pl(zig) - Spt(zigj)

2% (N - Spt(zig)) _,
Pl(zg) - Spi(zig)

E'(zig) = l ]x(Pl(z:igj)-xm\, [Pl(zig) - Spt(zig)] >0  Eq 6.20()

-

IF (N —Spt(zg))
Pl(zigj) - Spt(zigi)

2% (N - Spt(aig) _,
Pl(zigj) - Spi(zgj)

E""(Zig) = [ } x (A —Spt(zig))) + ©, [Pl(zg) - Spt(zig)] >0 Eq. 6.20(b)

When a new cycle begins, and the Consumer has not yet iterated with a particular
Fum though, the fulfiliment of expectations shall assume the value 1, meaning that the
Consumer starts the cycle being thoroughly cooperative. This does not mean that it will buy

the item, only that it is assigning to E'(zg) the maximum value, that is, Pl(zig).

In the hypothesis that Pl(zg) = Spt(zg), E*(zig) will be arbitrated as 1 or -1,

depending on whether Pl(zig) > 0 or Pl(zig) < 0, respectively.

The outlook of the function E*(_zig) = f Spt(zg), Pl(zg), 7. ) is illustrated by the

sample of curves of Figure 6.15.



Sample of Estimated Payoff Functions
Based on the Belief Interval
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Figure 6.15 -Some Estimated Payoff Functions
Now, ﬂgj is a measure of Firm i’s degree of cooperation as predicted by the

Consumer j, in the iteration of order y of cycle g.

Analyzing Equations 6.16, 6.17, 6.18 and Table 6.10, it can be inferred that
Spt(zy) should be determined employing the most pessimistic synthetic evaluation taken

for the utmost worst case, that is, when ¢ = 0. Under this assumption, J' o’ 0 stands

for the smallest possible value of o°g; when o, is known, where o' corresponds to the
p g Olpj P

attractivities for {pi, Qi = 0}
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Then, most pessimistic synthetic evaluation 6" is given by:
F

Conversely, to find Pl(ziy), o is evaluated using the best possible prospect for the
item’s hypothetical quality qi;o. Pl(zig) will be calculated using c*lgi_, which is the most
optimistic synthetic evaluation. Equations 6.22(a) and (b) are used to compute c’ig,-,
where oc*q; 1s the hypothetical most optimistic attractiveness of quality, which on its tumn is

calculated making ¢, = pyg in Equation 6.6.

Moy = oy = S 1gg = MaX{Oty, min(o'g, (sg))} + A"+ A” Eq. 6.22(a)

If o <oy = O 1g = maxfol’, min(og, Pls))} + A°+ A" Eq. 6.22(b)

Hence, both Spt(z,) and Pl(z,g) can be determined using the appropriate equation
from Table 6.13 replacing the argument Gy by o'y and o*, respectively, and also
employing the specific Consumer’s sensitivity s,;.

5 ¥
However, the parameter Wg

is still unknown, and therefore it will be predicted
with basis on the available previous data, both from the Consumer’s own experiences and
from the population likewise. Here, the population will be represented as a fypical

Consumer in two distinct ways:

a) By the median of the sensitivities parameters of all the Consumers, which cotresponds
to 8,=0, s;=0, as established by the model. This form is used to determine the

importance to be allocated to the second type of representation.

** The “most optimistic™ presupposition can also be dubbed unrealistic under a Firm’s practical point-of-
view, as long as it corresponds to ¢,=p,.. But here this conjecture is admitted, since the plausible, not the
workable, payoft is being investigated.
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b) By the average payoft obtained during the iterations of all members of the population
with a specific Firm i in a cycle of the game.
The forecast of kyi'gi shall be accomplished using for each source of information

(Consumer and population), a relationship between earlier payoffs.
The weight or importance that a Consumer assigns to its own experience— in terms
of payoffs received —and that derived from the population are assumed as different: The

relevance of the latter will be taken as proportional to the similarity between itself and the

typical Consumer described in the representation (a) above.

The similarity will be measured in a scale 0 to 1 and postulated as the proximity of

$qi OT 8 ]
sie el ‘ jd] . W .
sensitivities, expressed by 1—————— In this manner, the nearer s, (or sy) is from 0,

the more a particular Consumer and the typical one are considered alike, and the
significance assigned to the population’s data— the average payoff z — will tend to 1. On

the other hand, the weight regarding a Consumer’s own experience shall be ahways taken

equal to 1. Then, the Firm’s degree of cooperation )?i'gj is plugged in Equation 6.20.

. i . AV T . 231
The resulting expression for Aigi 18 depicted in Equation 6.237.

2, = | | ’ ’ Eq. 6.23

where:

. z,-y;: payoff obtained by the Consumer j with Firm i, in the correspondent

iteration of order y-1 of cycle g*;

*! Note that only the payoffs received by the Consumer as a result fiom accomplished purchases are
_ considered, thus excluding the zeros that derived from eventual non-consummated purchases.
** The current iteration being processed is the y®.
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® avg 7z, average population’s payoff in the transactions involving Firm i until the
current moment, thus considering all accumulated results of the cycle, in terms of

the Consumers’ payoffs. It is calculated by Equation 6.25.

avgz, = Eq. 6.24
Z bigi

The default values are zi‘g 1=1.0 and avg z = 0.0.

Now the payoff estimate E*(_zig) from Equation 6.20 can be thoroughly determined,

and the threshold for the Consumer’s decision will be established in the sequence.

i[. The decision’s threshold

The choice of a threshold for the Consumer’s decision of buying or not the product
or service In perspective was arbitrarily formulated in this model. Nonetheless, a fixed and
constant value for this parameter, ¢. g. zero', has been avoided, because the idea is to
allow a dynamic behavior for the buyers and consequently for the sellers. In this way, every
Consumer will have a distinct and ever changing threshold value, influenced by how the
game develops. Its determination will take into account each buyer’s own knowledge base,

along with some information gathered from the population’s performance. Using this

conception, the threshold ng will be given by:

Case 1: IF a Consumer has not iterated vet (default value)

‘<

T5=0.0 Eg. 6.25(a)

g9

* Implying that the Consumer would accept all deals with a predicted positive value.
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Case 2: IF max{avgz, ,(max(z},z%?,2%")} <0
P o 1 A‘-g £l g Py g’ 5 g] , =

Tgi 0.0 Eq. 6.25(b)
~— o, . y3 oy2 oyl
Case 3: IF min{ avg 2, (max(z}°, 2%, 2% )} > 0

Y . . 5
Toi= mm{avg Z,, max(zgjj, Z’gjl, 2;1 } + A Eq. 6.25(c)

Case 4: IF

min{ avg z, , (max(z}’,z%*,25")} < 0.0

and

< - (Y3 ¥ ovINy
max, avg z, ,(max(z;", 23,2, )¢ 2 0.0

y 3wl el -
ng= ma\{ avg z, max(z;i’,zy-z,z‘.l}—At , Eq. 6.25(d)

where avg z, is the average payoff in the transactions involving all the Firms and the

. -1 R -3 N
Consumer’s Class, regarding all cycles, and zg > 20, z’g’j ® are the last three payofts

received by the Consumer j from any Firm i, i = 1, 2, ..., m, in the current cycle,

excluding eventual zeroes due to non-consummated purchases.

In Equation 6.25(d), the amount A" = [(max(z}?, 2%, 2% ) - u. )’ + (avg zg —u)'T

v3 vl vl 5 7Y Syl vl
max(zgj 12,2 ) +avgz, max(z;", 2",z

where w = - or ~ ¥ " imitates the sample

standard deviation of the pair of values nmi(z?,z;f, zzi‘l ) and avgz, when both are

greater than zero, or only one is greater or equal to zero. A” represents an adjustment in the
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required reference threshold. This operation has the objective of providing some flexibility

for the Consumer’s decision.

Y
r4 I"::U'

H Class:j ¥

gz = Eq. 6.26
X2y !
Py

In accordance to this mechanism, the point of decision will be constantly updated in
the course of the game, with the buyer trying to keep up with its best achievements, but
also monitoring the general trend from the rest of the population. The default value for any

mussing value, a situation that will certainly occur in the beginning of the game, is zero.

The Consumer’s final decision in the iteration will be the outcome from the

comparison:
. v
If E@gd="g < Buys

. y
19 E'(u) <Tg = Does not Buy

At this point, an ensample with the application of the proposed method is

opportune, so an example is provided.

Example

Suppose the Consumer from the previous example (p. 6.53) has not yet decided
about the purchase of the item offered to it, so the quality is unobserved. Assume that all
other vanables and parameters remain the same. Additionally, consider that the following

information from previous simulation rounds is available:
® oy = 0.4506 (from page 6.54)

e avg 7 = 0.345 (assumed),

b

[ 4 Zlg]

0.234 (assumed);
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e avg z, = 0.342 (assumed);
. z;—l = (.213 (assumed);
. Zgj-i = 0.354 (assumed);
. z;."S = NA (use default zero);

o oV = g Vv [og A ] + P(sp) > {max [0, (o - max (o,

max((g, $(sp;)
=0.192437 + 0.04495328 — 0.02608
= 0.2113 (the most pessimistic synthetic evaluation of the item in
perspective);

Spt(ziy) is calculated using the adequate Equation from Table 6.13, in this
case the one that corresponds to the range of s;; = 1.302, that is, [1,2),

replacing oig by 6°;.

. 2113 - 014132 + 0.0047. 302
Spl(zig) = 0.2113-0.141 +0004739'x130 1=—0.671
0.224981 + 0.005227 x 1302

As stated in the definition, Spl(zg;) is the lower bound of the interval where the
Consumer believes its payotf will lie; in other words, Spt(z,g) is the buyer’s most

pessimistic estimate of the payoff for the current iteration.
Now, the upper limit Pl(z;;) needs to be determined.
Making ¢;; = pig = 6.78 yields (Eq. 6.6) q;; = 8.54;

From Equations 6.13(c) and (d), using sq = -1.302, the most optimistic quality
Qig = 8.54 is qualified as:

Wo(qig = 8.54)= 0.058;
uHc,(_qig = 854): 0.87,

To obtain o', rules 2 and 3 from Table 6.9 are fired, resulting in:
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Unr(o ¢ ) = 0.058 and

Upo(o ) = 0.87.

After the defuzzification procedure (Figure 6.11), comes:

a*qj = 0.724 (the most optimistic atiractiveness of quality).

Since o' > oy, Equation 6.22(a) is applied, vielding:

c’ig\i = max{0.4506, min(0.724, 0.239039)} + 0.239039 = (0.724 — 0.4506)
=0.51595

Again, resourcing to Table 6.13, Pl(zy;) is computed using c*igi as the substitute

for the argument Gy

051595 -0.14132 + 0.004739 x 1.302
o - -
Pl 0.224981 + 0.005227 x1.302 1= 064289

The prediction of the supplier’s degree of cooperation ??{gj is defined by Equation

6.23.
) .
s,
avgz, x| 1- ‘ Y g] +z
. LY 0.345x0.7396 + 0234
o s, - 17396
2- 12
5
Yy =
Mg = 0.2812

Resourcing to Equation 6.20 (a), comes:

. 2 x (N - Spi(zig)); _ , N
E (zig) = < P $)) -1 x[(_Pl(zigj)-)v‘:gi N+ N,
L Pl(zigj) - Spi(zig) ' -
. [ 2812 + 0.6
E'(zig) = 2x (02812 +0671) x [0.643 — 0.2812) +0,2812
= 0.643 +0.671

E'(zg) = 0.4438
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The value E*(zig) = 0.4438 matches the Consumer’s expectations about the payott

it might receive if it buys the item. Now, this decision will be made comparing

0.1706 with the current threshold TZ% , determined employing Equation 6.25(c).

