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Summary 

Game theoretic modeling and analysis is a challenging research topic that requires 

much attention from social scientists and researchers. The classical means of using 

analytical and empirical methods have presented difficulties such as mathematical 

intractability, limitations in the scope of study, static process of solution discovery 

and unrealistic assumptions. To achieve effective modeling that yields meaningful 

analysis and insights into game theoretic interaction, these difficulties have to be 

overcome together with the need to integrate realistic and dynamic elements into 

the learning process of individual entities during their interaction. 

In view of the challenges, agent-based computational models present viable 

solution measures to complement existing methodologies by providing alternative 

insights and perspectives. To this note, co-evolutionary algorithms, by virtue of its 

inherent capability for solving optimization tasks via stochastic parallel searches 

in the absence of any explicit quality measurement of strategies makes it a suitable 

candidate for replicating realistic learning experiences and deriving solutions to 

complex game theoretic problems dynamically when conventional tools fail.  

The prime motivation of this thesis is to provide a comprehensive treatment 

on co-evolutionary simulation modeling – simulating learning and adaptation in 

agent-based models by means of co-evolutionary algorithms, whose viability as a 

simple but complementary alternative to existing mathematical and experimental 

approaches is assessed in the study of repeated games. The interest in repeated 

interaction is due to its extensive applicability in real world situations and the 

added fact that cooperation is easier to sustain in a long-term relationship than a 

single encounter. Analysis of interaction in repeated games can provide us with 

interesting insights into how cooperation can be achieved and sustained.  
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This work is organized into two parts. The first part will attempt to verify 

the ability of co-evolutionary and/or hybridized approaches to discover strategies 

that are comparable, if not better, than solutions proposed by existing approaches. 

This involves developing a computer Texas Hold’em player via evolving Nash-

optimal strategies that are comparable in performance to those derived by classical 

means. The Iterated Prisoner’s Dilemma is also investigated where performance 

and adaptability of evolutionary, learning and memetic strategies is benchmarked 

against existing strategies to assess whether evolution, learning or a combination 

of both can entail strategies that adapt and thrive well in complex environments. 

The second part of this work will concentrate on the use of co-evolutionary 

algorithms for modeling and simulation, from which we can analyze interesting 

emergent behavior and trends that will give us new insights into the complexity of 

collective interaction among diverse strategy types across temporal dimensions. A 

spatial multi-agent social network is developed to study the phenomenon of civil 

violence as behavior of autonomous agents is co-evolved over time. Modeling and 

analysis of a multi-player public goods provision game which focuses specifically 

on the scenario where agents interact and co-evolve under asymmetric information 

is also pursued. Simulated results from both contexts can be used to complement 

existing studies and to assess the validity of related social theories in theoretical 

and complex situations which often lie beyond their original scope of assumptions.  
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Chapter 1 

Introduction 

 
“In terms of the game theory, we might say the universe is so constituted as to maximize play. The 

best games are not those in which all goes smoothly and steadily toward a certain conclusion, but 

those in which the outcome is always in doubt. Similarly, the geometry of life is designed to keep 

us at the point of maximum tension between certainty and uncertainty, order and chaos…” 

                                     ~ George B. Leonard 

 

“No man is an island”            ~ John Donne, Meditation XVII 

  

Game theory [1] is the study of strategic behavior and interaction among two or 

more decision making entities - typically referred to as players, in interdependent 

situations where the outcomes of interaction are not determined unilaterally by 

any one player but collectively by the combination of choices of all players. In 

such contexts, all players involved in the strategic interaction – coined a game, 

decide their course of action based on a set of rules e.g. strategy and are generally 

concerned only with the maximization of their own individual well-bring or payoff. 

However, as each is fully aware that his actions can and will affect one another’s 

success, and literally takes this fact into account during the process of decision 

making, it becomes complex but interesting at the same time to analyze how 

players would prefer to act in different scenarios, and the corresponding nature of 

outcomes which arises eventually amidst the interaction.  

By virtue of its nature, game theory - a branch of applied mathematical 

discipline that spans socio-economic origins; constitutes a powerful framework to 

which we can study multi-person decision problems [2] in many real life contexts. 

Its assemblage of associated ideas and theorems provides a rational basis to model 
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and replicate complex, inter-weaving relationships which subsist very much in the 

day-to-day interaction between social entities. More often than not, game theoretic 

analysis can shed light and provide us with a potential channel to gain fruitful 

insights into the behavioral complexities and interconnections which characterize 

real world interaction at numerous levels of contact – between genes, animals, 

individuals, groups, firms, stakeholders or even nation states. Such understanding 

will be of concern and importance to social scientists, policy makers, economists, 

biologists, psychologists and cognitive researchers, perhaps even laymen as well. 

 

1.1 Essential elements of game theory 
 
In game theory, there are several essential elements that are common ingredients 

to all situations of strategic interaction. These include basic terminologies like 

player, strategy, payoff, game, as well as the important concepts of dominance and 

Nash Equilibrium (NE) [3]. Defined below, these fundamental aspects are crucial 

and constitute the crux of game theoretic modeling and analysis. 

 

Definitions of core terminologies and concepts 

 

Player:   

A single, indivisible, decision making entity that is participating in the strategic 

interaction, has a nontrivial set of strategies (more than one) and selects among 

possible strategies based on payoffs. 

 

Strategy:  

A complete plan that defines the moves or actions which a player should execute 

for every possible scenario of interaction in a given game, regardless of whether a 
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scenario does arise. For example, a strategy for checkers would define a player's 

move at every possible position which is attainable during the course of the game. 

The set of all strategies that is available to a player is called its strategy space. In 

the game theoretic context, a player is typically driven to find an optimal strategy 

in the huge space of possible strategies in order to maximize its well-being in the 

associated environment of interaction. 

 

Payoff:   

A numerical figure that quantifies the utility or level of satisfaction e.g. profit, 

welfare etc, which a player derives from the outcome of a strategic interaction. It 

reflects the motivations and represents the usual means of measuring success for a 

player’s strategy within the game. In most games, the payoff to any player in every 

situation is expressed in the form of a payoff matrix or function that maps an input 

strategy profile (specification of strategies for every player) to an output payoff 

profile (denoting payoff values for every player). 

 

Game:   

A strategic interaction among mutually aware players (usually rational and seeks 

payoff maximization), where the decision of one impacts the payoffs of others and 

vice versa. A game can be completely specified and described by its players e.g. 

their types (which include the information known and used by each player for the 

basis of decision making, and how each player values the possible outcomes or 

utilities that result from making choices in strategic interaction), each player’s 

strategies, resulting payoffs awarded for each outcome (denoting a particular 

combination of choices made by all players) and the order in which players make 

their moves (in the case of sequential game). 
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Dominance:  

The concept establishes the relationship between strategies such that one is better 

than another for a player regardless of the profile of actions which other players 

may choose to play. In this context, a strategy is dominant if it is always better 

than other strategies e.g. earns a larger payoff. Similarly, a strategy is dominated 

if it is always better to play some other strategy e.g. earns a smaller payoff. 

 

Nash Equilibrium (NE):  

A set of strategies, one for each player, such that no player has the incentive to 

unilaterally change his action. This occurs when a change in strategy by any one 

player would lead to a lower corresponding payoff for that player, given that all 

others do not change the strategies that they have currently adopted for use. The 

concept is typically used as an avenue to analyze and possibly predict the outcome 

of strategic interaction among several decision makers but does not necessarily 

imply a situation with best cumulative payoff for all the players involved. 

 

1.2 Types of games 
 
Games generally capture intrinsic aspects of complex, real world problems while 

being simple enough to enable extensive in-depth analysis. They can be broadly 

classified into a variety of basic types, depending on differences in the inherent 

nature of information structure, mode of game play and the interaction outcome. 

Some common distinctions in each category are listed and described as follow. 

1.2.1 Information structure 
 
• Perfect versus Imperfect 

A game is said to have perfect information if all players know all the moves that 

have taken place thus far. Examples include Chess, Tic tat toe, Go etc. In contrast, 
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a game of imperfect information is one in which some information of the game is 

not revealed to all players e.g. in card games like Poker, Blackjack etc, where each 

player's cards are hidden from other players. 

 

• Complete versus Incomplete 

Complete information is used to describe a game in which players have access to 

knowledge e.g. payoffs and available strategies, of all players; while incomplete 

information denotes otherwise. Though similar, complete and perfect information 

are not identical. The prior refers to a state of knowledge about the game structure 

and objective functions of players, while not necessarily implying knowledge of 

actions in the game e.g. one may have complete information in the context of the 

Prisoner's Dilemma (PD) [4], but yet still subjected to the bounds of imperfect 

information, since one does not know the action of the other player.  

 

• Symmetric versus Asymmetric 

Though not widely considered, there is a crucial need to define this category of 

distinction between games. Symmetric information games refer to those in which 

players subscribe to the same type of information and subjected to identical set of 

available strategies for the basis of decision making. In contrast, players subscribe 

to different types of information and strategy sets for the asymmetric case. The 

latter can arise due to differences in beliefs (which cause fundamental differences 

in the inherent strategy structures) or the degree of accessibility to information 

(some players might have access to more or different information as compared to 

others) for different players. A popular example pertains to the market for lemons 

[5] where information asymmetry exists between buyers and sellers. 
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1.2.2 Mode of game play 
 
• Simultaneous versus sequential 

Simultaneous games are those where players execute their moves concurrently, or 

if they do not, the players who move later are unaware of the actions that are made 

by players who move earlier. On the opposite note, sequential games are those 

where some players will choose their actions before others and players who move 

later can use knowledge about earlier actions as a basis to make their decisions. 

 

• One-shot versus repeated 

One shot games are those in which players only participate in one single round of 

interaction with each other. For games played in the repeated manner, players 

interact over a series of rounds which can be either finitely or infinitely repeating, 

depending on the time horizon of consideration. Unlike one-shot games, repeated 

games capture the idea that a player will have to take into account the impact of 

his current actions on the future actions of other players. 

 

• Two player versus multi-player 

Games where interaction always takes place in a pair-wise manner between any 

two entities are called two-player games. Multi-player games are those in which 

the mode of interaction is between N players where N > 2. In some sense, two 

player games can be considered a special case of multi-player games where N = 2. 
 

1.2.3 Interaction outcome 
 
• Zero sum versus non-zero sum 

In zero sum games, total benefit to all players for any combination of strategies 

always adds up to zero. This is equivalent to implying that available resources can 
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neither increase nor decrease such that one can benefit only at an equal expense of 

others. Poker, Chess and Go exemplify such games because one wins exactly the 

amount the opponents lose. In non-zero sum games, however, some outcomes can 

have net results that are greater or less than zero. As such, one’s gain does not 

necessarily correspond to a loss of another. Examples of such nature include the 

IPD, Battle of the Sexes etc. 

 

• Cooperative versus non-cooperative  

A game is cooperative if players are able to make enforceable contracts and form 

binding commitments through the presence of an external party e.g. legal system. 

In non-cooperative games, players are unable to enforce contracts beyond those 

specifically modeled in the game and the act of cooperation must be self-enforcing. 

Epitomizing the nature of many real world problems, non-cooperative games are 

generally concerned with situations with some conflict of interests among players 

in the game but for which there is no natural incentives for anyone to cooperate. 

As such, using relevant concepts in non-cooperative game theory to analyze the 

decisions which players make and the collective outcomes of their interaction can 

help enhance the understanding and resolution of conflicts and rivalry. 

 

• Transitive versus Intransitive 

A transitive game is one in which the relations between A and B; B and C directly 

implies the relation between A and C e.g.  (A > B) and (B > C)  (A > C). In the 

context of game theory, A, B, and C denote three distinct strategies employed in 

the course of game play and the inherent relation for any strategy pair denotes the 

order of dominance between the relevant component strategies. For intransitive 

games, however, the above relations are not always preserved. 



 

 8

1.3 Scope of analysis 
 
Depending on the area of interest and concern, game theoretic interaction can be 

analyzed from a number of different perspectives such as strategy, outcomes of 

interaction, mechanism of game play, as presented in the following subsections. 

Apart from seeing and evaluating each viewpoint separately, varied perspectives 

can complement one another to give us a holistic picture into the richness of 

complex interaction among multiple intelligent entities, which is otherwise quite 

difficult to observe and make sense of in the actual real world context.  
 

1.3.1 Strategy 
 
From the strategy perspective, analysis looks at game theoretic interaction through 

the lens of an individual player. It is concerned with action plans that lead to the 

maximization of one’s expected payoff, which is closely tied to the approach of 

maximizing the expected value of numerical utility function for an individual in 

decision theory [6]. The only difference, as opposed to decision theory, is that the 

analysis is essentially framed in the context of a multi-person decision theory – 

one which is concerned with the study of rational utility maximization behavior of 

each entity given that others are maximizing their utilities concurrently as well. 

Using this perspective of study, we can verify the existence of optimum 

strategies and in turn decipher their inherent nature if they do exist. As far as the 

individual is concerned, the dominance relationship between different strategies 

can also be examined to give us a better understanding of the traits that constitute 

a good strategy. This can then provide an explanation as to why good strategies 

have an edge over inferior ones, which allows us to draw possible insights into 

how rational, self-interested players will tend to behave and act under different 
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circumstances. Such information is pertinent and can certainly serve as a useful 

guide for decision making in the likely event that the notion of optimal strategies 

might not even exist in numerous complex situations. 
 

1.3.2 Outcomes of interaction 
 
As opposed to the micro perspective of analyzing strategies which are adopted by 

individuals, the second perspective takes a macro view at the outcomes of game 

theoretic interaction. Instead of seeing things from the position of a single player 

in the game and concerning ourselves with one’s payoff maximization behavior, 

the nature of collective outcomes and overall payoffs from scenarios of interaction 

that involve a relatively large number of individuals e.g. stock markets, auctions, 

public goods provision etc, are of primarily interest here.  

By virtue of the complex interconnectedness that exists between players’ 

actions and collective outcomes of interaction in the game theoretic context, it is 

insufficient for us to understand the entire picture of strategic interaction by 

analyzing solely from the individualistic strategy perspective. In numerous 

contexts, the mapping which couples actions and outcomes is always never 

straightforward - the maximization of individual payoffs using individualistically 

optimal strategies is typically not equivalent and does not necessarily translate to 

the maximization of group/overall payoffs. As such, the wider perspective of 

examining interaction outcomes can actually complement analysis from the prior 

perspective and help us, in particular policy makers, to gain a fuller and better 

understanding of the consequences of interaction. In the process, we also seek to 

identify and study interesting emergent behavior and trends amidst the collective 

interaction of different player strategies over time. 
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1.3.3 Mechanism of game play 
 
The third perspective of analysis involves the design of the underlying rules and 

mechanism of game play so as to achieve the desired objectives for game theoretic 

interaction. Instead of adhering to just a fixed set of rules, mechanism design [7] 

differs from the two prior modes of analysis in that it asks about the consequences 

of different types of rules. It is not concerned merely about the collective outcome 

of interaction for a particular scenario but those arising from different mechanisms 

of game play. It questions generic factors which affect the outcomes and analyzes 

how the consequences of interaction can be improved if they are undesirable – 

depending on the objectives that policy makers have in mind, an outcome, though 

in NE, might not necessarily be deemed desirable to achieve in nature. Examples 

of mechanism design can encompass compensation and wage agreements which 

effectively spread risk for the firm while maintaining incentives for the employees, 

optimal auctions that maximize revenue and allocate resources efficiently etc. 

 

1.4 Development and applications of game theory 
 
Contrary to its theoretical foundations as a mere tool for economic analysis, the 

theory of games has seen extensive development since its fundamental and formal 

conception by Von Neumann and Morgenstern [8]. Distinguished Nobel laureates 

in game theory have since been honored for their contributions in pioneering the 

analysis of equilibria in non-cooperative games [3], [9], devising the economic 

theory of incentives under asymmetric information [5], [10], [11], enhancing our 

understanding of conflict and cooperation through game theoretic analysis [12], 

[13] and laying the foundations of mechanism design theory [14] - [16]. 
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In line with the advances in theoretical concepts, the applications of game 

theory have spanned cross-disciplinary boundaries. This budding trend derives a 

vital need for researchers to negotiate multiple fields of expertise. Social scientists 

and computer scientists, for instance, have successfully applied relevant concepts 

to study the possibility of attaining and sustaining cooperation in both the classical 

and extended variants of the IPD [17] – [23]. Military strategists have turned to 

game theory to study conflicts of interest that are resolved through “war games” 

[24], [25] while sociologists have taken an interest in the development of an entire 

branch dedicated to examine issues involving group decision making [26] – [27]. 

Epidemiologists also use game theory for analyzing immunization procedures and 

methods of testing a vaccine or other medication [28]. Economists and policy 

makers are generally concerned with the study of economic problems relating to 

public goods provisioning [29], efficient auctions for resource allocation [30], 

bargaining and negotiation [31], [32] etc. Game theoretic principles are likewise 

applied to analyze the outcomes of competition between firms and corporations 

[33] in business and the modeling of stock market [34] for financial institutions 

etc. In politics, outcomes of elections are closely studied by political scientists via 

the concept of voting [35]. Mathematicians and game theorists have also analyzed 

and devise good strategies for games like poker, chess and checkers. 

Other than the classical form of game theory, analysis using variants of the 

theory has also provided useful insights. Biologists have used evolutionary game 

theory (EGT) [36] to explain numerous seemingly incongruous phenomena in 

nature e.g. altruism and kin selection [37], [38]. Behavioral game theory [39] – 

[41] is also linked to phenomenal works by psychologists and cognitive scientists 

that give us a better understanding of the complex human being. 
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1.5 Modeling and analysis 
 
To be able to perform insightful analysis in game theory, the ability to construct 

feasible models which capture essential and realistic aspects of interaction among 

all players participating in the game constitutes an important prerequisite. As a 

means of determining a solution to the decision problem that each player faces e.g. 

deriving the optimal strategies which dictate how players should act in order to 

maximize their individual payoffs, models should allow researchers to incorporate 

sophisticated micro-models of reasoning and preference for individual players and 

flexibly replicate strategic interaction without a need to abstract away such details. 

Since the popularization of game theory, analytical, empirical and computational 

approaches have constituted the primary methodologies of performing modeling 

and analysis. These will be discussed in the following sub sections. 
 

1.5.1 Analytical approaches 
 
Traditionally, the modeling and analysis of game theoretic problems has always 

been done using analytical approaches, where rigorous theoretical proofs are used 

to obtain precise prediction for the existence and nature of dominant strategies and 

NE points – situations where every player chooses actions that are best responses 

to the best responses of all others. The heart of such approaches is based around 

the theory of n-player non-zero sum games - in which John Nash formulated and 

proved the existence of at least one equilibrium solution for every generic game 

that involves N preference-maximizing players. This important research finding 

provides a powerful theoretical framework to optimize an individual’s strategy e.g. 

choosing a best response in an interaction of such nature, and predicting a likely 

combination of joint actions as the eventual outcome - NE. 
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 Refinements have since been made along the way, leading to Harsanyi’s 

concept of a Bayesian-Nash Equilibrium (BNE) [42] and Maynard Smith’s theory 

of evolutionary games [36]. The prior deals with situations where payoffs in the 

game are dependent on some private unobservable properties of a player e.g. the 

cards which a player holds in a game of Poker. The latter generally overlays a 

dynamic model of gradual strategy-adjustment on top of the static equilibria of 

Nash’s original formulation. Evolutionary dynamics and existence of evolutionary 

stable strategies (ESS) can then be studied using replicator equations [36]. 

Despite the desirability of such techniques, using mathematical treatments 

to model complex problems typically involves a need to impose multiple core 

assumptions and constraints such as homogeneous player types, use of symmetric 

information for basis of decision making, common strategy framework, perfect 

rationality etc for tractability reasons. The result is an inevitable scale down of the 

actual problems to their much simplified versions, of which, the intrinsic realism 

of the problems will be largely compromised for solvability. In essence, we will 

no longer be addressing the original problems which we ought to be solving. The 

large mismatch between what we meant to solve and what we are actually solving 

generally renders any analysis of results from rigorous mathematical derivations 

senseless with regards to their applicability to the associated real world context.  

Moreover, the idealized context which we derive the optimum or dominant 

strategy solutions from theoretical proofs also casts a doubt with regards to the 

degree of reproducibility for such strategy usage in practical settings. For example, 

Goeree and Holt [43] give an overview of ten simple games where game theoretic 

solutions are easily obtainable but intuitively implausible. This is due to the likely 

fact that players tend to be boundedly rational with finite computation power and 
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limited knowledge of their environment of interaction. Given these imperfections 

of reality, it is unlikely that the solutions derived from analytical approaches will 

apply with absolute certainty even if they are rigorously proven to be theoretically 

sound. This is due to the fact that players do not necessarily adjust their behavior 

to the theoretical optimum strategy in the midst of their interaction. 
 

1.5.2 Empirical approaches 
 
To create models that mirror real world interaction to a more realistic degree, the 

corresponding methodologies for modeling and analysis should seek to preserve 

the characteristic features of the original problem as far as possible. This naturally 

leads us to think about and re-examine the usage of empirical approaches, where 

experimentation is conducted on actual human subjects. Such methodologies are 

widely employed by economists, psychologists and social scientists alike, to study 

behavioral interaction in game theoretic settings.  

As opposed to the analytical approaches which are theoretically grounded, 

experimental observations to testable hypotheses are primarily used to guide the 

research study in empirical approaches. One obvious advantage of such means is 

the fact that a large supply of players - human subjects, is available off the shelf 

for experimentation. Ideal as it may seem, experiments are typically designed to 

be performed under laboratory controlled condition for ease of isolating the salient 

factors that will help contribute to the verification of pre-defined hypotheses. As 

such, information gained in the process is again limited in the scope of study and 

might not necessarily reflect the actual situation where interaction is meant to take 

place e.g. in an auction house with information flowing freely among numerous 

bidders. The study is incomplete in some sense as it is not always straightforward 

[44] to analyze the necessary cognitive mechanisms which are utilized during the 
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course of interaction. Moreover, coupling effects among different factors might be 

impossible to study if the highly constrained laboratory scenario setup involves a 

deliberate exclusion of any related factor in the experiment design. 
 

1.5.3 Computational approaches 
 
With the possibility of addressing the challenges encountered by prior approaches, 

computational approaches present yet another viable alternative to perform game 

theoretic modeling and analysis. This is usually realized via the use of simulation 

in agent-based computational models (ACMs) [45], which Axelrod [46] regards as 

a third way of doing science in addition to deduction and induction techniques. 

Following the tremendous increase in computing power and processing speed of 

computers in recent decades, the utilization of computation as a feasible problem 

solving paradigm is becoming more popular and increasingly relevant in today’s 

context. Nonetheless, it is to be noted that computational methodologies are never 

conceived to replace the existing approaches but rather to complement them by 

offering alternative insights into the nature of game theoretic interaction through 

new perspectives of modeling and analysis. 

The ACM methodology is similar, and in essence a subset of the empirical 

approaches as mentioned earlier, with the exception that human subjects are now 

replaced by computer agents [47] – intelligent software entities which are flexibly 

designed with the ability to perceive, evaluate and make independent decisions on 

the basis of current information and past experiences, and to act in accordance to 

their self-interests and preference-maximization behavior to satisfy internal goals. 

Equipped with limited knowledge and bounded rationality, the agents embrace 

learning and adaptation to their environment similarly to the way which humans 

locally cope with a changing world through scenarios of interaction. In this sense, 
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ACMs are particularly suitable to model and study systems which are composed 

of multiple interacting entities and exhibit emergent properties [48], [49] - those 

arising from interaction of different entities which cannot be deduced simply by 

aggregating the properties of each. By designing multi-agent systems (MAS) [50] 

and conducting controlled computational experiments where multiple autonomous 

agents interact simultaneously in setups that closely resemble the relevant contexts 

of study; observations and analysis on interaction outcomes will be able to provide 

us with increased understanding and useful insights into the problem of interest. 

Similar to human-based empirical experiments where the test subjects are 

readily available in abundance, number of entities in ACMs can also be scaled up 

to investigate outcomes of interaction with large numbers. The added advantage is 

that the numbers, as a form of model parameter, can be flexibly adjusted with ease 

through a change of simulation settings. The scope of study for ACMs is also less 

restrictive since we are free to design computational experiments to considerable 

degree of complexity as we deem fit - something which is of great difficulty to 

replicate in the much constrained laboratory settings of human-based experiments.  

As opposed to analytical approaches that usually entail simple closed form 

solutions, ACMs are also not bounded by issues of mathematical intractability, 

allowing complex scenarios with more realistic features to be studied. Moreover, 

given the fact that interaction of real world entities is generally contingent on past 

experiences, and entities continually adapt to those experiences, ACMs might be 

the only practical method of analysis as mathematical methods are typically very 

limited in its ability to derive dynamic consequences [46]. This is especially so in 

the context of repeated games, in which the iterative nature of interaction clearly 

highlights the suitability of ACMs for modeling and analysis. 
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1.6 Learning in agent-based models 
 
In tandem with the application of ACMs to game theory, learning methodologies 

often form part and parcel of the implementation. As a crucial aspect of artificial 

intelligence [51], they define means by which agents are able to process, update 

and utilize current information and past experiences that are acquired from their 

environment to make intelligent decisions in a dynamic way. More importantly, 

learning methodologies facilitate positive strategy adjustments which help agents 

improve their payoffs or positions relative to their environment of existence and 

interaction over time, by drawing from available information and experiences. 

By far, the ability to learn and improve constitutes an important element of 

human adaptation and is especially vital when it comes to modeling aspects of 

game theoretic interaction in the real world context – one that is characterized by a 

dynamically changing environment where multiple players are constantly adapting 

their strategies to one another within an underlying mechanism of game play that 

is possibly also changing as well. Without learning, modeling of agent behavior in 

computational models becomes unrealistic. Some popular examples of learning 

methodologies in ACMs include Q-learning [52], Bayesian learning [53], branch-

and-bound [54], dynamic programming [55], temporal difference learning [56], 

gradient descent [57], and simulated annealing [58] among many others. 

As much as learning is important in ACM, the incorporation of realistic 

modes of learning must also not be under-emphasized. For instance, we are not 

nearer to understanding the properties of systems if we simply compute outcomes 

of interaction by running experiments which we equip agents homogeneously with 

the same non-dominant strategy [44]. From the perspective of individual agents, 

learning methodologies should ideally take into account of realistic elements such 
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as the dynamism of learning process, probabilistic nature of decision making and 

notion of bounded rationality [59] – which includes limited information, imperfect 

cognitive processing and learning capabilities, and finite duration for decision 

making. The constraints of bounded rationalism are due to the fact that decision-

makers usually lack the abilities and resources to arrive at optimal solutions in 

reality, and instead apply their rationality only after simplifying available choices 

substantially. To this note, many existing techniques fail to deliver the required 

sense of realism as most operate with core assumptions that agents are perfectly 

rational, embrace homogeneous forms of learning, or interact and make decisions 

which are clearly too deterministic.  

On a wider note, learning in game theoretic interaction can be saliently 

viewed as a process where entities in ACMs evolve gradually and incrementally in 

response to a changing environment (which comprises of the game mechanism as 

well as all other evolving entities). For instance, agents do not instantaneously and 

simultaneously adjust their behavior to theoretical optimum strategies. Rather, the 

adoption of a new strategy may spread through a population of agents as word of 

its efficacy diffuses in a manner akin to mimetic evolution [44]. We can view each 

agent and its environment as coevolving counterparts where each undergoes co-

evolutionary learning [60] as a form of adaptation to one another.  

Finally, with appropriate learning mechanisms in place for each entity in 

an ACM, a paradigm is also required to discover eventual outcomes of the game 

theoretic interactions which we are seeking to analyze from different perspectives 

e.g. the nature of dominant strategies, existence of NEs and possibly different 

pathways of convergence to the outcomes - whose dynamism are typically not 

addressed by learning models in classical game theory. From the perspective of 
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analytical approaches, this ideally equates to solving multi-player optimization 

problems and deriving the solution outcomes where all players play out their best 

strategies. As far as ACMs are concerned, a dynamic and realistic computational 

framework, similar to that proposed in EGT, is needed to model and simulate co-

evolutionary learning and adaptation in strategic environments. 

 

1.7 Evolutionary Algorithms 
 
To the above note, Evolutionary Algorithms (EAs) [61] present a simple and 

elegant framework to address challenges of modeling realistic learning experience 

and solution discovery in ACMs. Originally conceptualized based on Darwin’s 

Law of Natural Selection, the paradigm’s inherent capability for solving complex 

optimization tasks via stochastic, parallel searches makes it a suitable candidate 

for finding solutions to complex game theoretic problems, especially those which 

are mathematically intractable to analytical approaches and too extensive in scope 

to be covered by human-based experiments. For instance, in the attempt to assess 

the presence of strategy mixtures which constitute equilibria in any game theoretic 

interaction, it is necessary to evaluate the interaction between known strategies as 

well as the space of strategies which are yet to be considered. Given the very large 

strategy space, exhaustive search will prove infeasible. In comparison, population- 

based heuristic search methods like EAs clearly speed up the process of solution 

discovery and present possible avenues for studying interaction between different 

strategies by sampling the search space in a systematic manner [44]. 

Apart from being a search and optimization paradigm, EAs also accounts 

for realistic aspects of replicating learning experiences for agents. As opposed to 

deterministic, idealized learning models in which agents always choose the best 
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decision that maximizes payoffs, the use of stochastic elementary processes like 

selection, recombination and mutation in EAs introduces a probabilistic dimension 

to the process of agent learning and strategy discovery. This mode of evolutionary 

learning is more in sync with the nature of how humans learn in the real world 

context, which is essentially characterized by uncertainties and imperfections in 

decision making. For instance, making unintentional mistakes, bounded rationality 

in thinking, incomplete or imperfect knowledge about the situation of game play 

etc, can well result in outcomes where agents do not always make the best choices 

that are available to them. The list goes on. As a dynamic optimization framework, 

EAs, unlike many existing static methodologies also drives the process of learning 

and adaptation for the agent population on a continuous basis. 

In addition, different agents are likely to embrace learning in diverse ways 

e.g. some might like to imitate or partially adopt the strategies of others while the 

rest might prefer a trial and error mode of learning. Instead of assuming that all 

agents will always adopt homogeneous learning styles and converge in a straight 

forward manner towards the adoption of optimal strategies, models should seek to 

accommodate mixing and blending of different learning methods, so that the final 

stable states, if there are any, can be attained via varied pathways of convergence. 

To some degree of flexibility, such assorted outcomes can be subtly captured by 

the process of evolutionary learning. Details will be furnished in Chapter 2. 

Although some arguments have been staged against EAs with regards to 

its inconsistency in obtaining optimal solutions, the paradigm is nonetheless, easy 

to design and yield good, if not the best, solutions most of the time. This is crucial 

as we usually seek and settle for good enough or satisfactory solutions rather than 

the best solution in most of our real world encounters [62]. This is especially true 
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given the earlier stated facts that agents are imperfect in their process of making 

decisions. It makes not much sense to study situations of optimality when agents 

themselves might not even acquire the best strategies. Given the context of real 

world interaction, it is necessary to examine the attainability of solution outcomes 

given the existing strategic behavior of agents. Focusing our attention on good 

strategies with a greater likelihood of attainability e.g. large basin of attraction [63] 

in the strategy space is more realistic and pragmatic than mapping optimal ones 

that have low chances of adoption. The analysis of strategies should suffice as a 

useful guide for social scientists and policy makers alike to attest the effectiveness 

of mechanisms and policy decisions, as well as to design and formulate new ones. 

EAs also provide the flexibility to incorporate input knowledge from users 

so that parameter optimization can be carried out within the bounds considered to 

achieve effective abstraction of the problem. This constitutes an important trait as 

designers of social experiments can flexibly include subsets of information that 

are useful, and exclude those that have little or no contribution to the outcome and 

whose inclusion might even complicate the search process. With input knowledge 

well represented in structured chromosomes, it also becomes easier to analyze the 

final strategy due to the explicit nature of solution representation in EAs. 

 

1.8 Overview of this Work 
 
From the afore-mentioned discussion, game theoretic modeling and analysis is a 

challenging research topic that requires much attention from social scientists and 

researchers. To achieve accurate and effective modeling which yields meaningful 

analysis and insights into game theoretic interaction, the difficulties in analytical 

and human-based empirical methods will have to be overcome; together with the 
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paramount need to facilitate solution discovery and integrate realistic and dynamic 

elements into the process of learning for individual entities during their interaction. 

Though EAs provide a feasible solution measure to address the above issues, it is 

however, very difficult or almost impossible to construct an absolute measurement 

of quality via which traditional evolutionary approaches and optimization-based 

search algorithms can be used; since the “goodness” of game strategies can only 

be evaluated when they pit themselves against one another. In view of the above 

challenges, co-evolutionary algorithms (CEAs) [64], a special variant of EAs, are 

used. Implementing the same general evolutionary framework as traditional EAs, 

CEAs are suitable to simulate learning in games as they do not require any explicit 

quality measurement of strategies in order to function - the search for increasingly 

better strategies are driven solely by strategic interactions among competing ones. 

The prime motivation of this work is to provide a comprehensive treatment 

on co-evolutionary simulation modeling – the application of stochastic CEAs to 

simulate evolution and adaptation processes and further game theoretic analysis in 

ACMs. In particular, the thesis will assess the viability of using CEAs as a simple 

but complementary alternative to existing mathematical and experimental methods 

in the study of repeated games. The interest in repeated interaction is largely due 

to its extensive applicability in many real world situations and the added fact that 

cooperation may be easier to sustain in a long-term relationship than in a single 

encounter [65]. As opposed to the analysis of short-run games which is often too 

restrictive, the analysis of interaction in repeated games can probably provide us 

with interesting insights into how cooperation can be achieved and sustained.  

This rest of the work is organized into four parts. Part one, consisting of 

Chapter 2 will cover some core concepts, advantages as well as some applications 
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of EAs, followed by a comprehensive review on CEAs, and then finally drawing 

parallels as a means of comparison between aspects of CEA and game theory. The 

second part of this work will attempt to verify the ability of using co-evolutionary 

and/or hybridized approaches to derive solutions and discover good strategies that 

are closely similar or comparable, if not better, than solutions which are proposed 

by existing methodologies, in two game theoretic test problems. Chapter 3 seeks 

to develop a competitive computer poker player that specialized in Texas Hold’em. 

This is achieved by means of exploring the possibility of applying CEA to evolve 

Nash-optimal poker strategies that are comparable in performance to those derived 

through traditional means [66]. Chapter 4 redirects the application of CEA to the 

classical IPD problem setup, where the comparative performance and adaptability 

of evolutionary, learning and memetic strategies is benchmarked against a list of 

existing IPD strategies [67]. The objective is to assess whether evolution, learning 

or a combination of evolution with learning can lead to formation of strategies that 

will adapt and thrive well in complex environments. 

The third part concentrates on the use of co-evolutionary approaches for 

game theoretic modeling and simulation, from which we can analyze interesting 

emergent behavior and trends that will give us new insights into the complexity of 

collective interaction among diverse strategy types across temporal dimensions. 

Chapter 5 extends the IPD model discussed in Chapter 4 to a spatial version in an 

attempt to simulate and analyze the phenomenon of civil violence as the behavior 

of autonomous agents within a multi-agent social network [68] is co-evolved over 

time. Chapter 6 pursues the modeling and analysis of a multi-player public goods 

provision game, focusing specifically on the scenario where agents interact and 

co-evolve under asymmetric information [69]. In both chapters, simulated results 
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can be used to complement findings from existing game theoretic studies and to 

assess the validity of related social theories in theoretical and complex situations 

that often go beyond their original scope of assumptions. Finally, chapter 7 in the 

fourth and final part concludes the thesis with a broad summary of contributions 

and brief discussion on possible research works that can be embarked on in future.  

 

1.9 Summary 
 
In this chapter, we have covered the necessary concepts, definitions, scope and a 

survey of development and applications in game theory to appreciate this work. 

This chapter also presented the deficiency in some of the existing approaches with 

regards to the modeling and analysis of game theoretic interaction. Subsequently, 

the use of EAs, specifically CEAs, as a viable learning method, has been proposed 

to complement existing computational approaches of using ACMs for the purpose 

of addressing issues of mathematical intractability, constraints in scope of analysis, 

inherent realism of interaction and the dynamism of learning, solution discovery 

and strategy improvement in game theoretic modeling and analysis. Finally, the 

overview of this work is presented with a brief introduction to the chapters that are 

relevant to the context of the research work. 
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Chapter 2 

Evolutionary Algorithms 
 
Before we embark on the use of evolutionary approaches to model and simulate 

game theoretic interaction using ACMs, a core understanding of EAs is necessary. 

Originated as a branch of computational intelligence [70] techniques which also 

encompass fuzzy logic [71], artificial neural networks [72] swarm intelligence [73] 

- ant colony and particle swarm optimization, and artificial immune systems [74] 

etc, EAs are stochastic, population-based search algorithms that are inspired from 

Darwin’s theory of evolution and use several stochastic processes like selection, 

reproduction, crossover and mutation, among many others, to develop generations 

of strategies that follow the basic principle of survival of the fittest.  

 To further elaborate, Darwin’s theory states that all organisms have their 

own unique genetic make-up. During reproduction, their genes are passed on to 

the next generation, of which some are altered occasionally by variation processes. 

All organisms are tested by the environment and by one another, where only the 

fittest survive to propagate their genes to subsequent generations. Over time, only 

those with genes that are best suited for adaptation to the environment is left. EAs 

use precisely this concept to solve complex optimization tasks via a population of 

candidates - each being a possible solution to the problem. Candidates are tested 

and sorted according to their performance (or fitness level), and those that perform 

better will get a higher likelihood to “reproduce”. A candidate may also be varied 

to widen the scope of search and avoid locally optimum solutions. Information 

exchange among population from one generation to another that is provided by 

selection and variation processes is used as an efficient guide to direct the parallel 
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search via the solution/strategy space. After substantial iterations, the algorithm 

should eventually evolve a solution that is optimal or near optimal for the problem.  

Other than genetic operators, EAs also uses mechanisms which are absent in 

the natural world to improve its performance and efficiency during the course of 

search. Two such examples include elitism [75] and niching [76]. The prior clones 

the best candidates and replicates the exact genetic makeup in the next generation 

to ensure that good solutions found so far are not lost through evolution. The latter 

penalizes candidates with similar characteristics by reducing their likelihoods of 

reproduction. This has an effect of preserving population diversity and widening 

the search capability of EAs. There are four generic variants which are in used – 

the genetic algorithms (GA) [77], evolutionary strategies (ES) [78], evolutionary 

programming (EP) [79] and genetic programming (GP) [80], each of which differs 

in terms of the representation, genetic processes used or means of implementation. 

As far as the scope of thesis is concerned, GA will be used throughout different 

chapters unless otherwise stated explicitly. A brief pseudo-code of EA’s operation 

is shown in Figure 2.1 and details of the various elements that comprises EAs is 

highlighted and described in section 2.1. 

 

                   Initialize population of individuals 
                   Evaluate each individual in the initial population 
                   t :=0 
                   Repeat 
                       Niching to penalize like individuals  
                       Select parents from population 
                       Generate offspring from parents by genetic operators 

                   Evaluate offspring population 
                   Elitism to retain elite individuals 
                   Select survivors for new population 

                       t := t + 1 
                   Until some terminating criteria is satisfied 

Figure 2.1: Pseudo code of EAs 
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2.1 Elements of EAs 
 
Several basic elements constitute the crux of the robust search and optimization 

evolutionary paradigm. These are highlighted in subsections 2.1.1 to 2.1.9. 
 

2.1.1 Representation 
 
Before EAs can be applied to a problem of concern, there must first and foremost 

be a way to represent an individual or entity of evolution, which is otherwise also 

known as a chromosome. This is inspired by the encoding of genetic inheritance 

in the DNA of every biological organism. Each chromosome essentially encodes a 

possible solution or set of solution parameters to be optimized. In the context of 

game theory, each chromosome will denote a possible strategy which players can 

use to interact with other players during the game. By structuring a chromosome 

appropriately in terms of the representation, effective evolution can take place to 

evolve the optimized solution or parameters eventually. Some commonly used 

representation includes real number, binary or even complex data structures such 

as finite state machines (FSM) and neural networks. 
 

2.1.2 Fitness 
 
Fitness represents the criteria to which nature selects individuals to survive on to 

subsequent generations. For a biological organism, its fitness is measured by the 

corresponding interaction with its environment e.g. its lifespan, the opportunities 

to reproduce, number of offspring etc. For EAs, an individual’s fitness is likewise 

measured by the “goodness” of the solution which it represents. For instance, a 

dominant strategy will have higher fitness as compared to a dominated one. The 

fitness value is then used to determine the extent which an individual e.g. strategy 

is allowed to reproduce into the next generation. 
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2.1.3 Population and generation 
 
As a population-based paradigm that conducts multiple concurrent searches, EAs 

are commonly initialized with a random pool of potential solutions as a start. After 

each solution has undergone fitness evaluation, the entire population is subjected 

to evolutionary processes as described from 2.1.4 to 2.1.8. This produces a new 

population of individuals and one generation or evolutionary cycle is said to have 

elapsed. EAs will typically require from several to many generations (depending 

on the complexity of the problem and size of search space at hand) before a good 

or optimal solution can be derived from the search process. 
 

2.1.4 Selection 
 
Selection is one of the most fundamental operations in EAs where individuals are 

selected to propagate to subsequent generations. Based on nature’s law; the fitter 

individuals in the population should be given higher likelihoods to survive and 

reproduce but weaker ones should nonetheless be still given some finite chances 

of survival. It is crucial to implement a fair selection scheme so that balance can 

be maintained in the EAs e.g. the algorithm will not be overly biased towards the 

choosing of fit individuals at the expense of weaker ones as this will lead to the 

rapid population of like individuals and loss of genetic diversity. This can lead to 

premature convergence and danger of being trapped in a local optimum. Likewise, 

the algorithm should not give too much emphasis on preserving weak individuals 

as this leads to low selection pressure and rate of convergence. A fine balance 

between exploration and exploitation is typically required for good performance. 

Commonly used selection schemes include the fitness proportionate or roulette 

wheel selection [61], tournament selection [81], stochastic universal sampling [82], 

rank-based selection [61] etc. 
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2.1.5 Crossover 
 
Crossover or recombination is the process where genetic characteristics from two 

individuals are blended together and passed down to their offspring. This is in the 

hope that at least some of the children will be fitter than either of their parents. In 

EAs, crossover will generally involve an exchange of chromosomal materials in 

the creation of offspring. Individuals chosen by selection e.g. parents will usually 

reproduce with a certain crossover probability which is typically set high, so as to 

facilitate the exchange of search information among individuals in the population 

from one generation to the next. This is one advantage which EAs have over other 

independent search schemes. Exchange of genetic materials is usually performed 

using a variety of crossover schemes and much is dependent on the chromosomal 

representation and problem nature. Some popular schemes [83] include single and 

multi-point, uniform, shuffle, arithmetic, selective and order-based crossovers. 
 

2.1.6 Mutation 
 
In the natural world, mutation denotes the random modification of some genetic 

material which is inherited by an individual. Though most mutation would appear 

harmful, they may be beneficial occasionally and result in increased fitness for the 

organism. Mutation is necessary in EAs to preserve diversity of individuals and 

maintain the exploration ability of the evolutionary search process. This is usually 

implemented with a low probability and involves randomly changing each of the 

bits of an individual’s chromosome in a uniform or non-uniform manner. 
 

2.1.7 Niching 
 
Originally proposed by Goldberg [76] to promote population distribution, prevent 

genetic drift as well as to search for possible multiple peaks in single objective 
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optimization problems, niching is a mechanism which is implemented in EAs to 

maintain the diversity of individuals within the population pool. It works on the 

principles of speciation such that individuals who are too alike are penalized to 

reduce their fitness and chances of being selected. Though not directly linked to 

nature’s evolution, this mechanism has an effect of spreading evolutionary search 

effort across the problem’s search space, thereby increasing its search capability 

and subsequent chances of locating the global optimum, especially in complex or 

multi-modal problems. Niching is usually implemented on the basis of a sharing 

or crowding radius e.g. individuals within the radius are considered alike to one 

another and each is penalized in accordance to the number of individuals which 

share like characteristics and the proximity of the feature set to those individuals. 
 

2.1.8 Elitism 
 
First conceptualized by De Jong in [42] to preserve the best individuals found and 

prevent lost of good ones due to the stochastic nature of evolutionary processes, 

elitism, like niching, is a mechanism which does not see any parallels in nature’s 

version of evolution. It is employed in EAs to ensure that the fittest chromosomes 

in the population are passed on to the next generation without alteration by genetic 

operators. Elitism ensures that the population’s minimum fitness is never reduced 

from one generation to the next and this usually also entails a more rapid inherent 

convergence. Typical implementation involves replacing the weakest ne% of the 

offspring population with the fittest ne % of the parent population.  
 

2.1.9 Stopping Criteria 
 
The stopping criteria in EAs refer to the conditions which will stop the evolution 

process when met. This is important as problems are different in their own right 
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and computational resources and time are also limited. As such, it is important to 

set some criteria so that good, if not optimal solutions, can be derived within the 

constraints which we have to abide by in realistic circumstances so as not to allow 

the EAs to execute forever. Some typical criteria can involve setting a maximum 

number of generations, stopping once a certain level of convergence is reached etc. 

 

2.2 Advantages of EAs 
 
As stated earlier, EAs as a robust and generalized heuristical search method offers 

added advantages over the existing search paradigms when it comes to tackling 

complex problems; since we are mostly concerned not so much to find the global 

optimum solution, but rather a solution that is the best that can be achieved with 

available time and resources. In terms of representing solutions, EAs work with a 

coding of the problem’s parameters and not the parameters directly. It operates 

directly using only objective function values without problem-specific information 

or even derivatives, giving it a considerable advantage in tackling a very broad 

range of problems successfully. Performing search via a population of individuals 

instead of a single independent search entity reduces the chance of getting trapped 

in a local optimum and also hastens the process of solution discovery. By virtue of 

its flexibility of implementation, EAs can also be hybridized easily with other 

methods to deliver added performance improvement. Moreover, the probabilistic 

elements in the heart of EAs, though far from indicating directionless search, are 

actually used to guide the algorithm to explore areas of the search space which are 

most likely to lead to improvement [84]. 

Since its popularization, EAs and other evolutionary methods have since 

made significant contributions to countless areas of research and applications such 
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as massive parameter optimization [85], scheduling [86], engineering design [87], 

analysis of social interaction [88] and complex multi-agent systems [89]. Many of 

the areas often traverse multi-disciplinary boundaries, thus allowing researchers to 

discover creative solutions, derive insights from cross-disciplinary contexts and 

understand existing problems from whole new perspectives.  

 

2.3 Co-evolutionary algorithms 
 
In the context of our study, it can be extremely difficult to formulate a fitness 

function that reflects the underlying properties of games as accurate measurement 

to determine “goodness” of solutions cannot be obtained in most cases. This is 

because the fitness of each strategy can only be evaluated through interaction with 

other evolving strategies who can be members of the same or different populations, 

depending on the search problem of concern. The deliberate use of any ill-defined 

fitness measure to suit the application of traditional EAs and optimization-based 

paradigms can well lead the search process towards the discovery of inferior/sub-

optimal strategies, which is certainly not desirable. 

Given this perspective of concern, CEAs constitute a special type of EAs 

whose nature offers a fitting and viable solution. Inherently, CEAs apply selection 

and variation processes iteratively to the competing population of strategies under 

the same general evolutionary framework as discussed previously but differs from 

conventional EAs with respect to how the fitness of a typical strategy is derived. 

For traditional EAs, fitness value of a solution is always invariant and independent 

of the population’s composition at any point of the evolutionary time-line. The 

distinguishing feature in CEAs pertains to the notion of fitness inter-dependency 

among different individuals which the fitness evaluation process establishes. For 
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instance, each strategy’s fitness is highly dependent and correlated to the fitness of 

his interaction partners, which in turn suggests that a strategy’s chance of survival 

depends effectively on its fitness relative to the partners. Fitness is relative and 

dynamic and manifests itself as a function of the population composition which is 

subjected to change from one generation to the next. Regardless of the number of 

populations, the most conventional pattern of interaction - complete mixing [36] is 

to have every member interact with every other individual who can possibly serve 

as potential partners - a symmetric two-player game with a single population of n 

individuals yields n(n − 1)/2 distinct interactions while an asymmetric two-player 

game with two populations of size m and n will derive mn distinct interactions.  

CEAs are generally divided into competitive and cooperative [90] schools 

of differentiation where the latter aims to solve a difficult problem X – which is 

decomposable into a collection of easier sub-problems; by coevolving an effective 

set of solutions – each individual denoting a solution to one of the corresponding 

sub-problems, that can work together to form a complete solution to the original, 

larger problem. In cooperative CEAs, there is no sharing of genetic information 

between solutions in different sub-populations and fitness evaluations are made by 

forming collaboration between an individual of one population and representatives 

of other populations. In competitive CEAs, each individual represents a complete 

solution to the problem and competes with one another for the right to survive just 

like what is typically in place for conventional EAs. 

As far as the scope of this thesis is concerned, subsequent chapters will 

focus on the use of competitive CEAs. Nonetheless, both types of CEAs, despite 

innate differences, share similar motivations with respect to the learning process 

and apply to problems in which formulation of explicit fitness function is difficult 
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or impossible e.g. evolving game playing strategies in the context of this work. 

There are generally four variations of fitness measures as Wiegand [91] defines: 

 

Definition 1: Objective measure 

A measurement of an individual is objective if it considers that individual 

independently from other individuals, aside from scaling or normalization effects. 

 

Definition 2: Subjective measure 

A measurement of an individual is subjective if it does not consider that individual 

independently from other individuals.  

 

Definition 3: Internal measure 

A measurement of an individual’s is internal if it does influence the course of 

evolution in some way. 

 

Definition 4: External measure 

A measurement of an individual is external if it does not influence the course of 

evolution in any way. 

 

From the definitions of the above four types of measure, it is clear that traditional 

EAs adopt an objective internal measure in its fitness evaluation. CEAs, on the 

other hand adopt a subjective internal measurement for fitness assessment and this 

pertains to the payoff which each player derives in the context of game theoretic 

interaction. In the co-evolutionary framework, two or more populations generally 

co-exist and co-adapt to one another over time. This is especially suitable when it 

comes to modeling game theoretic interaction and learning among asymmetric or 

different groups of strategies. The utility maximization behavior of each rational 

entity in the population via strategy improvement can be efficiently modeled as 
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EAs are naturally designed for optimization tasks. In such context, each player 

starts with an initial strategy and adapts to the dynamic environment by bettering 

its strategy over time by means of co-evolutionary learning where players of the 

same type evolve strategies collectively and independently of other types. As a 

subset of EAs, the dynamism in CEAs does provide an important element that is 

missing from the traditional theory of games, making it appropriate for analyzing 

scenarios with repeated interactions and modeling social systems. CEAs also 

maintain population diversity better than “classical” EAs [92]. 

 

2.4 Drawing parallels 
 
To draw close parallel with game theoretic interaction in reality, it is vital for any 

model to possess a viable and realistic learning mechanism for players to improve 

their strategies over time. With the assumptions of bounded rationality, players do 

not have perfect information about the global environment and are not attributed 

with advanced information processing capacities to undertake strategy revision 

using Bayesian Learning or Nash optimization. Though the replicator dynamics in 

EGT seems viable, its applicability relies essentially on the core, but somewhat 

unrealistic assumption of an infinitely large player population [93]. A probabilistic 

element is also lacking as outcomes generated based on iteratively simulating the 

static replicator dynamics equations are by and large deterministic in nature.  

CEAs is selected as the proposed learning mechanism in the series of work 

that are presented in the subsequent chapters of this thesis, as it is able to produce 

characteristics that are closely similar [94] to the replicator dynamics using only a 

finitely large population. Such characteristic of the co-evolutionary framework not 

only fulfills constraints of limited computational resource, but also allows us to 
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flexibly study situations that may not involve infinitely large number of players. 

The co-adaptation of entity populations over numerous evolutionary episodes also 

captures the essence of the population-based and temporal nature of EGT. In 

addition, co-evolution provides a stochastic learning framework which incorporate 

uncertainty and realistic imperfections into the process of simulation. In situations 

when theories only cover idealized scenarios where core assumptions are not 

violated, CEAs can allow flexibility to model realistic constraints like information 

asymmetry, bounded rationality, framing and other model imperfections. The 

elegant co-evolutionary framework captures three distinct aspects of learning [94] 

within each evolving population or strategy type - learning by replication, social 

exchanges and experimenting. These processes correspond to notions of selection, 

crossover and mutation respectively. The analogy between various components 

will be further elaborated in Chapter 6. In summation, the following parallels in 

Figure 2.2 can be drawn between CEAs on one hand and game theory on the other 

when attempting to employ co-evolutionary simulation modeling in the context of 

game theoretic modeling and analysis. 

 

 

CEAs      Game theory 

Fitness        Payoff 

Individual/Chromosome     Strategy 

Selection of fit individuals      Selection of good strategies 

Selection      Learning by replication 

Crossover      Learning by social exchanges 

Mutation      Learning by experimenting 

 

Figure 2.2: Drawing parallels between CEAs and Game theory 
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2.5 Summary 
 
In this chapter, we have covered core concepts and fundamental processes that are 

involved in the implementation of EAs. An understanding of these basic building 

blocks leads on to a discussion on its advantages and potential applications. This 

is followed by a comprehensive review of CEAs – stating its salient characteristics 

and distinction from EAs. Finally, parallels are drawn as a means of comparison 

between aspects of CEAs and game theory. 
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Chapter 3 

Evolving Nash Optimal Poker Strategies 
 

Poker is a card game that is widely played by many around the world. In the 

recent decades, it has experienced an unprecedented surge in popularity owing to 

the prevalence of online poker which made it much more convenient for players to 

search for and join a poker game. In unison, the decreasing cost of computational 

power has also allowed the creation of strong computer players using artificial 

intelligence (A.I.). Much research had revolved around the game, not only to 

develop better strategies, but also using it as a viable means to study psychology, 

economics and the effectiveness of neural [95] and Bayesian networks [96].  

Suitability of poker in such studies spans from a couple of factors. Firstly, 

it is a game of imperfect information as some information of the game state e.g. 

the opponent cards [97], is not known to players at any one time. This differs in 

contrast to games of perfect information e.g. Chess, where all game information is 

displayed on board. Secondly, poker is computationally less complex than other 

games of imperfect information e.g. bridge. Despite so, impact of this imperfect 

information trait is nonetheless not as negligible as that in scrabble [97]. Due to 

such dynamic nature of the game, no computer player has ever beaten the human 

poker champion, unlike what had been achieved in Chess [98]. Though computer 

players are getting better at the game from the current state of A.I. research, none 

is as yet, able to beat a human of grandmaster ranking in both the heads-up (one 

versus one) and multiple player version consistently. 

With the goal of developing good poker strategies, CEAs present a viable 

means of evolving intelligence as it is able to create generations of strategies that 
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follow the basic principle of survival of the fittest via evolutionary processes. A 

foreseeable advantage of this technique is its ability to produce good strategies 

with minimal, if not without use of expert knowledge and explicit fitness measure. 

This allows the creation of objective strategies and possibly a discovery of those 

unthought-of before. Closely related to EAs, CEAs have the potential to “solve 

complex problems even their creators themselves do not fully understand” [77]. 

This chapter attempts to develop a poker A.I. that plays approximately at 

NE [3] using a CEA that employs offline competitive co-evolution e.g. [99] as the 

means of adaptation. The version of poker used is the heads-up pot-limit Texas 

Hold’em and the reason for aiming to achieve NE instead of merely maximizing 

winnings is due to the intransitive nature of poker. This implicates that attempts to 

develop players which win maximally against other players through any offline 

evolutionary means might not be possible, unless excellent opponent modeling is 

present. Being able to create players that play at NE e.g. at worst draw against any 

opponent [3], is crucial, at least as a start point for developing good poker players. 

Based on performance analysis of these players, insights on how well CEAs can 

be applied to full-scale Texas Hold’em can then be made.  

The chapter is organized as follows. Section 3.1 discusses some prominent 

works in the existing poker literature. Section 3.2 provides an overview of Texas 

hold’em. Section 3.3 introduces the game theoretic fundamentals behind poker 

and Section 3.4 describes the game engine design. The proposed co-evolutionary 

model is elaborated in Section 3.5 and Section 3.6 highlights findings from a 

preliminary study. Section 3.7 presents and analyses the simulated results and 

efficiency of CEAs. Section 3.8 concludes with a broad summary of discussion on 

the result analysis as well as some possible future model improvements. 
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3.1 Background study 
 
Numerous techniques had been used to develop poker A.I. The most successful of 

all are developed by the Department of Computer Science, University of Alberta. 

Poki is one such A.I. that specializes in multiple-players pot-limit Texas Hold’em. 

The system structure [100] (shown in Figure 3.1) is segmented into hand-strength 

assessment, hand-potential assessment, betting strategy, bluffing, unpredictability 

as well as opponent modeling [101] – [103]. The A.I. makes use of probabilistic 

knowledge and selective-sampling simulation [104] to implement betting. Every 

time it is to make a decision, it will do a selective-sampling simulation to look 

ahead and determine its best course of action. A probability triplet which consists 

of three probabilistic numbers representing the probability of it folding, calling or 

raising, is returned. One action is chosen randomly according to their probabilities. 

The opponent modeler is a component used to predict the next action of opponents. 

During the development of this component, neural network was applied [105] to 

improve it. The biggest strength of Poki is its ability to adapt to its opponents’ 

style of play and exploit their weaknesses.  

PSOpti, the most successful heads-up pot-limit Texas Hold’em A.I. is also 

developed by University of Alberta. It was the winner in both the Association for 

the Advancement of Artificial Intelligence (AAAI) Computer Poker Competitions 

in 2006 and 2007 [106]. The A.I. uses Game Theory to play poker [107]. Firstly, 

the game tree is simplified through abstraction of the game. Abstraction is done by 

reducing and eliminating the number of betting rounds, composing preflop and 

postflop models, and using bucketing techniques that group hands of similar value 

together. These reduce the complexity of solving the game tree from O(1018) to 

O(107). Linear programming is finally used to solve the smaller game tree. From 
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the games it had played, PSOpti managed to beat all computer players (Table 3.1) 

and most of the human players, except those of master ranking and above (Table 

3.2). The strength of PSOpti lies in its ability to play close to the NE by using a 

pseudo-optimal strategy that displays almost no exploitable weakness. However, it 

employs no opponent modeling, which makes it less capable of exploiting much 

weaker opponents as compared to other poker A.I. systems.  

 

 

Figure 3.1: Overall architecture of Poki 
 

 

Table 3.1: Performance of the various computer players against one another [107] 
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Table 3.2: Humans vs. PSOpti2 [107] 

 

 
 

Apart from conventional means, EAs have also been used in poker research. 

Barone and While [108] applied EAs to a simplified version of poker where they 

had a player with evolving strategies play many games against fixed opponents. 

The strategies for each situation are the ones undergoing evolution rather than the 

player itself. Experimental results indicate that the evolving player performs better 

against fixed opponents as generations elapse. However, the player takes many 

generations before it can fully exploit the opponents. This makes it infeasible for 

playing against real opponents, as games do not last many rounds and opponents 

are not fully static. In view of the complexity in poker, the authors also used EAs 

to find specialized intransitive countering strategies [109].  

Another application of EAs in poker is postulated by Frans Oliehoek et al. to 

calculate NE using co-evolution [110]. The experiment was done on a simplified 

version of poker with only 8 cards. The objective is to verify if the CEAs can help 

to speed up the calculation to achieve an optimal strategy. Simulated results show 

that not many generations are required to achieve a strategy which plays relatively 

close to the NE in the 8-cards variant. This highlights the possibility of applying 

EAs, particularly CEAs, to larger scale of the game. 
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3.2 Overview of Texas Hold’em 
 
Texas Hold’em is played with a standard 52-cards deck by 2 to 10 players. It is 

different from normal poker as community cards rules are included. This offers 

more strategic depth and less luck factor; making it one of the most popular [111] 

poker variant that is played today. 
 

3.2.1 Game rules 
 
A game round is divided into four stages - Preflop, Flop, The Turn and The River. 

Each stage is differentiated from one another by the number of community cards 

revealed. In the pot-limit version, stakes are determined by the small bet and big 

bet amounts, where the big bet is typically twice of the small bet.  

 

• Posting of blind 

Before every round begins, blinds are posted by the first two players – the dealer 

and player on his/her left. The dealer pays an amount equal to half the small bet 

while the second player pays a full small bet. These are called the big blind and 

small blind respectively. The cards will then be shuffled and two cards will be 

distributed to each player.  

 

• Preflop 

Preflop is the first stage of betting. Betting will start with the player left of the 

small blind, i.e. the third player. During his/her turn, a player can choose either to 

fold, call or raise. If the player chooses to fold, he/she will be out of the game 

immediately. If the action is to call, the player will have to bet as much money as 

needed to match the highest stake from any of the other players at that point in the 

game. If the player chooses to raise, not only does he/she need to match the 
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highest stake, he/she also has to add an additional amount that is equivalent to that 

of a small bet to the highest stake, thereby creating a new highest stake. After this, 

the turn goes in a clockwise manner around the table. Betting will continue until 

everyone that is still in the game calls, which will then conclude this stage. It is to 

be noted that the stake can only be raised three times during each stage. 

 

• Flop 

The Flop stage commences after Preflop ends. In this stage, three community 

cards will be dealt and revealed faced up on the table. These are cards which any 

player can use to form combinations of five cards with the cards on their hands. 

Quality of the combinations is used to determine the winner at the end of the game. 

After the three cards are revealed, betting will resume with players that are still in 

the game taking turns to choose their actions. Beginning with the dealer, this will 

proceed clockwise just as in the Preflop. Also, betting will continue until everyone 

still in the game calls and the stakes can only be raised three times. 

 

• Turn 

In the Turn that comes after Flop, an additional community card will be dealt face 

up. Betting proceeds just as it was done in the previous two stages. In the Turn 

and the River, the raise amount is increased to the big bet amount. Each time a 

player raises, the raise has to be the amount equivalent to the big bet, instead of 

the small bet like in the previous stages. 

 

• River 

The River marks the last of the four stages where a final community card is dealt 

face up to bring the total number of community cards to five. The raise amount 
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remains fixed at the big bet amount and betting proceeds just as it was done in the 

previous three stages.  

 

• Showdown 

If there is only one player left after the end of the River, he/she will be the 

automatic winner of that round. Otherwise, a showdown stage will occur where all 

contending players take turn to reveal the two cards on their hands or choose to 

withdraw without revealing the cards (called “muck”). Players will form the best 

possible combination of five-cards with the community cards and his/her two 

cards. The combinations are ranked and the player with the best combination wins 

the round and all the money in the pot. In the event of a tie, pot winnings will be 

shared among all tied players. Figure 3.2 shows the various combinations in poker. 

For details on the ranking of combinations, refer to Appendix A. 

 

 

Figure 3.2: Name of poker card combinations 

 

3.2.2 Playing good poker 
 
Various forms of skills are required to master the game of poker. Some important 

ones include hand-strength evaluation, risk-rewards analysis, taking into account 

factors such as player position, bluffing, unpredictability and psychology.  
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• Hand-strength evaluation 

The most important skill in poker is the ability to evaluate the goodness of one’s 

cards. This informs a player of his chances of winning and subsequently helps him 

to decide on the action to take. Intuitively, a player should raise more often if his 

chances of winning is high to maximize winnings; and fold earlier if his chances 

of winning is low to minimize losses. 

 

• Risk-rewards analysis 

Despite occasions where a player’s chances of winning are not particularly good, 

he should also call and stay in the game when the amount in the pot is very large 

as compared to the amount he has to bet. For example, paying a small call amount 

of $2 to get a chance at winning a potential reward of $50 in the pot does justify a 

good risk to take despite having a low chance of winning. 

 

• Player position 

It is known that players at later positions have greater advantages than those at 

earlier positions, owing to their privilege of observing the actions of most players 

before making choices. Such information reveals how confident other players are 

of their chances of winning. It is to be noted that player position, however, plays a 

lesser role in games with fewer players. 

 

• Bluffing 

As poker is a game of imperfect information, not only does a player not know of 

his exact chance of winning, his opponents are equally uncertain as well. In order 

to maximize winnings, players will have to play on this fact. At times, they have 

to make the opponents believe that they have a better hand than what they actually 
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have, so as to trick them into folding. To be effective, the art of bluffing has to be 

executed with great caution and good timing. 

 

• Unpredictability 

Unpredictability is necessary to make it difficult for opponents to find weaknesses 

in a player. A player who plays predictably will be exploited by his opponents in 

no time. Thus, a good player is one who will vary his style of game play in order 

to prevent opponents from forming an accurate model of his strategy. 

 

• Psychology 

Finally, a right interpretation of the opponents’ psychological styles of game play 

is also crucial to play well in poker. An accurate opponent model, for instance, 

allows a player to predict his opponent’s actions and hence, achieve maximum 

winnings against him. 

 

3.3 Game theory of poker 
 
Poker is a sequential, stochastic, zero-sum game of imperfect information. To 

devise a good evolution model for developing strategies that play approximately 

at NE for a game of such nature, a good understanding of the game theoretic 

fundamentals is essential. 
 

3.3.1 Nash Equilibrium 
 
NE is defined as the state where no player stands to gain anything by changing 

his/her strategy unilaterally. In games of perfect information, pure strategies [112] 

are used to identify the NE. A pure strategy is one where every scenario that is 

represented in the strategy space corresponds to a single action which is always 
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performed with a probability of 1. In contrast, a mixed strategy is one where a 

player’s action to each scenario is determined by a probability distribution of all 

allowed actions. To achieve NE in games of imperfect information, players have 

to employ a mixed strategy. This can be reasoned via the following discussions. 
 

3.3.2 Illustration of game theory for poker 
 
As a full scale Texas Hold’em game is too complex to be solved theoretically, a 

simplified variation of poker is used in the following illustration. Consider a two 

players poker game which consists of only one stage and a betting round. At the 

start, each player will post $1 as blind. During his/her turn, the player can fold or 

call, but is not given any option to raise. If he calls, he pays an additional $1; if he 

folds, he is out of the game immediately. In this variation, there are only a total of 

three cards, numbered 1, 2 and 3 with a larger number value denoting a better card. 
 

 

Figure 3.3: Game tree of simplified poker variant from player 1’s perspective 

Start 

1 3 2 

Player 1’s action 

3 2 Player 2’s card 3 1 2 1 

C F C F C F C F C F C F

Player 1’s card 

C F C F C F C F C F C F
Player 2’s 
action 

-1 

-2 

-1 -1 -1 -1 

-2 +1 +1 +1 -2 +1 +2 +1 +2 +1 +2 

C: Call F: Fold 
Pij: probability of player i calling when he has card j. 
Numbers in bold are the pay-offs of player 1. 
Pay-offs of player 2 are just the negative of player 1’s pay-offs. 
Dotted circles indicate ignorance of player 1, i.e. player does not know what card the opponent has. 

P11  P11 P13 P12 P12 P13 

P22  P22 P23 P23P21 P21

-1 
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Figure 3.3 shows the game tree of the simplified poker variation, where Pij is 

the probability that player i should call if he has card j. To achieve NE, all players 

must play the most possible way beneficial to themselves. From the game tree, it 

is observed that some actions are simply bad actions for player 2 e.g. calling when 

he has the card value 1. In some scenarios, it is also always good to call e.g. when 

the card value is 3. For player 1, it is always good to call if he has card 3. By 

observation, the solutions for 21p , 23p  and 13p  can be found to be 

021 =p ,  123 =p ,  113 =p  

The expected payoff, E for each player can be derived by using the Law of total 

probability as follows. 