T3, = 0.342 + 0.00849

The presumed reason for that conclusion is that the Consumer gives credence to
the possibility of accomplishing a good deal, based on its particular preferences and on the
evidence it gathered from the foregoing process. Though, it should be remembered that the
game has a highty dynamic characteristic: Recall that the payoff that are assigned to other

Consumers in the event of succeeded purchases will obviously affect the variables that
compound both ky{gj and ’tzj, crucial in its decision process. It may well be the case that its

punctual verdict about buying (or not) from this very same Firm gets reversed in a future

iteration.

6.5 - Summary of the Market Share Game

In this section, a synopsis of the developed model will be presented. The main
concepts and variables used are highlighted in order to allow a clearer comprehensive
insight of the process. In this manner, a review of the salient aspects contained in the model

will be supplied.

a) Pre-play settings:
e Number of Firms (m),

¢ Fixed part of the probability of any Firm being selected in an iteration (s);



e Fixed parts of the Firms’ negative payoffs—Penalty parameters t, and t,;

e Number I of iterations per cycle (min I= 3000)

b) Initialization of Firms:

For each Firm i, i= 1, 2, ...,m, the ensuing variables shall be defined for every

cycle:

Price pig;

Cost ¢ig;

Advertising budget ajg;

Penalty parameters t; and t;;

The values assigned to those variables are valid only during a cycle of the game.
After the completion of the first cycle, the simulation program will halt, and a opportunity
to continue the game is offered to the user. If another cycle is to be run, py, ¢z and ay,

may be modified.

¢) The Consumers’ Data

A set of information for each Consumer j is required, containing the elements listed

in the sequence.

Identification of the Player and fixed Parameters:

e Serial Number j, j=1..1000 (Section 6.4.5- 1);

e Sensitivity Parameters (Table 6.6)

Spj

S(li
e Importance Factors (Eq. 6.16(a) and (b);

¢(SPJ) =

P(sq) =
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Iterations’ Data:

e Payoff achieved in the last iteration with each of the m firms (Section
6.4.8-);

oyl
Zig

e Last three payofls obtained in a cycle g of the game, with any Firm i (Section

6.4.8-1);

g

e Current decision threshold (Section 6.4.8- 11);

V=
Tgi

Besides the information base mentioned above, which concerns every particular
Consumer j, additional figures with respect to the population as a whole are necessary for
the buyers’ decision process. Likewise the [terations’ Data, the following variables are

constantly being updated along the simulation process, and shared by all players.

e Average population’s payoft in all the transactions involving each of the Firms i

separately and accumulated through a cycle of the game (Eq.6.24);

avg zg =
e Average population’s payoff in all the transactions involving «// m Firms,

accumulated through «ll cycles of the game (Eq.6.26),

avg z, =

d) The Simulation Process

Before the simulation starts, the pre-play settings are defined and the Firms are
initialized. The following steps describe the most important procedures and events that

occur in the simulation process.

Step 1: Determine for cach Consumer, its fixed parameters sp;, ¢, $(Sp), $(54);



o
)
S

Step 2: Select a Consumer j at random from its population;

Step 3: Select a Firm i according to the probability distribution defined by
Equation 6.1;

Step 4: Characterize the price p;, for the item being sold by the Firm i chosen

according to the particular Customer’s perception;
Step 5: Determine the Consumer’s attractiveness of price oy; ( Table 6.8);

Step 6: Compute the Consumer’s most optimistic aftractiveness of quality oc*qj

(Equation 6.6, with ¢~ pj; and Table 6.9);

Step 7: Calculate the Consumer’s most pessimistic and most optimistic synthetic

evaluations cvigi and c*igj, respectively (Equations 6.21 and 6.22);

Step 8: Determine the support and plausible values Spt(zg) and Pl(zgy) for the
pavoff (Table 6.13),

Step 9: Estimate the Firm's degree of cooperation }.’i'gj (Equation 6.23);
Step 10: Compute the Consumer’s estimated payoff E*(z,-g') (Equation 6.20);
Step 11: Determine the Consumer’s threshold ng (Equation 6.25);

Step 12: The Consumer decides to buy or not the item by comparing E*(Zig') and

Y.
ng,

Step 13: A payotl 1s assigned to the Consumer: either zero or the value Z?g;

defined by Equation 6.18 and Table 6.13;
Step 14: A payoff is assigned to the Firm (Table 6.14);

Step 15: The bookkeeping of the results obtained in the iteration is made;

Step 16: Check if the number of iterations I established for the cycle has been

reached; if not, return to Step 2; if ves, the simulation process halts and
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may either be continued, starting a new cycle of the game with new values

for py, Cig, a5 and t;, t,, or terminated.

e) Bookkeeping and analysis of the results

The records of the results obtained in the simulation process will be the source of
the analysis of the market share game. The criteria adopted for this important feature of the
model, as well as the investigations to be performed on the output data and the respective

conclusions reached consist the body of Chapter 7 of this work.



Chapter 7

Simulations of the One-sided Fuzzy IPD Market Share Game

7.1 - The Simulation Program

A special program was written to perform a sample of simulations of the model
developed as a practical application of the FIPD, detailed in the Chapter 6. The need for
developing a specific code derived from the fact that, in spite of the existence of a
significant diversity of software platforms commercially available, none had the committing
flexibility to allow its employment in the current case, given the specific conditions

required.

The programming language elected was C-++', mainly because of its low-level
capabilities, widespread use and object-oriented features. Also, the code has been prepared
to run under DOS, because no improved interface (¢.g. Windows) was considered
necessary, only the achieved results. In this manner, after running a game, that could
consist of one or more cycles, the output, composed of snapshots of the partial results
achieved duning runtime, is saved in a tab-delimited text file, ready to be imported and
manipulated in a higher level platform. This has been done with a spreadsheet (Excel),

where the data was analyzed.

While the population of Consumers remained constant (1000 c¢lements), the
number of Firms could vary from 1 to 6, each with its own particular values for their
variables’.

The basic steps performed by the simulation program are depicted by the diagram

shown in Figure 7.1.

' Borland C++, version 4.52, 1995.
“ Recalling the Firms vanables: Cost, Price, Advertising Budget and penalty parameters t; and t;.
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The tuning of the model was accomplished by experimentally running preliminary
simulations, which added up to about 1.200.000 iterations. The purpose of this Phase was
observing the results and checking if they were reasonably compatible with a rational
behavior, under the light of the personal differences in preferences on the part of the
Consumers. The elements involved in the tuning stage were:

e The importance factors ($sy;, Psq);

e  Functions for the assignment of the Consumers’ payoffs;

¢ Decision thresholds of the Consumers;

e The Firms’ degree of cooperation (), and fulfillment of expectations.

One aspect of the game to be recalled is that the buyers do not compete among
themselves, and, as the model incorporated a one-sided Prisoner’s Dilemma, it is the duty

of the Firms to adjust their behavior to the circumstances.

7.2 - Methodology of the Experiments

7.2.1 - Bookkeeping of the results

A mostly signiticant aspect that had to be taken care of, was the bookkeeping of the
results generated by the simulation program. As previously mentioned, the bookkeeping
was implemented by means of periodic snapshots of the current status of the players. The
snapshots are taken by the program at different intervals along the iterations, depending on
the Class to which the chosen Consumer belongs. They record the following data, which is

done independently for every cycle of the game:

1. The Consumers’ Classes (1 to 10, with the general Class 11 representing the whole
population);

£

The Firms that took part in the iterations with each Class ( 0 to 5), with the general
Firm 7 representing the collection of all Firms;

3. The number of encounters for cach pair randomly selected (Class-Firm);
4. The number of successful iterations per pair;

5. The Consumers’ accumulated payoff per pair;

6. The Firms® accumulated payoff per pair;

7. The serial number of the iteration referred to the cycle



7.2.2 - Scope of the Simulations

The possible combinations of (Number of Firms), { Cost ), ( Price ), (Advertising
Budget), { Penalty Parameters ) and { Number of Cycles ) to be simulated are vast, in fact
infinite. Furthermore, due to the model structure, it makes a big difference if a specific set
of values for the Firms’ parameters is offered to the Consumers in the first cycle or in a
subsequent one. In the latter case, the historic from previous cycles is likewise important.
For those reasons, and also taking into account that the primary goal of the present
research is the proposal of a new methodological approach to the modeling of conflict of
interest using the Prisoner’s Dilemma Paradigm, a limited number of experiments have

been performed.

It is important to emphasize that the parameters employed in the model do not
originate from any set of collected or empirical data, neither from other theoretical studies
extracted from knowledge of Consumers’ demeanor. Nevertheless, the parameters have
been carefully selected (and tuned), always having in mind a plausible conduct of

Consumers under the circumstances considered.

The cases studied with the simulation program consisted of four approaches
(Phases). In Phases I, IT and III, the probability of an encounter Consumer-Firm was
made the same for every Company (equivalent advertising budgets). In Phase IV the Firms
with the smallest ratio of success/iterations obtained in Phase III promoted a boost in their
advertising budgets, and the tradeoff between benefits and additional advertising costs is

analyzed. The four Phases are described next.

Phase I. A general competition including six Firms, composed of one game with five
cycles with 18000 iterations each. In the average, every member of the
population had three encounters with every Firm. The costs were set at three
levels—one equal pair for each level— remaining constant throughout the
cycles. The prices were initially arbitrated at two levels for each cost. After
the first cycle, they decreased for three of the Firms, while the other three

Companies kept their prices without alterations. The criteria for varying prices



was to decrease them by 20% of the initial (Cycle 1) absolute markup in each

cycle. The inputs are shown in Table 7.1. The penalty parameters for the

Firms were 1,=0.0 and t,=0.1.

Table 7.1 - Costs and Prices for the General Competition (Phase I)

The results obtained in this part of the simulations were the object of a
more complete analysis and discussed under several aspects, as will be

presented further in this Chapter.

Phase II. A tournament with nine games, each with one cycle running 30000
iterations, so that a buyer would meet a Firm five times, in the average. For
the fust group of games (Group A — games 1-5), the prices were kept
fixed, and the costs varied. The criteria for altering costs was starting off
with a specific profit margin for each Firm, shown in Table 7.2, and
decrease it by % of the initial markup in every new cycle, with the costs

getting nearer the prices. For the other group (Group B — games 1- 4), the



initial profit margins varied between 700% (Firm 0) and 42.86% (Firm 5),

being reduced thereafter in each subsequent game.

The costs and prices employed in this approach of the experiments are

presented in Tables 7.2 and 7.3.

Table 7.2 - Phase II, Group A: Constant Prices & Varying Costs

Table 7.3 - Costs, Prices and Markups for Simulations of Games of Phase I1, Group B



The same costs assigned for Firms 1, 2, 3 and 4 in the initial game of Group
A shall be used in the simulations of Group B. An exception 18 made with
those regarding Firms O and 5. For these two cases, the costs have been
reduced, with two separate objectives: For the former Firm, to allow the
participation, in the market, of buyers belonging to Class 1 (what did not
happen with the values employed in the games of Group A, as will be shortly

seen); For the latter, to make possible a larger profit margin.