E(Player 1’s payoff) = E1 
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From (3.1), it is observed that the expected payoff maximization for player 1 is 

limited only to the adjustment of parameters 11p and 12p . As a larger 12p gives a 

larger E1, we can set 112 =p . This leaves us with only parameter 11p for player 1 
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whose value is to be determined. Likewise for player 2, value of parameter 22p  is 

left to be worked out. Expected payoffs of both players can now be expressed as   
 

6
1
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2222111 −+−= pppE                 (3.3) 
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With equations (3.3) and (3.4), it is found that the expected payoff of either player 

is dependent on the strategy of the other player. As NE is a state where no player 

will be exploitable, the values of 11p  and 22p  can be found by solving (3.5) 
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Therefore, we have 
3
1

11 =p  and 
3
1

22 =p .         (3.7) 

The mixed strategy at NE (which is also the optimal strategy essentially) is shown 

in Table 3.3: 

 

Table 3.3: Nash strategy for simplified poker 

Probability of calling 
Card value 1 2 3 
Player 1 1/3 1 1 

Player 1 called 0 1/3 1 Player 2 Player 1 folded NA NA NA 
 

With these strategies, it is found that: 

9
1,

9
1

21 =−= EE             (3.8) 
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3.3.3 Discussion on calculated results 
 
From the calculated results obtained through game theoretic analysis in section 

3.3.2, several observations can be made. Firstly, to achieve NE in the context for 

full scale poker, decision making must be modeled by a mixed strategy e.g. a 

probability triplet which uses separate probabilities to denote the tendencies to 

fold, call and raise. As a strategy consists of a set of rules for all decision nodes in 

a game tree and that a node is reached only via traversing branches, information 

that reflects the node which the game is currently on is necessary for a player to 

attain NE. Information that needs to be supplied to players are the cards (on both 

hand and community table) and history of opponent’s and player’s actions. 

Secondly, it can be seen that there are three types of strategies in zero-sum 

games. NE or optimal strategies are those which will not lose nor exploit the 

weaknesses of other strategies. Intransitive strategies, in contrast, are those which 

are likely to draw with optimal strategies, but are not optimal themselves. They 

tend to beat some strategies by huge margins but are in turn counter-able by some 

other strategies. For instance, strategy )1,1,1( 131211 === ppp will achieve the same 

expected payoff E1 )
9
1( −= as the optimal strategy )1,1,

3
1( 131211 === ppp if player 

2 is also playing his optimal strategy )1,
3
1,0( 232221 === ppp . However, if player 

2 changes his strategy to )1,1,0( 232221 === ppp , player 1’s pay-off will become 

3
1

1 −=E , which is worse; indicating that player 1’s strategy is counter-able in this 

case. Poor strategies are those that will lose to the optimal strategies and probably 

also those of other types as well. An example of such a strategy is given by 

)0,0,1( 131211 === ppp . These observations will help us to identify key features 
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to look out for when designing the co-evolutionary model. The model will need to 

be able to eliminate all poor strategies and discern the optimal strategy from those 

equally competent but exploitable ones e.g. intransitive strategies. 

 

3.4 Designing the game engine 
 
Several objects are necessary for the design of a poker game engine. They are the 

card, deck, player, a poker game, player AI, odds calculator and a Graphic User 

Interface (GUI).  
 

3.4.1 Basic game elements 
 
The card is an object that consists of a face value (A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 

2) of type integer and a suit of self-defined type (♠, ♣, ♥, ♦). An integer called the 

value is also included which is an enumeration of the face value and suit. A deck 

consists of an array of card objects in a particular arrangement. The deck needs to 

supply the function to shuffle the deck and to deal a card from the top of the deck. 

The player is an object that contains a hand of two cards, the player’s status 

(playing, folded, etc.), amount of money, fitness, name, A.I. type, history, etc. The 

player object needs to provide the functions to draw a card from the deck and to 

make a decision. A poker game object will handle all proceedings of the poker 

game. It contains a deck object, a number of player objects equal to the defined 

number of players, the pot amount, the bet amount and community cards. It needs 

to provide functions to start the round and to retrieve the winner of the round. 

Finally, a player AI object is a decision making model for the player. A player, if 

initialized with a particular AI object, will invoke a decision making function 

from its AI class whenever it needs to take an action. For an evolving AI, the AI 
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object will also need to receive feedback from the poker game so as to implement 

evolutionary procedures. Upon completion of the design for the various elements, 

the program was coded with Microsoft Visual Studio 2005 Express Edition. 
 

3.4.2 The odds calculator 
 
The odds calculator is an important component for the implementation of AI as far 

as poker is concerned. It is used to calculate a player’s chances of winning if the 

player is to reach showdown stage with the current objective information available. 

This encompasses information about the cards in the player’s hand, community 

cards, game stage and number of players. The calculator will transform the above 

information into a probability value from 0 to 1, whose magnitude represents the 

player’s chance of winning. With such means, a computer player will be able to 

interpret pieces of complex information. Due to its high usage, it is crucial to write 

an efficient odds calculator.  

In terms of the actual implementation, a separate odds calculator is written 

for each stage of the game. This is due to different number of community cards at 

different stages of the game. In the Preflop stage, online calculation of odds is 

very intensive as very few cards are revealed. This would also mean that there are 

as much as 169 possible combinations which each player could have. Calculation 

through the enumeration technique is thus performed outside the program and the 

results are then hard-coded. When a player calls the Preflop odds calculator, a 

binary search is performed to find the odds corresponding to its hand cards from 

the table of odds. In the Flop stage, it is difficult to attain optimum memory-speed 

trade-off as pure online calculation is too slow and pure look-up table is too large. 

A mixture of the two techniques is used. For the turn and river stages, pure online 

calculation is used due to relatively faster computation. 
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3.4.3 Graphical User Interface 
 
A GUI was also developed for the game engine. Its primary purpose is to test and 

debug the program. As poker is a game that is visual in nature, having a GUI also 

makes it much simpler to detect and debug errors. When the program first starts, it 

will appear as in Figure 3.4, with three buttons - run, pause and step. Initially, 

pause is disabled. When run is clicked, the simulation starts and proceeds without 

interruption. Once the simulation is running, pause becomes clickable. If pause is 

clicked, simulation pauses (Figure 3.5) and the current game state e.g. generation, 

round of this generation, cards etc is displayed. The step button can be clicked 

when the simulation is paused to advance the simulation by one event, such as 

when the player performs the action “call”. With the completion of GUI, extensive 

testing was done on the game engine to ensure that it works correctly, efficiently 

and without errors using debugger program provided in Visual C++. 

 

 

Figure 3.4: Initial state of the GUI 
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  Figure 3.5: The GUI at a paused simulation 
 

3.5 The co-evolutionary model 
 
With game theory providing the necessary guidelines, a co-evolutionary model – 

one where all the candidates play against and reproduce with one another after 

every round-robin tournament is formulated to evolve strategies that play close to 

the NE. In a round of tournament, each candidate in the population of 100 will 

play against every other for 100 rounds of poker so that individual fitness can be 

evaluated. Though a mere 100 rounds is considered small for eliminating the luck 

element in a game of chance like poker, a necessary trade-off is needed to reduce 

overall computational complexity. After fitness assessment, candidates are sorted 

according to their fitness levels. The top 10% are cloned and replicated in the next 

generation (Elitism). The remaining population is filled up with off-spring created 

from the current generation via a sequential process of selection, crossover and 

mutation. Selection is done using tournament selection, where pairs of candidates 

are randomly picked from the parent population of which the fitter in each pair is 

chosen to reproduce. From the pool of selected individuals, genetic variation is 
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introduced. In crossover, two randomly selected individuals will exchange traits 

such that the off-spring’s genes – which comprises of a number pair {fold, raise} 

thresholds, will be chosen from one of its parents with a 50-50 probability. After 

crossover, each gene is mutated with a 20% probability. If mutation does occur, a 

normally distributed random number with mean equal to the original value and 

standard deviation equal to 0.1 will be generated to replace the old raise and fold 

threshold values of that gene. A generation is deemed to have elapsed in the 

evolution sense whenever a new population of offspring is formed. 
 

3.5.1 Strategy model and chromosomal representation 
 
In Section 3.3, it is known from game theory that the history of players’ actions 

and their cards are two crucial pieces of information supplied to candidates. The 

ability to process such information becomes imperative for the candidates to make 

effective decisions. As both information types can well assume numerous values, 

it is practically impossible to consider all possibilities. Abstractions of information 

will have to be used instead. In the design of such abstractions, the ease of human 

interpretation is to be taken into consideration as well.  

To abstract the card combinations, the hand strength (HS) which reflects the 

likelihood of winning with the cards on hand is used. This ranges from 0 to 1 and 

is computed using the odds calculator as described earlier. In contrast to HS, the 

history of actions is a very complex piece of information, which represents the 

sequence of events from the start of game to a player’s turn, right down to every 

single detail. To make appropriate abstraction, some standard poker information 

such as the player’s position in the game, total raise (TR) and the fraction of raise 

made by the opponent e.g. opponent’s raise (OR) are used. As the poker variant 

used is for two players, a player’s position is not extremely vital and is discarded 
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to reduce the data size. Conversely, both TR and OR abstract, to a certain extent, 

information on the branches of the game tree that the game is currently moving on. 

Moreover, both pieces of information are also fairly interpretable by humans. In 

typical games played amongst human players, TR actually determines the pot size. 

The larger the pot, the more likely players will call than raise. OR can be used to 

determine how confident the opponent is of his chance of winning. The higher the 

value, the more likely a player should fold. Via the above information abstractions, 

a strategy model can then be formulated (Figures 3.6 and 3.7). 
 

 

Figure 3.6: Strategy structure for Preflop/Flop 

 

 
Figure 3.7: Strategy structure for Turn/River 
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Multi-dimensional arrays are used to represent the structure of strategies in 

the model. HS and OR are divided into three equal intervals - low, medium and 

high. As the raise amount during Preflop and Flop (e.g. $2) is different from that 

during the Turn and River (e.g. $4), distinct structures are used. Intervals for TR 

are not evenly distributed as TR is more often low than high in a game of poker. 

The intervals are thus made smaller at the low end but greater at the high end to 

ensure that all slots will be looked-up in a more evenly fashion. TR is divided into 

two intervals - low and high in Preflop and Flop stages; and three intervals - low, 

medium and high for the postflop stages. Decision making is based on probability 

triplets in order to implement a similar optimal strategy as discussed in Section 3.3. 

In each slot, there are two numbers which represent the fold and raise thresholds 

respectively, of which, the prior is always smaller than the latter. In totality, the 

array size for Preflop and Flop is 36 and that for Turn and River is 54. 

Whenever a candidate is required to make any decision, it looks up his 3-D 

strategy table for the slot that contains the intervals which matches its HS, OR and 

TR. It then generates a random number from the uniform distribution U [0,1] and 

compare it with the fold and raise thresholds. The candidate folds if the number is 

smaller than the fold threshold, calls if it is between both thresholds and raises if 

otherwise. All fold and raise threshold values are randomly initialized at the start 

of simulation and subjected to changes during the course of evolution. 
 

3.5.2 Fitness criterion 
 
A fitness criterion is proposed to evaluate a candidate’s goodness using guidelines 

from the game theoretic analysis in Section 3.3. Every candidate starts off with 

zero fitness and after every 100 rounds of game play between a candidate pair, 

fitness of each candidate in the pair is updated. The candidate who lost will have 
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its fitness reduced while the one who won will have its fitness left unchanged. 

Reduction in the loser’s fitness is set to be the square of the amount of money it 

loses in the game. This is mathematically expressed in equation (3.9). 
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In this way, conditions necessary to achieve NE could be satisfied. Though 

an optimal player will not lose and has practically no weakness, it could well still 

lose within a mere span of 100 rounds owing to bad luck, though not by much. To 

distinguish these players from those that will lose exceptionally heavily to certain 

strategies, square of the money lost, rather than just the money lost is deducted if a 

player loses. This ensures that candidates with weaknesses are penalized heavily 

whilst those who lost due to bad hands are not penalized as much. In conjunction, 

as the optimal strategy is not meant to be a counter to any specific strategy, the 

amount of money that the winner wins is not added to its fitness. This prevents a 

player who is only good in beating certain players from having its fitness pumped 

up when it meets opponents that are vulnerable to exploitation by its strategy. 

This above is best verified by an example scenario. Let A denotes candidates 

that play with near-optimal strategies. Let B denotes candidates that draw with A 

but are very good against some other candidates and also has weaknesses against 
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others. Let C refers to players that are simply poor. In a population consisting of A, 

B and C, A will beat C and draw with B such that candidates of A will have 

fitness approximately equal to zero. Although B will beat C and also draw with A, 

some candidates from B will exploit others from B as well. Though the exploiter 

wins lots of money, its fitness is not increased as winnings are not added. The 

exploited, however, suffer a heavy drop in fitness due to a reduction in the square 

magnitude. Overall, fitness in order of the highest to lowest will be A, B and C. 

 

3.6 Preliminary study 
 
In this section, a preliminary study is conducted to verify the correctness of the 

proposed co-evolutionary model. In particular, the model is adjusted and applied 

to the simplified poker variant that is defined in Section 3.3. At the same time, 

several fitness criteria are also tested in order to determine the one which is most 

suitable for obtaining the NE. 
 

3.6.1 Strategy model for simplified poker 
 
The strategy model for the preliminary study consists of a two dimensional array, 

with one dimension denoting the card (1, 2 or 3) and the other representing the 

position (1st or 2nd). Inside each element, there is a real number between 0 and 1 

denoting the fold threshold (Figure 3.8). Whenever a player makes a decision, a 

random number is generated in the range 0 to 1. The player will fold if the number 

is smaller than the fold threshold and call if otherwise. With tournament and co-

evolutionary settings kept unchanged, several distinct fitness criteria are tested to 

examine their effects on the behavior of strategies which emerged. Comparison is 

done to ascertain the criterion that is most suitable to obtain the NE strategy. 
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Figure 3.8: Strategy array of the strategy model for the simplified poker 
 

 

3.6.2 Fitness criterion equivalent to winnings 
 
The first fitness criterion to be tested is one where the winnings of a poker player 

correlate positively with its fitness level. This is expressed mathematically as 
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     (3.11) 

 

With this criterion, it is hypothesized that intransitivity will play a major role 

as a player with higher winnings will most likely be one who is able to counter the 

strategies of others. The experiment was carried out with a population of 100 and 

the following results are obtained after 500 generations (Figures 3.9 and 3.10). 

The figures depict plots of fold thresholds of the winners in each generation. As 

expected, 12f and 13f are 0, implying that a player holding card 2 or 3 at position 1 

should call with probability 1. In accordance to theoretical calculations in Section 

3.3, 21f and 23f are also found to be 1 and 0 respectively. 

 
Figure 3.9: Plot of fold thresholds of winner in each generation for position 1, fitness criterion 1. 
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Figure 3.10: Plot of fold thresholds of winner in each generation for position 2, fitness criterion 1. 

 
 

 

However, the values of interest e.g. 11f  and 22f  tend to exhibit fluctuating 

behavior as shown in Figure 3.11. From comparison, it is observed that both plots 

track one another closely. As 11f  increases, 22f  also increases several generations 

later, and as 11f  decreases, 22f  decreases likewise within the next few generations. 

This highlights the intransitive nature of poker. The average variance of 11f  from 

generation 400 to 500 is 0.065341 while that of 22f  is 0.066685. Also of interest is 

the mean of fluctuations - 0.66829 for 11f  and 0.59689 and 22f . These values are 

rather close to the calculated optimal strategy of 0.6666 and 0.6666 respectively. 

 
 

Figure 3.11: Comparison of plots of 11f and 22f . 

 

3.6.3 Fitness criterion excluding winnings and deducting the 
squares of losses 

 
The second fitness criterion to be tested is the one originally proposed during the 

design of the co-evolutionary model, that is:  
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The results, after 500 generations are shown in Figures 3.12 and 3.13. The values 

of 12f , 13f , 21f and 23f  are similar to those of the previous fitness criterion. Although 

signs of intransitivity are still observed, the fluctuations are of smaller magnitude 

this time. The average variances of 11f  and 22f  from generation 400 to 500 are also 

smaller at 0.037467 and 0.034844, implying that this fitness criterion does reduce 

the intransitivity element of the co-evolutionary process. Mean of 11f  is 0.67425 

and that of 22f  is 0.70171 in the same period of consideration. 

 

 
 

Figure 3.12: Plot of fold thresholds of winner in each generation for position 1, fitness criterion 2. 
 
 

 
Figure 3.13: Plot of fold thresholds of winner in each generation for position 2, fitness criterion 2. 
 

 

3.6.4 Fitness criterion with higher power 
 
Due to encouraging signs from the previous fitness criterion, one of even higher 

power e.g. 20 is experimented. The fitness level equation is expressed as 
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Results after 500 generations are shown in Figures 3.14 and 3.15. The magnitude 

of fluctuations is further reduced, but only insignificantly. Average variances of 

11f  and 22f are 0.028717 and 0.024055. Their means are 0.67205 and 0.73729. 

 

 
Figure 3.14: Plot of fold thresholds of winner in each generation for position 1, fitness criterion 3. 

 
 

 
Figure 3.15: Plot of fold thresholds of winner in each generation for position 2, fitness criterion 3. 
 

3.6.5 Discussion on preliminary findings 
 
As far as reduction of intransitivity in the co-evolutionary process is of concerned, 

it is found that the criterion where the fitness level is determined by the power of 

losses is better than the criterion where fitness is equated with winnings. On a side 

note, it is also found that higher power leads to greater reduction in the fluctuation 

magnitude. However, this reduction is inconsequential if compared to the amount 

of complexity that is introduced. Considering all factors, the originally proposed 
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fitness criterion with the power of two will be used for the subsequent simulation 

studies. Finally, it can be deduced that it is still possible to obtain optimal values 

for 11f  and 22f  by finding the average of fluctuations after many generations. 

 

3.7 Simulation results 
 
Upon confirmation from preliminary studies, the experiment is conducted on full 

scale Texas Hold’em using the game engine and co-evolutionary model defined as 

before. 271 generations are simulated on a shared server with two Xeon dual-core 

3.0GHz processors and 8GB memory. An attempt is made to actualize the Nash 

optimal strategy by averaging all winner strategies in the last 100 generations. The 

analysis of behavioral outcomes is presented in the ensuing subsections. 
 

3.7.1 Verification of results 
 
To verify the functionality of CEAs, some straight forward results are examined. 

From Figure 3.16, it can be observed that thresholds for high OR, low TR and low 

HS increases as the generation advances, indicating that it is best to fold in these 

situations, which is expected. If OR is high, the opponent is confident of winning. 

If TR is low, the reward for taking the risk of betting is poor. When HS is low, the 

chance of winning is bad. Combining all factors, we observe that CEA is accurate 

by folding in this situation. With high HS and zero TR, both thresholds decrease 

as the generation advances (Figure 3.17). This indicates that it is always desirable 

to raise in this situation. This is logically sound as a player with good HS would 

want to maximize its own winnings. With zero TR, the winning is very little and 

can only be maximized by raising the bet. 
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Figure 3.16:  Plot of fold and raise thresholds against generation when “Opponent Raise is high, 

Total raise is low and Hand strength is low” for Preflop/Flop (left) and Turn/River (right). 
 

   
 

Figure 3.17: Plot of fold and raise threshold against generation when “Total raise is 0 and Hand 
strength is high” for Preflop/Flop (left) and Turn/River (right). 

 
When TR is high, a player would want to call even if its chance of winning is low, 

as the amount that it could potentially win is worth the risk. However, the player 

would not want to raise in this situation to avoid losing even more. The strategy 

which is evolved by CEA also derives this accurately as seen from plots in Figure 

3.18 e.g. a high raise threshold coupled with a low fold threshold signify that the 

player should call. It is to be noted that fluctuations can also be seen. This is most 

likely due to the uncertainty in the nature of this risk and the intransitivity factor.  

 

   
Figure 3.18: Plot of fold and raise threshold against generation when “High opponent raise, high 

total raise and low hand strength” for Preflop/Flop (left) and Turn/River (right). 
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The above results certify the credibility of the co-evolutionary model; that the 

population gets better as generation elapses. The next subsection will attempt to 

analyze and explore insights of the evolved CEA strategy. 
 

3.7.2 Analysis of the evolved CEA strategy 
 
After 271 generations, a final strategy is determined by finding mean thresholds of 

winners in the last 100 generations. This evolved strategy is then analyzed. When 

TR is 0 e.g. a player first starts off a round, his decision is made primarily using 

the HS information. As of Figure 3.19, the strategy proposes unequivocal usage of 

fold and raise for low and high HS respectively in all stages - as shown by similar 

fold and raise threshold values. For a medium HS, differences in threshold values 

indicate a lower tendency to call during Preflop/Flop as compared to Turn/River. 
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Figure 3.19: Plot of threshold value against hand strength for Preflop/Flop (left) and Turn/River 

(right). Dotted line: raise threshold. Solid line: fold threshold. 
 

In the Preflop/Flop, the player alternates between calling and raise periodically 

since the probability of winning or acquiring a high HS in the subsequent stages, 

conditioned on a medium HS, is rather high. Such behavior could be spurred by a 

desire to boost the value of the empty pot. In contrast, winning in the Turn/River 

is mostly conditioned on having a high HS as much of the game would have been 

decided - most community cards are revealed by then. Based on independent use 

of HS information, it is intuitive that a player with medium HS and diminished 
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chance of winning should call if not fold, rather than raise, especially if the worth 

of the pot is not worth the effort to raise the bet 

Apart from the above, a myriad of other scenarios with various levels {low, 

med, high} of OR and TR are also explored in both the Preflop/Flop (Figures 3.20 

to 3.23) and Turn/River (Figures 3.24 to 3.29) stages. Strategy plots of threshold 

values against HS are shown below. A particular setting e.g. “OR is low and TR is 

med” is represented by a unique pair of lines where the higher and lower lines 

denote the raise and fold thresholds respectively. Pairs of lines that correspond to 

different settings are distinguished by dotted, solid or dashed lines. 

From the collection of figures, it is observed that the addition of information 

like OR and TR to HS in the decision making process allows the CEA to evolve a 

multitude of strategy variants that exhibit much greater complexity when it comes 

to deciding whether to fold, call or raise in different situations. Unlike the case 

where TR is 0, it is no longer simply about folding if HS is low and raising if HS 

is high. Nonetheless, certain traits do remain unchanged in the considerably more 

sophisticated strategies. For instance, fold thresholds in all scenarios consistently 

display a decreasing trend as HS improves, indicating that the evolved strategy 

invariably folds less often as long as it acquires better chances of winning in any 

fixed scenario. The raise thresholds, on the other hand, undergo erratic variations 

across different scenarios e.g. the improvement in HS does not always entail a 

progressive decline in the raise threshold (Figure 3.23) and are apparently not 

correlated to any one decision information. Such irregularities would suggest that 

raising in poker is a decision that is complex to make in nature. Further insights 

into the behavioral aspects of the evolved strategy can be gained by analyzing its 

traits under different game stages. 
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3.7.2.1 Preflop/Flop strategies 
 
It is observed that the strategy almost never folds as long as it has acquired at least 

a medium HS during Preflop/Flop, regardless of OR and TR. This “Call and see” 

nature – as a majority of scenarios in Preflop/Flop proposes calling with a medium 

HS, spans from great optimism towards a possibility of achieving an even better 

hand in future stages. Such view is unshaken even in disadvantageous situations 

where the opponent is perceived as having better chances of winning or when the 

pot size is just too low for fruitful contention. For low TR, strategies across all OR 

values generally behave in tandem to HS, similarly to the results observed when 

TR is 0 - {fold, call, raise} for {low, med, high} HS respectively. The only minor 

deviation occurs when OR is low - since the opponent is perceived to have a low 

chance of winning (Figure 3.22). Given a low HS, the evolved strategy justifies an 

action to call instead of fold as there is an equally probable chance of winning.  

For high TR, the evolved strategy almost never folds in the face of a pot 

with potentially huge winnings. This is true across all possible combinations of 

HS and OR values. Another interesting point which is observable from the raise 

threshold is bluffing. For med OR, the evolved strategy tends to raise very often 

even if HS is low (Figure 3.23) - indicative of an attempt to bluff. However, such 

behavior is absent for the equivalent scenario when TR is low, since only a high 

TR warrants justification for taking the calculated risk of attempting to “scare” the 

opponent into folding with a raise. For high OR, the tendency to raise is greatly 

diminished at low HS in view of the larger perceived disparity in HS between the 

player and opponent as compared to med OR. From another perspective, the high 

possibility that the opponent will match up to any potential raise, owing to high 

confidence in his cards also deters the player from raising and risking a likelihood 
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of incurring more loses by doing so. In view of the large pot value, the player 

adopts a “Call and see” attitude instead of fold. The raise behavior is nonetheless 

shifted rightwards instead and exhibited for med HS. This signifies that the player 

is willing to adopt a bluff strategy only if his HS is not perceived to be too far off 

from his opponent’s. This will at least give the player a fair chance of winning in 

the event that the opponent did not fall for the bluff. When the player has high HS, 

the proposed strategy is to call and follow the opponent’s bet without signaling his 

confidence or weakness by raising or folding. This is similar for a player with med 

HS under med OR. The underlying stance is to get the opponent into subsequent 

stages before deciding whether to challenge him aggressively to the game. 

From Figures 3.20 and 3.21, it is observed that fold thresholds are generally 

lower if TR is higher, indicating that a player folds less frequent given a larger pot 

of potential winnings. No obvious relation of OR with the thresholds is observable 

when TR is low as bluff is triggered only if TR is high. This suggests that TR is 

more dominant than OR as a factor for triggering bluff. Once bluff is in place, it is 

then OR which is seen to affect the actual position in which bluff is performed. 

 

 
 

Figure 3.20: Plots of thresholds against hand strength for Preflop/Flop and medium OR. 
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Figure 3.21: Plots of thresholds against hand strength for Preflop/Flop and high OR. 
 

 

 
 

Figure 3.22: Plots of thresholds against hand strength for Preflop/Flop and low TR. 
 
 

 
 

Figure 3.23: Plots of thresholds against hand strength for Preflop/Flop and high TR. 
 

 

3.7.2.2 Turn/River strategies 
 
As the game proceeds into the Turn/River, the evolved strategies generally exhibit 

behavioral traits which are rather different from those in the Preflop/Flop. Such 

change is largely due to the huge reduction in the game’s overall uncertainty since 

the opening of three community cards after the Flop and an additional one on the 

Turn. It is clear that the prior conviction of not folding with at least a medium HS 
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remains true only when TR is at least med during the “Turn/River”. Unlike the 

Preflop/Flop, however, a high HS is now strictly required to pursue a strategy of 

non-folding that is independent of OR and TR; since it gets increasingly harder for 

a player to alter his chances of winning when only one or no card is left to be dealt. 

As observed, HS is no longer the sole factor that affects decision making if there 

is only a fair chance of winning e.g. med HS. In such cases, it would make ample 

sense to proceed on with the game only when the rewards of the venture are worth 

the risks which the player has to undertake.  

Apart from TR, the decision making process in the Turn/River is also greatly 

affected by OR. As seen, the strategy almost never folds if OR is low, regardless 

of HS and TR (Figure 3.24). As it is improbable that the player’s hand quality will 

undergo major changes upon uncovering another community card, the likelihood 

of winning is largely determined by the opponent’s HS. This is inferred indirectly 

from the OR information which reflects the opponent’s confidence and chances of 

winning. A low OR signifies a heightened chance to win irrespective of a player’s 

current HS, which justify a strong tendency to carry on with the game. Another 

interesting behavior which is identified is the fact that the strategy always raises 

strongly if “OR is high and HS is high”, regardless of TR (Figure 3.26). This is 

different from Preflop/Flop where the strategy will tend to bluff by calling in the 

same scenario if TR is high. Given that the showdown stage is drawing nearer, the 

evolved strategy finds it beneficial to signal his true HS rather than concealing it. 

The reason for such a move is that the strategy would want to raise aggressively as 

a final attempt to deter the opponent with high OR from continuing the game. This 

move might at the same time also trick an opponent who is bluffing with a high 

raising history into folding.  
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When TR is low, the player’s decision is equally affected by both HS and 

OR, unlike the equivalent scenario in Preflop/Flop where HS exerts predominant 

effect. In general but with exception of “OR is med and HS is med”, the evolved 

strategy tends to raise if the player’s HS is higher or on par with OR and fold if 

otherwise. This shows that a relative comparison of the winning chances is crucial 

for decision making. As seen from a tendency to call under equivalent scenarios of 

med and high TR, the exception is due to the player’s unwillingness to risk losing 

more over a pot with low potential winnings. Exploring further, the strategy raises 

very often when OR is low. This presents an interesting emergent behavior which 

depicts that the strategy has a tendency to raise as long as the opponent’s chances 

of winning is perceived to be low (Figure 3.27). Whilst the desire to raise for med 

or high HS is justified as an action to boost the low pot value and acquire more 

winnings from the relatively weaker opponent, the same action clearly also has an 

ubiquitous element of bluff in the case of a low HS. By raising on a low HS, the 

player in fact tries to conceal his weak HS position by creating a confident image, 

in the hope of misleading the weak opponent to believe that the player has a good 

HS. The opponent, who in fact has comparable HS, might just be tricked to fold 

on account of the perceived image and a low pot size that is not worth to vie for.  

However, the CEA does not find it desirable to attempt such bluff for med 

and high OR due to anticipation that the opponent might easily match the raise. 

This is shown by the large tendency to fold. Apart from low OR, the strategy also 

raises very often when HS is high (Figure 3.27). The motivation behind such a 

raise is however very different from bluffing as the player is actually revealing his 

true position and relative confidence indirectly and using it as the basis to scare 

the opponent into folding. Overall, there are considerably more raises when TR is 
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low as the strategy figures that it is not likely to lose much from raising, judging 

from the low contributions which it has made to the pot thus far. In addition, the 

potential winnings can certainly be increased by raising. 

When TR is med, the tendency to raise when OR is low is weakened and the 

strategy calls more frequently in anticipation that the opponent will be tempted to 

match up to any raise on account of the higher pot value. Though the dominant 

strategy is still to fold when HS is low for OR is med or high (as in TR is low), the 

proposed action for a combination of HS is med and the same OR values is to call. 

In response to a higher pot size, the strategy is now willing to call more frequently 

for situations where its HS is on par (“OR is med and HS is med”) or even lower 

(“OR is high and HS is med”) than its opponent’s perceived chance of winning. 

With an even higher TR (e.g. TR is high), the temptation of calling against an 

opponent with higher chances of winning is further extended at HS is med, turning 

the tendency to call into a raise. Although the strategy still raises often when HS is 

high, another situation of bluff is detected when OR is med and HS is high (Figure 

3.28). As opposed to the previous bluff position when “TR is low, HS is low and 

OR is low”, the strategy attempts to conceal its high HS by simply calling. The 

idea is to lead the opponent with OR is med into the subsequent stages or even the 

showdown, so that higher winnings can be reaped eventually. With TR increasing 

to high for high HS, such deceptive behavior of calling against a weaker opponent 

of med OR continues to dominate, and with even higher probability.    

When TR is high, the proposed action is rather uncertain at HS is low, as 

seen from the close probabilities for fold, call and raise. This dilemma is probably 

due to conflicts between the rational action of folding against an opponent with 

higher OR on one hand and opposing action of calling on the game in view of the 
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large amount that has been contributed to the pot thus far. As opposed to the “OR 

is med and HS is low” scenario in Preflop/Flop where the temptation of a high TR 

induces the strategy to attempt bluff by raising, this is no longer so for Turn/River. 

This is because the opponent will tend to fold less often on account of the larger 

personal contribution and potential winnings that are at stake. However, consistent 

with Preflop/Flop, fold thresholds are generally lower if TR is high (Figure 3.29), 

indicating that a player folds less frequent given a larger pot of potential winnings.  

On the whole, the Turn/River entails more complex strategy combinations 

for different scenarios as compared to Preflop/Flop. With more certainty revealed, 

strategies no longer adopt the “Call and see” approach” by postponing concrete 

decision making to the future but are more cautious in their decisions to fold, call, 

raise or even bluff. In combination, the pot’s worth, opponent’s perceived chances 

of winning, the player’s HS etc all exert crucial impact on the decision making 

process as the game draws nearer to the showdown. 

 
 

Figure 3.24: Plots of thresholds against hand strength for Turn/River and low OR. 
 

 
 

Figure 3.25: Plots of thresholds against hand strength for Turn/River and medium OR. 



 

 76

 

 
 

Figure 3.26: Plots of thresholds against hand strength for Turn/River and high OR. 
 

 
 

Figure 3.27: Plots of thresholds against hand strength for Turn/River and low TR. 
 

 
 

Figure 3.28: Plots of thresholds against hand strength for Turn/River and medium TR. 
 

 
 

Figure 3.29: Plots of thresholds against hand strength for Turn/River and high TR. 
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3.7.3 Benchmarking 
 
The strategies that were evolved by the CEA were benchmarked against the poker 

A.I.s from the University of Alberta, namely PSOpti and Poki. PSOpti is a poker 

playing agent which specializes in two-player Texas Hold’em. By formulating its 

strategy using a pseudo-optimal game-theoretic approach [107] that is non-

exploitive, PSOpti plays close to NE. Poki, on the other hand, is an agent which 

specializes in multi-player Texas Hold’em and employs opponent modeling [101] 

– [103] during game play. As a means of comparison, the evolved CEA player 

(named Evobot) was setup to play against PSOpti for a game lasting 2000 rounds 

after every generation of evolution. Figure 3.30 shows the resultant winning trace 

of Evobot across generation. The unit of winnings used is the small bet per hand 

(sb/h), calculated by dividing the money won by the small bet amount, which is $2 

in the program, by the number of rounds played e.g. 2000. From the plot, it is 

apparent that Evobot improves its overall performance and narrows the inter-

strategy score margin as the generation advances. Relative to PSOpti, performance 

of Evobot is slightly lower owing to the mere 3 by 3 by 5 array that was used to 

represent the strategy chromosome. This is a foreseeable outcome as it is unlikely 

for any optimum strategy that surpasses PSOpti, if there is really one; to be fully 

represented within the bounds of the much constrained data structure. Attempts to 

improve performance by increasing the structure size is greatly hindered by huge 

computational space and time that are involved in the poker simulation. Even so, 

close eventual performance of Evobot to PSOpti is, nonetheless, an indicator that 

effective evolution is taking place via an efficient exploitation of strategy structure. 
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Figure 3.30: Winnings of Evobot vs. PSOpti against generation of evolution. 
 