Phase III. This approach consists of a tournament with six unrelated games, each with
six firms competing in a particular segment of the market. All the games are
composed of a single cycle. The objective of this Phase was to investigate
how the ratio Price /Cost (which can be likened to the inverse of the degree
of cooperation) of the Firms, might affect the Firms’ success ratio, as well
as their net profits. The inputs for this Phase are depicted in Tables 7.4(a)
and (b). The .prices and costs in every game have been scattered within

several ranges, in order to discover which are the Consumers’ preferred

choices.

Table 7.4(a) - Phase 11I: Games 1- 3
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Table 7.4(b) - Phase 3: Games 4 - 6

Phase IV. Here, the simulations have been specifically conducted to observing the
influence of different advertising budgets in the Firms’ profits and the
relation between purchases and iterations—success ratio. The Phase was
divided into two games, with four Firms each. In Game 1, all Firms had the
same expected frequency of encounters with Consumers, because of
equivalent advertising expenses. In Game 2, the Companies modified this
situation by altering their publicity costs. Because the criteria of chosen the
participants and their variables is based on the results vielded by Phase III, it
was found preferable to present the data used in this stage directly in
Section 7.3.5, after the mentioned outcomes have been displaved and

commented.

7.3 - Analysis and Discussion of the Results

7.3.1 - General Remarks

As will be shortly seen from the simulations’ outputs, the lower end of the
population is not very sensible to improvements in quality, and the Firms aiming at that

Classes would not do much better if they boosted the quality of their items while



maintaining the same prices. When the prices get higher, the sellers start to lose customers

from the lower Classes but gain buyers from the more affluent levels.

One important rule of the game states that no Firm can sell for a price that is
inferior to the respective item’s cost, and the Consumers are aware of this norm. Thus,
while smaller prices are always atiractive ( in different intensities) to every member of the
population, they also carry a message about the maximum quality that might be embedded
in the product or service on sale, which tumns out to be the plausible payoff, derived from

the most optimistic evaluation of the item (cost=price).

As a matter of fact, lowering prices is not necessarily always a good policy,
depending on the Class to which the item is aimed. The attainment of the maximum gain
varies with every Class of Consumers, and also of the current competition. The
Consumers’ preferences are basically subordinate to the sensitivity to price, quality, and
also on the nonlinear relations that result from the employment of the adjusted fuzzy
integral.

One relevant aspect to be recalled is that the price of the product is completely
visible from the very start of the evaluation process, and the quality, before a transaction is

consummated, can be only predicted.

Figure 7.2 illustrates the prices (+10) that correspond to the plausible payoffs, as
well as the ranges of the synthetic evaluation o,y for the values of s, The term “optimum
price” should be understood as the price that yields the greatest possible payoff to a

particular Consumer, in the occurrence of the plausibility hypothesis’.

* Although the actual payoff increases with a greater quality and a smaller price, during the synthetic
evaluation process, the true quality of an item is transparent (cannot be seen beforehand). Hence, if a price
deviates significantly from the optimum in that stage, the upper bound of the evaluation interval will
become consequently lower, thus limiting the range of the predicted payoff to be achieved in the
transaction.
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7.3.2 - The Simulations of Phase I

In this Phase, no Consumers belonging to Class 1 (which has the lowest income)
ever accomplished a purchase, with the minimum price set at MUS$1.50. This fact indicates
an unattended and unexplored market niche conceming that category of buyers, that is
rather numerous, but has great limitations regarding the purchasing power, together with a
significant slack in the demand for quality. On the other hand, Classes 8, 9 and 10 had a
rate of 100% of success in the iterations with Firms 4 and 5. Considering the relative
insensitivity to price of the Consumers pertaining to this spectrum, that finding can be
interpreted as a hint that the Firms selling to those members might obtain a higher profit if

they increase their prices, what could be done associated to some expenses in advertising.

The graphs depicted in Figures 7.2(a)-(f) summarize the evolution of the
Consumers’ conduct along the iterations of Cycle 1. In this stage, the prices from Firms 1,
3 and 5 were the highest of the game. Because of the algorithm employed for the

Consumers’ decision, which always employed the maximum fulfillment of expectations in
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the first iteration with any Firm in a given cycle, the rate of success for those Firms steadily
decreased along the course of encounters. This situation is mainly due to the presence, of

another Firm offering a more advantageous deal, in the same range of cost/price.

The average slope is different for each Class, as should be expected. For the Firms
with the lower prices, a equilibrium seems to have been reached, in term of the percentage

of successful iterations.
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The illustration in Figure 7.4 shows how the sales were distributed among the
Classes in Cycle 1. Class 5, which is located around the median income, had the greatest
participation in the market, in terms of number of purchases . This result is consistent with

empitical observations of some real market profiles.
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As can be seen from Figures 7.5, 7.6 and 7.7, Firm 4 had the best performance in
Cycle 1, either in the rate of successful iterations or profit. The reason for this realization
seems to lic on Firm 4’s relative profit margin (21.43%), which was the smallest of all
competitors. In subsequent cycles, Firm 4 lost the initial advantage it had during the
iterations of Cycle 1, even though its cost and price had remained constant, which shows
the effect of a fiercer competition, because its closest adversary, Firm 5, had lowered its

price.
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Figure 7.7 - Cycle 1: Comparison between Profit and Market Shares, as % of the Total

Figures 7.8 through 7.13 depict how the market evolved along the cycles of the
game, separately for each Class of Consumers. The graphs show the information regarding
the Firms from which the Consumers bought. As mentioned earlier, Class 1 did not buy
from anyone, implying in the existence of an unattended niche. As to Classes 8, 9 and 10,
which only bought from Firms 4 and 5, the rate of successful iterations was 100% for both
Companies in every cycle except cycle 5, when the rate of success for Firm 5 fell to 0.622,
0.531 and 0.429, concerning Classes 8, 9 and 10, respectively. This result demonstrates the
inadequacy of decreasing prices too much, mainly on the higher segment of the market.

Figure 7.14 illustrates the information for the population as a whole.
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The graphs of Figures 7.15, 7.16 and 7.17 show the variation of the market share
and profit of the pair of Firms that competed in the same range, as functions of the price.
Note that only the Firms 1, 3 and 5 varied their prices, while the other even-numbered

Companies maintained theirs charges constant.

In the lower end (Figure 7.15), the results clearly demonstrate that Firm 1 did not
get any benefit by reducing its prices beyond about 1.6. Its local maximum profit occurs
necarby this point. Even though there is some room for a market share gain (Firm 1),

pushing prices further down only causes monetary losses to both competitors.

For the mid-range Companies, the same comments apply, with the difference that
no local maximum occurred for Firm 3. A strategy that seems appropriate for the present
and previous case is to experiment a slight increase in price, since the curves indicate that

the profit could be larger in that direction.
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In the higher end, the shape of the profit curve for Firm 5 attest that decreasing the

price below around 8.6 is to no avail. Again, its market share raises, but the monetary result

diminishes.
Comparison of Performan.ce Firm 5 Mii. Shr ( 6/00 )
Firm 4: Constant Cost & Price w0 Firm § - Profit
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Figure 7.17 - Comparison of Global Profit and Market Share for Firms 4 and 5

Conclusions for Phase 1 of the Simulations

Recall that the even-numbered Firms remained static, serving as a kind of

benchmark for the formulation of its closest competitor’s

policies.

e For the market aimed at the less affluent Consumers, competing by increasing

quality and consequently cost, is not quite important— the specific buyers are

somewhat insensible to that attribute. Moreover, here a small difference in price

can be fundamental.

¢ As a general remark, reducing prices too much is not a good policy— this appears

to bring about two different effects: For the initial Classes, some gain in the market
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share occur, until a certain limit, but the profit normally plunges more abruptly. For
the other extreme, since the potential buyers do not have knowledge about the real
profit margin of the Firms, it looks like a suspicion about the quality embedded in
the product arises, which causes a narrower interval for the item’s anticipated

evaluation.

e A greater emphasis in the quality should be a priority if a Firm plans to acquire a
larger slice of the upper spectrum of Consumers. In this case, price should not be

the object of competition.

o The results achieved by the Firms are completely interrelated, so it is wise not to
“rock the boat”, in terms of starting a price war with the objective of gaining a
larger number of buyers. In the case of sellers and buyers, if a Firm is too
cooperative regarding the Consumers, it will appear defective in the eyes of the

other Companies, which may cause retaliatory;policies and collective losses.

e Although in this model there is no differentiation in quality due to technological
attributes of the items being sold, this could be done by assigning diverse functions

to the perception of quality based in the cost”.

¢ As mentioned carlier, the possibilities to combine costs, prices and advertising costs
are endless. The purpose of the present group of experiments is to demonstrate the

analytical capabilities of the model.

* See Chapter 6, Section 6.4.4.



7.3.3 - The Simulations of Phase 11

The analysis of the results of this Phase will be done independently for each Firm,
because they do not compete (mainly) for the same niches of the market’. Furthermore,

only those Classes which plaved a significant role on the Firms’ results shall be examined.

a) Group A, Games 1 - 5: Variable (increasing) costs, constant prices

Firm O: Price=1.0

98.75

54.63 146.38 418 -26.12
62.96 143.16 6.07 -20.62
59.81 104.91 3.92 -43.48
65.45 56.66 0.75 -64.55

Table 7.5 - Results of Firm 0

For Firm 0, whose price was the lowest available to customers, the results indicate that
an optimum point could be found within the interval covered by the simulations. The
point where the cost was ~ 0.58 vielded the best profit. The ratio of success continued
to increase afier that point, but it brought no additional monetary benefit for that Firm,

since its absolute profit margin also got lower.

An mteresting finding was that the Consumers from Class 1 could not find an
appropriate deal from any seller, not even with the relatively low price 1.00 charged by
Firm 1. Once again,, it hints to the existence of an untended market niche in the lower

spectrum of incomes.

Figure 7.18 shows the curves for the iterations performed between Firm 0 and Class 2
of Consumers. Class 3, which also initially accomplished a small percentage of

purchases (Table 7.5), did not sustain its willingness to buy from Firm 0, preferring the

> Nevertheless, the interdependency still prevails, thereby it may happen that some of the Consumers of a
Class migrate to another, if the relation cost/price of the nearest competitor becomes more attractive.



deals offered by Companies 1 and 2, as illustrated next in Table 7.6, 7.7 and Figure

7.19.
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160
SE 140 E ;r“:d}“é,,w’"‘;“‘r %A;‘“”b“'“"*‘cww‘\».\-:
< s “"*q&*
o d & “gy,
% 120 L g,
@ P "‘“”‘._.(
100 4 .,
© e
a 80
o - -
s ] e A
5§ 407
[
20 |
;’/
0 \ : ‘
05 056" =" | 063 0.71 0.83
Cost™ 153
Cost

Figure 7.18 - Firm 0: Success Ratio and Profit as a Function of Cost

Firm 1: Price = 2.55

-4.11

70

566.64

5,56 -6.17 73 544,98 0.10 21.89
3.72 -27.94 89 521.86 0.14 36.33
453 -36.84 94 401.77 0.14 8.78

3.47 -51.15 87 182.05 0.13 -28.34

Table 7.6 - Results of Firm 1
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Figure 7.19 - Firm 1: Success Ratio and Profit as a Function of Cost

The Consumers that belong to Class 3 shared their preference almost equally between
Firms 2 and 3. It can be seen that, in an apparent contradictory manner, that category of
buvers decreased the rate of acquisitions from both Firms, when the cost embedded in

the product raised.

To explain this presumable glitch, it must be recalled that the neither the evaluation
function nor the decision threshold for the Consumers pertain exclusively to any
particular pair Firm / Class. Instead the functions incorporate constantly updated figures,
in runtime, that come from the iterations with the rest of the population with the same
Firm—>. and the fulfillment of expectations— for the estimated payoff, and from other
Firms with the same Class—1 (decision’s threshold). Hence, better or worse deals that
are taking place elsewhere are playing a role in the outcomes from the simulation

program.

Table 7.7 shows the results achieved by Firm 2 with Clagses 2 and 3. Considering that

those two category of Consumers performed a significant number of successful
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iterations with Company 2, the graph of Figure 7.20 illustrates the curves with the added

outcomes.

Firm 2; Price=3.75

20.25 158.98 76.96
15.39 83.30 82.60
2147 96.60 84.39
9.68 12.06 88.82
6.52 51.09 7556

Table 7.7 - Results of Firm 2
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Figure 7.20 - Firm 2: Success Ratio and Profit as a Function of Cost

A point of maximum ratio of success can be identified around the cost = 2.88. But it is
not associated to the maximum profit, given the payoff functions selected for the Firms.

On the other hand, it appears that Firm 2 is not acting well— in the sense of optimizing
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its profit— by improving the quality of the item. The shape of the profit curve hints that,
on the contrary, a reduction of cost, with the price fixed, would be a better strategy to

be adopted in this case.

The foregoing comment applies almost integrally for Firms 3 and 4, since the
figures depicted in Table 7.8 and 7.9 are coherent with the stated presumption.
However, a relevant difference between those two suppliers can be seen: While Firm 3
had its customers picked from Classes 4, 5 ( the majority) and 6, Firm 4 had the bulk of

its market niche distributed among the Consumers from Classes 6 and 7.

Firm 3: Price=5.40

327.55 100.00 905.81 16.3 88.91

36.12 279.20 100.00 807.12 18 87.33
27.90 158.11 100.00 637.32 14.5 39.05
25.57 76.86 100.00 440.88 19.49 33.90
13.88 -22.35 95.48 226.35 18.47 -6.67

Table 7.8 - Results of Firm 3

As can be clearly inferred from the tabulated results for Firm 4, the improvement in
quality derived from the assignment of a higher cost to the item had very little impact in
the market share concerning Classes 6 and 7, which appear to be already satisfied with
the initial value. The same situation did not occur with Classes 8, 9 and 10, which show
a trend of a larger ratio of success associated with increasing quality. Conversely, due to
the reduction on the profit margin, Company 4 suffered untoward consequences in its
profits. For the data employed in the runs of simulations, the best position was attained

with the initial values (cost = 6.00, price = 7.50).



Firm 4: Price=7.50

82.87 1262.59 96.71 1101.44
83.73 1184.93 96.92 1132.82

83.25

966.56

812.00

82.73

1013.11

840.63

680.54

483.85

128.54

19.61

30.22

27.51 106.93 14.49 18.16
28.64 101.97 28.21 19.63
21.34 61.23 27.66 23.80
34.38 -65.86 30.61 17.54

Firm 5: Price =9.00

Table 7.9 - Results of Firm 4

100.00

244.50

100.00 210.80 100.00 60.76
100.00 161.28 100.00 5472
100.00 102.51 100.00 33.50
100.00 -72.56 100.00 19.60

Table 7.10 - Results of Firm 5
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Conclusions for the Simulations of Phase I1, Group A

The best overall success ratio and profit performance were grabbed by Firms 3 and
4, obtained from the iterations accomplished with the Consumers situated around

and above the median income.

Firm 5, which offered the highest price, 9.00, achieved virtually 100% of successtul
iterations with Consumers from Classes 8, 9 and 10, even with the lowest cost, 7.50.
This finding demonstrates that, in the absence of competition in that range of cost,
there is no point in reducing the profit margin for the mentioned categories of

Consumers, if the Firm’s objective is improving its participation in the market .

The model of the market share game imposes limitations to prices and costs to the
range [0, 10], mainly because of the design of the fuzzy sets that characterize those
variables and the Consumers’ reasoning and preferences. Should it be not the case,
the results point out to feasibility of greater profits with higher prices, for the upper

income Classes of buyers.

For all the games of the present Group, each with 30000 pairwise encounters, the
number of successful iterations varied between 4999 (Games 3 and 4) and 4387
(Game 5). The behavior of the global payotts for Consumers and Firms evolved in
opposite directions, steadily rising and decreasing, for buyers and sellers,

respectively. The results are in Table 7.11.

5585.63 4873.28 3429.69 2369.10 219.19

2056.76 2529.42 2782.86 2986.27 3117.59

Table 7.11 - Total Payoffs received by All Firms and the Population

The Consumers that belong to Classes 5, 6 and 7 add up to 36.1% of the entire

population, and their individual normalized incomes are situated between 0.40 and
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0.70, what gives them a good flexibility when considering purchases. This
characteristic of the experimental data used in the simulations partially explains why
Firm 4 performed well: The combination price/cost offered by this Company
reached the Consumers that detain about 51.2% of the total income. In a real

market, a fierce competition should be expected in this slice.

e On the other hand, Class 1 has 8% of all members of the population, though
possesses only 0.63% of the total wealth. In other words, that Class is a special
fraction of the rnarkct,l which is intensely price oriented and with few demands
regarding quality. That is why it was not able to find any satisfactory deal among the

presented offers.

e For the set of values experimented and the parameters of the model, the
improvement of quality by way of increasing costs was not, in general, productive.
In almost all instances the increment in the number of successes was not worth the

loss of the absolute amount of profit.

b) Group B, Games 1 - 4: Variable (decreasing) prices, constant costs

In the four games of this round of simulations, the costs for the participating Firms
(Firm O - Firm 5) have been kept constant, and the prices varied. The criterion for varying
prices was not the same for every Firm, and depended on their costs. shows The inputs

used in this series of games are depicted in Table 7.3

The graphs presented next in Figures 7.21(a, b) through 7.26(a, b) show selected
success ratios and profits attained by each Firm, as functions of the prices. Except for
Firms 0 and 5, which implement cost / price policies aimed at the extreme ranges of
incomes, in all other cases the points of maximum success ratio and profit can be clearly
identified. Also, as expected, the Classes of Consumers had different behaviors. Recall that
sometimes, the penalty imposed to the Firms when a Consumer declines, arbitrarily fixed in

10% of the ratio cost/price, affect their overall outcomes.
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The prices for every Firm steadily decreased from Game 1 to 4. From the graphs in
the Figures 7.27 and 7.28 it can be scen that a greater degree of cooperation on the part of
the sellers also entails augmented success ratios, revealing an increased willingness of the
Consumers to cooperate, too. Nevertheless, regarding the global monetary results for all
the Companies as a whole, it appears that the best overall results are achieved when the
prices are leveled somewhere around the values employed in Games 2 and 3. This
neighborhood, given the current environment, can be interpreted as an equilibrium
between buyers and sellers, although the benefits bestowed to the former category of

players always raise when the relationship price/cost is reduced.

Evolution of % of Success Firms' Total Profits
20

) :

§ "

® : 2

g 10 s
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=

Game Game Game Game Game Game Game Game
1 2 3 4 1 2 3 4
Figure 7.27 Figure 7.28

Regarding both the volume of sales and the profit, Firm 4 once again revealed itself
as the leader of the market. With a fixed cost of MU$6.00 and prices varying in the range
MU$9.60 - 7.80, it reached all the Classes of Consumers with incomes above the upper-
middle level. The satisfaction of the buyers, measured by their totaled pavotls, also had its

maximum with Firm 4.



Units Sold per Game

1800
1600

1400

1200

1000
800

600

Number of Units

400

200

0 4

FrmO Frm1 Frm2 FArm3 Firm4

Firm$5

|

Figure 7.29

Firms' Profits per Game

4000

3500

3000

2500

2000

Profits

1500

1000

B Game 1
Game 2
0 Game 3
O Game 4

Figure 7.30

Conclusions for the Simulations of Phase II, Group B

=3

73

153



In spite of the reduced costs and prices offered by Firm 0, the Consumers of Class 1
did not accomplish a significant number of buys. The same phenomenon, in a lesser
degree, happened with Class 10. This finding suggests a confirmation that the
strongest slice of the market pertains to the Consumers situated around the median

income, with a bias to the upper end.

The Consumers of Classes 8, 9 and 10 have been good buyers, with a high ratio of
success, close to 100% for Firms 4 and 5. However, given the relatively small
number of individuals belonging to those categories, they did not contribute very
much to the global results. Those circumstances hint that additional efforts should be
made to attract those Classes. This could be made by means of some specifically

focused advertising policy, not implemented in the current model.

In general, the Firms’ best results were achieved during Game 3, when the markups

had a mode of 60%.

The items with the lowest cost, offered by Firm 0 and aimed at the less affluent
Consumers, supported a large markup (700% in Game 1), and subsequently
reducing it (100% in Game 4) did not bring any increased benefits to that supplier.
As a matter of fact, the opposite happened, with both the success ratio and profit

being reduced with that strategy.

Class 5 steadily reduced its purchases from Firm 2 (cost = 2.50) when that Firm
lowered its prices, but conversely raised the proportion of acquisitions from Firm 3
(cost = 4.0). Classes 6 and 7, though, did not respond favorably to prices below
7.20. This indicates that a higher price can represent a better deal to certain

Consumers, even when the quality associated with the item remains untouched.

For Group B, the number of successful iterations varied between 2342 (Game 1)
and 5388 (Game 4). The evolution of the Firms’ payoffs behaved differently from

the Games of Group A— the slope of the profit curve changed its signal within the
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considered interval—, but the Consumers’ gains increased consistently with the

reduction of markups. respectively. The results are in Table 7.12.

‘Table 7.12- Total Payoffs received by All Firms and the Population

7.3.4 - The Simulations of Phase 111

In each of the six games played in this Phase, six Firms competed in the same
market segment, with an equivalent cost and differentiated prices. In the analysis that
follows, the results obtained from Game 1 contain some additional detail, since the
participating Companies aimed their items at the Consumers of lower income, specially

Class 1, which has demonstrated strong limitations in its purchase power in the previous

experiments.
Distribution of Buyers Contribution to Total Profit
Class 3
9% 350
Class 1 300 ]
34% & 250
2 200
%’ 150
"é 100
& 50 _{_
0 . T
-50
Class 2 Class Class  Class
57% 1 2 3
Figure 7.31 - Customers of Game 1 Figure 7.32 - Firms’ Profits from Customers

In Game 1, where the cost was constant and equal to 2.50, only Classes 1, 2 and 3

turned out as actual customers. All other Classes did not accomplish any purchase. Class 1,



-1

)
3.

though contrnibuting with 34% of all successful iterations—Figure 7.31, did not supply the
greatest profit to the Firms, not even to Firm 1, which had the lowest markup (60%). Class
3, which initially bought from the Firms, on account of the introductory optimistic decision
criterion of the model, quickly withdraw from the market, as negative payoffs accumulated.
The data shown in Figures 7.32 regard only the outcomes that derived from the iterations
with those three Classes, hence excluding the negative payoffs yielded by non-successful

iterations with the other Consumers.