 
 

 

Evobot was also setup to play against Poki after every five generations, with 

each game lasting 4000 rounds. Despite higher starting losses (Figure 3.31), the 

performance of Evobot is almost on par and only trails behind slightly. As in the 

winnings trace against PSOpti, losses of Evobot decrease as generation advances. 

Results signify that CEA is able to evolve strategies which are similarly adaptable 

to players that specialize in two or multi-player Texas Hold’em alike. 

 

 

 
Figure 3.31: Winnings of Evobot vs. Poki against generation of evolution. 

 

 

The evolved Nash optimal player is then played against both PSOpti and 

Poki for 10000 rounds each. Table 3.4 shows the overall winnings of the final 

average strategy. Though lower, the performance of Evobot is comparable to both 

its opponents. As a benchmark of comparison, it is known that a player who folds 
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every single hand will win by -0.75 sb/h. It is also found that a player who always 

call when playing against PSOpti and Poki respectively scores {-0.505, -0.537} 

sb/h while one who always raise scores a corresponding {-0.319, -2.285} sb/h 

[107]. In relative terms, Evobot’s respective performance of {-0.2296, -0.1670} 

sb/h is significantly higher than the performance of these generic strategies. In fact, 

it is far from being bad when one considers the search limitations that are imposed 

by the constrained strategy structure on the CEA. 

 

Table 3.4: Winnings of Evobot and several conventional strategies against PSOpti and Poki 

 PSOpti Poki 
Evobot -0.2296 sb/h -0.1670 sb/h 

Always Fold -0.75 sb/h -0.75 sb/h 
Always Call -0.505 sb/h -0.537 sb/h 

Always Raise -0.319 sb/h -2.285 sb/h 
 

3.7.4 Efficiency 
 
Figure 3.32 shows the plot of the time taken against generation. At the start of 

simulation, the time taken to complete all the games in one generation is relatively 

small. This is largely due to the random strategies that the candidates tend to adopt. 

As more generations elapse, the candidates start to adopt better strategies which 

inevitably cause a typical game to last much longer. The time taken per generation 

eventually stabilizes at around 9000 seconds. At this rate, it takes approximately 

27 days to reach 271 generations where the evolution process stabilizes. This 

constitutes a limitation as to why a large data structure is not used to represent 

strategies. Despite the fairly long process time that is taken to evolve competent 

strategies which is typical for games of such nature, it is to be noted that no expert 

knowledge e.g. opponent modeling, is injected at all throughout the entire process 

of evolution. This is perhaps one aspect that the CEA can value-add to the existing 

methods of training good poker players. 
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Figure 3.32: Plot of time taken against generation 
 

3.8 Summary 
 
This chapter demonstrated the possibility of applying CEAs to the development of 

a competitive computer poker player that specialized in Texas Hold’em. Game 

theory was first applied to analyze a simplified version of the game. Knowledge 

gained from the analysis was used as guidelines to design a co-evolutionary model 

for the purpose of achieving strategies that play at NE. From analysis, the player 

that was evolved by CEA not only displayed strategies that are logical, but also 

reveal insights that are not easily comprehensible. Some of these insights include 

bluffing indicators. An attempt to attain the Nash optimal strategy was made by 

finding the average of strategies from generation 172 to 271. This strategy, named 

Evobot, was benchmarked against existing poker A.I.s PSOpti and Poki. Despite 

the much constrained representation for the strategy chromosome, differences in 

score margins between Evobot and the opponents were low, signifying that CEAs 

are good at exploiting the structure of the problem to attain near NE solutions. 

Though CEA tends to take a fairly long time to evolve a stable strategy, no expert 

knowledge is required at all throughout the entire evolution process. CEA is able 

to adapt and develop good strategies by simply playing continuously over time. 
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Chapter 4 

Adaptation of IPD strategies 
 

Apart from its application in games like poker, game theory is widely used to 

study interaction in many social contexts. The Iterated Prisoner’s Dilemma (IPD) 

[4], in particular, is an abstract mathematical game that is widely used to model 

numerous aspects of behavioral interaction in reality, when conflicts of interest 

arise between two or more groups of entities. Though conceptually simple, this 

classical problem in game theory presents a useful tool to study human behavior 

in various social settings and has contributed insights to areas like engineering, 

science, economics, analysis of social network structures [113] and psychology.  

To this note, CEAs, apart from the ability to evolve poker strategies which 

perform close to Nash optimality, presents a useful tool for finding good strategies 

and observing interactions in the study of IPD as well. Adding on to contributions 

made in this realm of discipline, the core issue considered in this chapter pertains 

to the adaptation of IPD strategies to different environments. Existing works had 

showed that evolutionary schemes are highly successful in discovering effective 

adaptation methods to rich situations [114] – the evolved strategies adapt well to 

specific environmental settings and are capable of defending against defectors and 

cooperating with cooperators [89], [115], [116]. While most works are concerned 

with the generalization ability of evolved strategies [117], the focus of this chapter 

is on the adaptability of evolved strategies to diverse environmental setups. 

Learning, similar to evolution, is another paradigm that is extensively used 

to adapt strategies in many game theoretic problems [93], [118], [119]. According 

to Hingston and Kendall [120], it is crucial for creating adaptive IPD strategies 
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which thrive well in competitive settings by exploiting non-adaptive strategies. 

Learning presents a scenario similar to one where knowledge accumulated from 

the past rounds of game play is used by IPD players in future. As the pattern of 

decision making is rarely constant [121] but highly dependent on the environment 

and complex interaction among competing strategies, adaptation is important to 

ensure good performance. Although evolution facilitates information exchange 

between strategies, it is limited by poor exploitation abilities. Creation of new 

individuals is more of a trial and error process [122], which often produces naïve 

strategies upon convergence. Learning, on the other hand, causes large variance in 

performance among strategies as a result of the diverse learning experiences [123] 

and is also prone to premature convergence [124]; although it allows strategies to 

make spontaneous decisions as the environment changes. 

In view of the above, this chapter considers the development of a memetic 

adaptation framework [125] for IPD strategies to exploit complementary features 

of evolution via a CEA; and learning via a double-loop incremental learning (IL) 

methodology that incorporates classification, probabilistic update of strategies and 

a feedback learning process. Despite the widespread use of memetic adaptation in 

optimization [126] - [129], little work has been done to illustrate its applicability 

to IPD. Combining the two forms of adaptation schemes introduces a fair degree 

of realism, especially when it is used to model the behavioral aspects of players. 

Simulation is performed for us to gain insights into the complexity and intricacies 

of interaction between evolution and IL; and in the process demonstrates how 

adaptive strategies are created via the memetic scheme.  

Organization of the chapter is as follows: Section 4.1 presents an overview 

of IPD and Section 4.2 formally introduces the adaptation models. Section 4.3 
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presents the proposed IL methodology. Section 4.4 highlights the implementation 

details of adaptation strategies while Section 4.5 describes the simulation tests and 

evaluates strategy performance via a series of case studies. Section 4.6 concludes 

the chapter with a summary of discussions on the simulated results and also areas 

where future work can be embarked on. 

 

4.1 Background study 
 
The IPD is a classical game-theoretic [93] problem which encompasses the study 

of complex decision making – balancing the short term rational decision for self-

interest against the long term decision for overall interest. Each player has the 

option to COOPERATE (C) or DEFECT (D) in each round and the outcome of 

interaction is governed by a Payoff Matrix and its binding conditions (Table 4.1 

and 4.2). The single-round PD has mutual defection as its unique NE while the 

IPD has a single NE only if the number of rounds is known in advance [4]. 

Though the potential incentive to defect is higher in the short run, Axelrod [4] had 

showed that mutual cooperation is a better solution in the long run. Folk theorem 

further verified that the cooperative solution is found in the set of NEs of infinitely 

repeated rounds [130]. Even so, unconditional defection or cooperation is not the 

optimal strategy for a player as much depends directly on his opponent’s strategy 

[4]. Strategies can perform much better if they achieve cooperation with reciprocal 

cooperators, exploit unconditional cooperators, and resist defectors [131].  

The standard IPD is played repeatedly among competing strategies, each 

with its own set of behaviors. Some are memory-less while others base their next 

move on a history of previous moves [132]. For simplicity and in accordance to 

the default settings used in Axelrod’s tournaments [89], a finite memory of up to 
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three rounds is allowed. Always Defect (ALLD), Always Cooperate (ALLC) and 

Random (RAND) are examples of memory-less strategies while Tit-for-Tat (TFT), 

Pavlov and Tit-for-Two-Tats (TFTT) make use of past histories to make decisions. 

Some strategies are deterministic while others are stochastic. Each strategy has its 

own advantages and disadvantages; strong against some opponents but also weak 

against others. A brief description of the characteristics for some commonly used 

benchmark strategies is provided in Table 4.3.  

There are two basic setups - round robin or evolutionary tournament [132]. 

In the former, every strategy has a chance to play against all other participating 

strategies in the tournament and the population size of each strategy type is fixed 

throughout. The latter is conducted on the basis of natural selection, where good 

strategies are favored by a proportionate increase in numbers while weaker ones 

experience a subsequent decrease in numbers. The process is repeated until certain 

stopping criteria e.g. substantial convergence in population sizes of all strategy 

types is attained. In this context, a good strategy is one that thrives for long 

duration and in large proportion. This setup is more applicable to situations where 

each strategy type has large number of players for effective evolution to occur. 

Complex issues like the group survival rate of strategies can then be investigated. 

 

Table 4.1: Payoff Matrix for the Iterated Prisoner’s Dilemma 
 

Player 1 
 

      Player 2  
 

 

 

Table 4.2: Conditions governing the construction of a valid payoff matrix 
 

 
 
 

 

 COOPERATE DEFECT 
COOPERATE 3,3 5,0 

DEFECT 0,5 1,1 

CONDITION 1 T>R>P>S 
CONDITION 2 T+S<2R 
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Table 4.3: List of some commonly used benchmark strategies  

Strategy Full Name Brief Description 
ALLC Always Cooperate Cooperates indefinitely.  
ALLD Always Defect Defects indefinitely. 
TFT Tit-for-Tat Cooperates initially but then repeats opponent’s previous move. 

Pavlov Pavlov (WSLS) If previous move is successful (T or R), increase the probability 
of executing the same move. Reduce the probability otherwise. 

TFTT Tit-for-Two-Tats Resembles TFT but forgives opponent for 1 defect. Strategy 
defects only after 2 consecutive defects by opponent. 

RAND Random Defects or cooperates with probability ½. 
STFT Suspicious TFT Defects initially but then repeats opponent’s previous move. 

 

4.2 Adaptation models 
 
Other than evolution, two other adaptation schemes - learning as well as memetic 

learning (ML), are proposed for the purpose of driving strategy improvements in 

the IPD. Each equipped with its own unique characteristics, these methodologies 

are presented and described in more details in the following sub-sections. 
 

4.2.1 Evolution  
 
Evolution, as an optimization model, is widely used to evolve IPD strategies [114], 

[133]. By retaining fitter strategies and discarding weaker ones cyclically, this 

population-based learning technique [134] facilitates the eventual convergence 

towards robust and effective strategies [117]. Numerous variants of evolutionary 

implementations have existed as of today e.g. in terms of representation, evolving 

strategies exist in binary forms [134], neural networks [135], probabilistic [134] 

and real number [136] coded strings or even FSMs [137]. The method of selecting 

good individuals comes in many forms as well - truncation selection [138], [139], 

(μ, λ) and (μ + λ) selection [22], [140] fitness-proportional selection [116], [120], 

[141]. Choice of variation operators also differs across implementations. While 

most EAs use a combination of crossover and mutation to evolve strategies [134], 

[142], [143], pure mutation operators are used by Hingston and Kendall [120]; and 
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well as Chong and Yao [22] for their co-evolutionary [144], [145] framework to 

analyze various aspects of the IPD. Other evolutionary means involve the use of 

speciation or niching to maintain genetic diversity [146] and elitism to avoid loss 

of good individuals from the mating pool. Despite differences, the fundamental 

framework is essentially similar and can be broadly summarized as a sequential 

process of fitness assessment, genetic selection, and genetic variation (Figure 4.1).  

 

Parent
Population

Genetic
selection

Fitness
assessment

Genetic
variation

Offspring
Population

Evolution Process

 

Figure 4.1: Overview of the evolution process  

 

4.2.2 Learning 
 
The learning methodology can be progressive [147] or reactionary [148]. The 

former includes hill-climbers and gradient-based searches which are commonly 

applied to static environments where conditions are fixed and notion of optimality 

is well defined. The latter is applicable to a dynamic setting where the notion of 

optimality is always changing or simply non-existent. Notable examples include 

probabilistic Pavlovian Learning [149] and stochastic searches. In its classical 

form, learning has no facility for any communication and only affects individual 

strategies. It functions as a local search operator and drives agents to traverse the 

direction which is deemed more “favorable”. Learning agents typically exploit 

domain information available at hand to improve performance based on some 

form of heuristics. Since the pattern of decision making is rarely constant for any 

iterated game set but highly dependent on agent interaction, learning should be 

performed incrementally, with partial memory [150] of past experiences. This 
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more accurately models the IPD, where players are capable of making complex 

decisions spontaneously using some finite memory of past actions.  
 

4.2.3 Memetic Learning 
 
ML is a hybrid adaptation technique that unifies learning and evolution [151] in 

one algorithm. As far as the IPD is concerned, the notion of evolving strategies 

memetically is less studied compared to learning and evolution. Two widely used 

variants of ML are the Baldwinian [152], [153] and Lamarckian [129] models. In 

the former, offspring do not inherit learned abilities from their parents but merely 

experience an added ability to learn skills that are acquired by the ancestors [154]. 

In the latter, however, desirable traits acquired by parents via learning are passed 

down to the offspring who will inherit the traits directly [155]. Despite differences, 

the underlying framework is similar. As opposed to learning, evolution in ML 

facilitates information exchange among agents and allows the knowledge acquired 

through learning to propagate to future generations. This stabilizes and reduces 

performance variance across learning agents. Learning, on the other hand, is used 

as a form of directed search to guide evolution in attaining convergence towards 

an optimum strategy if it exists. The "Meta-Pavlov Learning" [156] that integrates 

evolution and Pavlovian Learning is an example of Baldwinian-based ML strategy. 

By harnessing the synergy between learning and evolution, ML strategies should 

be able to acquire better performance than evolutionary and learning strategies. 

 

4.3 Design of learning paradigm 
 
In this section, an IL scheme that integrates classification into the decision making 

process of strategies is presented. This is adopted by all IL and memetic players in 
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the IPD tournaments and is characterized by a framework that identifies nature of 

opponent strategies, conducts strategy revision and allows players to recover from 

mistakes through double loop IL. This breeds good strategies that can respond and 

adapt well to different opponents. 
 

4.3.1 Identification of opponent strategies  
 
According to Axelrod [4], discrimination of others is among the most important of 

abilities as it allows an individual to handle interactions with many individuals 

without having to treat them all the same. With the above motivation in mind, a 

simple classification heuristic is formulated based on the correlation between the 

received payoffs and opponent’s likelihood to execute defection and cooperation. 

Opponents are classified into three broad categories, strategies with a tendency to 

exploit others (Exploiters), strategies which reciprocate cooperation (Reciprocals) 

and strategies that are likely to cooperate unconditionally (Cooperators). Nature of 

each new opponent is mapped out according to the sum of payoffs received in the 

first three rounds of game play. The range of scores (0-15) is divided into three 

equal intervals, each corresponding to an opponent class as shown in Table 4.4. 

This classification process acts as a basis for the player to gain a rough insight into 

the nature of unknown opponents, so as to facilitate the adoption of an appropriate 

strategy during the subsequent game play with that opponent.  

 

Table 4.4: Identification of opponent strategies 
 

 

4.3.2 Notion of “success” and “failure”  
 
Inspired by John Nash’s [3] idea of a NE, it is conceptualized that every pair of 

competing strategies, despite their complexity and nature, can have a desired state 

SCORE RANGE 0 - 4 5 - 10 11 - 15 
NATURE OF OPPONENT EXPLOITERS RECIPROCALS COOPERATORS 
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at each round of game play, where both execute their relative best responses [2]. 

With the same argument, each opponent classification can give rise to an attached 

desired response. This is defined for Exploiters, Reciprocals and Cooperators by 

means of a Taxonomy Matrix in Table 4.5. This Matrix effectively dictates and 

maps out the direction for local search during the process of learning. 

Each IL strategy is represented by a string of bits - each encoding the action 

to be taken when a distinct sequence of past three moves is made by both player 

and opponent. As a basis of IL, outcome of using a bit is classified into “success” 

(S) or “failure” (F) trials. An S trial occurs when interaction outcome from using a 

strategy bit coincides with the perceived nature of opponent as the desired reply is 

played while an F trial denotes otherwise. Rules for updating S and F trials are 

characterized by the Taxonomy Matrix. S count is incremented when the "desired" 

outcome is achieved for the opponent's assumed strategy type, and the F count is 

incremented when any other payoff is achieved. Overall, the process of updating 

counts indicates how good a strategy bit is from time to time and is used as a form 

of IL heuristics to determine whether the encoded action should be revised or left 

unchanged. The Taxonomy Matrix and underlying notion of S and F are proposed 

to refine the Performance Matrix used by Pavlov - S is defined as receiving the 

Temptation (T) or Reward (R) payoff and F as being awarded the Punishment (P) 

or Sucker (S) payoff. This is not necessarily a good way to define the matrix due 

to the following set of reasons: 

 

1)  Receiving P in the context of exploiters which defect perpetually is considered 

good as the player is not exploited. 
 

2)  Receiving R in the context of unconditional cooperators is considered bad as 

there are opportunities for exploitation. 
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3)  Receiving T in the context of reciprocals is not the best policy as it can well 

lead to endless cycles of retaliation.   

 

S and F hold a fuzzy meaning when payoff is P, R or T. As there is no 

knowledge about the opponent, uncertainty is involved during IL - strategies that 

are good against one opponent might be bad for another. As the notion of S and F 

is crucial for determining the “goodness” of IL and exerts great impact on strategy 

performance, it is not predetermined in advance but dynamically updated based on 

the opponent’s perceived nature as the IPD game proceeds.  

 

Table 4.5: Taxonomy Matrix for carrying out IL 
 

Player 
 
     Opponent  
 

 

4.3.3 Strategy Revision 
 
In the proposed IL scheme, replacement of weaker strategy traits with stronger 

ones is devised via the S and F counts accumulated over the entirety of the game. 

Fitter bits have larger S counts to indicate that they are performing desirably 

against opponents while weaker bits have larger F counts. Unused bits contain a 

zero for both counts. The action that a strategy bit encodes is updated (changing C 

to D or vice versa) only when the following conditions are met 

 

           Swap (True) iff FT / (ST + FT) > Ps AND ST + FT > L       (4.1) 

 

where FT and ST are total F and S counts respectively. Ps is a threshold that can 

be adjusted to suit the desired level of failure tolerance – amount of failure that an 

IL player is willing to take on before strategy revision. This affects the willingness 

to learn implicitly e.g. a higher Ps makes a player less likely to revise its strategy. 

 COOPERATE DEFECT 
COOPERATE RECIPROCALS COOPERATORS 

DEFECT - EXPLOITERS 
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The minimum learning threshold, L - defined by the minimum number of 

rounds which a bit is played before strategy revision is considered, affects the 

sensitivity of a player’s response to environment changes e.g. a large L delays IL 

but in turn allows the goodness of a bit to be assessed from a wider observation 

window. An inherent tradeoff arises between the need to react spontaneously to 

changes in opponent’s pattern of game play (so that payoff is maximized regularly) 

and the need to maintain a sizable window of past experiences before performing 

strategy update (so that well-informed choices can be made). Prior simulation tests 

are conducted using the proposed IL strategy and an empirical set of opponents to 

select appropriate values of Ps and L for the update criteria. S and F counts of a 

bit are reset to zero when updating of that bit occurs and also upon meeting new 

opponents. This prevents past histories from affecting the current performance of 

the bit. The above ensures that strong and desirable strategy bits are more likely to 

remain intact while weaker ones are more susceptible to change.  
 

4.3.4 Double-loop Incremental Learning 
 
The double-loop IL is a reclassification and relearning process that draws parallel 

to human’s way of learning through perceiving, reasoning, self-evaluating and 

readjusting. A scenario when the inferred opponent is perceived incorrectly during 

classification is remedied via a separate IL cycle which involves reclassification 

of opponent and re-mapping of best response. This cycle is triggered when the 

accumulated F counts for all bits used within the game exceed a value of f; of 

which the notion of S and F will be changed and a new perceived best response 

adopted. If this corresponds to the actual best response, increase in F counts will 

be reduced to indicate that the right strategy has been used against the opponent. 

Otherwise, reclassification and relearning continues until the perceived and actual 
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best responses coincide. While inner-loop IL allows players to form perception 

models of the opponents, outer-loop IL facilitates evaluation and readjustments of 

each model. The feedback mechanism allows players to learn, adapt and realign 

their strategies dynamically to changes in the opponent nature through formation, 

evaluation and revision of perceptions. Via the process of learning and relearning 

[157], strategies learn to perceive each opponent accurately despite insufficient 

knowledge initially. Unlike absolute reactionary IL, the integrated double-loop IL 

can prevent chances of entering into a loop of endless updating and subsequently 

lowers the possibility of being trapped in a local maximum (Figure 4.2).  
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Figure 4.2: Overview of the double-loop learning process 

 

4.4 Implementation 
 
Performance of the adaptation frameworks; evolution, IL and ML are investigated. 

They are represented by a GA, incremental learning strategy (ILS) and memetic 

algorithm (MA) respectively in the context of IPD. Each strategy is represented by 

a 67-bit binary chromosome (Figure 4.3). The first three bits encode the condition 

for triggering the first three moves at the start of every iterated game set while the 

remaining bits denote 64 (26) possible histories of 6-bit memory configurations 

that correspond to different combinations of previous three moves of both player 
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and opponent. For ILS and MA players, accumulated S and F counts for each bit 

are recorded as the basis of IL. Each strategy also encodes an independent 6-bit 

memory of round histories that are used to decide the player’s next move. As each 

derives its fitness from the scores attained by playing with others, GA is basically 

a CEA which evolves strategies by co-evolutionary learning. As far as the chapter 

is concerned, MA adopts a Lamarckian learning scheme - retains genome changes 

from mid-game learning at the point where the next generation is formed.   

 
 

Initial Condition

1 0 0 1 0 0 1 1 0 1 … 0 1
0    1 2    3    4 5    6 7    8     9 65   66

 
Figure 4.3: Strategy representation of a typical player 

 

 

The initial populations of all the adaptation schemes are randomly generated. 

Fitness, given by the sum of payoffs accumulated throughout the game play, is 

assigned after each complete tournament. Niching with sharing distance (defined 

by the genotypic similarity between players) of r is used to encourage growth of a 

diverse repertoire of strategies. Two strategies are alike if the number of identical 

genes between them exceeds r. By and large, the mechanism evaluates similarities 

between individuals and penalizes fitness of those that are too alike. This is crucial 

so that the evolving strategies would not, due to inability to adapt after substantial 

level of strategy convergence is reached, lose out in terms of performance. This 

also ensures fairer comparison among GA, ILS and MA. Results from preliminary 

simulation have verified that GA performed worse off in the absence of niching as 

premature convergence does set in at a very fast rate, compromising GA’s search 

capability unduly. From experimentation, r is selected to avoid an overly fast or 

slow convergence rate in the midst of preserving the search capability of GA.  
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After niching, elitism is implemented so that the strategies which are above 

average in both fitness and niche counts are selected into the next generation 

without genotypic changes. Depending on the proportion of individuals that are 

above average, number of elites varies but is limited to a maximum of the top 10% 

of the population. After which, tournament selection is performed to select the 

remaining population based on overall fitness that is accounted for by niche scores: 

 

Overall Fitness = (game scores)/(1+niche scores)        (4.2) 

 

From above, it can be garnered that the larger the degree of similarities between 

an individual and others in the population, the larger is the penalty on its original 

fitness. Selected individuals will then undergo uniform crossover and binary bit-

flip mutation. The new generation of strategies is formed jointly by the elites and 

individuals that have gone through the variation process. To summarize important 

procedures involved, the general overview of the flowcharts for GA, ILS and MA 

are presented respectively in Figures 4.4, 4.5 and 4.6.  
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NO

YES

NO

  END
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GA generation (g + 1)

EVOLUTIONARY
CYCLE

 
Figure 4.4: Simple flowchart depicting the operations of the GA strategy 



 

 95

Initialization of
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Figure 4.5: Simple flowchart depicting the operations of the ILS algorithm 
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Figure 4.6: Simple flowchart depicting the operations of the MA algorithm 
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4.5 Simulation results 
 
Simulations are carried out using the Visual C++ development kit. A summary of 

the parameters used in simulations is shown in Table 4.6. Three case studies are 

simulated to examine the synergy between evolution and IL in different settings. 

For all case studies, number of players for each strategy type, is always set as p, to 

avoid any bias towards any type. The population size, n thus varies for different 

test cases, according to the number of strategy types used e.g. for a case study that 

involves three strategies, n = 3*p. 200 rounds [4] is played in a pair-wise manner 

amid the competing players in each iterated game set. A round robin tournament is 

completed when each player has played against all others.  

The order of opponent strategies during round robin tournament is decided 

randomly e.g. a strategy will not know the nature of opponent it will be facing in 

the next game as this is picked randomly from the pool of strategies that have yet 

to play. This will allow the performance and adaptability of IL and evolution to be 

assessed in a more generalized setup, where overall performance is independent of 

the order of appearance of opponents. In all runs, evolution is triggered after each 

round robin tournament (which denotes one generation) while IL is performed 

throughout the course of game play. Based on Chong and Yao [135], each run is 

conducted for 600 generations to ensure convergence of result and to track the rate 

of improvement for all adaptation strategies. Parameter values are aptly chosen 

based on good players’ performance after several rounds of preliminary runs. A 

brief summary of the case studies to be simulated is depicted in Table 4.7. 

  

Table 4.6: List of parameter values used in the simulation runs 
 

Tournament Parameters Values 
No. of rounds in an iterated game set between two players, α 200 
No. of generations used to carry out each simulation run, g 600 

Population size of all players in the tournament, n Variable 
Size/Number of players for each strategy type, p 30 
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Evolution parameters Values 
Size for carrying out tournament selection, s 2 

Rate for performing uniform crossover, c 0.8 
Rate for performing binary bit-flip mutation, m 0.05 

Niche radius in terms of number of identical strategy bits, r 30 
Incremental Learning parameters Values 

Bit failure ratio, Ps 0.3 
Minimum learning threshold, L 10 

Threshold of failure counts to trigger reclassification, f 15 
 

 

Table 4.7: Brief summary of case studies to be conducted 

Case Study Tests Strategies Used Objective 

A MA, GA, ILS, TFT, ALLD, 
ALLC 

1 
B 

MA, GA, ILS, TFT, ALLD, 
ALLC, PAV, RAND, STFT, 

TFTT 

Assess performance and adaptability of 
MA, GA and ILS when each plays 
against different combinations of 

opponent strategies. 
 

C MA, GA, ILS 

2 D 
MA, GA, ILS, TFT, ALLD, 
ALLC, PAV, RAND, STFT, 

TFTT 

Assess performance and adaptability of 
MA, GA and ILS when playing among 

themselves and other opponent strategies. 
 

3 E 

MA, GA, ILS, opponents 
strategies that are changing 
every {1, 10-20, 100-150} 

generations 

Assess performance and adaptability of 
MA, GA and ILS in dynamic 

environments, where nature of the 
opponents is changing from time to time. 

 

4.5.1 Case Study 1: Performance against benchmark strategies 
 
The first case study compares individual performance of MA, GA and ILS as each 

plays with fixed pools of benchmark strategies (Table 4.3). The chosen strategy 

subsets contain a mix of cooperators, defectors and reciprocals, to which a player 

has a distinct, best response to maximize its payoff against each opponent type. 

Two different tests (A and B) are setup and simulated to evaluate the performance 

of the adaptation strategies in small and large strategy subsets using generation 

payoffs, cooperation ratios and performance box plots. In both test scenarios, each 

unique strategy type has a total of p players. 
 

4.5.1.1 Test A: Performance against ALLC, ALLD and TFT 
 
To assess performance against a common group of opponents, MA, GA and ILS, 

each in a separate milieu, is set to play against ALLC, ALLD and TFT in the same 

tournament. The normalized average generation score per round (AGS) – sum of 
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payoffs in one generation over the total rounds played; and average cooperation 

ratio (ACR) – proportion of total rounds for which cooperation is played; of each 

strategy type are plotted for different test configurations (Figure 4.7). Results are 

averaged over 20 runs to minimize effects of large statistical deviation due to any 

one run. On average, AGS plots showed that all adaptation strategies are robust 

against reciprocals, defectors and cooperators as indicated by their ability to 

outperform deterministic benchmark strategies (Figure 4.7a). Despite the use of 

diverse adaptation mechanisms, both GA and ILS are comparable in their eventual 

performance, except for the path taken to reach convergence. Both AGS and ACR 

for ILS are constant but gradually increasing and decreasing respectively for GA.  

Whilst the GA strategies are evolved with more room for exploration, the 

exploitative nature of ILS accounts for the fact that TFT fares slightly better than 

ALLD with GA but worst off with ILS. The similarities in performance between 

GA and ILS do not, in any way, constraint the performance of MA to the AGS 

attained by either of them. In contrast, inheriting the synergetic blend of evolution 

and IL allows MA to achieve significant score advantage over GA, ILS and the 

benchmark strategies. The existence of this notable score disparity between MA, 

GA and ILS, despite uniformity in their ACRs around 0.4 (Figure 4.7b), illustrates 

that the key to attain good performance depends not so much on the overall extent 

to which a strategy cooperates or defects, but more on its ability to do so at the 

right time, according to the nature of his interacting opponent. 

The strategy specific AGS and ACR plots in Figure 4.8 reaffirm the claims 

made above. The fluctuating dynamics introduced by co-evolutionary learning in 

MA and GA are conspicuously dissimilar from the fairly stable AGS and ACR 

traces of ILS. Inherent consistency or stagnation in the performance of ILS across 
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generations arises due to premature convergence. Exploitation is emphasized over 

exploration as players react spontaneously to the opponent strategies by seeking 

incremental improvement in a certain direction via a common set of IL heuristics. 

Co-evolutionary learning allows more opportunities for players to explore and 

attain continual improvement, but possibly at the expense of a slower learning rate 

and larger dynamics - owing to disparity in AGS of evolving population between 

successive generations. The potential advantage of exploration is clearly depicted 

in Figures 4.8c and d, where GA surpasses ILS eventually, despite starting with a 

lower AGS as a result of random initialization of strategies. The collection of plots 

showed that ILS and GA perform well in different settings. ILS players are able to 

attain higher payoffs than their GA counterparts by being more cooperative with 

players of their own type (Figure 4.8a) and defecting against ALLC (Figure 4.8d). 

Conversely, GA surpasses ILS players by cooperating and defecting to a larger 

extent against TFT and ALLD respectively (Figures 4.8b and c). The sum of each 

score advantage constitutes their equivalence in overall performance (Figure 4.7a). 
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Figure 4.7: (a) AGS and (b) ACR for MA, GA and ILS when each plays with TFT, ALLD and 
ALLC over 20 runs 
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With both IL and evolution employed, MA’s performance outdoes GA and 

ILS for all strategy types. Despite similarity in ACR (Figure 4.7b), MA is able to 

secure a considerable lead over GA and ILS, by cooperating and defecting aptly 

with the right opponents - attaining AGS {2.7, 2.5, 0.95, 5} and ACR {0.8, 0.65, 

0.05, 0} for {itself, TFT, ALLD, ALLC}. In entirety, MA maintains the closest 

performance to a hypothetical ideal player who attains AGS {3, 3, 1, 5} and ACR 

{1, 1, 0, 0} if playing against the same corresponding strategy types in that order.  

On top of the statistical plots, an alternative performance measure to assess 

the goodness of a strategy pertains to the score deviation between members of the 

same population. For example, even when the top player belongs to a particular 

strategy, it is unfair to claim that the strategy is good when there is large score 

variance among players using that strategy; since not everyone is doing as well. 

To have a convincing claim, performance should be measured on the collective 

rather than individual basis. With this yardstick, a strategy is considered good only 

if those playing it are able to perform uniformly well throughout the tournament.  

Performance box plots which depict the distribution of mean, variance and 

minimum AGS within each strategy group are presented across 20 runs (Figure 

4.9). MA has the highest mean AGS followed by GA and ILS – both of which are 

comparable (Figure 4.9a). As compared to ILS, It is evident that the mean AGSs 

of MA and GA vary over a much wider range. The stochasticity and differences in 

the environments across distinct runs signify that the mean performance of an 

evolving population in any run is closely correlated to the settings in that run e.g. 

strategy initialization, sequence of opponents encountered etc. By adhering to a 

fixed set of heuristics, the performance of ILS tends to be more consistent and less 

affected by such stochastic difference across runs. 
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Figure 4.8: Strategy specific AGS and ACR for MA, GA and ILS as each plays with (a) itself, (b) TFT, (c) ALLD and (d) ALLC over 20 runs 
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ILS, however, suffers from a much larger mean score variance among its 

players as compared to GA and MA (Figure 4.9b). A low variance of variance 

implies that the performance disparity across ILS players is consistently large in 

every run. Compared to GA which attains similar mean AGS, a likely reason for 

the large variance is due to the diverse experience of different ILS players as each 

embraces independent IL. Unlike GA players, knowledge acquired by each ILS 

player is not conveyed or shared among other players. Due to lack of information 

exchange, improvement as a group is much harder for ILS as players differ widely 

in both performance and nature of their learnt strategies.  