Firm O contrasted the larger slice of the market (35%) with the lowest profit, 3% of
the total. Firms 4 and 5, with markups of 300% and 360%, respectively, attained the best
monetary results with only a modest market share, as illustrated by Figures 7.33 and 7.34.
Firm 3 performed worse than Firm 2 and 4, in spite of the fact that its markup (240%) lies
between those of the former Companies. An explanation for this occurrence concemns the
preference functions of the consumers, since the combination of Firm 3’s cost and price

was possibly disadvantageous in presence of the competition from both sides.

Market Shares Total Profit Share
Frm 0
Firm 5 3% Firm 1

0,
11/0,, FArm0

F:”“ 4 35%
0% Frm$S
40% [
Frm 3 :
6%

Firm 2 :
16% Frm 1
21%

Figure 7.33 - Distribution of Successful Figure 7.34 - Distribution of Profits
Iterations

The graphs that follow illustrate, for each Game, comparisons between the total
number of successtul iterations and the monetary results achieved, as functions of the
current markup. Now the profit has been computed taking into account the gains and losses

obtained with the iterations with all Classes, whether successful or not.
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In terms of the population as a whole, the deals offered by the Firms in Game 1
proved to yield very low profits. In fact, only with very large markups (360%) a positive
gain appeared. This rather negative result is due, mostly, to the refusal of the wealthier
Consumers. Even with the lowest markup, the percentage of success achieved in Game 1
was low, around 5%. As to Game 2, the best overall results also took place when the
markup was the lowest, in this case 40%. Here, the proportion of success almost doubled,

and positive gains were always present for any markup considered.

Game 3 ——— Successes Game 4 -~ Successes
Cost=3.50 |- Profit Cost=4.50 |~ Proft
1400 3000

s 1200 - e § 2500 o
G 1000 o ¢ 2000
Q ‘ g
2 800 +—-
i R & 15004 Lo
= 6004 ;% _ by i o
e = 1000 { a
& 4004 - N e g N .
1=} . S E N
& 200 & 5004 RN

0 T . T T 0 : T - e

20 40 60 80 100 120 20 3B 50 65 80 95
Fm0 FAm1 Fm2 Fm3 FAm4 Fmb Frm0 Fm1 FAm2 FAm3 FAmd4 FAmS
Markup (%) Markup (%)
Figure 7.37 Figure 7.38



¥
1)
[e]

In Game 3 the Consumers, taken collectively, appear to show little variation in the
rates of buys for the markups 20% - 40% and 80% - 120%. Regarding the markups, the
total profit had a local maximum at 40%, but the global optimum is around 100%, which
also coincides with a local maximum in the number of successes. Conversely, Game 4
presents a clear point of maximum profit, approximately associated with the greatest

number of success, with a margin of about 45%.

The best policies for unitary profit margins with respect to costs varying from 5.50
to 6.50 seems to lie in the vicinity of markups between 40% - 50%, as demonstrated by the
graphs in Figures 7.39 and 7.40. Although the wealthier Consumers, to whom the
simulations of Game 6 were directed, have a low sensibility to price, the absence of
competitors operating in a different cost/quality range caused them to reduce their buying
rate when the markup was higher. Nevertheless, the profit increased, showing that for that
category of Consumers the attainment of a maximum success rate is not strongly correlated

with monetary results.
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Conclusions for the Simulations of Phase I11

e The best result in terms of net profits were achieved in Game 3 (cost = 5.50) by
Firm 3 with the price $8.25, which received a total of more than MUS$3500. The
corresponding success rafio was about 4%. All other sellers in that game also

performed well, with a minimum profit of MU$2000.

e The highest success ratio in this group of games also occurred in Game 5, and it has

been detained by Firm 0 (~ 7%), but it did not coincide with the greatest profit.

e The Consumers of Class 1 contributed with very little to the Firms’ gains, when
exposed to the same probability of iterating as the other Classes. One line of action
foreseen to handle this slice of the market is (1): Work with low costs (below $0.50)
and relatively large markups (300% and beyond); (i) Increase the volume of sales
by raising advertising expenses specifically aimed to that category, thus avoiding

unproductive attempts of conquering other Classes of Consumers.

e Though informative, the results obtained from this Phase of experiments cannot be
straightforwardly transferred to other situations of competition because only one
alternative of cost/quality was present in each game. It must be recalled that both thé
Consumers’ evaluation functions and decision thresholds are quite context-

dependent.

e In general terms, the best buvers were the Consumers from the middle and upper-
middle Classes, which are much more flexible concerning their spectra of favorable

deals.

o The relation that yielded the most attractive results for the Firms is located around

the cost = $35.00 and markup of 40 - 50%.



7.3.5 - The Simulations of Phase IV

In this Phase, the effect of varying the advertising budgets of the Firms has been
investigated. For this purpose, two games were played, with four Firms each, competing in

the same range of cost / quality, but with different prices, shown in Table 7.13.

Table 7.13 - Phase I'V: Prices and Costs for Games 1 & 2

In the simulations of Game 1, all four Firms had no differentiation regarding their
advertising budget and, consequently, the probability of an encounter with any Consumer
was the same, namely, 25%. In Game 2, the Firms’ advertising expenses were different,
thus altering the frequency of their iterations. However, considering that the level of cost
and prices were aimed at the buyers with small incomes, only the Consumers of Classes 1
and 2 will be taken into account in the analysis that follows, since the other Classes either

performed an insignificant number of purchases (Class 3), or simply refused to buy at all.
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The data obtained in the Game 1, Group B, Phase III will be used as a basis for
establishing a criteria for the differentiation of the advertising budgets, as well as the prices
and costs of the four participating Firms, which correspond to those of the equally
numbered Companies in the mentioned runs of simulations. The parameters for the
advertising expenses of Game 2 of the current Phase have been made inversely
proportional to the profit share previously obtained. The total amount expended was
arbitrated as 20% of the total absolute profit of Game 1, Group B, Phase III. The rightmost

column of Table 7.14 depicts the values that will be added to the gross profit achieved in

the iterations.

0.2191 0.2518 13.2719 G919

0.2847 13.18 0.1937 10.2095 - 25705

0.3586 13.18 0.1538 8.1065 3TF35

0.1376 13.18 0.4007 21.1201 740
1 527 1 52.7 0.4

Table 7.14 - Determination of the Differentiated Advertising Budget for Game 2, Phase IV

From Equation 6.8 of Chapter 6, section 6.4.4 |l, the advertising budget to be
assigned by each Company was given by A;, = a; x 10 x I, where aj, is a fraction of the
maximum possible proﬁt, 10, and I is the expected number of iterations in the current
cycle of the game. In the present instance, since only Classes 1 and 2 of Consumers are
being examined, 1 will be computed as 0.217 = 20000, because the two mentioned Classes
account for 21.7% of the entire population. In this manner, the values termed virtual

advertising budget shall coincide with A, with the variable a, assuming the values

® The absolute profit and the profit share were extracted from Game 1, Group B, Phase 3 of the simulations.
7 Calculated as 20% of the total absolute profit » equivalent advertising parameters (0.25).

? Calculated as 20% of the total absolute profit x differentiated advertising parameters.

? Caleulated as the difference between the virtual advertising budgets of Game 2 and Game 1.
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0.003058, 0.002352, 0.001868 and 0.004866, respectively for Firms 0, 1, 2 and 3. It
must be noted that the objective of the simulations of this Phase has been to evaluate the
influence of contrasted advertising budgets, while all other variables present in the two
games under consideration are kept unchanged. Thus, only the marginal advertising
expenses— the ditference between both virtual budgets, shall be taken into account to

compute the final results, videlicet, the last column of Table 7.14.

The results yielded by the simulation program for Game 1 are summarized in the

sequence.

I. Tables 7.15(a) - (e): Game 1 - Equivalent Advertising Budgets

Table 7.15(a) - Phase IV, Game 1: Simulation Partial Results for Firm 0

8.3635
681 211 0.31 41,9361 0.834
1105 291 0.26 50.2996 1.0
Table 7.15(b) - Phase IV, Game 1: Simulation Partial Results for Firm 1

1% Although the values of a, appear to be quite small, it should be remembered that they regard a fraction of
the utimost plausible profit to be attained in a cycle, unrealistic in practice, and serving exclusively as a
reference.
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0.440
0.560
1.0

Table 7.15(c) - Phase IV, Game 1: Simulation Partial Results for Firm 2

Table 7.15(d) - Phase IV, Game 1: Simulation Partial Results for Firm 3

102.226
2714 610 0.22 116.070 0.532
4374 1234 0.28 218.295 1.0

Table 7.15(e) - Phase IV, Game 1: Simulation Partial Results for All Firms

Il. Tables 7.16(a) - (e): Game 2 - Differentiated Advertising Budgets

Table 7.16(a) - Phase IV, Game 2: Simulation Partial Results for Firm 0
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Table 7.16(b) - Phase IV, Game 2: Simulation Partial Results for Firm 1

Table 7.16(c) - Phase IV, Game 2: Simulation Partial Results for Firm 2

Table 7.16(d) - Phase IV, Game 2: Simulation Partial Results for Firm 3

1577 606 0.384 101.822 0.465

2709 615 0.227 M7471 0.535
4286 1221 0.285 218.993 1.0

Table 7.16(e) - Phase IV, Game 2: Simulation Partial Results for All Firms
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Observing the results from Game 2, it can be seen that the number of iterations in
which Firms 1 and 2 took part in fact decreased in comparison to Game 1, a natural
consequence of the bias imposed by random selection process. However, the accumulated
profit accumulated along the iterations had an opposite behavior, slightly increasing, even
without the reduction due to smaller advertising expenses. Why this? The main reason for
that occurrence is the presence of Firm 0, which offered a better deal to the Consumers of
Classes 1 and 2 by means of a significant smaller markup over the commonly established
cost. Because of the competition presented by Firm 0, which always maintained 100% of
buyers, the success ratio of the other Firms steadily decreased as the game proceeded, as

illustrated by Figure 7.41.

Firms' Success Ratios
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Figure 7.41 - Conjoint Success Ratio for Classes 1 & 2, Phase IV, Game 1

A comparable event took place with Firm 1, 2 and 3’s accumulated payoffs, whose
results regarding Class 1 are depicted in Figure 7.42. For Class 2 the circumstances were

similar.
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Figure 7.42 - Firms’ Accumulated Payoffs with Class 1, Phase IV, Game 1.

According to the rules of the game, non-accomplished purchases mean sure
losses—the penalty for the Consumer’s defection. In this manner, there is no point in trying
to increase the number of iterations if they necessarily translate into negative gains. This is
why Firms 1 and 2 ended up better off in Game 2, in spite the fact that their frequency of
iterations had been reduced, comparatively to Game 1.