Evolution reduces score variance in the GA population as weaker strategies 

adopt good traits from stronger ones by means of collective learning and periodic 

exchange of information during each evolution cycle. This ensures that all GA 

players progress and improve on a collective basis. These observations shed new 

light to the advantages of evolution and IL. The former evens performance of a 

population of players within each run; while the latter ensures consistency and 

stable performance across different runs. Fusing the benefits of both mechanisms 

allows MA to attain the highest mean and minimum AGS (Figure 4.9c) without 

compromising its ability to perform well as a cohesive group e.g. attains score 

variance that is comparable to GA.  
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Figure 4.9: Box plots depicting distribution of (a) mean, (b) variance and (c) minimum AGS in the 

MA, GA and ILS populations as each plays with TFT, ALLD and ALLC over 20 runs  
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4.5.1.2 Test B: Performance against seven different benchmark strategies 
 
Extending from test A, MA, GA and ILS, each in a separate tournament, is setup 

to play against the set of all seven strategies {TFT, ALLD, ALLC, PAV, RAND, 

STFT, TFTT}. The complexity in the nature of interaction is increased as more 

strategy types are added. This is reflected by a reduction in the AGS difference 

among various strategy types (Figure 4.10a). It is more difficult for any strategy to 

maintain a large score advantage, on average against other strategies as each is 

required to score well against more opponents of diverse nature. Tradeoffs are 

probably incurred as a strategy that is good against a certain opponent type might 

not be necessarily good against all others. 

It is apparent that the performance of GA and ILS has degraded - no longer 

the best in their respective environments; with the former overtaken by PAV, and 

the latter by both PAV and TFT. AGS of ILS has decreased slightly to 2.44, 

though it still remains relatively stable across generations. Despite starting with a 

lower AGS, the two phase improvement of co-evolutionary learning - exponential 

followed by gradual increase in fitness, allows GA to overtake ILS and TFT in 20 

and 200 generations respectively; only to be marginally surpassed by PAV. This 

shows that evolution; with its ability to explore and adapt on a collective basis, 

allows players to perform well against a fixed pool of opponents that are largely 

deterministic. Fusing IL with evolution enhances the players’ ability to perform 

well against a large pool of unknown strategies. Corrective actions are made in the 

course of game play when evolved strategies are not aligned with the opponent’s 

nature. With the Lamarckian mode of social IL, all the learnt traits and beneficial 

changes are preserved and acquired directly by offspring during evolution, thereby 
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enhancing the rate of co-evolutionary learning. This form of guided evolution 

allows MA to gain a substantial score margin above GA and ILS. 

Inference can be drawn from the traces about the fact that IL predominates 

in the initial stages as it provides evolution with a substantial boost during the 

phase when the MA population is experiencing an exponential improvement in 

fitness. This gives MA an early score advantage to start with. Subsequently, IL 

plays the role of maintaining the population’s overall performance against a fixed 

set of opponents. Further improvement in performance is gradual and largely due 

to evolution, whose effect sets in much later and lasts throughout the generations. 

As MA’s ACR is between GA and ILS (Figure 4.10b), results suggest that being 

too cooperative or defect-oriented does not ensure good performance, but rather 

the ability to strike a balance by cooperating and defecting suitably.  

Comparing the strategy specific AGS and ACR (Figure 4.11) in the current 

setting, it is perceptible that GA tends to perform better relative to ILS on average; 

attaining higher AGS when playing against itself, TFT, PAV, STFT and TFTT. 

This indicates that the GA strategies are fairly good at reciprocating cooperation 

while ILS on the other hand performs better against cooperators, defectors and 

random strategies, due to its exploitative nature. Though co-evolutionary learning 

is a slow process of improvement – players learn on a collective basis only when 

each evolution episode is triggered; the ability to explore constantly is a valuable 

asset to GA as it enables a possibility for further improvement. More importantly, 

it allows cooperation to evolve when players are adapting against a large pool of 

reciprocals; which is less likely to arise for the more exploitative ILS population.  
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Figure 4.10: (a) AGS and (b) ACR for MA, GA and ILS when each plays with TFT, ALLD, ALLC, PAV, RAND, STFT and TFTT over 20 runs 
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Figure 4.11: Strategy specific AGS and ACR for MA, GA and ILS as each plays with (a) itself, (b) 
TFT, (c) ALLD, (d) ALLC, (e) PAV, (f) RAND, (g) STFT and (h) TFTT over 20 runs 

 

A balance between exploration and exploitation allows MA to preserve its 

trend of dominance over both GA and ILS for all strategies except TFTT - to 

which GA replicates strategies that closely resemble the ideal strategy of 

alternating between cooperation and defection. This is probably due to the tradeoff 

involved when IL disrupts the actual usage of evolved strategies by altering them 

from time to time; as strategy fine tuning is most probably triggered when vastly 

different opponent types are encountered in consecutive game play. Save for this 

isolated case, MA essentially still exhibit robust performance.  
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Even so, comparison between the current and previous settings indicates that 

the performance of all adaptation strategies are adversely affected following an 

increase in complexity within the environment e.g. AGS of MA against itself and 

ALLD has decreased despite improvement against TFT. Similarly, performance of 

GA has improved when playing against itself and TFT but declined for ALLD and 

ALLC. ILS does better against ALLC but worst off against itself, TFT and ALLD.  
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Figure 4.12: Box plots depicting distribution of (a) mean, (b) variance and (c) minimum AGS in 
the MA, GA and ILS populations as each plays with 7 benchmark strategies over 20 runs 

 
 

It is clear from the box plots (Figure 4.12) that MA still secures the highest 

mean and minimum AGS, followed by GA then ILS. The advantages of evolution 

actually outweigh those from IL. Variance of mean AGS across the runs remains 

larger for MA and GA (Figure 4.12a). Exploration though beneficial, entails score 

deviation between evolved populations across runs. This highlights the inherent 

stability that IL introduces. Absence of information sharing, however results in 

large score variance among ILS players, which inevitably lowers the performance 

of the population (Figure 4.12b). In all, evolution coupled with IL is crucial for 

stabilizing the performance across a population of strategies and to attain good 

score advantage over the opponents. 
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4.5.2 Case Study 2: Performance against adaptive strategies 
 
The second case study assesses the effectiveness and adaptability of MA, GA and 

ILS as they are set up to play against one another in absence (Test C) and presence 

(Test D) of other benchmark strategies across 20 runs. As strategies are constantly 

adapting to one another, interaction is actually more complex than the previous 

case study where strategies are largely fixed. The relative strategic dominance of 

evolution, IL and ML are evaluated using generation payoffs, cooperation ratios, 

niche counts, learning ratio - proportion of total rounds with IL taking place, box 

plots and statistical tests. In both tests, each unique strategy type has p players. 
 

4.5.2.1 Test C: Relative performance of MA, GA and ILS 
 
To assess relative performance, MA, GA and ILS are configured to play against 

one another within the same tournament, but in the absence of other benchmark 

strategies. Figure 4.13a depicts that MA maintains a sizeable score margin above 

GA and ILS, attaining a mean AGS of ~2.7 and ACR of 0.52 (Figure 4.13b). As 

opposed to previous test cases, ILS – with an AGS of 2.1, took the lead over GA 

in this setup. Since IL tends to be exploitative, defect-oriented traits of ILS are 

clearly still present. Adaptive opponents also results in a substantial amount of 

fluctuation in GA’s ACR as there is a tendency for the best responses to these 

strategies to be constantly shifting until a stable equilibrium is reached after some 

mutual adaptation phase. The huge performance disparity among strategies despite 

similarities in ACR between MA and GA; and uniformity in niche counts of MA, 

GA and ILS reiterates the importance of cooperating and defecting at appropriate 

times (Figure 4.13c). Learning traces showed that evolution disrupts IL only in a 

minor way (Figure 4.13d) - by undoing some of the learnt changes; so much so 

that MA is seen to exhibit similar level of IL as ILS from time to time.  
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Figure 4.13: (a) AGS, (b) ACR, (c) niche count and (d) learning ratio as MA, GA and ILS play 
against one another over 20 runs 

 

 

 

The strategy specific AGS plots (Figure 4.14a) show that both MA and ILS 

are able to attain scores that are close to the mutually rewarding payoff with GA; 

whereas GA is unable to do so vice versa – achieving an AGS that is as low as the 

punishment payoff. This indicates that the efficacy of IL takes precedence over 

evolution for a setup with fixed pool of adaptive strategies. In this context, GA is 

exploited by MA and ILS through their ability to learn, revise strategies and react 

spontaneously to changes amid the evolutionary episodes. This is the prime cause 

for the low performance of GA, other than its inability to cooperate exceptionally 

well with other GA players. The difference in the performance of MA and ILS is 

distinguished by the added ability of MA to cooperate better with players of the 

same type, though both perform just as well against each other. Quantitatively, 

MA attains AGS of nearly 3.0 compared to a mere 1.8 for ILS. Evolution opens 
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up opportunities for exploration and helps to propagate the evolved cooperative 

traits throughout the population via strategy exchange. Both steer the MA players 

towards mutual cooperation with one another.  

Some distinct characteristics of each strategy are evidently shown in the 

compositional ACRs (Figure 4.14b). The fixed nature of the GA strategies amid 

evolutionary episodes is visibly marked by consistent ACR traces for all strategies. 

Absence in dynamism and flexibility in performing strategy revision in the course 

of game play compromises the adaptability of GA extensively, especially when 

strategies are dynamically changing. In contrast, ILS players have the ability to 

discriminate among diverse opponent types and revise their strategies accordingly. 

Whilst players perform better against the adaptive opponents than their evolving 

counterparts, IL tends to channel more efforts towards exploitation, apart from the 

lack of knowledge exchange and performance comparison on a collective basis. 

This result in an independent set of learnt strategies which are largely defect-

oriented against all opponents; indirectly reduces the innate capability to adapt. 

MA population depicts the best performance among the group by exhibiting an 

ability to cooperate well with like players and defect against players of other types.  

As opposed to the previous case study - where the adaptation strategies play 

against deterministic ones, a setup with adaptive strategies favors IL to evolution, 

as reflected by the higher mean AGS of ILS over GA (Figure 4.15a). A mixing of 

evolution and IL still ranks MA as the best in terms of the average and worst 

performances (Figure 4.15c) among GA and IL. Even so, the possible conflicts 

between IL and evolution have led to large variance in mean AGS of MA across 

the runs. Though IL is still marked by large mean score variance among players, 

variance of score disparity across runs is much larger (Figure 4.15b) than before. 
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Lower group variances of MA and GA highlight the importance of collective 

learning and information exchange in ensuring the consistency of intra-group 

performance across runs. The mean score variance among players is particularly 

low when both IL and evolution are used concurrently.   

To reinforce our conclusion that MA performs better than GA and ILS, a 

paired T-Test is conducted between all paired combinations of the three strategies. 

The null hypothesis denotes the proposition that the mean AGS of two matched 

populations are equal while the alternative hypothesis denotes otherwise. The test 

determines how different or alike two strategy populations are. Using a statistical 

significance level of five percent, results of T-Test for strategies in each individual 

run, computed over the span of all simulated runs, confirm that strategies shaped 

independently by evolution, IL or ML are substantially different from one another. 

GA and MA evolve to be similar like ILS in just 1 out of the 20 runs (Table 4.8), 

indicating that any performance differences among the three adaptation strategies 

are indeed significant and non-trivial.  
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Figure 4.14: Strategy specific (a) AGS and (b) ACR for MA, GA and ILS over 20 runs 
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Figure 4.15: Box plots depicting distribution of (a) mean, (b) variance and (c) minimum AGS in 
the MA, GA and ILS populations when each plays against one another over 20 runs 

 
 
 

Table 4.8: Proportion of runs that a row-wise strategy is better, similar and worse than a column-
wise strategy 

 
 Better (>) Similar (≈) Worst (<) 

 MA GA ILS MA GA ILS MA GA ILS 
MA NaN 0.95 0.90 NaN 0.00 0.05 NaN 0.05 0.05 
GA 0.05 NaN 0.05 0.00 NaN 0.05 0.95 NaN 0.90 
ILS 0.05 0.90 NaN 0.05 0.05 NaN 0.90 0.05 NaN 

 
 

4.5.2.2 Test D: Performance of MA, GA and ILS in setup with 10 strategy types 
 
To verify results from test C, performance of MA, GA and ILS are now evaluated 

in the presence of other benchmark strategies. The tournament comprises of MA, 

GA, ILS and seven benchmark strategies. Figure 4.16a shows that MA continues 

to preserve a large score margin above all strategies - duly achieved when IL and 

evolution complement and compensate each other’s strengths and weaknesses. 

Compared to MA’s AGS of 2.7, ILS attains an AGS of 2.4, ranked 3rd on the 

overall - just below TFT and above PAV. In the same order as test C, evolved GA 

strategies, with an AGS of 2.0, are strategically inferior to MA and ILS when 

exposed to both adaptive and deterministic strategies. Compared to test B, large 

fluctuation in GA’s AGS is due to a need to adapt recurrently to the changing MA 

and ILS strategies. As part of the environment, they influence how GA strategies 

evolve and play a contributory role in lowering GA’s performance with respect to 

benchmark strategies. Increase in complexity with the addition of seven strategies 

is indicated by a considerable rise in learning ratios for MA and ILS. Compared 
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against the results of test C – the frequency of learning and relearning increases as 

more diverse strategy types are encountered during game play (Figure 4.16b). 

Possible conflicts between evolution and IL also cause a distinctly higher learning 

ratio for MA over ILS during strategy improvement. 
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Figure 4.16: (a) AGS and (b) learning ratio obtained when MA, GA and ILS play with one another 

over 20 runs 
 

Similarities between results observed in the performance box plots and those 

from test C ascertain the strategic dominance in descending order of MA, ILS and 

GA for a setup with adaptive strategies. Though GA also suffers large variance in 

mean and minimum AGS (Figures 4.17a and c) across runs, players still maintain 

a low intra-run AGS variance, suggesting that evolution is indeed important to 

smooth out score differences across players in the population. Results show that 

MA and ILS are still the dominant sources of influence, as the added benchmark 

strategies only exert trifling impact on GA’s performance. As the role of evolution 

is to adapt strategies to their environment, traits of GA strategies are closely tied 

to the domain of interaction. As varying strategies emerge in distinct runs, diverse 

inter-run performance in the GA population is inevitably entailed.  

ILS attains on average, a consistently huge intra-run score variance among 

players across the runs, suggesting that the ILS players perform differently despite 

learning under the same learning framework. The performance of IL strategies is 
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not significantly different from that of several other strategy types according to the 

results of paired T-test (Table 4.9 and 4.10). With the exception of ALLC and 

RAND, ILS perform in close similarity to strategies {MA, GA, TFT, ALLD, PAV, 

STFT, TFTT} respectively for {10, 15, 60, 15, 40, 5, 20} % of the runs. This huge 

intra-run disparity in performance is due largely to differing learning experiences 

that shape the traits of ILS strategies independently from one another. The 

absence of evolutionary pressure in correcting the large score differential between 

the ILS players presents a likely reason why ML surpasses IL in performance 

uniformity among players in the population. 
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Figure 4.17: Box plots depicting distribution of (a) mean, (b) variance and (c) minimum AGS in 
MA, GA and ILS as each plays in the presence of benchmark strategies over 20 runs 

 

Despite so, the higher mean and minimum AGS of ILS with consistently low 

variance across different runs indicates that IL is crucial for preserving good 

performance in the presence of adaptive strategies (Figure 4.17). An ability to 

perform strategy revision makes players more adaptable to the changing strategies 

of opponents. Observations show that MA attains the highest mean and minimum 

AGS and lowest intra group score variance (Figure 4.17). Variances for the above 

are also middling between GA and ILS. The sets of T-test results further verify the 

significance in the scale of difference across strategy scores. In combination with 

the box plot results, MA is notably different to other strategies at 5% significant 
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level. Overall, the collection of results depicts that ML breeds good strategies with 

fairly consistent performance across runs. 

 

Table 4.9: Proportion of total runs that row-wise strategy is better than column-wise strategy  
 

 MA GA ILS TFT ALLD ALLC PAV RAND STFT TFTT 
MA NaN 1.00 0.90 0.95 0.95 1.00 1.00 1.00 1.00 1.00 
GA 0.00 NaN 0.00 0.00 0.30 1.00 0.10 0.45 0.25 0.20 
ILS 0.00 0.85 NaN 0.15 0.85 1.00 0.35 1.00 0.95 0.65 
TFT 0.05 1.00 0.25 NaN 0.85 1.00 0.45 1.00 1.00 0.95 

ALLD 0.00 0.65 0.00 0.15 NaN 1.00 0.05 0.90 0.50 0.20 
ALLC 0.00 0.00 0.00 0.00 0.00 NaN 0.00 0.00 0.00 0.00 
PAV 0.00 0.70 0.25 0.35 0.80 1.00 NaN 1.00 0.85 0.50 

RAND 0.00 0.50 0.00 0.00 0.10 1.00 0.00 NaN 0.00 0.00 
STFT 0.00 0.70 0.00 0.00 0.50 1.00 0.10 0.95 NaN 0.15 
TFTT 0.00 0.80 0.15 0.05 0.80 1.00 0.20 1.00 0.85 NaN 

 

 

Table 4.10: Proportion of total runs that two strategies are similar according to paired T-test 
 

 MA GA ILS TFT ALLD ALLC PAV RAND STFT TFTT 
MA NaN 0.00 0.10 0.00 0.05 0.00 0.00 0.00 0.00 0.00 
GA 0.00 NaN 0.15 0.00 0.05 0.00 0.20 0.05 0.05 0.00 
ILS 0.10 0.15 NaN 0.60 0.15 0.00 0.40 0.00 0.05 0.20 
TFT 0.00 0.00 0.60 NaN 0.00 0.00 0.20 0.00 0.00 0.00 

ALLD 0.05 0.05 0.15 0.00 NaN 0.00 0.15 0.00 0.00 0.00 
ALLC 0.00 0.00 0.00 0.00 0.00 NaN 0.00 0.00 0.00 0.00 
PAV 0.00 0.20 0.40 0.20 0.15 0.00 NaN 0.00 0.05 0.30 

RAND 0.00 0.05 0.00 0.00 0.00 0.00 0.00 NaN 0.05 0.00 
STFT 0.00 0.05 0.05 0.00 0.00 0.00 0.05 0.05 NaN 0.00 
TFTT 0.00 0.00 0.20 0.00 0.00 0.00 0.30 0.00 0.00 NaN 

 

 

 
 

 

In all, test D validates that MA players with the ability to evolve and learn at 

the same time, indeed perform better than GA, ILS and all other strategy types. 

Problems pertaining to the inability of GA players to cope with the increasing 

complexity of the environment and large score variance among ILS players have 

been aptly addressed by the synergy between evolution and incremental learning.  
 

4.5.3 Case Study 3: Performance Assessment in Dynamic Environment 
 
After assessing the performance of MA, GA and ILS in setups with a fixed pool of 

deterministic and random benchmark strategies in case study 1 and also adaptive 

strategies - case study 2, the final case study investigates the performance profile 

which arises when strategies are subjected to opponents that resume varying traits 

and characteristics constantly. The dynamic nature of the environment constitutes 

a good testing ground to validate whether strategies are resilient enough to cope 
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well on the whole. Relative adaptability of MA, GA and ILS in a dynamic setting 

can then be aptly addressed. In this study, MA, GA and ILS are setup to play with 

an opponent that changes its type probabilistically after every 1, 10-20, 100-150 

generations. The sequence of change is made identical for MA, GA and ILS so as 

to ensure the existence of a common platform for comparison of results. Similar to 

MA, GA and ILS, the pool of dynamic opponents has p players. 
 

4.5.3.1 Test E: Performance of MA, GA and ILS against dynamic opponents  
 
From Figure 4.18a, the average performance of GA and ILS are actually on par 

despite the fact that GA does not have the luxury of altering the strategies in the 

course of each round robin tournament. MA’s AGS is consistently higher than GA 

or ILS, demonstrating its superior adaptability in the dynamic setting. In order of 

increasing duration length between strategy changes, the trend of progression in 

AGS varies from rapidly fluctuating profile – when distinct strategy types are 

encountered every generation, to one that undergoes mild variation – when the 

opponent resume a certain strategy type for at least 100 generations. Complexity 

in the setup is correlated with an increase in the frequency of change in opponent 

strategy type and degree where IL is embraced (Figure 4.18b). 

Zooming into a randomly selected run where the opponent changes every 

50-100 generations, it is clear that the synergic blend of evolution and IL still 

confers the best performance, followed by IL and evolution (Figure 4.19a). As 

opposed to a fixed pool of opponents, good performance in the current setup 

comes with the ability to react spontaneously and appropriately to drastic changes 

in the nature of the environment. The poor adaptability of GA is due largely to a 

slow improvement rate and reaction of evolving players to the diverse nature of 

changing opponent types. In the absence of a guiding force like IL, it is unlikely 



 

 118

that evolution will find the optimum strategy to the changed opponent type in a 

short time amidst the trial and error search process. Innate ability to explore and 

adapt closely to changes in the environment across generations – as illustrated by 

a more fluctuating AGS profile, however, allows GA to surpass ILS when playing 

against some opponent types. Poor adaptability of ILS is due to onset of premature 

convergence and over-exploitation. Disparity in performance of IL players also 

contributes, in large parts, to the low performance of the population. Its ability to 

adjust dynamically to changing opponents through double loop IL allows players 

to assume strategies that are vastly different from those acquired when playing 

against previous types. This, in a way, makes them less dependent on opponents' 

traits and ensures smooth adjustments and performance consistency even when the 

opponent population transits between two widely different strategy types. 

On the whole, MA depicts the most promising results by being able to attain 

full cooperation - AGS of 3.0, with players of its own type (Figure 4.19b) and 

performing best against all distinct opponent types that appeared in succession 

(Figure 4.19c). In summary, IL allows MA players to reevaluate their performance 

constantly during the game play. Any drastic change in the opponent’s nature is 

captured by double loop IL, which introduces adequate variation to allow players 

to derive significantly different strategy traits, even when many have acquired 

considerably similar genotypes after numerous evolution cycles. As compared to 

random mutation in GA, IL makes changes more explicit. The search space to 

hunt for better strategies is expanded via the varying learning experiences of each 

MA player. Evolutionary pressure then comes into play to allow weaker players to 

adopt traits from those which have developed good strategies against the new 

opponent population. As long as a sizeable portion of MA population has acquired 
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the right perception about the desired response against the opponent strategy, this 

information is propagated quickly to other members of the community and overall 

strategy traits of the entire population are adjusted almost instantly. In summary, 

evolution supplements IL to improve the performance of each player over time, 

and eventually helps the entire MA population to adapt well on a collective basis. 
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Figure 4.18: (a) AGS and (b) learning ratio for MA, GA and ILS as each plays with an opponent 
that changes dynamically every 1, 10-20 and 100-150 generations 
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Figure 4.19: AGS attained as MA, GA and ILS play separately against (a) itself and opponent, (b) 
itself and (c) the opponent, when opponent’s nature changes every 50-100 generations 

4.6 Summary 
 
In this chapter, the performance and adaptability of evolutionary, learning and 

memetic strategies are assessed in various IPD settings. Evolutionary strategies 
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are realized by GA based on co-evolutionary principles and learning strategies by 

a double-loop incremental learning scheme, ILS that incorporates classification, 

probabilistic update of strategies and a feedback learning mechanism. A memetic 

adaptation framework, MA is also developed to harness the synergy of evolution 

and learning. In this framework, learning assists the evolving strategies to acquire 

good strategy traits and react spontaneously to changes in the environment, while 

evolution provides an avenue for knowledge exchange between players so that the 

disparity in performance between learning strategies is minimized.  

The comparative case studies that are conducted for different environmental 

conditions showed that the players adapted by MA exhibit superior performance 

relative to GA and ILS. GA is found to be slow to react to environment changes 

and its performance also deteriorates against adaptive opponents. ILS, on the other 

hand, suffers from diverse learning experiences among individuals and a tendency 

to over-exploit which undermine the performance of the entire population. The 

combination of incremental learning and evolution, however, allows MA players 

to balance the tasks of exploration and exploitation of diverse strategies while 

preserving its trend of dominance consistently. It is gathered from the chapter that 

both incremental learning and evolution are essential elements of adaptation in the 

IPD game. Their concurrent interaction is crucial for the formation of strategies 

that will adapt and thrive well in complex, dynamic environments.  
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Chapter 5 

Modeling Civil Violence 
 

After verifying the ability of CEAs to evolve competent strategies in both poker 

and IPD, and give insights about the respective problems via meaningful analysis, 

we shift our attention to model and analyze interesting social phenomenon. Civil 

violence, in particular, is widely used in the context of modern society to describe 

associated acts of violation and destruction, which are carried out as a sign of 

defiance against a central authority or between opposing groups. It is manifested 

in many forms and categorized according to the nature, degree of involvement and 

severity of conflict. These can range from small-scale riots and demonstrations to 

large-scale revolutions such as civil and ethnic wars. Researchers have sought to 

interpret the causes and effects from various perspectives. In social conflict theory 

[158], sociologists consider unrest as the result of socio-economic instability [159]. 

Economists adopt an opportunist’s viewpoint by relating rebellion to profits [160]. 

Political scientists question the motives and attribute upheavals as the result of 

resource or political deprivation [161], [162].  

The perspective of associating civil violence with pent-up grievances has 

varied widely. Collier and Hoeffler [163] have looked at possible economic causes 

while Regan and Norton [164] have regarded it as a function of mass mobilization. 

Substantive differences are also identified in both ethnic and non-ethnic motivated 

violence [165], [166]. Since “each war is as different as the society producing it” 

[167], causes should be analyzed using the nature of conflict. Despite compelling 

differences in views, the underlying structure of conflict remains similar with 

respect to widespread, collective, random movement of crowds and interactions 
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between people [168]. Empirical models of social conflict in the form of riot 

games [169], game theoretic models [170], [171] and social networks - simulated 

to offer statistical, spatial-temporal analysis [172] of conflict and its role playing 

dynamics [173] in crowds, generate emergent social phenomena such as behavior 

clustering [174], mass-mobilization [175] and massive conflicts [159], which are 

indisputably a reflection of real-life conflicts. Although these models provide a 

good avenue to study strategies for managing civil violence [176], none actually 

accounted for the autonomous behavioral evolution of agents, which is consistent 

with the fact that humans learn and adapt.  

The chapter focuses on the design and development of a spatial Evolutionary 

Multi-Agent Social Network (EMASN) to simulate and study the macroscopic-

behavioral dynamics of civil violence, as a result of microscopic game-theoretic 

interactions between goal-oriented agents in various situational settings. Inspired 

by evolutionary computation, agents modeled from multi-disciplinary perspectives 

[177] have their strategies evolve over time via co-evolution [64], [178], [179] and 

learning. Experimental results reveal some fascinating emergent phenomena and 

interesting patterns of agent movement and autonomous behavioral development 

[180]. The results analysis establishes micro-macro [159], [181] interconnections 

between the attributes of conflict and provides new insights into the rich dynamics 

which arise from unrest. Collectively, the EMASN framework facilitates the study 

of autonomous emergent behavior and serves as an avenue to gain a more holistic 

understanding of the fundamental nature of civil violence. 

The organization of this chapter is as follows: section 5.1 presents a short 

literature review of existing works and the general framework of EMASN. Section 

5.2 introduces the model specifications. Section 5.3 focuses on the discussion of 



 

 123

the evolutionary and learning mechanisms that drive the autonomous behavioral 

changes in agents as they move and interact in the model. Section 5.4 evaluates 

the series of simulation results based on different model extensions to analyze the 

effects of various parameters on the behavioral response of the model. Section 5.5 

presents a broad summary of discussion, highlighting the significant results while 

Section 5.6 concludes the paper with an overview and some comments on areas 

where future work can be embarked on. 

 

5.1 Evolutionary multi-agent social network 
 

5.1.1 Overview 
 
The popularization of game theory saw a widespread usage of agent-based [177] 

approaches to model human entities as rational utility maximizers. Applications 

can range from the study of cooperation in the IPD to the modeling of investors’ 

behavior in stock markets [182]. There is also a paradigm shift from the traditional 

top-down approach to a bottom-up approach [183] of studying emergent system 

behavior through the collective microscopic interaction among individual agents 

within complex multi-agent systems.  

Numerous empirical-based computer simulations have been constructed over 

the years to model complex dynamic systems [184], [185] across many disciplines. 

The procedure involves decomposing complex verbal theories and then translating 

them into semi-mathematical equations which are integrated systematically into 

the model design. Developed models are simulated over time to create meaningful 

trends and patterns for the purpose of analysis and drawing of conclusions. The 

same approach was also taken by Epstein [173] to model decentralized rebellion 

against a central authority and communal violence between two ethnic groups. By 
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virtue of its simplicity, the elegant agent-based computational model was able to 

replicate salient features of violence dynamics through simple empirical rules and 

equations. The MANA model [176] then extended Epstein’s model by introducing 

specific movement strategies which were aimed at correcting the purely random 

agent movement. Situngkir [159] also modeled the phenomena of massive conflict 

by invoking its analogy with the macro-micro link in Sociological Theory. 
 

5.1.2 EMASN Framework 
 
Inspired by existing models [173], [175], [176], and concepts in EGT [36], [186], 

the proposed EMASN framework consists of a civil violence model (CVM) and 

an evolutionary engine (EE) (Figure 5.1). 

 

 

                      : Behavioral Evolution
                          : Learning

Evolutionary
Engine

Civil Violence Model
(“Artificial Society”)

Environment

Empirical
Rules

Agents  

 
 

 
Figure 5.1: Framework of the Evolutionary Multi-Agent Social Network  

 

As agents interact game theoretically, their strategies are evolved via independent 

learning and collective co-evolution using a CEA. Overall, EMASN attempts to 

model events of conflict by integrating the complexity of human behavior and 

random nature of crowd movement. Emphasis is placed on the modeling of agents 

and their interactions through behavioral rules at the microscopic-level, so as to 
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recreate the macroscopic-emergent outcomes that agree well with contemporary 

views. Descriptions of components and functionalities of the CVM and EE will be 

provided in the subsequent sections. 
 

5.1.3 Game theoretic interaction 
 
The CVM models interaction using features of a spatial IPD game [89], [187]. 

Though simplistic, this approach deals with complex issues of decision-making 

and self-interest [89], where the underlying concepts are subtle but far-reaching. 

Analogy between the CVM and IPD frameworks can reveal interesting dynamics 

on how agents maximize their benefits in view of situational changes [188]. 

 

1) General game play: A total of three different agent types are specified in the 

model. They are specified and denoted as follows: 

 

• Quiescent Civilians -  

• Activists -  

• Cops -  

 

At any time instance, movement is subjected to the spatial constraint of a 2D-Grid 

and only cops and activists are allowed to interact. Each agent establishes game 

play with every other opposing agent (e.g. cops and activists) within the vision 

radius in a pair-wise manner. No interaction will take place between agents of the 

same type and isolated agents (Figure 5.2).  

 

 

 

 

 

 

 
(a) (b) (c) 

 

Figure 5.2: No interaction between (a) isolated agents, (b) like agents and (c) quiescent and other 
agents. 
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2) Payoff matrix: In view of the possible strength differences between opposing 

agents in any spatial neighborhood, the CVM adopts a payoff scheme that varies 

in accordance to the situation of encounter. A set of three payoff matrices which 

correspond to the scenarios where the number of cops is equal to, more than or 

less than the activists are shown respectively (Table 5.1a-c). Each player has the 

option to Cooperate or Defect. An analogy is drawn between the meaning of 

Cooperate and Defect in the IPD and CVM. This differs for each agent type. 

Adapting from the MANA model [176], activists cooperate by not challenging 

cops, revolting aggressively or instigating civilians to revolt, and accept peaceful 

settlements; and defect otherwise. Cops cooperate to protect civilians and defect to 

pursue rebels. Each group has conflicting goals that involve tradeoffs. Activists 

aim to create havoc and garner support from the quiescent civilians to fuel the 

ongoing unrest while avoiding arrest. On the contrary, cops aim to maintain order 

within the regime while fulfilling their role as protectors by minimizing casualties.  

 
Table 5.1: Payoff matrix when number of cops is (a) equal to, (b) greater than or (c) less than the 

activists in sight 
 

                                                 Activists  
  COOPERATE DEFECT 

COOPERATE 3,3 0,5 Cops DEFECT 5,0 1,1 
(a) 

 
                                                 Activists  

  COOPERATE DEFECT 
COOPERATE 1,4 2,2 Cops DEFECT 3,3 4,1 

(b) 
 

                                                Activists  
  COOPERATE DEFECT 

COOPERATE 4,1 3,3 Cops DEFECT 2,2 1,4 
(c) 

 
3) Rationale for different payoff: The matrices are constructed based on the goal 

of each agent group to maximize its benefit and minimize casualties in different 
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situations of contact. Consider the scenario when cops outnumber activists in a 

particular spatial area of interaction.  

 

a. If both groups Defect, cops will gain the upper-hand due to their superiority in 

numbers. Their successful intervention to stem the unrest should be rewarded 

the temptation payoff (T). Activists, due to huge casualties should be rewarded 

the sucker payoff (S). 
  

b.  If both groups cooperate, payoffs reverse in favor of the activists as cops have 

missed a good opportunity to make arrest while deciding to protect the general 

population. For the activists, Cooperate paid off as they successfully avoided 

conflict with the massive cop population.  
 

c.  If cops Cooperate and activists Defect, both groups get the Punishment payoff 

(P) as cops should have Defect to confront activists while activists should have 

Cooperate in order to avoid challenging the domineering law enforcers openly 

and inviting casualties.  
 

d.  If cops Defect and activists Cooperate, a logical equilibrium is attained as the 

majority exerts dominance over the minority whilst the latter avoids direct 

conflict. This is the best situation as the benefits of both groups are accounted, 

justifying reward payoff (R) for both.  

 

Assuming symmetric game-play, the above settings are considered in the reverse 

manner when activists outnumber cops. Despite the addition of two new matrices 

to account for strength disparity between cops and activists, the goal of agents in 

the CVM is similar to players in the IPD as each seeks to maximize the eventual 

payoffs through its interaction in different setups. 
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5.2 Civil violence model 
 
The CVM consists of multiple agents interacting and coexisting in an artificial 

society; a computational structure where new social theories can be verified or 

developed [189]. It is composed of three distinct inherent components: The agents, 

environment and a set of empirical rules. 
 