On the other hand, an opposite phenomenon happened to Firm 3, which boosted
its number of encounters in Game 2 for no avail. Recall that Firm 3 had the highest
markup.

The total gains obtained by the Firm 0 and 3 in Game 1 with Classes 1 and 2 taken
aggregated do not differ very much—Figure 7.43—, basically because of the varied
decision rules of the Consumers are compensated by larger unitary profits. Class 1 was the
greatest contributor to the revenues obtained by the Firm with the lower price, and the

opposite occurred with Class 2.



Accumulated Profit
Equivalent Advertising
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Figure 7.43 - Total Profit in Game 1 (without advertising expenses)

When the Firms act on their probability of being chosen for an iteration by

employing diverse advertising budgets, it can be seen that, while Firm 0 practically had no

alterations in its profit, Firms 1 and 2 jumped to more favorable results, and Firm 3, to a

WOrse onec.

Accumulated Profit
Differentiated Advertising
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Figure 7.44 - Total Profit in Game 2 (without advertising expenses)



Now, when the values of the effective advertising budget— Table 7.14, rightmost

column— are added to the outcomes shown in Figure 7.44, there will be an intensification

of the foregoing comments.

Figures 7.45 and 7.46 summarize the general results concerning the profit and the

total number of iterations and successes obtained in Phase IV.

Number of Iterations & Successes
Equivalent Advertising
1200 =
1000 ~n— (B Class 1 fterations
O Class 1 Success
= 800 . .
° Class 2 kerations
nE-' B Class 2 Success
'3 O Classes 1 & 2 kerations
ke
< O Classes 1 & 2 Success
Firm Firm Firm Firm
0 1 2 3
Figure 7.45 - Game 1, Phase IV
Number of iterations & Successes
Differentiated Advertising
1 |& Class 1 terations
. 10 Class 1 Success
"‘;: Class 2 terations
[
o 0 Class 2 Success
5 O Classes 1 & 2 terations
2 3 Classes 1 & 2 Success
o 3h4s 1: ‘ _I‘ : -|
Firm Firm Firm Firm
0 1 2 3

Figure 7.46 - Game 2, Phase IV
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Conclusions for the Simulations of Phase IV

e In this Phase, two Games were played: Game 1, with no differentiation in the Firms’
advertising budgets, hence with the same expected number of iterations for each
Firm, and Game 2, where the Companies had distinct probabilities of performing

iterations, due to particular publicity costs.

e When the sellers compete for the same spectrum of buyers, the results indicated that
the Firms which offer the items of same cost/ quality at higher prices soon lose their
ability to accomplish sales, because the Consumers rapidly prefer the deals where
they can find better advantage. This outcome, though intuitively obvious, indicates

that the model is adequate in terms of mirroring practical situations.

¢ Increasing advertising expenses in the presence of more efficient competition has
demonstrated to be useless; Quite on the contrary, because, since there is a penalty
imposed to the Firms when the Consumers are called to iterate and refuse to buy,
the accumulation of negative payofls due to sequential refusals pulls the final profit

to a worse position.

e Firm 0, which had the best overall performance in Game 1, maintained its rank in
Game 2. On the other hand, Firms 1 and 2, which had a smaller number of

iterations, had greater profits, on account of the foregoing cited reasons.

7.4 - Final Remarks

In this Chapter, the problem of analyzing several instances of a market competition
has been simulated with the One-sided Fuzzy Iterated Prisoner’s Dilemma—I1S-FIPD.
Regarding the players embodied by the Firms, the flavor of the classic Prisoner’s Dilemma
is actually present. Although the motivation of using this paradigm in this kind of problem
has already been discussed in Chapter 6, it is opportune to mention that the basic dilemma
of the traditional IPD is also extant in the workings of the 1S-FIPD model of a market

share game. Some significant similarities regarding those two approaches are:
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The Firms— in the 1S-FIPD, the category of players that is actually involved in a
PD— can either cooperate or defect, in a gradual manner, by establishing diverse levels

of markups;

Defection pays, until a certain extent, since the decision functions used by the
Consumers tend to initiate the game in a cooperative mood, which is quickly and

constantly updated.

However, the Consumers are reactive decision makers, and defection is soon answered
with defection, which implies in losses to the sellers. The Consumers’ defection is

symbolized by the act of not buying from the non-cooperative Firms;

In the long run, if well adjusted, cooperation is worth, yielding positive though smaller

pavofis to both sides involved.
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Chapter 8

“...the individual pursuit of a large
share of the pie often sabotages
efficiency. ”’

—J. McMillan, in Games, Strategies and Managers, 1992.

Conclusions

8.1 - Summary of the Dissertation

The vast majonty of studies and applications of the IPD regard a 2x2 game, with
two players and two mutually exclusive strategies, COOPERATE and DEFECT, with the
participants usually formulating their decisions by means of some appraisal of the foregoing

sequence of moves.

In this Dissertation, the IPD was explored with some alternative and new

approaches, basically:

e Admittance of gradations in the strategies, between the extreme points C

and D;

e Formulation of decision systems for the players that incorporate other

variables besides the history of previous encounters;

¢ Introduction of fuzzy logic and fuzzy expert systems to ascribe a qualitative

reasoning method for the players—evervthing is a matter of degree';

' This quotation is borrowed from Dr. A. Kandel, who used it in a course on fuzzy systems attended by the
author of this dissertation in the second semester of 1994 at the University of South Florida.
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e Employment of a one-sided Prisoner’s Dilemma to model a market share

game;

The Dissertation is informally divided in 2 parts. Chapters 1 through 4 contain the
introduction and a review of the fundamental theoretical aspects of Game Theory, the
Prisoner’s Dilemma Game and Fuzzy Sets. In Chapter 4, a contribution was also made
regarding the aggregation of decision criteria using the fuzzy integral. A modification to the

original approach of this method was studied and implemented, which comprises the
inclusion of an increment A* and a decrement A~ in the formulation of L & 3% . Chapters

5 through 8 comprise exploratory models of the Fuzzy Iterated Prisoner’s Dilemma
—TFIPD, and a practical application of the FIPD using the one-sided version of the game

with its simulations results, and the conclusions.

One significant portion of the work regarded the creation of two specially written
object-oriented C++ codes to run the simulations concerning the models presented in
Chapters 5 and 6, since no commercially available package tulfilled the specifications to

perform the required tasks.

The achievement of a greater insight of the workings of the PD paradigm has been
the major goal of the present research, and the most important acquired outcomes are

summarized in the sequence

8.2 - Synopsis of the Results
8.2.1 - The FIPD Tournaments (Chapter 5)

The tournaments consisted in confronting the fuzzy players, differentiated by their
respective rules, against themselves and simultaneously against other traditionally successful
strategists in earlier contests, TFT and PAVLOV. Those established rules maintained their
usual dichotomic character regarding the criteria of assessment of previous moves and

implementation of decisions. The results that have been obtained from the limited set of
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simulations performed showed a quite erratic pattern concerning efficiency in accumulating
payoffs. In the first phase of the iterations, PAVLOV, which uses the simple rule win-stay,
lose-change, was the overall winner in most instances. In this stage, TFT did not thrive. As
to the fuzzy players, a noticeable feature was the prevalence of defection-biased strategists
among the best performers, indicated by the presence of the digits 4, 5, 6, 7 in their fuzzy
classification numbers’. In short, the predominantly nice and forgiving fuzzy strategists did
not succeed in the competitive environment.

Nevertheless, the realization of the subsequent phases of the tournament, from
which the poorest performers have been excluded, revealed a change in the results. From
the second phase on, PAVLOV abandoned its success and TFT began to shine, only
eventually defeated by the defection-biased fuzzy rules. On the other hand, fuzzy-TFT did

not leave the ground, and the binary TFT ended up as the final winner of the tournaments.
Three relevant aspects concerning the simulations are worth mentioning, though:

« The first 1s the fact that PAVLOV and TFT (binary and fuzzy versions) were always
picked to participate in every phase of the simulations, in contrast with the exclusion
criterion applied to the other players. This criterion provided an advantage to those

participants, which had renewed opportunities to recover from precedent comedowns.

« The second topic refers to the influence of the probabilistic characteristic of sequential
assignment of pairs of plavers to being confronted. Because the fuzzy expert systems

- take into consideration a set of data which is derived from the history of the game, the
resulting decisions that were adopted along the tournament phases were strongly
influenced by the particular succession of pairwise encounters. Although the cited
overall recipe fbr good performance appears to have been confirmed in hundreds of
thousands of iterations, there still remains a speculation whether a definite and unique
stable configuration might really arise from the equally many possible starting

arrangements. This question induces a conjecture about the an inherent unpredictable

* The digit 5 stands for widespread defection in every circumstance, and 4, 6, 7 correspond to defection in
two out of three resolution clauses.
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trait of complex and dynamic social (and other) systems, where some small fortuitous

changes can make a big difference.

»  The third point consigns the frequency distribution of the types of players. In the model
there were 512 distinct fuzzy categories, and three other special participants. However,
each type counted with only one representative in all matches. An ecologically designed
tournament comes immediately to mind, where the most apt strategies proliferate and
the worst become extinct. Nonetheless, even in this circumstance, it appears that the
considerations about the intrinsic unpredictability of the resulting equilibrium still

endure.

8.2.2 - The One-Sided FIPD—1S-FIPD— and its application to a Market
Share Game (Chapters 6 and 7)

Chapters 6 can be considered the nucleus of the Dissertation. A model based on the
1S-FIPD has been implemented and extensively detailed. Along the text, several problems
concerning the relationship between the conflict of interest posed by a market with Firms
and Consumers, the IPD and the use of methods based in fuzzy set theory were
approached and successfully formulated.

In Chapter 7, with the aid of an object-oriented C++ program, the 1S-FIPD has
been simulated under a number of different aspects, which were divided in four phases,
summarized below.

» Phase I: A general tournament with six Firms operating at diverse market segments
regarding the quality and cost of items. The game was divided in five cycles. From a
cycle to the next, half of the Companies made alterations in their prices, while the
costs were kept constant for all Firms. Among the diverse conclusions achieved, it
was found that the most successful Company was number 4, which operated with
fixed cost and prices throughout the cycles, and aimed them at the upper-middle

Classes of Consumers.

» Phase II: Here, two groups of Games were simulated. In Group A, the objective was

observing the effect of conjoint of diminishing costs and fixed prices on the



performance of the Firms. In Group B, the opposite policy was adopted, with
constant costs and decreasing prices. Following a characteristic already found in
Phase 1, the Consumers from Class 1-— with the smallest incomes— were quite
reticent in accomplishing purchases. In fact, there were no buyers from that category
in Group A, at a price of MUS$1.00. In Group B, their general contribution to the
Firms’ profits was insignificant. The best contributors to the Companies’ profits
were the Classes 5, 6 and 7, which, aside being more numerous, also had more
flexibility in their decision criteria, being less specific in their preferences and buying

from more sellers.

Another interesting finding was that the more efficient markup in terms of

obtaining a maximum profit was between 40% and 60%.

Phase III: This stage consisted of six games, each with six Firms competing together
in the same slice of the global market. The costs were fixed in each game, and the

sellers offered their items with different markups.

The best result in terms of net profits were achieved in Game 5, when the cost was
5.50 and the price, $8.25, which corresponds to a markup of 50%, thus confirming
the same optimum range found in Phase II. The respective success ratio was about
4%. The highest success ratio in Phase III occurred also in Game 3, and it has been
detained by Firm 0 (x 7%), but it did not coincide with the greatest profit. This
result evinces that the 1S-FIPD model is appropriate in terms of corroborating that
the pursue of the greatest market share by means of decreasing markups can be

disadvantageous

Phase IV: While in all other experiments no differentiation was imposed to the
Firms’ probabilities of iterating with the Consumers, now the Companies were able
to make adjustments in their advertising budgets with the objective of altering that
feature. Two rounds of simulations were run, with four Firms playing. For the sake
of comparison, in the first game the Companies had equivalent advertising expenses,
contrasting with different ones in the second. The main finding in this phase was

that increasing advertising expenses in the presence of more efficient competition
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has demonstrated to be useless, because the Consumers rapidly turn their attention
to the deals where they can find better advantage, measured by the obtained pavoffs.
In fact, due to the penalty payoff imposed to the sellers when a Consumer refuses to
buy in an iteration, increasing the frequency of iterations can even be worse

regarding the capacity of accumulating profits.

As could be perceived from the analysis of the simulations performed in Chapter 7,
the model of the 1S-FIPD is practically unending in terms of possible experimentation.
Many combinations of costs, prices, costs, number of Firms, range of the competition and
advertising budgets can be implemented, apart from other lower-level adjustments in the
parameters employed for the Consumers’ decision For this reason, the examples presented
and discussed have been limited, and experiments focused on a selected number .of

situations, with.the objective of demonstrating the potential of the process.

Finally, it 1s very important to emphasize here that the proposed method is intended
as an analysis tool. Therefore, the parameters of the models, as well as the data employed
in the simulations did nof come from empirical observations, and have been arbitrarily but
Judiciously selected to mimic real data. As a consequence, the calibration of the model and

its application to true sets of information remains as a suggestion for further improvement.

8.3 - Main Contributions of the Work

The scientific contributions presented by the present dissertation can be

summarized by the following topics:

1. The admittance of gradual decisions in the Prisoner’s Dilemma using
elements of Fuzzy Set Theory;

2. The use of Belief Theory associated with Fuzzy Logic to implement
decisions in a conflict of interest;

3. Introduction of adjustment factors in the method of the Fuzzy Integral;

4. Association of simulation methods with fuzzy decision criteria for the IPD;
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5. Development of an analysis tool with an actual and practical application to

the paradigm of the IPD;

8.4 - Limitations of the Work and Suggestions for Future Developments

a. Establishment of the general structures of the models of the FIPD

Besides fuzzy expert systems, other architectures could have been employed
instead. For example, the techniques of genetic algorithms, multi-layered
perceptrons (Neural Networks) and evolutionary programming (with Finite State
Machines— FSMs) have already been investigated, as discussed in Chapter 3. But,
by the time that this text is presented, the mentioned AI methods lack the use of
tuzziness in their approach of the IPD. Therefore, those seem to be a promising

line of research for building other realistic models of the IPD.

Choice of the variables

Selecting variables that can realistically mimic rational human behavior, represented
by the agents’ actions and perceptions in an IPD, is a challenging task. That
problem is intimately correlated to finding an efficient frame to portray preferences,
rationality and utility. In both models presented, a departure from the usually
adopted information sets depicted by the “sequence of the opponent’s last moves”
has been sought and implemented. However, the current choice of variables on
which the actors count to make their decisions provide just a possible configuration,
and many other influencing factors could have been ascribed to the method. In this
manner, other opportunities of research are open in that field, by alternatively
picking diverse variables to mirror a rational decision process. Those may include
psychological factors regarding the agents, environmental dynamic changes and

influence of extrancous contingencies, among several others.

Detailing of the models

The encounters between the players in the two models of the FIPD have been

guided by previously arbitrated particular probabilistic methods, which parameters
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remain static along the simulation course. This fact entails the speculation for a
quest of an adaptive random rule to govern the pairings, that might be continuously
induced by the outputs of the game, thereby embodying a recurrent system. The
inclusion of this and other alike features in the design of a simulated IPD must be
carefully done, though. This suggestion regards the risk of ending up with a system
which has some sort of chaotic dynamics embedded in it, which would be of rather
complex analysis and could also lead to no further understanding of the nature of
the conflict of interest depicted by the IPD.

An important aspect worth mentioning refers to the tuning of the fuzzy
expert systems. The choice of the numeric parameters that particularize the fuzzy
sets employed were discretionary, and some singling out had to be done in order to
attain the computational simulation programs and runs. Nevertheless, it might be
desirable to adjust the parameters of the fuzzy system to a set of empirical data,
what could be done in accordance to some specific query.

The production rules utilized had single antecedents. This particular
countenance has been deliberately picked in order to shun the trap of a
combinatorial explosion of feasible individual strategies for playing the game. Recall
that in the model of Chapter 5, a choice of three decision factors, each also with
three qualitative assessments and only two strategies, namely, COOPERATE and
DEFECT, led to 512 distinct fuzzy players. As a further development, it is proposed
that the players may count on two-antecedent’ decision rules, which would be
aggregated and mapped into the consequent through T-norms or S-norms fuzzy
operators or still any other operator from a palette of options, including weighted

. 4
and nonmonotonic fuzzy operators’.

* Although multi-antecedent rules (with more than two) could be used, differently from control problems, it
appears that it is not the case that the decisions adopted by human agents in a PD-like conflict of interest
would take that course.

* Regarding nonmonotonic aggregation operations, Yager and Filev (op. cit. [YAGE94], p. 40) state that, in
order to do default or commonsense reasoning, nonmonotonic logic is more appropriate, which entails the
utilization of that class of operators.



d. Relaxation of pairwise iteration - n-person IPD

Despite the diversity of individual types of players considered, the iterations were
always pairwise. Other forms of pd-like situations involving three or more players
(e. g. the stag hunt, the free-rider problem) might take advantage of a fuzzy

approach to the decision method.

e. Allowance of features belonging to cooperative qamés

The PD is an essentially competitive game, though obviously non-strictly so. This is
a necessary condition for it to possess the strikingly contradiction between the
individual and the collective rationality. But it must be conceded that the restriction
regarding the nonexistence of bargaining or negotiation between the parties
participating in the dispute— exercised throughout the formulation of the presented
method —is remarkably strong. On the other hand, total communication and
enforcement of agreed contracts would completely dissolve the dilemma posed by
the PD paradigm. Thus, under the same rafionale that inspired the departure from
the dichotomic game, a gradual compromise amid the contenders looks as though
viable to be modeled and simulated in an eventual upcoming exploration of the

theme.

f. Further Simulations

For both models of the FIPD, the simulations run with the respective programs
cover only a part of the possibilities, that can be taken as illimitable. Hence,
additional probing can always be realized, perhaps with a particular emphasis to

some specific concerns whose clarification is sought.

8.4 - Final Remarks

Philosophers are intrigued by the Prisoner’s Dilemma. The incongruity embedded
in it 15 appalling because a widespread individual rationality leads not only to collective

irrationality, but also to individual losses and, therefore, irrationality. The PD paradigm,
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particularly its repeated version—IPD—, has been extensively employed to model conflicts
of interest that turn up in a diversity of scientific areas, from operations research to social
sciences and biology. The importance of the PD within the realm of Game Theory is
unquestionable, since it reflects with both simplicity and clarity what this branch of
knowledge is all about. On its turn, Game Theory is captivating an increasing interest as a
powerful tool for developing application models aimed at real life situations and problems
where rational and reactive actions are extant. A confirmation of the recognition of this