5.2.1 Agents 
 
Agents form the crux of the CVM. Accurate modeling of their attributes is crucial 

for a close-life depiction of human behavior in situations of civil upheaval. In the 

CVM, the quiescent civilians are neutral members of the community who thrive 

amidst unrest and hardship. They pose no danger to the central authority but do 

respond to internal and external stimuli from time to time. They remain peaceful 

and law-abiding but turn active if conditions are favorable to express their anger 

and frustration publicly. Cops maintain order in the regime by arresting activists 

and play a crucial role in determining the success of violence control strategies. 

 

1) Basic attributes: In line with Berdal and Malone [190], CVM models grievance 

and greed [191] as the two idealized components which collectively measure the 

tendency of joining the revolt. Apart from the heterogeneous perceived hardship 

[173] that is modeled endogenously as Hendo = U(0,1), the definition of hardship is 

extended to account for its correlation with the level of unrest via an exogenous, 

homogenous attribute. The rationale is that civilians face the added burden and 

psychological trauma of fear due to looting, pillaging and repression from the 

authority in an effort to root out potential rebels. This is mathematically expressed: 

 

 

 

exo
AH

A A
Σ

Σ Σ

=
+

 (5.1)
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where AΣ  and AΣ  refer to the number of activists and quiescent civilians present in 

the CVM. The overall hardship experienced by a typical civilian is formulated as: 

 

0.5 0.5overall endo exoH H H= ⋅ + ⋅  (5.2)
 

Legitimacy L = U(0,1) refers to the perceived legality of the central authority [173] 

and is uniform for all agents. Grievance (G) is defined as a function of Hoverall and 

L in the form shown in (5.3) where Hexo accounts for the possible changes in G as 

the condition of unrest changes from time to time. 

 

)1( LHG overall −⋅=  (5.3)
 

 

Greed (0,1)Gr U= is the perceived opportunity to gain wealth. In economic 

perspectives, Gr will be much dependent on how lucrative the revolt is. When 

viewed psychologically, a greedy agent will have a high tendency to rebel even if 

opportunistic gain is small. According to Collier and Hoeffler [191], G triggers a 

revolt while Gr sustains it. Tendency to revolt (Rev) is formulated as 

 

Re (1 )f fv T G T Gr= ⋅ + − ⋅  (5.4) 
 

 

where [0,1]fT = , as shown in (5.5) is a time factor that is inversely related to the 

active duration adT of a rebel: 

 
 

exp( 0.5 )f adT T= − ⋅  (5.5) 
 

 

 

Besides G and Gr, the decision to revolt depends on the net risk that an 

agent is exposed to. This is modeled from three dimensions – the inclination to 

take risk, probability of getting caught and the jail term to serve upon arrest. Risk 

aversion, RA = U(0,1) is an agent’s willingness and capacity to subject itself to 
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danger. Likelihood of arrest, Pa depends on the agent’s vision radius, VR(Ag) and 

the ratio of cops to activists within sight of an 8-neighbor radius (Figure 5.3).  

 

S

EW

NENW

SESW

N

 
 

Figure 5.3: 8-Directional Agent Vision Radius 
 

 

Information is local in the CVM and decisions regarding revolt, direction to 

move etc are governed by information available within the agent’s field of vision. 

Formally, Pa is given by 

 

( )
( )

21 exp (2 ( ) 1)
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a b
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A C
P k VR Ag
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⎛ ⎞
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( )VR pA C , ( )VRA A  and 
( )
( )

2(2 ( ) 1)
VR p

VR

A C
VR Ag

A A
⋅ ⋅ +  denote the number of cops, 

activists and cop-to-activist ratio within the vision radius. kb introduces a bias such 

that cops have 90% of making a successful arrest in a one-one situation with an 

activist. Jail term, J is defined as the number of time episodes that an agent is put 

out of action and is expressed as 
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(5.8)

 

 

 

Jmax is the maximum jail penalty, JH is the number of times an agent is caught 

formerly while JHmax is the maximum number of times tolerable for the repetition 
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of crime in society’s view. In a variable jail term formulation, the fixed part is the 

minimum sentence while the variable part accounts for the increasing penalty for 

repeated offenders. Imax is a large number denoting life imprisonment. In a fixed 

jail term formulation, J is constant. The net risk N, perceived by an agent with an 

intention to revolt is modeled by (5.9) where Jα determines the deterrent effect of 

the jail component.  

 

max
J

A aN R P J α= ⋅ ⋅  (5.9)
 

 

2) Game theoretic attributes: Apart from basic attributes, a different set of traits is 

set out in Table 5.2 to account for the results of game-theoretic interactions.  

 

Table 5.2: Summary of Game Theoretic Agent Attributes  
 

Parameters Description 
Agstrategy 14-bit binary string that encodes the behavior of an agent. 
Payacc Effectiveness of an agent strategy over the course of simulation. 
Paygen Effectiveness of an agent strategy over the previous generation. 
GHacc Number of games played over the course of simulation. 
GHgen Number of games played over the previous generation. 
GSlost Number of lost game sets over the last generation. 
Rco Ratio of cooperative games to the total games played.  
Rdef Ratio of defection games to the total games played. 
SH Number of “successful trials” accumulated over the previous generation.  
FH Number of “unsuccessful trials” accumulated over the previous generation.  

 

5.2.2 Empirical rules 
 
Empirical rules govern agent interaction and ensure proper functioning of CVM. 

They are crucial to the formation of desired simulation outcomes that depict close 

replicas of unrest vividly described in numerous literatures on revolution and wars.  

 

1) State Transition Rule: Civilians turn active when NAI = Rev - N is larger than 

a predefined threshold (Athreshold) and stay quiescent otherwise. A summary of state 

transitions is presented (Table 5.3). Cops are assumed to be loyal to the cause of 
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the regime and insusceptible to any form of bribery e.g. state transitions will only 

occur between activists and quiescent civilians. 

 

Table 5.3: Summary of State Transition 
 

Current State NAI - AT State Transition 
Quiescent > 0 Quiescent  Active 
Quiescent ≤ 0 Quiescent  Quiescent 

Active > 0  Active  Active 
Active ≤ 0  Active  Quiescent 

 

2) Jail Release Rule: In contrast to the MANA model [176] where jailed agents 

revert to the active state after release, the CVM allows transition to the quiescent 

or active state with a certain probability. This takes into account the possible onset 

of rehabilitation – high chances of converting jailed agents back to law-abiding 

citizens and also the curse of the minority – a low possibility that persistent rebels 

will continue in their old ways upon release (Figure 5.4). 

 

 
Quiescent Active Jailed

Prevert = 0.1Pconvert = 0.9

 
 

Figure 5.4: State transition flow diagram between different agent states 
 

 

3) Movement Rule: The movement of agents between consecutive episodes is 

modeled using a set of simple update rules, such that the position of each agent in 

the next time episode is determined by its current position and existing states of all 

cells within its vision radius. In particular, these rules are adapted from John 

Conway’s Game of Life, which states that a cell with one or no neighbor dies of 

loneliness while one with four or more neighbors dies due to overpopulation. Only 

those with two or three neighbors survive. By treating dynamic agents in the CVM 

as subjects of concern e.g. cells; and drawing an analogy between loneliness and 

isolation as well as overpopulation and overcrowding, simple rules (Table 5.4) are 
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devised to govern movement on the grid. The underlying rationale is that isolated 

agents are likely targets of attack by opposing agents and they prefer to move to 

safer spots if like agents in the vicinity is low. Likewise, densely packed agents 

tend to move towards sparsely filled regions to avoid the danger of losing sight of 

the situation. The destination cell that an agent moves to is randomly chosen from 

the set of vacant ones that are adjacent to it. On top of these basic rules, each 

agent type also has its own preference movement strategies as shown in Table 5.5. 

 

Table 5.4: Basic movement rules in the CVM 
 

Movement Rules Description 

Rule 1 An agent will remain in its original position at the next time instance if the 
number of neighboring agents within its vision radius is 2, 3 or 8.    

Rule 2 An agent will move to a new position at the next time instance if the 
number of neighboring agents within its vision radius is 1, 4, 5, 6 or 7. 

 
 

Table 5.5: Preference movement strategies for different agent types 
 

Movement strategies Agent Type Description 

Avoid the Cops Activists Activists attempt to minimize contact with cops in 
order to lower the chances of arrest. 

Stay if favorable Activists Activists prefer to stay put rather than venture out 
into the unknowns if the current location is safe.  

Eradicate the Civilians Activists Activists take initiative to root out and eradicate any 
unarmed civilian in sight. 

Pursue Activists Cops Cops take initiative to arrest activists. 

Protect Civilians Cops Cops take initiative to protect the general population 
from the threats of activists. 

Run from Activists Quiescent Quiescent civilians run for their lives when activists 
are on a killing spree. 

 
4) Arrest Rule: An arrest is made at any episode when a cop wins an IPD game 

set against an activist in the neighborhood of interaction. Taking into account the 

onset of group effect, cops will have higher chances of apprehending activists if 

they are pursuing the same target.  
 

5.2.3 Environment 
 
The environment defines an N x M space where all agents move and interact. 

Coupled with global and situational parameters, it allows access to information 
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about the state of unrest and an overview of the spatial interaction between agents 

on both global and local scales. 

 

5.3 Evolutionary Engine 
 
Following the CVM formulation, it is crucial to devise channels for agents to 

better their performance in the stochastic model. This is achieved by improving 

their strategies over time through evolution and learning. The two processes allow 

agents to shape their behaviors and react aptly to unforeseen circumstances. This 

ability gives rise to interesting behavioral dynamics and provides insights into the 

autonomous behavioral development of different agent types. 
 

5.3.1 Evolution of Agent Behavior 
 
At the start of each generation, CVM passes agents to the EE where co-evolution 

of strategies takes place (Figure 5.5). Groups are evolved independently by the EE 

(Figure 5.6). This framework has since been used to implement search heuristics 

[192], generate pursuit and evasion behavior [193], analyze population dynamics 

[194] and study cooperation in EGT models [195], [196]. In recent literatures, this 

approach gained further significance via a finding where co-evolution improves 

computational performance in fitness prediction [197] as well as a successful 

attempt to measure generalization performance in co-evolutionary learning [198]. 

In the proposed model, co-evolution is conceptualized in analogy to the exchange 

of ideas, in reality, between members of the same group. Through the multi-

directional flow of information, agents with weaker strategies learn from stronger 

ones by adopting some of their better traits. Overall fitness of each group is raised 

as more competent strategies are discovered with each elapsed generation. This 
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added dimension of realism will enable the analysis of interesting outcomes in 

agent interaction across different scenarios as strategies co-evolve over time.  
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Figure 5.5: Relationship between EE and CVM 
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Figure 5.6:  Co-evolution of different agent groups 

 

 

1) Chromosomal Representation: Each agent is defined by a 14-bit binary string 

which encodes the strategy bits (“1” – Cooperate or “0” – Defect) used in different 

situations (Figure 5.7). The next move will be decided based on previous moves 

made by both the agent and his opponent. In the absence of move history, this is 

determined by bits encoding initial conditions. 
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Figure 5.7: Binary encoded genotype for agent strategy 
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2) Fitness Representation: Effectiveness or fitness of each strategy is defined in 

terms of the normalized payoff per game over the previous generation. This is 

mathematically given by (5.10). To ensure that fitness evaluation is meaningful, 

only agents that have played at least one game set in the previous generation are 

included in the respective sub-populations for evolution.  

 

gen
gen

gen

Pay
Pay

GH
=  

 
(5.10) 

 

3) Elitism: Elitism is employed to ensure that strategies that perform substantially 

well are adopted by agents in the next generation. The average generation fitness 

(AGF) of each population is used as the level for implementing elitism. This is 

given mathematically in (5.11). Strategies with payoffs larger than AGF are given 

priority for reuse so that the population can continue to benefit from them in the 

next generation. These above average strategies serve as a benchmark for others to 

learn and evaluate themselves with. 
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4) Selection: The EE performs a dual-stage selection. The first stage uses binary 

tournament selection without replacement to avoid multiple selection of a strategy 

at expense of others. The second stage is analogous to a local search operation 

where agents are selected arbitrarily and subjected to slight perturbation [199] to 

allow preservation of good genes of inferior strategies.  

 

5) Genetic Operators: Uniform crossover is performed to simulate knowledge 

exchange between strategies which are propagating to the next generation. This 

ensures that desired traits of good strategies are passed on to the offspring in an 
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attempt to create even better strategies in the subsequent generations. Binary bit-

flip mutation is also implemented to introduce diversity into the population.   

 

6) Algorithmic flow: The new offspring population will constitute a collection of 

evolved strategies that will be used in game play as agents move and interact over 

the next generation. A generalized algorithmic workflow of the evolution process 

is shown in Figure 5.8.  
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Figure 5.8: Workflow for evolution of agent strategies 
 

 

5.3.2 Learning 
 
Learning is a form of local search operation that is carried out by agents to better 

their performance based on some form of heuristics which uses domain-specific 

information available on hand. In contrast to evolution, learning is performed 

independently without exchange of information.   

 

1) Significance of Learning: In the absence of information sharing, man is a good 

instance of an entity that is capable of acquiring knowledge and making complex, 

independent decisions. In a dynamic CVM, the analogy applies as agents learn on 
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the go and react to unforeseen circumstances by altering their strategies on a 

timely basis. Learning is typically performed based on partial memory [150] of 

past experiences. In addition to performance enhancement, learning also facilitates 

the autonomous behavioral development of agents and brings out the interesting 

dynamics that will be insightful to the study of human behavior in different setups. 

 

2) Design of Learning Heuristics: In the absence of information exchange and 

collaboration, agents are simply entities which are required to learn independently 

by making use of information they perceive. In view of the variegated situations 

encountered by agents, diverse learning experiences will inevitably be entailed. 

Good learning strategies in general, are those which respond and adapt well to 

opponent strategies, and in the process achieve maximization of overall payoff. 

The basis of learning adopted in the paper is devised by keeping a record of the 

number of successful and unsuccessful trials accumulated by all strategy bits in 

the course of game play. This is determined by a set of three performance matrices 

which corresponds to the three payoff matrices used in the CVM (Tables 5.6–5.8).  

 

Table 5.6: Performance Matrix when number of agents is equal to opposing agents in sight 
 

Player 2 
 

Player 1 
 

 
Table 5.7: Performance Matrix when number of agents outnumbers opposing agents in sight 

 

Player 2 
 

Player 1 
 

 
Table 5.8: Performance Matrix when opposing agents outnumbers number of agents in sight 

 

Player 2 
 

Player 1 
 

 COOPERATE DEFECT 
COOPERATE Success Failure 

DEFECT Success Failure 

 COOPERATE DEFECT 
COOPERATE Failure Failure 

DEFECT Success Success 

 COOPERATE DEFECT 
COOPERATE Success Success 

DEFECT Failure Failure 
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The heuristics are conceptualized based on Pavlovian Learning, where T is 

considered “success” while S is considered “failure”. R and P are considered as 

“success” and “failure” respectively. The number of “success” and “failure” trials 

indicates whether a strategy bit should be revised. Intuitively, better strategy bits 

have larger “success” than “failure” count while the weaker ones have a larger 

“failure” count. Bits which are not used have zero for both counts. The search 

process only revises a strategy bit if the following criterion is met. 

 

10 lostSH FH GS< + ⋅  (5.12)
 

The number of Lost Game Sets (GSlost) is introduced as a means to penalize the 

strategies which are losing consistently. This ensures that the strong and desirable 

strategy bits are likely to remain intact and weaker ones are susceptible to change. 

Learning is performed incrementally in an iterated game set after every k games, 

where k is a variable learning parameter. In general, a lower k value results in a 

larger number of learning cycles and higher learning rate. For simplicity, k is fixed 

in CVM. Incremental learning is used to correct undesirable traits of the current 

strategy and allows better adaptation to the environment of opponent strategies. 

 

5.4 Simulation results 
 
Simulation runs are carried out using Microsoft Visual C++. A summary of the 

parameter values used is depicted in Table 5.9. In all runs, size of 2D environment 

is fixed to ensure uniformity in the result analysis across different case studies. A 

mean of 200 games is played in a pair-wise manner between any two opposing 

agents which are one square radius from each other at any instance. Simulation 

duration is set at 1000 or 5000 episodes while the number of agents and initial 
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population composition vary according to test scenarios. All agents have a vision 

radius of one and quiescent civilians turn active beyond a threshold of 0.2. On jail 

release, agents turn quiescent and active with probabilities 0.9 and 0.1 respectively.  

Evolution is triggered every 5 episodes and learning every 20 games. Model 

extensions of varying complexity are introduced in the following sections to track 

behavioral development in each agent population. Due to the stochastic nature of 

CVM that arises from the disparity in interaction pattern of agents over different 

episodes, it is crucial to conduct several simulation runs to obtain more consistent 

depiction of the outcome. This serves to minimize stochastic variation and verify 

consistency of any behavioral trends that are observed across the runs.  

 

Table 5.9: List of parameter values used in the simulation runs 
 
 

CVM  Parameters: Values 
Size of 2D Grid, Szgrid 20 x 20 squares 

No. of games in an iterated game set, α 200 
Total number of simulation time episodes, Tmax 1000 or 5000 

Total number of agents, AgΣ  variable 

Agent vision radius, VR(Ag) 1 square radius 
Active Threshold, Athreshold 0.2 

Probability of successful rehabilitation, Pconvert 0.9 
Probability of reverting back to active state, Prevert 0.1 

Tournament selection size, Sztournament 2 
Perturbation probability, Pperturb 0.02 

Crossover rate, Pcrossover 0.8 
Mutation rate, Pmutate 0.05 

No. of time episodes per evolution cycle, g 5 
No. of games played per learning cycle, k 20 

 

5.4.1 Basic CVM Dynamics 
 
This section validates the correctness of the CVM by comparing its basic response 

with the dynamics that were observed in Epstein’s model. This is paramount as it 

lays the foundation for the development of more complex extensions and serves as 

a standard to which the results in subsequent models can be compared with. 
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Simulations are performed when number of cops, NC = 60 and J =100 for a 

civilian population of 180. Agents are interacting vis-à-vis a game theoretic setup 

and subjected to periodic cycles of evolution and learning. Success of arrests in a 

spatial neighborhood depends on the relative competency of the cop and activist 

strategies. With activists adopting Avoid the Cops and Stay if favorable and cops 

using Pursue Activists, the resulting active ratio - denoting ratio of activists to 

civilians, is plotted in Figure 5.9. The characteristic plot depicts a fluctuating 

waveform which is persistently plagued by short term instances of unprecedented 

up-shoots. This coincides with Epstein’s notion of a “Punctuated Equilibria” - 

which states that long periods of relative stability are punctuated by outbursts of 

rebellious activities. From this, it can be clearly inferred that peace and stability is 

a dynamic equilibrium which emerges from the interaction between agents rather 

than a static equilibrium itself. Any factor that alters the mode of agent interaction 

or movement will cause changes in the macroscopic temporal response. Presence 

of such features serves as a preliminary step towards verifying the validity of the 

CVM. More intuitive substantiation will be done in the upcoming sections.   
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Figure 5.9: “Punctuated Equilibria” in temporal response of CVM 
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5.4.2   CVM Response under varying NC 
 
Besides verifying the consistency and soundness of the CVM, its response can be 

studied from other perspectives. This section investigates the effect of varying NC 

on aspects of its temporal and spatial dynamics. Interesting emergent behaviors 

are explored, followed by an analysis and discussions on salient CVM attributes.  

 

1) Impact of NC on basic temporal dynamics: The active ratios for NC = [0, 20, 60] 

are plotted. The long term profile with 0 cops is analogous to a step response that 

starts with a steep rise in rebel activities and ends with 58% of the population on 

revolt - maximum amount of rebel activities that can occur with the pre-defined 

Athreshold (Figure 5.10a). The short term profile fluctuates about the long term mean 

with considerable regularity. As NC is increased to 10, the plot undergoes milder 

long term variations, encompassing a steady drop in active ratio followed by some 

notable changes and transitions (Figure 5.10b). The system response is unstable 

due to insufficient cops to suppress the rebel activities within a stable equilibrium 

level. With 60 cops, peak and settling ratios are reduced and a substantial degree 

of stability is attained since added cops are able to perform the task of arrest more 

effectively (Figure 5.10c). The characteristic waveform, nonetheless, gets more 

fluctuating as discerned by occurrences of instantaneous outbursts with significant 

peaks occurring over shorter intervals. The resulting equilibria are “punctuated” 

with frequent alternation between periods of unrest and stability.  
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Figure 5.10: Temporal response for (a) 0, (b) 10 and (c) 60 cops 
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Figure 5.11 shows the overview of simulated profiles corresponding to different 

NC. An inverse relationship between active ratio and NC is correctly established as 

verified from the collection of temporal response curves. The decline in both peak 

and settling ratios gets less significant with more cops, indicating presence of a 

saturation level – where help rendered by each cop addition decreases as NC gets 

larger. The drop in marginal contribution implies that further reduction in active 

ratio will have to come from other aspects of improvement. 
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Figure 5.11: Family of temporal response curves for different NC 
 

 

2) Impact of NC on basic spatial dynamics: The spatial response of the CVM 

provides an overview of the 2D environment with its interacting agents, allowing 

observations to be made from both global and local viewpoints. This facilitates the 

task of tracking movement patterns of agents and through the process, uncovers 

fascinating emergent phenomena. Analysis of the microscopic interaction can also 

offer micro-macro explanations of temporal responses at the macroscopic scale. 

This is examined for configuration setups with different NC.  

 

• Local Outburst: A closer examination of the spatial interaction suggests that 

the presence of unprecedented up-shoot is largely due to spontaneous occurrence 

of outburst in regions of low cop density (Figure 5.12a). In these areas, cop-to-
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activist ratio is low enough for mildly aggrieved agents to turn active concurrently 

(Figure 5.12b). These initial spatial correlations of activists act as a catalyst to 

elicit further outbursts by drawing more quiescent civilians into the revolt (Figure 

5.12c). As stated [173], “when the mob is already very big relative to the cops, the 

level of grievance and risk taking required to join the revolt is far lower”. This can 

be explained by the “Seeding” effect – an initial pool of rebels is able to seed out 

potential but less aggrieved activists in the vicinity to add to the severity of unrest.  

A quiescent agent will feel safer to join a rebellion and display its discontent 

publicly if there are already a lot others doing it. This reiterates Mao Tze Tung’s 

view that “a single spark can cause a prairie fire” [200], [201] and reinforces the 

concept of mass-mobilization – a crucial mechanism for triggering civil violence 

and fuelling growth of small-scale protests into larger ones [175], [202]. Once the 

outburst of rebel activities gets very large, a resulting mob usually fuels its growth 

and is by and large self-sustaining. A proposed plan [173] is to curb freedom of 

assembly by imposing curfews that restrict chances of collation among activists. 

 

 
(a) (b) (c) 

 
Figure 5.12: Spatial response depicting local outburst with 40 cops at episode (a) 1, (b) 2 and (c) 3 

 

 

• Group Clustering: Spatial interaction of agents also depicts group clusters - 

collection of connected agents in 8-connectivity space, amidst evolution of agent 

movement (Figure 5.13). Activists collate as a form of collective behavior to 

create regions of low cop-to-activist ratio e.g. “safe havens” [173] as this reduces 
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the chances of arrest and prolong the unrest considerably. Le Bon proposes in his 

theory that “crowds seem to be governed by a collective mind, and that contagion 

causes members to experience similar thoughts and emotions” [203]. Sigmund 

Freud [204] further reinforces the fact that “individuals are able to satisfy basic 

needs for membership, hostility and so on by joining crowds.” In reality, activists 

seek collective identity and group belongingness, the direction to vent their anger, 

protesting strength and safety, all of which are present among crowds in areas of 

low cop density. These psychological and behavioral needs often account for the 

conglomeration of scattered activists into small groups and amalgamation of small 

clusters into large ones (Figure 5.13). Since it gets harder to arrest rebels in huge 

clusters, duration of unrest is lengthened unless effective strategies are used. 

A common challenge posed to the cops in crowd management is to disperse 

clusters before they turn into massively large mobs that are beyond control. An 

effective cop strategy is one that places cops in strategic positions (Figure 5.14). 

As seen, a burgeoning cluster between two activist groups is dispersed by cops in 

an attempt to form a line of defense that cuts through possible points of assembly. 

Similar to the partitioning of two warring groups [205], the above crowd control 

strategy seeks to lessen the severity of civil unrest by thwarting attempts made by 

activists to crowd together. The breakdown of large clusters facilitates the process 

of arresting activists, which would tend to appear very much in scattered numbers. 

                            
(a) (b) 

 
Figure 5.13: Spatial response depicting group clustering with 10 cops at episode (a) 3, and (b) 4 
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(a) (b) (c) 
 

Figure 5.14: Spatial response of crowd dispersing with 20 cops at episode (a) 4, (b) 5, and (c) 6 
 

 

• Deceptive Behavior: One salient feature of human behavior lies in the ability 

to put on a false front when dangerous encounters are imminent. Such deception is 

illustrated where two privately aggrieved agents appear ostensibly quiescent in the 

presence of cops but turn active if adjacent cops move away (Figure 5.15). This is 

due to a fall in cop-to-activist ratio within the local spatial neighborhood, which 

results in the reduced risk of arrest and higher tendency to revolt. Though subtle in 

nature, the display of such behavior is paramount to the study of human entities.  

Famous military strategist, Sun Tzu [206] quoted that “Warfare is the art of 

deceit” [207]. An element of surprise which precedes any attack e.g. in Guerilla 

Warfare, is a pertinent factor that led to the success of numerous revolutions and 

uprisings. Deception is simply one of the most vital tools of biological survival 

[208] that is used by living entities in their adaptation to different environments. 

Many forms of military tactics are also mirrored and portrayed in nature - decoys, 

camouflages, diversions, disinformation, dazzles, disruptive coloration, disguise. 

By practicing the art of deception, activists conceal their emotions by appearing to 

be law abiding. This allows them to avoid any detection and arrest while waiting 

patiently for the right opportunity to strike. This has far-fetching repercussions as 

it lengthens the duration of the actual unrest and is a causal factor that makes the 

task of apprehending active remnants increasingly difficult. 
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                    (a)                            (b) 

 
Figure 5.15: Spatial responses illustrating deceptive behavior with 80 cops at episode (a) 1 and 

(b) 2 
 

3) Impact on active ratio: To extend the discussion, the emergence of deceptive 

behavior in the proposed co-evolutionary framework is examined in greater depths. 

Deceptive acts are revealed in the decision to stay quiescent despite favorable 

conditions to rebel. It is fascinating to understand the onset of such behavior for 

different NC. In Figure 5.16, perceived active ratio denotes the typical active ratio 

while actual active ratio refers to the perceived ratio after all deceptive activists 

are accounted. This reflects the true state of unrest, which can be more severe than 

what cops perceived, as they can only spot active rioters.  

Interestingly, Mao Tse Tung noted that revolutionaries “swim like fishes 

in the sea” [209], making them indistinguishable from the quiescent population. A 

full blown revolt may actually be brewing despite seemingly mild state of unrest. 

As the unrest follows its natural progression through time, deviation between the 

two ratios is observed as deceptive behavior emerges after substantial interaction 

between the activists and cops. Following the initial arrest of numerous activists, 

the remaining minority started to hide their discontent so as to avoid detection and 

arrest, causing a rise in deception level. The profiles of actual and perceived active 

ratio tend to be shaped similar, thus implying that deceptive behavior is exhibited 

largely by a small and unswerving group of activists. 
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Figure 5.16: Actual and perceived active ratios for (a) 10 and (b) 60 cops 

 

4) Impact on population dynamics and cooperation ratio: The variation of NC 

also has sizeable impact on the population composition and cooperation profile of 

agent groups. Strong correlation is seen between the two (Figures 5.17, 5.18). For 

low NC, the population dynamics of activist experiences large fluctuation (Figure 

5.17a). The observed peaks are due to the mass release of jailed agents where a 

considerable number revert to the active state almost instantaneously due to low 

number of cops on patrol. This further dampens the cop-to-activist ratio in these 

neighborhoods, making the ambience superseding for activists to express their 

anger publicly. This in turn gives rise to a defect-oriented profile for the activist 

population (Figure 5.18a). With more cops and arrests, the activist population size 

became more stable as tension built up across the group is reduced (Figure 5.17b).  
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Figure 5.17: Population dynamics for (a) 10 and (b) 60 cops over 5000 episodes 
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Figure 5.18: Cooperation ratio for (a) 10 and (b) 60 cops over 5000 episodes 

 

 

Higher cooperation ratio is seen as activists contemplate more before deciding to 

riot (Figures 5.18b). There is also a concurrent dip in the cooperation level of cops 

as there are more occasions where the sizeable NC justifies a pro-active strategy to 

pursue activists. A large NC thus serves as an indirect form of deterrence. 

 

5) Impact on average grievance and greed: The effects of NC on both grievance 

and greed (Figure 5.19, 5.20) are also explored. Grievance is notably higher for 

activists across the plots since it is vital for transition to the active state. Overall, 

grievance profile is limited to a fairly low vacillation level while greed variation is 

contrastingly more pulsating (Figure 5.20). Although activists have high grievance 

in general, greed levels vary widely. Rapid fluctuation is due to the cyclical arrest 

and release of greedy and persistent activists. The quiescent greed profile is less 

susceptible to variation due to absence of exceptionally greedy agents.  

Since an increase in NC places the persistent activists in captivity and also 

reduces the mean population greed concurrently, it can be deduced that subversive 

activists are largely greedy. This effectively validates the nature of grievance as a 

primary, stable component that sparks off unrest and the nature of greed as a 

crucial factor to fuel the continual willingness of persistent activists to revolt. 
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Figure 5.19: Average grievance level for (a) 10 and (b) 60 cops over 5000 episodes 
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Figure 5.20: Average greed level for (a) 10 and (b) 60 cops over 5000 episodes 

 

6) Impact on active history and duration: Active history depicts the degree of 

behavioral switching – the frequency that each agent type switches between the 

quiescent and active states. Active duration tracks the distribution of activists 

across time episodes that they have rioted since the last release. As NC increases 

(Figure 5.21), a rising active history is observed for activists owing to the large 

degree of switching from the quiescent to active state following more arrests. This 

indicates that activists comprise persistent rioters who refuse to learn from their 

old ways. In contrast, the quiescent group undergoes less behavioral switching. 

Observations are consistent with the active duration plots (Figure 5.22). For a 

small NC of 10, variance in active duration is large e.g. [0, 4700] – more activists 

riot for long periods. With NC = 60, the variance is reduced e.g. [0, 2000] with 

concentration of activists in low frequency bins. 
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Figure 5.21: Active history for (a) 10 and (b) 60 cops over a span of 5000 episodes 
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Figure 5.22: Active duration distribution for (a) 10 and (b) 60 cops over 5000 episodes 
 

5.4.3 Active defectors and charismatic leaders: Effects on 
quiescent civilians  

 
In this case study, the CVM is extended to account for the influence of activists on 

their neighboring quiescent civilians. Two classes of activists – the defectors and 

leaders are defined. Defectors are those that exert influence by demonstrating bold 

acts of defiance while leaders influence the crowds charismatically in more subtle 

ways. It will be interesting to explore the effect of each group on the actual unrest. 

In order to model the effect of influence, NAI is rewritten in (5.13), where 

)( dVR AA  and )( dVR LA  denote the number of defectors and leaders respectively 

within the vision radius of an agent. Each actively demonstrating defector will 

contribute 0.02 while each leader adds 0.05 to the NAI of each neighboring agent, 

increasing the probability to revolt. 
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05.0)(02.0)(Re ⋅+⋅+−= dVRdVR LAAANvNAI  (5.13) 

 

Effects of incorporating influence are analyzed using active ratio, population 

dynamics, cooperation ratio and active duration. Active ratio variations, with and 

without influence, are plotted in Figure 5.23 for NC = 40. The dynamics of the first 

1000 episodes are superimposed. As shown, influence tends to cause more severe 

outburst of rebel activities in initial stages and gives rise to higher peak, mean and 

settling active ratios, since defectors and leaders induce more quiescent agents to 

revolt. Assimilation of these activities on the micro-scale led to outbursts on the 

macro-scale. There is more deviation between actual and perceived active ratios in 

the short run, indicating that influence promotes deceptive behavior (Figure 5.23b). 

The rationale is because the increased interaction between the activists and cops 

creates fundamental behavioral changes in the activist community as the members 

learn of the high opportunity cost for revolting against an overpowering police 

force. Intuitively, an act of deception - staying dormant to avoid detection presents 

itself as the best alternative. As seen in Figure 5.24, influence also creates greater 

fluctuation in the population dynamics for quiescent civilians and activists. 

A momentous change in the cooperation profile of activists is also shown in 

Figure 5.25. Following an upsurge of rebel activities in initial stages, the activist 

population, by virtue of its sheer size breeds defect-oriented behavior as reflected 

by a low initial cooperation ratio. In the absence of influence, cooperation ratio of 

the activists rises rapidly and fluctuates about a mean level (Figure 5.25a). With 

influence, more civilians are instigated to revolt. This dampens cop-to-activist 

ratio in various localities, translating extensively to a tendency to adopt defect-

oriented strategies - slow rise in cooperation and a lower mean when the dynamics 

stabilizes (Figure 5.25b). The gap between mean cooperation levels of cops and 
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activists is larger as well. Influence also reduces the duration that activists can 

roam about freely. A leftward skew of the active duration distribution histogram 

(Figure 5.26) is induced by the increased number of less aggrieved agents who 

turn active momentarily and possibly also due to more frequent arrests.  
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Figure 5.23: Actual and perceived active ratios (a) without and (b) with influence over 5000 episodes 
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Figure 5.24: Population dynamics (a) without and (b) with influence over a span of 5000 episodes   
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Figure 5.25: Cooperation ratio (a) without and (b) with influence over a span of 5000 episodes 
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Figure 5.26: Active duration distribution (a) without and (b) with influence over 5000 episodes 
 

Changes in the dynamics of unrest can also be explored when influence is 

introduced at different times. It is clear that early influence causes a sharp dip in 

the perceived active ratio (Figure 5.27a). Even if defectors and leaders are able to 

stir up emotions of hatred towards the central authority, such sentiments tend to 

subside after the cops initiate pursue and arrest. Instead of inciting more agents to 

revolt, early influence actually invokes massive arrests, creating strong deterrent 

effect indirectly which spurred more activists to exhibit deceptive behavior. This 

effect wanes off when influence is introduced much later (Figure 5.27b).  
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Figure 5.27: Actual and perceived active ratios of introducing influence at (a) 20th and (b) 2500th episode 
 

Injecting influence in the early stages also introduces greater dynamics to 

the long term active profile by allowing a gradual build up of tension across the 

population. This translates to sudden outbursts (Figure 5.27a) that are absent when 

influence is injected at later stages (Figure 5.27b). Findings are fairly consistent to 
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reality as it is easier to kindle feelings of hatred if emotions are still vacillating 

and the spirit of revolution is high amidst the activist regime. Behavioral changes 

occur over a considerable period and early instigation does assist in encouraging 

the development of rebellious behavior within the active community. 
 