trend was the granting of the 1994 Nobel Prize in Economics to three Game Theorists.
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0.08{ 0.0998 0.28] 0.2409 0.48| 0.3684 0.68] 0.5065 0.88f 0.6888
0.081 0.1006 0.281 0.2415 0.481 0.3690 0.681 0.5073 0.881 0.6900
0.082] 0.1015 0.282] 0.2422 0.482| 0.3697 0.682; 0.5080 0.882] 0.6912
0.083] 0.1023 0.283| 0.2428 0483, 0.3703 0.683| 0.5088 0.883] 0.6924
0084 0.1031 0.284) 0.2434 0484 0.3710 0.684| 0.5096 0.884] 0.6936
0.085| 0.1040 0.285| 0.2441 0.485] 0.3716 0.685] 0.5103 0.885] 0.6948
0.086; 0.1048 0.286| 0.2447 0.486! 0.3723 0686 0.5111 0.886] 0.6960
0.087] 0.1056 0.287] 0.2454 0.487, 0.3729 0.687] 0.5118 0.887] 0.6972
0.088 0.1064 0.288 0.2460 0.488 0.3736 0.688 0.5126 0.888 0.6984
0.089) 0.1072 0.289| 0.2466 0.489] 0.3742 0689 0.5134 0.889] 0.6996
0.09 0.1081 0.29 0.2473 0.49 0.3749 0.69 0.5141 0.89 0.7009
0.091 0.1089 0.291 0.2479 0.491 0.3755 0.691 0.5149 0.891 0.7021
0.092| 0.1097 0.292, 0.2486 0.492] 0.3762 0692\ 0.5157 0.892, 0.7034
0.093] 0.1105 02931 0.2492 0.493; 0.3768 0.693| 0.5164 0.893] 0.7046
0.094| 0.1113 0.294] 0.2498 0494 0.3775 0.694] 0.5172 0.894; 0.7059
0.095! 0.1121 0.295| 0.2505 0.495{ 0.3781 0.695] 0.5180 0.895] 0.7071
0.096] 0.1129 0.296| 0.2511 0.496/ 0.3788 0696, 0.5187 0.896/ 0.7084
0.097] 01137 0297 0.2518 0497 0.3794 0697 05195 0.897{ 0.7097
0.098/ 0.1145 0.298| 0.2524 0.498] 0.3801 0.698| 0.5203 0898 0.7110
0.099] 0.1153 0.299| 0.2530 0.499| 0.3808 0699 0.5211 0.899] 0.7122
0.1 0.1161 0.3] 0.2537 0.5 0.3814 0.7{ 05218 0.9] 07135
0.101 0.1169 0.301 0.2543 0.501 0.3821 0.701 0.5226 0.901 0.7148
0102 0.1177 0.302| 0.2550 0502 0.3827 0.702] 0.5234 0.902! 0.7161
0.103 0.1185 0.303 0.2556 0.503 0.3834 0.703 0.5242 0.903 0.7175
0.104] 0.1192 0.304] 0.2562 0.504] 0.3840 0.704] 0.5249 0.904] 0.7188
0.105] 0.1200 0.305| 0.2569 0.505| 0.3847 0.705| 0.5257 0.805[ 0.7201
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0.106| 0.1208 0.306; 0.2575 0.506] 0.3853 0.706, 0.5265 0.906) 0.7214
0.107] 0.1216 0.307{ 0.2582 0.507) 0.3860 0.707] 0.5273 0.807] 0.7228
0.108! " 0.1224 0.308; 0.2588 0.508] 0.3866 0.708) 0.5281 0.908| 0.7241
0.109] 0.1231 0.309| 0.2594 0.509; 0.3873 0.709| = 0.5288 0.909| 0.7255
0.11 0.1239 0.31 0.2601 0.51 0.3880 0.71 0.5296 0.91 0.7269
0.111 0.1247 0.311 0.2607 0.511 0.3886 0.711 0.5304 0.911 0.7282
0112 0.1255 0.312] 0.2613 0.512] 0.3893 0712, 05312 0912 0.7286
0.113 0.1262 0.313 0.2620 0.513 0.3899 0.713 0.5320 0913 0.731G
0.114 0.1270 0.314 0.2626 0.514 0.3906 0.714 0.5328 0.914 0.7324
0.115 0.1278 0.315 0.2633 0.515 0.3912 0.715 0.56336 0.915 0.7338
0.116] 0.1285 0.316| 0.2639 0.516; 0.3919 0.716] 0.5344 0.916/ 0.7352
0.117{ 0.1293 0.317] 0.2645 0.517| 0.3926 0.717) 0.5352 0.917, 0.7366
0.118; 0.1300 0.318] 0.2652 0.518) 0.3932 0.718/ 0.5359 0918 0.7381
0.119, 0.1308 0.319| 0.2658 0.519{ 0.3939 0.719] 0.5367 0.919] 0.7395
0.12{ 0.1316 0.32) 0.2664 0.52] 0.3945 0.72| 0.5375 092 07410
0.121 0.1323 0.321 0.2671 0.521 0.3952 0.721 0.5383 0.921 0.7424
0.122] 0.1331 0.322] 0.2677 0.522| 0.3959 0.722| 0.5391 0.822] 0.7439
0.123] 0.1338 0.323| 0.2683 0.523| 0.3965 0.723| 0.5399 0.923| 0.7454
0.124] 0.1346 0.324| 0.2690 0.524| 0.3972 0.724] 0.5407 0.924| 0.7469
0.125| 0.1353|- 0.325| 0.2696 0.525| 0.3978 0.725| 0.5415 0.925 0.748:4?
0.126] 0.1361 0.326] 0.2703 0.526; 0.3985 0.726] 0.5423 0.926| 0.7499
0.127| 0.1368 0.327| 0.2709 0.527| 0.3992 0.727| 0.5432 0.927) 0.7514
0.128] 0.1376 0.328| 0.2715 0.528| 0.3998 0.728! 0.5440 0.928| 0.7529
0.129] 0.1383 0.329| 0.2722 0.529| 0.4005 0.729] 0.5448 0.929| 0.7545
013} 0.1390 0.33] 02728 0.53! 04012 0.73] 05456 0.93] 0.7560
0.131 0.1398 0.331 0.2734 0.531 0.4018 0.731 0.5464 0.931 0.7576
0.132f 0.1405 0.332| 0.2741 0.532] 0.4025 0.732| 0.5472 0.932) 0.7592
0.133] 0.1413 0.333] 0.2747 0.533] 0.4031 0.733! 0.5480 0.933] 0.7608
0.134| 0.1420 0.334] 0.2753 0.534! 0.4038 0.734] 0.5488 0.934; 0.7624
0.135| 0.1427 0.335/ 0.2760 0.535{ 0.4045 0.735| 0.5496 0.935| 0.7640
0.136| 0.1435 0.336| 0.2766 0.536| 0.4051 0.736/ 0.5505 0.936| 0.7656
0137 0.1442 0.337] 0.2772 0.537] 0.4058 0.737{ 0.5513 0.937| 0.7672
0.138] 0.1449 0.338| 0.2779 0.538] 0.4065 0.738] 0.5521 0.938{ 0.7689
0.139;, 0.1457 0.339] 0.2785 0.539] 0.4071 0.739| 0.5529 0.939! 0.7706
0.14] 0.1464 0.34] 02791 0.54) 04078 0.74| 0.5537 0.94; 07723
0.141 0.1471 0.341 0.2798 0.541 0.4085 0.741 0.5546 0.941 0.7740
0.142] 0.1478 0.342| 0.2804 0.542) 0.4091 0.742| 0.5554 0.942) 0.7757
0.143| 0.1486 0.343, 0.2810 0.543| 0.4098 0.743] 0.5562 0943 0.7774
0.144| 0.1493 0.344| 0.2817 0.544; 0.4105 0.744| 0.5570 0.944{ 0.7791
0.145 0.1600 0.345 0.2823 0.545 0.4111 0.745 0.5579 0.945 0.7809
0.146) 0.1507 0.346] 0.2829 0.546| 04118 0.746/ 0.5587 0.946| 0.7827
0.147| 0.1515 0.347| 0.2836 0.547) 04125 0.747| 0.5595 0.947| 0.7845
0.148) 0.1522 0.348] 0.2842 0.548; 0.4132 0.748| 0.5604 0.948| 0.7863
0.149] 0.1529 0.349] 0.2848 0.549) 0.4138 0.749; 0.5612 0.949| 0.7881
0.15] 0.1536 0.35{ 0.2855 0.55| 0.4145 0.75| 0.5620 0.95| 0.7900
0.151 0.1543 0.351 0.2861 0.551 0.4152 0.751 0.5629 0.951 0.7919
0.152] 0.1550 0.352] 0.2867 0.552] 0.4158 0.752] 0.5637 0.952! 0.7938
0.153] 0.1558 0.353] 0.2874 0.553| 0.4165 0.753| 0.5645 0.953] 0.7957
0.154| 0.1565 0.354{ 0.2880 0.554] 04172 0.754; (0.5654 0.954| 0.7976
0.155! 0.1572 0.355| 0.2886 0.555| 0.4179 0.755| 0.5662 0.955| 0.7996
0.156] 0.1579 0.356| 0.2893 0.556] 0.4185 0.756, 0.5671 0956/ 0.8016
0.157| 0.1586 0.357] 0.2899 0.557] 0.4192 0.757| 0.5679 0.957| 0.8036
0.158{ 0.1593 0.358] 0.2905 0.558| 0.4199 0.758| 0.5688 0.958| 0.8056
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0.189| 0.1600 0.359 0.2912 0.559 0.4206 0.759 0.5696 0.959 0.8077
0.16] 0.1607 0.36 0.2918 0.56 0.4212 0.76 0.5705 0.96 0.8097
0.161 0.1614 0.361 0.2925 0.561 0.4219 0.761 0.5713 0.961 0.8119
0.162| 0.1621 0.362 0.2931 0.562 0.4226 0.762 0.5722 0.962 0.8140
0.163] 0.1628 0.363] 0.2937 0.563] 0.4233 0.763; 0.5730 0.963| 0.8162
0.164, 0.1635 0.364 0.2944 0.564] 0.4239 0.764 0.5739 0.964 0.8184
0.165/ 0.1642 0.365| 0.2950 0.565| 0.4246 0.765 0.5747 0.965, 0.8206
0.166 0.1649 0.366| 0.2956 0.566, 0.4253 0.766 0.5756 0.966 0.8229
0.167, 0.1656 0.367 0.2963 0.567] 0.4260 0.767 0.5765 0.967| 0.8252
0.168{ 0.1663 0.368 0.2969 0.568] 0.4267 0.768| 0.5773 0.968 0.8276
0.169, 0.1670 0.369 0.2975 0.569| 0.4273 0.769 0.5782 0.969] 0.8299
0.17 0.1677 0.37 0.2082 0.57 0.4280 0.77 0.5791 0.97 0.8324
0.171 0.1684 0.371 0.2988 0.571 0.4287 0.771 0.5799 0.971 0.8349
0.172 0.1691 0.372 0.2994 0.572] 0.4294 0.772 0.5808 0.972 0.8374
0.173] 0.1698 0.373] 0.3001 0.573] 0.4301 0.773) 05817 0.973] 0.8400
0.174] 0.1705 0.374| 0.3007 0.574, 0.4307 0.774) 0.5825 0.974 0.8426
0.175] 0.1712 0.375/ 0.3013 0.575| 0.4314 0.775| 05834 0.975| 0.8453
0.176, 0.1719 0.376{ 0.3020 0.576| 0.4321 0.776] 0.5843 0976, 0.8480
0.177 0.1726 0.377, 0.3026 0.577| 0.4328 0.777 0.5852 0.977 0.8508
0.178| 0.1733 0.378, 0.3032 0.578 0.4335 0.778) -0.5861 0.978 0.8537
0.179] 0.1740 0.379| 0.3039 0.579] 0.4342 0.779| 05869 0.979 0.8566
0.18] 0.1747 0.38 0.3045 0.58] 04348 0.78| 0.5878 0.98 0.8596
0.181 0.1754 0.381 0.3051 0.581 0.4355 0.781 0.5887 0.981 0.8628
0.182 01761 0382 0.3058 0.582 0.4362 0.782 0.5896 0.982 0.8660
0.183] 01767 0.383| 0.3064 0.583| 0.4369 0.783) 0.5905 0.983 0.8693
0.184, 0.1774 0.384 0.3070 0.584| 0.4376 0.784; 0.5914 0.984 0.8727
0.185/ 0.1781 0.385/ 0.3077 0.585{ 0.4383 0.785{ 0.5923 0985 08762
0.186| 0.1788 0.386, 0.3083 0.586; 0.4390 0.786/ 0.5932 0.986 0.8798
0.187| 0.1795 0.387{ 0.3089 0.587| 0.4397 0787, 0.5941 0.987 0.8837
0.188) 0.1802 0.388 0.3096 0.588| 0.4403 0.788{ 0.5950 0.988 0.8876
0.189/ 0.1808 0.389) 0.3102 0.589| 0.4410 0.789 0.5959 0.989| 0.8918
0.19, 0.1815 0.39] 0.3108 0.58| 0.4417 0.79 0.5968 0.99] 0.8962
0.191 0.1822 0.391 0.3115 0.591 0.4424 0.791 0.5977 0.991 0.9008
0.192 0.1829 0.392 0.3121 0.592] 0.4431 0792/ 05986 0.692 0.9057
- 0.193 0.1836 0.393 0.3127 0.593] 0.4438 0.793{ 0.5995 0.993 0.9110
0.194| 01843 0.394 0.3134 0.594 0.4445 0.794 0.6004 0994, 09167
0.195; 0.1849 0.385, 0.3140 0.595/ 0.4452 0.795| 06013 0.995| 0.9230
0.196| 0.1856 0.386| 0.3146 0.596, 0.4459 0.796| 0.6022 0.996| 0.9301
0.197| 0.1863 0.397| 0.3153 0.597! 0.4466 0.797 0.6031 0.997; 0.9382
0.198| 0.1870 0.398; 0.3159 0.598] 0.4473 0.798! 0.6041 0.998 0.9481
0.199 0.1876 0.398; 0.3165 0.509) 0.4480 0.799 0.6050 0.999; 0.9614
0.2 0.1883 0.4 0.3172 0.6 0.4487 0.8 0.6059 0.9999| 0.9856
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Attractiveness to Price(a ), Quality(a. i) - Consumer with s;; = -1
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Attractiveness to Price(a pj), Quality(a qj) - Consumer with spj = -3
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Attractiveness to Price(a pj), Quality(a qj) - Consumer with spj = -5
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Attractiveness to Price(a pj), Quality(a qj) - Consumer with spj = 4

Attracttiveness of Price and Quality
Consumer: |s,| = |sq| =4
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Attractiveness to Price(a pj), Quality(a qj) - Consumer with spj = 2
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