5.4.4 CVM Response under varying jail terms 
 
Besides deterrence from cops, jail duration also constitutes a major vitiating factor 

to the willingness to revolt. The nature of punishment is crucial in shaping the 

behavioral profile of activists. This section examines the effects of both fixed and 

variable jail terms on the dynamics of unrest. In the prior, a jail sentence of fixed 

magnitude is imposed on any arrested activist. The latter entails an increasing 

penalty for repeated offenders until life imprisonment is reached.  

 

1) Impact on active ratio: The active ratio for fixed jail terms of [5, 500] and 

variable jail term of maxmax )/(1 JJJ HH ⋅+  for 300max =J , 3max =HJ  are plotted 

in Figure 5.28. A large fixed jail term lowers the mean level of rebel activities 

(Figures 5.28a-b), similar to a large NC. The decline is due to long periods which 

the activists spent in captivity. Accompanying this is a reduction in the scale of 

fluctuation and outbursts, as the long jail term makes it less likely for activists to 

be released simultaneously. Deceptive behavior is also reduced. Compared to a 

large fixed penalty, imposing a low jail penalty and increasing it incrementally 

(Figure 5.28c) for repeated offenders achieves a low and more stable profile. As 

employed in societies, the variable penalty balances the punitive aspect – desire to 

punish offenders and rehabilitative aspect – aim to reform criminals, of law. It 

denotes a fair system of justice where mistakes of initial offenders are tolerated 

while heavier punishments are meted out for repeat offenders. 
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Figure 5.28: Actual and perceived active ratios for fixed jail terms of (a) 5, (b) 500 and (c) variable jail 
term  

 

2) Impact on cooperation ratio: Changes in conviction period also affect the 

cooperation profile of activists. Low jail terms breed low cooperation (Figure 

5.29a) owing to ever presence of activists. Higher fixed jail terms (Figure 5.29b) 

places the jailed activists in captivity for longer periods, causing the outnumbered 

remnants to favor more cooperative strategies after continual interaction with cops. 

Excessive penalty however reduces the cop-to-activist contact and in turn impedes 

autonomous behavioral development as jailed agents have less chance to interact, 

exchange knowledge, learn and evolve. Many remain persistent activists, unlike 

the case of a large NC. As depicted in Figure 5.29c, cooperation is still increasing 

initially when most of the activists are convicted for short periods. As more and 

more are sentenced to life imprisonment, defection sets in for the residual activists, 

invoking further aggression and arrests. As rationalized, the increasing jail term is 

thus an efficient and effective means of isolation and tends to lower the unrest by 

minimizing contact among activists. 
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Figure 5.29: Cooperation ratio for fixed jail terms of (a) 5, (b) 50 and (c) variable jail term  
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3) Impact on active history and duration: Active history increases as higher jail 

penalty is imposed (Figure 5.30). With more activists convicted for considerable 

periods, residual ones are mildly aggrieved and sensitive to changes in the state of 

unrest. By virtue of this nature, a large degree of behavioral switching is portrayed. 

Consistent with this, the active duration is lowered as seen by a leftward skew of 

the histogram distribution (Figure 5.31). This reflects the lengthier period which 

activists spend behind bars. The dynamic range of active duration is less affected 

as opposed to the varying of NC since any reduction in the range of active duration 

is largely due to the higher efficiency which is introduced when more cops are 

deployed to apprehend activists. 
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Figure 5.30: Active history for fixed jail terms of (a) 5 and (b) 500 over 5000 episodes 
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Figure 5.31: Active duration distribution for fixed jail terms of (a) 5 and (b) 500 over 5000 episodes  
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5.4.5 Casualty Model 
 
The final section integrates the knowledge and insights gained from prior sections 

to create an empirical casualty model to investigate a scenario case study where 

harm is inflicted by one group on another. This encompasses the deliberate and 

often systematic elimination of an entire national, racial, political or cultural group 

[210] by distinct ethnic groups or coalitions [211] due to hatred [212] and distrust 

for one another. Examples include the Nazi-Jew holocaust, Hutu-Tutsi Rwanda 

genocide etc. The fundamental nature of such events can be better understood by 

probing into the underlying emergence dynamics.  

In this model, cops assume the role of peacekeepers while activists are 

perpetrators. There is no state transition e.g. perpetrators and quiescent agents do 

not cross their own ethnic boundary. Quiescent agents adopt Run from Activists, 

perpetrators use Eradicate the Civilians while the peacekeepers espouse Pursue 

the Activists to arrest perpetrators and minimize casualties. Interaction only takes 

place among peacekeepers and perpetuators. Arrest is made if the prior wins; else, 

a randomly sited civilian is removed. The learning heuristics of perpetrators is 

altered to include GSwin- game sets won. Tactics revision occurs if 

 
 

        winlost GSGSFHSH *10.10 −+<  (5.14)
 

Each run takes 1000 episodes and the objective is to investigate effectiveness of 

increasing peacekeeping size and jail penalty in minimizing number of casualties 

after each simulated window.  

 

1) Situation without peacekeepers or jail terms: The situation of unrest, in the 

absence of peacekeepers or jail term, is simulated with perpetuators constituting 

10% of the total civilian population. Both active ratio and population dynamics 
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(Figure 5.32) show rapid annihilation of the quiescent group when no intervening 

force is present to manage the unrest. The escalating increase in active ratio and 

sharp plunge in civilian population indicates that a small pool of perpetrators is 

capable of eliminating a much larger group within a short time. A spatial overview 

(Figure 5.33) depicts the exponential drop in the quiescent group. Almost half the 

population had suffered casualty by the 10th episode. Total annihilation is seen by 

the 57th episode, which denotes the extinction time – time taken to wipe out an 

entire group with a distinct identity.  
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Figure 5.32: (a) Active ratios and (b) population dynamics for the first 250 episodes  
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Figure 5.33: Spatial interaction between perpetrators and civilians for episode (a) 0, (b) 10 and (c) 57 
 

 

2) Impact of varying peacekeepers: Peacekeepers are now added to alleviate the 

severity of unrest. Fixing jail term at 100 episodes, Figure 5.34c showed that the 

presence of more peacekeepers raise survivals after the first stable point ([83, 136, 

140]) but excessive peacekeepers cause a sharp dip in quiescent group due to 
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overcrowding. The effectiveness to track, pursue and make arrest is lowered as 

peacekeepers impede each other’s movement. This is analogous to the concept of 

“carrying capacity” [213], where a system can only accommodate limited number 

of agents. Excess ones die off or introduce some form of inefficiency to its innate 

workings. The results indicate that more peacekeepers are needed to manage the 

simultaneous presence of perpetrators and minimize casualty initially. Once the 

unrest stabilizes, excessive peacekeepers proved to be a con more than a pro. This 

claim is further substantiated in Figure 5.35c as perpetrators start to roam freely 

beyond 100 time episodes when the peacekeeping force gets too large. Introducing 

excessive peacekeepers to a constrained environment in this context thus hinders 

progress of arrest and results in the rapid elimination of the quiescent group. 

 

3) Impact of varying jail terms: The jail term is now varied to analyze its effects 

on the unrest for a fixed peacekeeping size of 40. From the drastic dip in survivals, 

it can be garnered that isolating perpetrators is crucial in the short run to prevent 

excessive eradication of the quiescent group. As observed in Figure 5.36, a long 

period of captivity reduces the number of downward stepwise transitions in the 

quiescent population and preserves more survivals. Nonetheless, altering the jail 

term does not affect the initial decrease in the quiescent group, unlike the variation 

of the peacekeeping size. Survivals after the first stable point are similar for both 

jail terms of 100 and 500 episodes, as only a fixed number of peacekeepers are 

present to carry out pursuits and arrests. This places a fundamental limitation on 

the ability to curb the unrest as a time lag is present where sizeable casualties can 

occur before ample perpetuators are eventually arrested.  
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Figure 5.34: Population dynamics for peacekeeping force of size (a) 40, (b) 80 and (c) 120 
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Figure 5.35: Active duration distribution for peacekeeping force of size (a) 40, (b) 80 and (c) 120 
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Figure 5.36: Population dynamics for fixed jail terms of (a) 100, and (b) 500 episodes 
 

5.5 Findings and discussions 
 
Interesting findings are revealed via the co-evolutionary simulation. The temporal 

response of the model showed the presence of “Punctuated Equilibria” and affirms 

peace and stability as a dynamic equilibrium that emerges from agent interaction. 

The spatial responses portray spontaneous local outbursts, group clustering but 

notably, a display of deceptive behavior. Increasing the number of cops has shown 

to promote deceptive behavior and drives activists to embrace cooperation. High 

grievance in activists is found to be the primary cause of triggering unrest while 

high greed levels is responsible for fueling the continual willingness of persistent 

rebels to revolt. Greater behavioral switching is also exhibited with more arrests.  

The addition of influence triggers a severe upsurge of activists in the initial 

stages and high mean active ratio as mildly aggrieved agents are incited to revolt. 

The tendency to use defect-oriented strategies is increased, which paves the way 

for the development of deceptive behavior over time. Introducing influence in the 

early stages of unrest yields greater dynamics by allowing the gradual build up of 

tension across the population, which translates into unprecedented occurrence of 

outbursts at a later stage. Increasing the jail penalty reduces the mean active ratio 

and dampens both the scale and frequency of outbursts. An excessive jail term 
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minimizes the chances of contact for arrested agents and triggers defect-oriented 

behavior. The dynamic range of active duration is less affected, however, as the 

efficiency of arrest depends largely on the number of cops. Finally, the casualty 

model deduces that peacekeeping size and jail term affect the long term and short 

term profiles of unrest respectively. Though a large peacekeeping size is typically 

desired, excessive peacekeepers, nonetheless, worsen the prevailing state of unrest. 

Balance of both an adequate peacekeeping force and jail penalty is essential to 

achieve the lowest possible casualty rate. 

 

5.6 Summary 
 
The chapter showed that interesting macroscopic emergent dynamics are obtained 

through the microscopic autonomous behavioral development of agents under a 

co-evolutionary inspired framework which encompasses a hybrid combination of 

evolution with learning. Studying how the underlying behavioral dynamics evolve 

under different situational setups is crucial for the holistic understanding of the 

fundamental nature of civil violence.  

 

 

 

 

 

 

 

 

 



 

 164

Chapter 6 

Public Goods provision under asymmetric 

information 
 

Though interesting, the modeling of civil violence in the previous chapter still 

adopts a pair-wise scheme of interaction among agents, similar to that in classical 

IPD. Nonetheless, much of the interaction in the real world occurs simultaneously 

among multiple parties, giving rise to a situation of dilemma which is commonly 

known as “The Tragedy of the Commons” [214]. Similar in essence to a multi-

player IPD, the dilemma - which finds its presence in scenarios ranging from the 

overgrazing of land to overconsumption of public resources, is typically attached 

to situations that involve the provision of public goods (PG) [29], [215]. We will 

shift our attention to focus on PG provision for the last chapter of this work. 

 The challenge of PG provision has always been a core economic issue in 

societies throughout the changing times. Unlike private goods [216], common 

pool resources [217] and club goods [218], the intrinsic characteristics of non-

excludability and non-rivalry [29], [219] in the consumption of PG ascertain that 

its provision can confer positive externalities [220] which are collectively shared; 

but for which there is practically no efficient way of excluding non-contributors 

from enjoying. Coupled with the fact that PG provision involves the joint action of 

many individuals [221], misalignment of individual contribution with collective 

welfare [222] entails low incentives to contribute. This explains why the voluntary 

provision of PG [223], both local [224] and global [225], is extremely susceptible 

to market failure [226], so much so that supply of PG often falls short of Pareto 

Optimal [227] in the absence of government intervention [228]. 
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 Across contexts that are as diverse as assurance contracts [229], peer-to-

peer networks [230], retail [231], drug imports [232] and welfare economics [233], 

the emergence of free-riders [234] has been identified as a prevalent cause of 

inefficiency. A major purpose of experimental literature on PG provision is then 

to assess the magnitude of free-riding and variables that affect it [235]. In game 

theory, the study of free riding is approached from the behavioral perspective of 

rational agents [236], by means of a PG game [237] where players form groups to 

decide how much to contribute to a PG using available information. In the iterated 

PG game (IPGG) [238], the game is played over many rounds. The level of PG 

provisioned is decided by the collective contribution [224]. Benefits derived are 

distributed evenly among all participating users, regardless of effort; but costs are 

born solely by those who played a part in provision according to efforts expended. 

This notion suggests that the expense of individual effort does not translate to a 

sole enjoyment of benefits but improves welfare indiscriminately.  

Intuitively, a group does best if everyone contributes, as the eventual level of 

PG will be higher, with greater remuneration for all. However, this does not arise 

as individually rational players tend to free ride on others’ contributions - social 

loafing [215]. In the same line of thinking, players are likely to dismiss a decision 

to contribute to avoid exploitation by free-riders. Players thus, do better on the 

whole by contributing zero regardless of the others’ actions [29]. This is the Social 

Dilemma [222] – a paradox in social decision making where joint contribution is 

needed to attain shared goals, but an individual’s rational choice is simply to free-

ride. As considerable benefits can be enjoyed by all for every additional unit of 

contribution, there is potential for huge Pareto improvement in welfare if everyone 

embraces cooperation. While some may argue that this problem can be solved by 
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using an intermediate regulatory body to fund PG provision indirectly via taxes; 

such involuntary means can be inefficient at times since hidden costs are typically 

involved. It is in the interest of policy makers and economists alike to design 

mechanisms and functional models that provide insights into how the prevalent 

effects of Social Dilemma can be alleviated in diverse settings so as to allow the 

efficient voluntary PG provision to take place.  

This chapter presents a co-evolutionary framework [239] to simulate and 

analyze the outcomes of PG provisioning under asymmetric information [5], [240] 

- [243]. Via an ACM, boundedly rational agents are conceptualized to interact in 

an N-player IPGG. They adapt to the dynamic environment by co-evolutionary 

learning in the course of game play similar to that of an N-player IPD [244]. The 

impact of information type, population and group sizes, rate of interaction, the 

number of available choices, the nature of provision and selection schemes, are 

studied under various settings. Simulated results reveal interesting dynamics in the 

strategy and usage profiles, welfare plots and evolution of cooperation. Analysis 

of these results offers a holistic understanding of collective action and insights of 

how the predicament of Social Dilemma can be mitigated, if not averted, in favor 

of the efficient voluntary provision of PG.  

The chapter is organized as follows. Section 6.1 presents preliminaries of the 

IPGG and overview of the model design. Section 6.2 highlights the game theoretic 

fundamentals that are essential to formulate and appreciate the IPGG. Section 6.3 

formally introduces a list of asymmetric agent types and their respective genotypic 

representations while Section 6.4 focuses on the significance of co-evolutionary 

learning and simulation. Section 6.5 evaluates and analyzes outcomes of simulated 

interaction in different settings of PG provision. Section 6.6 summarizes major 
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findings of the simulation study. Finally, Section 6.7 will conclude with a broad 

summary of discussions and areas for future research. 

 

6.1 Iterated public goods game 
 
Originating from experimental economics [245], the IPGG has striking similarities 

as the IPD [246]; with parallelism closely drawn between the study of contribution 

and cooperation [89] respectively. Mutually beneficial cooperation is threatened 

by unilateral strategic behavior as players are individually rational but collectively 

irrational. The IPGG also encompasses variants like the optional PG games [247], 

evolutionary games [248] with replicator dynamics [247], as well as games with 

punishment [238] and commitment [249]. Mechanisms like voting, peer effects 

and mobility [224], reputation and penalty [250], signaling and trust [251] can 

then be explored; together with their impact on contribution.  

Most models have concentrated on the ideal scenarios where agents exhibit 

unbounded rationality [252] and interact under complete and symmetric [236] 

information e.g. using Nash [253] and non-Nash [254] inferences, and Bayesian 

Learning [255] to determine an optimal agent strategy set. Such approaches are 

unrealistic since individuals do not actually possess perfect information about the 

environment in reality. Even in the case where information is readily available, it 

will not be used entirely for decision making as players have clear preferences for 

particular information types [256] e.g. those which are most relevant and in line 

with their contribution strategies. To some extent, players are also not attributed 

with advanced information processing capacities – which traditional theoretical 

analysis would require them to have; to capitalize and take into account all the 

information available to them. 
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6.1.1 IPGG with Asymmetric information 
 
In order to address the above modeling deficiencies and incorporate behavioral 

imperfection, players in the proposed IPGG will use their preferred information 

type for the basis of decision making. By doing so, the effects of framing [257] – 

in which a scenario can be interpreted differently by players in accordance to the 

perspectives they adopt, are accounted for e.g. contributions are likely to be higher 

if a PG game is framed as a community social event than when it is framed as an 

economic investment [258]. Framing an option as a cost versus an uncompensated 

loss also affects whether that option is chosen [259]. Other than a more realistic 

and interesting way to model PG provision, studies have also shown that different 

information types do affect the inherent dynamics of cooperation [249], [256]. 

With players formulating different contribution strategies, the proposed model 

offers another perspective to analyze the IPGG via the assessment of strategies 

and interaction outcomes that emerge from the use of diverse information types. 
 

6.1.2 Mathematical formulation 
 
The agent-based IPGG models an artificial society, UN ,,,, ASIE = , which 

comprises a population of N players, set of information, I about the global state of 

game play, set of N decision strategies, { })((( 21 Nt)tt N21 S,...,S),SS =  that dictates 

the players’ responses to stimuli in the external environment, set of all possible 

actions, { })(( 21 Nttt N21 A),...,(A),AA = for players and a utility function, U  which 

determines the payoffs awarded to players in all interaction outcomes. For all the 

above attributes, components of the set { }Nttt ,...,, 21  refer to types of players 1 to 

N respectively. E can refer to any generic organization where PG is provisioned 

collectively by N players. As opposed to a typical IPGG [230] where all players in 
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the population are participating in the provision of a common PG, the proposed 

IPGG models a situation in which the task of PG provision is decomposed and 

assigned in parts to ],[ maxmin MMM ∈ smaller groups, of size [ ] Nnnn ⊆∈ maxmin ,  

[256], such that sum of players in M groups totals N. The portion of task allocated 

to each group scales proportionally to its size. Players assigned to the same group 

will only contribute to the portion of total PG that they are tasked to provision. 

This setup can be drawn in analogy to a global PG that is funded collectively by 

several communities via taxation schemes. Entities in each community will decide 

whether to contribute or to evade taxes. The scenario can also be employed in a 

corporate setting where large projects are split into distinct parts and assigned in 

fair proportions to different teams of personnel. Each person in effect contributes 

to the part of project which his team has been assigned to. 

In every iterated round of game play, players are required to decide the 

contribution amount or cooperation level towards PG provision within the group. 

Decision output of player i, in group gj with type tij, is derived via strategy )( ijtijS . 

This maps the type-dependent information subset, ),( jij gtiI  - selectively chosen 

by player i from the information superset, )( jgI  - accessible by all in group gj; to 

an action Cij(tij), denoting the desired effort level out of all the possible choices in 

action space )( ijij tA . This mapping is represented symbiotically by: 

 

)()()(),( )(
ijijij

t
jjij ttCggt ij

ij
S

i AII ij ∈⎯⎯ →⎯∈  (6.1)
 

 

Since the nature of IPGG involves the collective action and decision making 

of multiple parties, outcome of PG provision is not determined unilaterally by the 

contribution of any one player, but rather by the sum of individual contribution 

from each member. The level of PG provisioned within a group, gj, of nj players, 
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P(gj), is mathematically expressed in the form: 

 

∑
=

=
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)()(  (6.2)

 

 

Collectively, the total amount of PG which is provisioned by M groups of players 

is thus given by (6.3): 
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The payoff of PG provision, which is derived by a player i in a group, gj that 

consists of nj players is specified by the equation for the Voluntary Contribution 

Mechanism (VCM) [260] as given in (6.4): 
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where )(..)()(..)()( 111111 jnjnjijijijijjijij jj
tCtCtCtCtC +++++= ++−−−−Σ  is the collective 

contribution of all in group gj, less the contribution of player i, )( ijij tC . UBasic is the 

payoff which a player gets if no public good is provisioned. This occurs when 

everyone in the group decides to free-ride. In the context of each player, all efforts 

would be channeled solely to provision a private good that yields a default, non-

zero payoff which is higher than that attained if all others free-ride on the player’s 

contribution. jj ngP /)(  is the payoff that a player derives when the welfare from 

PG provision is evenly distributed among all within the group. )(iCost j  denotes 

the cost that is incurred by player i for contributing. Assuming that cost correlates 

positively with contribution, the more a player contributes, the larger is the effort 

expended and the higher will be the resulting cost incurred. For simplicity, cost is 

expressed mathematically as follows: 
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)/()()( factorfactorijijj RCtCiCost ⋅=  (6.5)
 

where factorfactor RC /  is the proportionality ratio which denotes the value of a unit of 

contribution cost, factorC , relative to a unit of the provisioned resource, factorR  e.g. 

factorfactor RC / = 0.5 meant that 50% of any effort that a player commits to provision 

will be expended as personal cost; thus effectively only generating a net collective 

welfare value equivalent to the residual 50% of effort. Overall welfare enjoyed by 

society – measured by total payoff that is derived collectively for all players is: 
 

∑∑
= =
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j

n

i
jSociety
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iPayoffNW
1 1

)(),...,2,1(  (6.6)

 

The average welfare e.g. amount of PG enjoyed by a typical player is given by: 
 
 

NNWW SocietyIndividual /),...,2,1(=  (6.7)
 

 

It is to be noted that ),......,2,1( NWSociety  is different from ),...,,( 21 MTotal gggP as the 

prior refers to the net benefits derived by society after accounting for contribution 

costs. In essence, IndividualW  denotes the net average welfare that each individual 

player benefits from the provisioned PG. 
 

6.1.3 Environment 
 
• Players are boundedly rational and have finite computation power [62]. They 

do not have full and perfect knowledge about their environment of interaction 

- types of players in the group, NEs in the game etc. Each uses limited, local 

information [261] which is selected according to type and preference to decide 

the amount to contribute in the next round. 

• Every action is available to all players e.g. homogeny of action space where 

)(...)()( 2211 NjNjjjjj ttt AAA ===  regardless of group or type. However, the 
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actual action taken by a player depends on the nature of its type and strategy. 

• All players have the same capacity to generate PG - with the same amount of 

effort put in; the quantity of PG generated will be the same for any player. 

• Value of the provisioned PG is identical, in terms of its worth, to all players. 

• No contribution amount can saturate the total maintenance benefit which is 

derived from the PG e.g. each unit of provisioned PG will always yield much 

higher returns than the unit of contribution that is put in towards its creation. 

• Similar to the IPD, a situation where players free ride on the contribution of 

another is considered worst off, from the perspective of the exploited player, 

as compared to the situation where there is totally no provision of PG.  

• The PG of concern in the proposed study is deemed finitely and discretely 

decomposable e.g. it can be split into smaller parts for easy delegation and 

segregation of provision tasks among groups.  

• To an individual player, it is not the total benefits derived collectively by the 

team that is important, but the welfare solely enjoyed by himself ultimately. 

• The effect of framing is assumed in the context of the IPGG. All players do 

not change their types or beliefs over time and tend to look at all scenarios 

with the same perspective e.g. information type. Constraining players to the 

same beliefs allows the flexibility to study which information types are more 

dominant in promoting cooperative strategies. 

• All players will only choose to adopt strategies that are aligned with their own 

beliefs, of which, they will maximize their payoffs given the constraint of the 

fixed strategy structure. 

• All players improve their strategies constantly so as to seek an eventual 

increase in their welfare over time. 
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6.2 Game theoretic fundamentals 
 
The IPGG in essence, is similar in spirit to an N-Player IPD game where players 

have a temptation to defect (D) – free ride at the expense of other players. This 

depicts a situation where individual interest is in conflict with group interest - that 

is for players to cooperate (C) and contribute towards PG provision. Although D is 

the dominant strategy [89] when approaching from the perspective of individual 

rationality, it becomes collectively irrational if all players in the group choose to 

free-ride, since no PG is provisioned and no welfare is derived. Everyone can be 

better off by playing the dominated strategy C, which explains the existence of 

dilemma. To preserve the essence of this dilemma in the context of a 2IPD game 

( 2=n ), two conditions [262] must be satisfied. Firstly, the temptation payoff (T), 

reward payoff (R), punishment payoff (P) and sucker payoff (S) are assigned in 

descending order of their values ( SPRT >>> ). Secondly, alternating between 

T and S does not reward each player as much as if both players embrace repeated 

cooperation ( RST <+ 2/)( ) between themselves. 

Similarly, the payoff function of the proposed IPGG, where ( 2>n ), is 

formulated such that the following equivalent conditions are satisfied during the 

actual game play. In all three conditions, ijC  and '
ijC  are two distinct levels which 

individual i in group gj can contribute at. 

 

1)  Bounded individual rationality – Defection is better 

• Given that )()( '
ijijijij tCtC <  and a fixed )( ijij tC −−Σ , 

)),(),(()),(),(( ' ntCtCUntCtCU ijijijijijijijij −−−− > ΣΣ                         (6.8) 
 

2) Bounded collective rationality – Mutual Cooperation is better than mutual 

Defection 
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• Given that )()( '
ijijijij tCtC ≤  and )()( '

ijijijij tCtC −−−− < ΣΣ , 

))(),(())(,)(( ''
ijijijijijijijij tCtCSocietytCtCSociety WW

−−∑−−∑
<                 (6.9) 

 

3) Coordinated alternation between Defection and Cooperation does not pay  

• Given that )()( '
ijijijij tCtC <  and )()( '

ijijijij tCtC −−−− < ΣΣ , 

)}),(),(()),(),(({5.0)),(),(( '''' ntCtCUntCtCUntCtCU ijijijijijijijijijijijij −−−−−− +> ΣΣΣ   

   (6.10)  

 

6.3 Information asymmetry 
 
One main objective of this paper is to model, simulate and analyze the outcome of 

IPGG interaction under information asymmetry. This seems to be a more realistic 

representation for many real world situations [5], [241], [263], [264]. Players are 

fundamentally driven by different beliefs when making decisions on the extent to 

contribute e.g. one may prefer to use a certain information type over another. 

Asymmetry also accounts for the fact that information may be incomplete e.g. 

players are allowed access to different pieces of information for the same scenario. 
 

6.3.1 Asymmetric player types 
 
To capture the notion of asymmetry in the IPGG, a collection of NTypes = 4 player 

types },,,{ 4321 TTTT=T , each differing in the type-dependent information used, is 

conceptualized in the proposed IPGG. For instance, a player i of type 1T  will only 

select information subset ),( 1 jgTiI from superset, )( jgI in group jg as the basis of 

decision-making during game play. In a population of size N, type tij of player i is 

such that ∀∈  Tijt jni ,...,2,1=  where jn  is such that 2/10/ NnN j ≤≤ . Possible 
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types which a player can assume are shown in Table 6.1. All information listed is 

obtained from the previous round of game play. As stated earlier, the type of a 

player does not change over time. 

 
Table 6.1: Asymmetric Information Types used in the IPGG 

 
 

Type Information used Value Symbol Notation 

1T  Number of players in group n  (―) NP 

2T  Average contribution of group ngP j /)(  ( Δ ) AC 

3T  Total contribution of group )( jgP  ( ◊ ) TC 

4T  Payoff received in the previous round of game play )(iPayoff j  ( * ) PR 
 

6.3.2 Genotypic representation 
 
Chromosomal representations of all the possible types are shown in Table 6.2. The 

genotype of player i, in essence, represents its strategy, )( ijtijS , that creates a non-

linear mapping from the set of information that it uses, to a possible contribution 

level, )( ijij tC  within the totality of its action space )( ijij tA  e.g. it will encompass a 

set of rules that informs the player on the amount to contribute for all possible 

scenarios of interaction. The first gene in each of the genotypes encodes the initial 

cooperation level, CI that a player adopts when he interacts with others for the first 

time. This occurs when new groups are formed – either at the start of simulation 

or when players switch groups in the course of game play. CI provides insights 

about the propensity that each type is willing to initiate cooperation on the first 

move against an unknown opponent. The remaining genes depict outcome-action 

pairs, where the next action at any round is determined solely by the outcome of 

one preceding it e.g. information relevant to a player’s type is extracted from the 

previous round and used to map onto a contribution level which he will thus play 

in the current round. Accordingly, the inclusion of memory can result in higher 
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average cooperation even under asynchrony [265].  

As seen from Table 6.2, genotype representations of players differ according 

to their corresponding information types e.g. given that [ ]10,2∈n , genotypes of 

type 1T  are structured such that all discrete possibilities in the information space, 

which in this case denote every possible values of n ranging from 2 to 10, are 

covered. Each of these unique possibilities will then map on independently to a 

contribution level which the player will adopt for use in PG provision. 

 

Table 6.2: Genotypic Representation for Different Information Types 
 
 

Type Genotypic Representation 

1T  
n  I.C. 2 3 4 5 6 7 8 9 10

)( ijij tC  CI C2 C3 C4 C5 C6 C7 C8 C9 C10 

2T  
ngP j /)( I.C. 0.0 0.1 0.2 0.3 … 4.7 4.8 4.9 5.0 

)( ijij tC  CI C0.0 C0.1 C0.2 C0.3 … C4.7 C4.8 C4.9 C5.0  

3T  
)( jgP  I.C. 0 1 2 3 … 47 48 49 50
)( ijij tC  CI C0 C1 C2 C3 … C47 C48 C49 C50 

4T  
)(iPayoff j I.C. 0.0 0.1 0.2 0.3 … 6.2 6.3 6.4 6.5 

)( ijij tC  CI C0.0 C0.1 C0.2 C0.3 … C6.2 C6.3 C6.4 C6.5  
  

6.3.3 Action spaces 
 
To explore how the number of available choices affects the nature and outcome of 

decision making among players in the asymmetric setting, two distinct types of 

action spaces, )(2
ijt

ij
A  and )(6

ijt
ij

A , each with varied degrees of granularity in 

decision making, are considered. The prior allows players to contribute only at 

two extreme levels – full contribution or complete free-riding; while the latter 

splits the player’s contribution into six possible discrete levels (Table 6.3). Whilst 

)(2
ijt

ij
A  is widely used in numerous theoretical studies as a means of simplifying 



 

 177

the analysis of obvious dynamics; )(6
ijt

ij
A accounts for the more realistic fact that 

players can actually choose among multiple contribution levels to provision PG in 

the practical context. In tone with an earlier assumption, all actions that players 

make in the course of game play will always be drawn from action spaces that are 

identical in both the cardinality and range. Implicitly, this also assumes that the 

availability of choices is homogeneous throughout the entire population.  

 
Table 6.3: Types of Action Spaces used in the IPGG 

 
 

Type Possible discrete cooperation levels 
)(2

ijt
ij

A  Full Defection (0) and Full cooperation (5)  

)(6
ijt

ij
A  

Full Defection (0), Medium Defection (1), Mild 
Defection (2), Mild Cooperation (3), Medium 

Cooperation (4) and Full cooperation (5) 
 

6.4 Co-evolutionary learning mechanism 
 
In the proposed IPGG, each player starts off with an initial strategy and betters it 

over time through learning. Adaptation to the dynamic environment is by means 

of co-evolutionary learning as players of the same type will evolve their strategies 

collectively, and independently of other types. This is because framing constrains 

the evolution of player strategies within the bounds of their corresponding strategy 

structures. During revision, players only switch to strategies which are in line with 

their beliefs. It is natural for players of the same type to collate and undertake 

group learning - exchanging of ideas. To remain relevant in the game, strategies of 

the same type compete in terms of their performance as evaluated against all other 

types. This enhances intra-type adaptation, and ensures that good strategies are 

constantly adopted in favor of the weaker ones. As more competent strategies 

emerged over time, players of asymmetric types also serve as harder opponents 

for one another. This aptly accounts for inter-type adaptability. As introduced in 
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Chapter 2, this elegant co-evolutionary framework captures three distinct aspects 

of learning within each evolving type, namely. 

 
1)   Learning by replication 

This learning type is analogous to selection in CEAs whose purpose is to 

ensure that good strategies are adopted in favor of the weaker ones when 

players decide to revise their current strategies. Implemented using binary 

tournament selection of size TS in the IPGG, this comes in two forms: 
 

• Strategy preservation – Among the players whose strategies are selected for 

propagation to the next generation; those who have derived outstanding welfare 

are likely to retain their strategies without modification - leaders. In reality, this 

can also be applied to players who are confident about their strategies or simply 

those change-adverse ones as well. 
 

• Elitism – There is a strong tendency for a random pool of Z players to revise 

their strategies by imitating the strongest Z players. As opposed to the prestige-

based transmission [266], this is undertaken by followers - players who do not 

devise their own strategies but merely perform a full-scale adoption of the 

strategies which are used by those who enjoyed the most welfare at the end of 

each cycle, encompassing GamesN  games of RoundsN . In the IPGG, Z constitutes a 

fixed proportion of the evolving population. 

 

2) Learning by social exchanges 

• This learning type is analogous to crossover in CEAs whose purpose is to 

create variations that will differentiate the adopted and original strategies; 

through the amalgamation of traits between the parent strategies. As opposed to 

leaders and followers who adopt their strategies wholesale from the previous 
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cycle, only parts of the original strategies are preserved when players learn by 

exchanging strategic knowledge and expertise. Such collective social learning – 

uniform exchange of strategy bits, occurs with probability Pcrossover in the IPGG 

and simulates the creation of possibly new, hybrid strategies.  

 

3) Learning by experimenting 

• This learning type is analogous to mutation in CEAs where players experiment 

with small adjustments to strategies to create new ones. Unlike social learning, 

players fine tune their strategies independently by infusing their own discretion 

by trial and error. In the IPGG, there is a small probability mutateP  that players 

will revise their strategies by switching randomly to new contribution levels for 

each possible outcome of interaction.  

 

After each successful phase of co-evolutionary learning – marked as one complete 

generation; the new set of evolved strategies will be adopted by players in the next 

interaction cycle. The process of co-evolutionary learning will continue until the 

maximum of GenN  generations have elapsed. 

 

6.5 Simulation results 
 
Simulations for the IPGG are carried out using Visual C++ development software 

kit. A summary of the important parameter settings used are shown in Table 6.4.  

 
Table 6.4: List of Parameter Settings used in the Simulation Runs 

 

Symbol Parameters Values 

TypesN  Number of different information types 4 

R  Number of simulation runs 20 
N  Number of players in the population {240, 960} 
M  Number of groups {[24, 120], [96, 480]} 
n  Size of each group [2, 10] 

RoundsN  Number of rounds played - duration of a game [1, 200] 
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GamesN  Number of games played – Duration of each interaction cycle {50, 100} 

EndP  Probability of ending after each iterated round of game play 0.00346 

BasicU  Basic utility derived from private component when no PG is 
provisioned 2.0 

factorC  Value of contribution cost 2.5 

factorR  Value of PG provisioned for a player when full cooperation is 
embraced 5.0 

GenN  Number of generations simulated per run 600 
TS Tournament size 2 

crossoverP  Probability of crossover or knowledge exchange between players 0.8 

mutateP  Probability of mutation or independent learning by each player 0.02 

Z  Elitism size or number of imitating players 0.05*N 
 

 

To ensure consistency and eliminate errors due to stochastic variation, the 

simulation results are averaged over 20 runs, lasting 600 generations each. Every 

generation will last an interaction cycle of {50,100} games. In a game, players 

will be randomly collated in groups of 2-10 to play for 200 rounds. Groups of all 

sizes are equally likely – there will be approximately the same number of groups 

of each size. Taking into account that players can pull out of a group or a team 

project can end at any one time, there is a small probability that a game will end 

after each round. After a game ends, players will reshuffle to form new groups - 

similar to migration [267] and team switching, NGames times before strategies are 

revised through co-evolutionary learning. This allows time for players to assess 

their strategies over an accumulated window of experiences, so that well-informed 

strategy choices can be adopted eventually. 
 

 

6.5.1 Homogeneous vs Asymmetric game-play 
 
Simulation is carried out to compare interaction outcomes in both homogeneous 

[268] and asymmetric settings. The prior solely involves the interaction between 

players of the same type; while the latter may involve interaction between diverse 

types. The asymmetric case resembles reality to a much closer degree as being 
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dissimilar in beliefs and ideologies, heterogeneous players make different sense of 

the same situation and are likely to make varied decisions accordingly. An action 

space of )(6
ijt

ij
A  is used for all types unless otherwise stated. Interesting insights 

of the player strategy and usage profiles, cooperation dynamics and welfare level 

are revealed in the following case comparisons. 

 

1) Performance of different player types: As depicted, the differences in mean 

welfare to each player - normalized average generation score per round (AGS) – 

Figure 6.1a and average cooperation level (ACL) – Figure 6.2a exist between 

groups that use different information types. For N = 240, NGames = 50, evolutionary 

traces for the homogeneous setting showed that (AC, NP) attained the highest and 

lowest (AGS, ACL) respectively after 600 generations. The disparity is due to the 

inherent differences in structure and nature of information e.g. amortization of 

group effort subjects AC to less variation and makes it much easier for players to 

forge cooperative relationships via strategies which are fairly stable to frequent 

changes in n. In comparison, it is difficult for NP players to sustain high (ACL, 

AGS) as their actions change in direct relation to n. AC also provides a clear 

indication of the effort which an average other contributes and thus the eventual 

welfare that one is likely to derive. Such knowledge helps to elicit cooperation and 

facilitates reciprocity – contributing as a positive function of others’ contributions 

[256], among players; as a player is generally willing to contribute conditioned on 

beliefs that others are doing so at similar levels [249]. This link is not as direct 

when it comes to other types e.g. TC does not signal about the expected welfare as 

much depends on n while PR varies with one’s contribution relative to the group’s 

average. Though it was claimed that evolution provides a simple and effective 

means to maintain cooperation in a group-structured population, depending solely 
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on population dynamics [269], the above suggests that the nature of information 

used does affect the tendency to cooperate. Similarities between the AGS and 

ACL plots indicate that the welfare enjoyed by players in a homogeneous setting 

is positively correlated to their cooperation levels. 

On the contrary, plots (Figures 6.1b, 6.2b) reveal a distinct reversal in the 

trend of performance for player types under the asymmetric setting. As illustrated 

by the negative correlation between the convergence traces of ACL and AGS, 

cooperative player types like AC are worst off in welfare than types adopting pro-

defection strategies e.g. NP; as the common environment of interaction effectively 

opens up opportunities for the latter types to reap a larger share of total welfare by 

exploiting the prior. This conjures the notion that it does not pay to contribute if 

others may not be subscribing to similar information types for decision making.  

The interdependency between types, as each evolves and adapts its strategies 

to those of more diverse nature, brings contributions and the ensuing welfare of 

different types closer together. Unlike the homogeneous setting where traces show 

signs of recovery after an initial dip, the monotonically declining temporal trends 

for all types signify further difficulties in achieving voluntary PG provision under 

asymmetry. Benefits of mutual cooperation do not appear explicit since beliefs of 

asymmetric players tend to be are misaligned and actions mis-coordinated [270]. 

Coupled with the prevalence of Social Dilemma, the inability to realize potential 

gains from contribution fuels development of defect-oriented traits and composes 

a bleak picture towards provision. Whilst NP players are perceived to enjoy higher 

welfare from free riding, this is clearly insufficient to offset the drop in welfare for 

other types. From a collective point of view, AGS under asymmetric interaction is 

compromised and lower than before. 
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Figure 6.1: AGS of various types for (a) homogeneous and (b) asymmetric game play  
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Figure 6.2: ACL of various types for (a) homogeneous and (b) asymmetric game play 
 

2) Duration of interaction and number of players: Studies have shown that the 

amount of repeated interaction is an important factor which facilitates reciprocal 

play [271] and population size can also affect the emergent behavior of a group 

[272]. It is interesting to examine the impact of NGames and N on the dynamics of 

cooperation for different types. Following an increase of NGames to 100 (Figures 

6.3a, 6.4a), only slight changes are detected. Save for these, the traces remained 

closely similar; indicating that NGames is not a major factor which affects (AGS, 

ACL). Prolonged periods of contact do not induce significant behavioral change in 

this case as a substantial amount of interaction is already in place.  

However, increasing N to 960 (Figures 6.3b, 6.4b) showed otherwise. In the 

homogeneous setting, disparity in (ACL, AGS) among types widens as there is a 

distinct rise in (AGS, ACL) for (AC, PR); whose traces are notably higher than 
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(NP, TC). These marked differences are due to the presence of a large player pool 

that emphasizes and accelerates the adoption and propagation of existing traits. 

For (AC, PR), pressure is exerted for a more cooperative milieu in intra-group 

interaction as there are more players subscribing to information that induces 

cooperation. On the same note, the increase in (NP, TC) players highlights pro-

defection traits, causing (ACL, AGS) to fall. In contrast, disparity in (ACL, AGS) 

across types in the asymmetric case narrows. Given a proportionate rise in number 

of players for each type, a larger pool of less cooperative players accentuates and 

propagates the free riding cultures throughout the population by compelling the 

cooperative types that are freely exposed to dangers of exploitation to withhold 

contribution considerably to near full defection. Overall, players are worse off. 

 

3) Analysis of strategy and usage profiles: Strategy profiles give complete action 

plans of how players on average, contribute under various outcomes of interaction 

while usage profiles record the mean frequency of occurrence for all outcomes. 

Together, the two reveal interesting blueprints of frequency distribution for each 

action-outcome pair and offer insights into the contribution patterns of types.  

With homogeny, strategy profile of NP is by and large most defect-oriented 

(Figure 6.5a) as seen by the rapid decline of ACL from its highest at n = 2 to 

effectively zero at n ≥ 3 and the rightward skewing of usage profile. Besides the 

complexity in multi-player games which comes with expansion in the breadth of 

possible strategies [271], a study which similarly explored the effect of n on group 

cooperation [273] via an evolutionary framework [244] verified that the inherent 

dynamics for the outcomes where (n = 2) and (n > 2) are contrastingly different; 

given that full, eventual cooperation is achieved for the prior but not the latter. 

Although it is widely conceived that more PG is generated with large groups, this 
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does not equate to the enjoyment of more welfare per individual. Profiles of (AC, 

TC, PR) reveal more potential of attaining higher contribution as the players on 

average, adopt a diverse continuum of ACLs. Whilst (AC, TC) possess upward 

sloping strategy profiles that associate high contribution with high ACL (Figures 

6.5b, c), ACL does not peak where contribution is highest, indicating the existence 

of a desired effort level where players find most rewarding to contribute. Any 

contribution below it is too low to sustain stable collaboration while that above it 

will be high enough to tempt potential defectors to free ride. Alignment of long 

discrete lines in AC’s usage space to peaks in the strategy space denotes high 

recurrent contributions. Despite similarities, the usage profile is skewed leftwards 

if TC is used as a gauge of input effort, indicative of the pro-defection traits.  

PR’s strategy profile is interestingly U-shaped – the players react with high 

ACL when the previous payoff is low or high (Figure 6.5d). Other than a result of 

panic response from those who seek to raise AGS by raising ACL, the prior is 

attributed to the fact that good strategies do practice forgiveness even if previous 

contribution is exploited. The latter is possibly due to indirect reciprocity [274]-

[276] e.g. players may choose to repay the welfare derived from others’ efforts 

circuitously by maintaining high contribution levels towards PG provision. Unlike 

direct reciprocity [37], altruism can be possible among N-persons [277], [278]. 

Concentration of usage outcomes in the mid region of the strategy space - where 

ACL is low, implies a low tendency to contribute when the decision is made from 

the perspective of personal gains from other players. Many are tempted to free-

ride as a means to yield high personal payoff. 

In asymmetric interaction, the range of non-zero contribution for NP in 

groups beyond n = 3 is widened surprisingly (Figure 6.5a). This is in retrospective 
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of the fact that cooperative types do induce a willingness to contribute in types 

that are inclined to free-ride. Players tend to reciprocate contribution when shifted 

from a pro-defection environment to one where the likelihood of contribution is 

higher. Likewise, AC’s sparsely distributed usage profile is switched to one which 

concentrates usage in regions of low ACL (Figure 6.5b). The evolution of pro-

defection strategies arises in similar principle to NP but with the difference that it 

involves an exposure of cooperative types to defect-oriented ones. Pro-defection 

behavior for (TC, PR) is seen by the respective skews of their usage profiles 

towards regions of low ACL (Figures 6.5c, d).  

Usage distribution over a collection of outcome-dependent frequency bins 

for (AC, TC, PR) indicates that the players transit across a wider spectrum of 

contributions instead of just a few dominant ones (Figures 5b, c, d), suggesting 

possibilities for more diverse outcomes. Adding on to the strategy misalignment 

that occurs as n changes, absence of consistent/Nash contribution level is largely 

due to incoherent beliefs among types. Overall, asymmetry induces higher and 

lower ACL for types which are respectively less and more cooperative. There are 

also more varieties and assortment to the interaction outcomes as well as the ACL 

of various player types that led to their occurrence. 
 

6.5.2 Varied degrees of decision making and nature of PG 
 
After comparing PG provision under homogeneous and asymmetric information, 

this section explores effects of varied degrees in decision making and the nature of 

PG provision on asymmetric interaction outcomes. Scenarios where players can 

choose from two or six contribution levels are examined for the effects of coarse 

and fine granularity in decision making. The latter is studied in the previous 
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simulations while the prior involves a scale down of action space to )(2
ijt

ij
A - where 

choices are restricted to only full contribution or complete free-riding. Subtle as it 

may be, this constraint has profound repercussions on the willingness to contribute 

as well as the effective welfare derived. 

The impact of free-riding is also explored in two forms of PG – VCM and 

provision point VCM (PPVCM) [279]. The prior denotes the scenario where PG 

available for consumption is scaled proportionally by the collective contributions 

of all within the group e.g. higher aggregate contributions entail greater welfare. 

In the latter, however, such correspondence does not apply with continuity as PG 

is provisioned only when a minimum threshold, T is met by the group’s mean 

contribution. Above which, characteristics of a continuous PG prevails but under 

which, no PG will be provisioned and players derive zero welfare. As an example 

of a real world analogy, commission is awarded to a team only if a minimum sales 

target is met. Below T, effort expended for PG provision is wasted and incurred as 

uncompensated cost. Using T = 3, payoff function for player i when provisioning 

a PG in group gj of size nj under PPVCM can be expressed mathematically as: 
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Similar in spirit to the case where input choices of players are constrained to two 

contribution levels, the threshold T restricts the eventual interaction outcome at 

certain levels of aggregate contributions, to one that involves provision or absence 

of PG. The prior influences inputs – action spaces while the latter affects the 

interaction outputs – derived welfares. Under the complex asymmetric interaction, 

the modifications considered may improve cooperation or worsen the prevailing 
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effects of Social Dilemma unknowingly. Fusing the above factors, four provision 

schemes {S1, S2, S3, S4} are devised in Table 6.5, simulated and analyzed to 

compare their relative benefits in promoting cooperation and improving welfare. 

Insights gained can then be used to understand how good the provision schemes 

are in alleviating the effects of free-riding. 

 
Table 6.5: Combinations of Different Settings for Varied Degrees of Contribution and Nature of 

Provision 
 
 

Scheme Degrees of Contribution Nature of PG Provision Action Space Payoff Function 

S1 6 VCM )(6
ijt

ij
A  (4) 

S2 2 VCM )(2
ijt

ij
A  (4) 

S3 6 PPVCM )(6
ijt

ij
A  (11) 

S4 2 PPVCM )(2
ijt

ij
A  (11) 

 
1) Analysis of AGS and ACL for different provision schemes 

   a) Homogeny of welfare distribution and contribution  

  Different schemes showed contrasting (AGS, ACL) plots (Figures 6.6, 6.7). 

Comparing S1 and S2, truncating the action space causes further convergence in 

the traces of different types; as the players effectively focus on just two radically 

distinct choices - contribute and free-ride. This eases the task of coordinating 

actions and raises the likelihood that players will contribute at similar levels 

despite type differences. In S1, intermediate options accentuate welfare disparity 

among various types by allowing the freedom to select diverse actions. In S3, 

homogeny of (AGS, ACL) traces for various types is also achieved (Figures 6.6c, 

6.7c) by constraining the interaction outcomes - as welfare variation only persists 

when contribution exceeds T. Players are motivated to contribute close to T – 

minimum ACL required to yield non-zero welfare, as players can avoid deriving 

zero welfare and yet prevent added contribution beyond T from being exploited. 
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Overall, imposing choice restriction or structuring a PG by PPVCM translates to 

greater strategic uniformity and equity in welfare distribution across player types. 

Combining the benefits of S2 and S3; S4 nonetheless, does not ensure close 

resemblance of ACL across types (Figures 6.6d, 6.7d). A liable reason lays in the 

limitations imposed on both the action and outcome spaces simultaneously. With 

choice restriction in S2, the exposure to risks of full exploitation is amplified. 

Cooperators tend to withhold contribution as non-zero payoffs can still be attained 

for contributions below T. Prevalence of such traits reduces the overall ACL but 

enhances uniformity across types. As for outcome restriction in S3, intermediate 

choices similarly allow players to reap non-zero payoffs by adjusting ACLs to 

levels close to T; so that all can benefit without contributing overly.  

With both constraints in place, free-riding is however not encouraged as the 

only way that players can derive non-zero payoffs is through full contribution. By 

virtue of the strong free-riding effects working against a need to contribute, NP’s 

ACL experiences an inevitable drift from those of other types, towards T. Despite 

diverging ACL traces, S4 entails the best welfare distribution as evident from the 

concurrence of AGS throughout the simulation. While it may be the goal of most 

provision schemes to ensure an even distribution of welfare by coercing dissimilar 

types to contribute at similar degrees, S4 goes a step further to attain the same goal 

by accommodating differences in contribution patterns. Such robust trait allows 

each type to preserve its own distinctiveness amid the pursuit of mutual fairness. 

This is one important aspect of a good provision scheme that is much overlooked. 

 

b) Overall welfare and contribution level 

Besides comparing homogeneity in (AGS, ACL), schemes discussed thus far 

also differ in overall (AGS, ACL) - ranked {S2, S1, S3, S4} in ascending order. 
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Though fewer choices [145], [262] is typically preferred to more choices in the 

2IPD, this is however, less definite as far as the multi-player IPGG is considered 

under asymmetric information. The situation of analysis is complex - depending 

on the provision setup, a restriction of choices can work both ways: encourage 

contribution or breed free-riders. In VCM, multiple contribution levels actually 

promote higher (AGS, ACL). While it may seem commonsensical to improve the 

overall welfare by coercing players to execute full cooperation through choice 

restriction - S2, immense risk is involved as defectors will free-ride fully. Due to 

its structure, changes in individual contribution translate only to inconsequential 

change in AGS especially for large n. Even if one risks exploitation, the group 

will only benefit marginally. Free-riding is a better choice as players stand to gain 

if a cooperator subsists in the group. As contribution is not sustained by incentives 

and its disincentives are not duly compensated by any counter-active measures; 

players will inevitably choose D over C, leading to a drop in (AGS, ACL). With 

multiple choices, S1 offers more opportunities to contribute at levels beyond full 

defection. This is imperative to facilitate the increase in (AGS, ACL) from S2.  

PPVCM schemes – (S3, S4), in contrast depict a clear trend of dominance in 

(AGS, ACL) over (S1, S2). Players, regardless of types, are more contributive and 

derive higher welfare. This is attributed to nonlinearity of introducing a provision 

point. With the notion that “either you get the PG or you don’t”, the opportunity 

costs of not contributing are increased. Players are spurred to raise contribution 

above T so that efforts expended will not be in vain. For a switch from S1 to S3, 

players are instilled the message “if an adequate level of contribution is not met, 

no PG is provisioned and everyone will get no share of the benefits”. This entails 

higher efficiency in staging the provision task, as players are factually compelled 
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to raise their contribution stakes or face the adverse outcome of deriving zero PG. 

This creates an upward pull in the overall ACL to levels where PG is provisioned 

in non-zero amount. Even so, ACL remains in the range [3, 3.5] as players do not 

have supporting incentives to embrace full cooperation as VCM sets in beyond T. 

To avoid over contributing, many players will find it more viable to contribute at 

mid levels below full cooperation.  

S4 addresses this issue via restricting choices. As the most stringent scheme, 

it expects all to “contribute to their best or risk provisioning no PG”. The message 

that conveyed a need to contribute is a much stronger one-given the same number 

of cooperators in S3 and S4, those in the latter will be restricted to play only full 

contribution. This accounts for the momentous rise in ACL for most types to [4, 

4.5], though NP still chooses to free-ride sporadically. Overall AGS is raised to a 

significant 3.3. Switching to PPVCM confers more benefits than simply restricting 

choices. The former changes the entire structure of what is provisioned [222], not 

just a tweak in the inner settings. Combination of both features is the best setting 

to encourage contribution and achieve efficient PG provision. 

 

c) Overall trend and slope characteristics/dynamics 

Eventual convergence of ACL traces (Figure 6.7) signifies the presence of 

evolutionary stable welfare levels that players of each type are willing to play so 

as to derive from. Even so, relation between ACL and AGS is no longer explicit - 

it cannot be ascertained whether a higher or lower ACL will yield higher AGS. 

AGS of each type will depend much on the nature of its information and strategies 

of others. VCM and PPVCM schemes are differentiated by dissimilarities in the 

trend of progression for (AGS, ACL) e.g. (S1, S2) exhibit a declining trend while 

(S3, S4) depict an upward moving one with generation. This is because for the 



 

 192

same strategy pool, ACL falls when the temptation to free-ride sets in for VCM, 

which fuels a drop in AGS for all types. For PPVCM, players are motivated to 

raise contributions above T or risk deriving no welfare. This translates to a rise in 

AGS over time. Overall, the PPVCM schemes are more effective in mitigating, if 

not eliminating the effects of Social Dilemma among varied types. 
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 Figure 6.3: AGS of different player types for changes in (a) NGames and (b) N 
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 Figure 6.4: ACL of different player types for changes in (a) NGames and (b) N 
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Figure 6.5: Strategy and usage profiles for type (a) NP, (b) AC, (c) TC and (d) PR under 
homogeneous and asymmetric information 

 

3) Does a higher threshold trigger higher contribution? 

After ascertaining that the PPVCM schemes do work better in promoting 

contribution via a minimum threshold, T, that pulls mean contribution up; the next 

task is to verify how the size of T affects welfare and extent of free riding [235]. 

Does the influence pattern differ with number of available choices? These queries 

can be answered by studying (AGS, ACL) of (S3, S4) for T = {2, 3, 4} (Figures 

6.8, 6.9). At T = 2, both traces are lowest due to the low incentive to contribute. It 

is reasonably foreseeable that more players are driven to free-ride at low Ts when 

choices are limited, as it makes no sense to match maximum effort with a low 

contribution goal. One can enjoy more benefits by leveraging on cooperators to 

realize contribution levels that are just enough to fulfill the provision task. From T 

= 2 to 3, overall (AGS, ACL) for (S3, S4) rose. Increase in ACL for S3 is mild and 

translates only to a slight rise in AGS. In contrast, S4 experiences a large shift in 

ACL that pushes AGS beyond the level in S3, indicating greater sensitivity to 

changes in T. Probability that individual contribution determines provision or non-

provision of PG is raised [222]. More players switch to full contribution as it is no 

longer enough to depend on others for PG provision - it takes three cooperators at 

full contribution to cover two free-riders as compared to two cooperators at full 
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contribution to cover three free-riders previously. The fact that (AGS, ACL) of S4 

supersedes S3 from below signifies the potential to attain higher contribution via 

the synergistic blend of PPVCM and choice restriction, despite starting off low. 

   At T = 4, S4 continues to experience a steady but smaller step up in (AGS, 

ACL), but S3 a fall in AGS for corresponding rise in ACL. In conjunction with the 

less than proportionate rise in AGS from T = 2 to 3, the drop in AGS for S3 is 

primarily due to the assorted actions that varied types undertake in each group. 

Amplified by multiple choices, action coordination is much harder as many may 

prefer to contribute at intermediate levels. This can cause ACL of a typical group 

to fall short of T. Thus, despite the overall increase in ACL, a decline in AGS is 

observed as costs are expended without achieving benefits. S4 can realize the trend 

of increasing AGS as choice coordination is much clearer and players do have a 

tendency to contribute when deciding between the two extreme alternatives. 

Presence of a period for players to coordinate their actions exists under S4, 

as illustrated by the intersection for the family of S-curves (Figure 6.8b) – 150th 

generation. At T = 2, players can attain high AGS with their initial strategies but 

the inclination to free-ride tends to reduce overall AGS as actions are fully 

coordinated. For T = 4, overall AGS starts low as players are unable to fulfill the 

provision point requirement initially. The trend reverses when all are driven to 

coordinate their actions to attain higher AGS. The distinct S-shape is due to 

differences in the starting and ending AGS. The higher the value of T, the lower 

the initial AGS but the greater is the potential of attaining high eventual AGS. 

Overall, increasing T raises welfare by setting a high provision target to induce 

players to contribute, but this does not always hold as high T values are only 

beneficial when the players face limited choices. With multiple choices, the goal to 
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attain high contribution is likely to be hindered by a dilution of mean contribution. 

This can lead to a negligible increase or even a decline in overall AGS as T gets 

larger (Figure 6.8a).  

 

6.5.3 Multi-level selection: group vs individual reward 
 
After considering the means of improving contribution and welfare by restricting 

choices and altering the nature of PG provision, it is also of interest to explore the 

impact of varied selection schemes on the outcome of asymmetric interaction. 

Motivated by concepts of multi-level selection [280], [281] from evolutionary 

biology [282], it is known that different selection schemes can entail diverse 

outcomes. With supplement from the kinship theory [38] and reciprocal altruism 

[37], making a group the unit of selection [283] can provide explanation for the 

evolution of altruism [284], [285] and cooperation [286]. 

Consider a case where a firm wishes to reward its staff for past achievements 

and contributions. To ensure that corporate cultures of voluntary contribution and 

mutual cooperativeness continue to spread throughout the workforce in future; is 

it desirable to reward on an individual or group basis or a combination of both? 

Such a decision is crucial as it impacts the underlying organizational dynamics 

and sets the course that staff should work towards. When implemented correctly, a 

good reward scheme can raise the morale of deserving personnel, improves the 

overall efficiency of the work crew which leads on to ease of completing big-scale 

public projects by highly contributive individuals and groups. With the above 

objectives in mind, the last case study seeks to compare three different selection 

schemes and analyze their relative advantages. The schemes {SI, SG, SM} are 
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1)  SI   : Individual selection based on group effort  

Taking into account the fact that individuals are likely to switch groups from 

time to time, one is selected for reward according to mean accumulated effort 

per individual that is channeled by all groups that he has previously participated 

in for the PG provision. Since PG can refer to any community assignment or 

large-scale project where the payouts are not directly correlated to the effort 

expended by an individual, this performance measure helps quantify individual 

effort, which is usually hard to assess in a group context, owing to loafing and 

moral-hazard issues [287]. In simpler terms, the higher the amount of PG 

generated by groups that one was formerly a part of e.g. the more successful the 

past projects which one took part; the higher the chances of reward.  

 

2)  SG   : Group selection based on group effort  

Individuals are selected for rewards on a group basis, in accordance to the 

efficiency in generating PG. As opposed to SI, the unit of selection is the group. 

In essence, groups that can harness higher mean contribution per player will be 

in favor of being chosen; and upon successful selection, all individuals in the 

group are rewarded.  

 

3)  SM   : Multi-level selection based on group effort  

As the name suggests, reward selection is done at both the individual and group 

levels. Selection criteria are identical to both SI and SG, so as to verify whether 

a combination of the previous two schemes delivers the best mechanism for 

reward than when either of them is considered separately. 
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Figure 6.6: AGS for (a) S1, (b) S2, (c) S3 and (d) S4 with N = 240, N Games = 50 
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Figure 6.7: ACL for (a) S1, (b) S2, (c) S3 and (d) S4 with N = 240, N Games=50 
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Figure 6.8: Overall AGS for (a) multiple and (b) two levels of contribution 
 

Figure 6.9: Overall ACL for (a) multiple and (b) two levels of contribution 
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Figure 6.10: AGS for (a) S1, (b) SI, (c) SG and (d) SM with N = 240, N Games = 50 
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Figure 6.11: ACL for (a) S1, (b) SI, (c) SG and (d) SM with N = 240, N Games=50 
 

 

 

 

 

 

 

 



 

 202

   The schemes are simulated and outcomes of PG provision are analyzed 

(Figures 6.10, 6.11). Previous results for S1 which select individuals based on 

individual welfare in each group are used as the common basis of comparison. It 

is clear that all schemes that select using group contribution supersede S1. This is 

due to cost factoring when selecting based on individual welfare. A player that is 

selected based on high welfare level does not necessarily imply a cooperator by 

nature. In contrast, it turns out more frequently that he is either a free-rider that 

exploits the others’ contribution successfully or a weak cooperator that withholds 

contribution tacitly by leveraging on others’ effort. Selecting these players, to 

some extent, results in propagation and adoption of free-riding traits by players for 

the subsequent strategies. This inevitably imposes a limitation on the extent to 

which (AGS, ACL) can reach eventually.  

Comparing among schemes which reward on the basis of group performance, 

SI presents the highest (AGS, ACL) at the end of 600 generations, followed by SM, 

then SG. Although group selection can promote intra-group cooperation by raising 

the inter-group competition [287], this is not so in the context of IPGG. The 

downside rests on the fact that SG has no way of distinguishing effectively amid 

cooperators and free-riders. This is an essential point of consideration as a group 

that does well in generating high mean contribution per individual may comprise a 

mixture of very cooperative players as well as mediocre free-riders. An attempt to 

reward all players in a group regardless of individual contribution is bound to 

admit free-riders for an equal share of the reward pie; even if they did not play any 

substantial part in realizing the PG provision- e.g. benefits from success of project 

becomes public to all. By handing out rewards to free-riders on top of benefits that 

they have already gained by exploiting contributions, SG is clearly designed with 
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come elements of unfairness. Similar to S1, there is a possibility for the continual 

proliferation of free-riding traits in group selection. Apart from fairness, SG is also 

inefficient as iterated use of the scheme limits willingness to contribute at 3 and 

restricts mean welfare that each individual ultimately gets.  

   Unlike SG, SI projects a fairer and more efficient reward system. Although it 

is hard to capture individual contribution from group performance, amalgamation 

of achievements from all past coalitions that an individual had joined does piece 

up to provide a good clue and indicator. The entirety of an individual’s history of 

group contribution implicitly captures a good perception of his effort level e.g. the 

more group achievements accumulated over his history of participation in teams 

within a specific time frame; the greater will be the likelihood that the player is an 

important and substantial contributor to the success of all his teams. Using this 

form of performance measure as a basis to select individuals for rewards clearly 

provides a fairly good means of differentiating between efforts put in by each 

member. This not only achieves fairness by excluding exploitative personnel from 

a share of the reward, but more importantly, it provides an exceptional driving 

force to motivate existing free-riders to contribute to avoid losing out in future 

reward opportunities. (AGS, ACL) of SM is middling as it possesses the properties 

of both SG and SI e.g. the disadvantages of SG somehow dilutes the advantages 

introduced by SI. On the whole, SI leads to a clear dominance of contribution and 

welfare over all other schemes. 

 

6.6 Findings and discussions 
 
Interesting findings are presented in the course of the co-evolutionary simulation, 

which aids in the understanding of differences in PG provision in homogeneous 
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and asymmetric interaction. Verified from a myriad of settings, players’ beliefs 

are more aligned in the former, where certain strategies and outcomes tend to be 

strikingly more dominant. In the latter, a more diverse spectrum of strategies and 

outcomes is entailed due to misaligned beliefs. Though interaction amid dissimilar 

types leads to homogeny in welfare distribution, contribution certainly does not 

pay as efforts of cooperators are exploited by free-riders. This lowers mean 

contribution and welfare to all. Overall, free-riding is more pronounced in the 

asymmetric setting and players are generally worse off. While research has shown 

conclusive evidence that less choices is preferred to more in enhancing 

cooperation in pair-wise interaction, results of simulation studies have ascertained 

that this notion is less definite for an asymmetric setting with multiple players. 

Much depends on the structure of the provision scheme.  

Restricting choices truncates action spaces and helps to align contributions 

among similar types; while the PPVCM coerces players to contribute above a 

minimum provision point or risk deriving no welfare. A combination of limited 

choice and PPVCM – where large thresholds induce more contribution; offers an 

effective means of mitigating the Social Dilemma. However, this fact does not 

hold true for multiple choices; as the goal of attaining higher contributions is 

hindered by a dilution of average contribution when players contribute at different 

levels. Finally, although it seems fairer to reward individuals on a group basis - as 

only group performance can be accurately assessed; such scheme suffers an 

inherent drawback of not being able to discriminate among cooperators and free-

riders. Results have shown that contribution and welfare can be increased by 

rewarding on an individual basis, using the collection of group achievements for 

which the individual was previously attached to. 
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6.7 Summary 
 
In conclusion, this chapter presents a co-evolutionary approach to model and 

implement an IPGG using ACM such that collective outcomes of PG provision 

under asymmetric information can be effectively simulated and analyzed. The 

simulated results reveal interesting interaction dynamics and added difficulties in 

achieving cooperation when information asymmetry is present among players. In 

general, the proposed framework provides a very useful platform to gain a better 

understanding of collective action and some insights into how the effects of Social 

Dilemma can be mitigated. This might in turn offer some ideas on how efficient 

public goods provision can be achieved in the practical context.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 206

Chapter 7 

Conclusion  
 

Co-evolutionary simulation modeling is the application of stochastic CEAs to 

simulate the process of evolution and adaptation in ACMs. It has been found to be 

an efficient and effective framework to model, simulate and further the analysis of 

strategic interaction from numerous perspectives, especially when conventional 

analytical and empirical approaches fail under their intrinsic constraints. Inspired 

by Nature’s evolutionary principles, where uncertainty is a common and inherent 

phenomenon, CEAs become a natural candidate to model realistic imperfections 

which mirrors and constitute real world interaction. As an optimization paradigm 

which functions primarily based on probabilistic and population-based searches, 

CEAs provide a dynamic framework that drives co-evolutionary learning and 

strategy improvement when agents interact in game theoretic settings – in which 

an absolute fitness measurement that reflects the underlying properties of games is 

extremely difficult, if not impossible to formulate. Equipped with a myriad mix of 

desirable characteristics, it will be interesting to examine the use of CEAs as a 

viable alternative and complementary avenue to existing approaches, particularly 

as a means to facilitate the discovery of good game strategies, analyze collective 

interaction outcomes of and gain better insights into the underlying dynamics that 

leads naturally to those outcomes. 

 

7.1 Contribution 
 
This work contributes towards to the application of CEAs to model, simulate and 

analyze game theoretic interaction in several interesting contexts of study. Chapter 
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3 focuses on the development of a competitive computer player for the one versus 

one Texas Hold’em poker using CEAs. A Texas Hold’em game engine is first 

constructed where an efficient odds calculator is programmed to allow for the 

abstraction of a player’s cards, which yield important but complex information. 

Effort is directed to realize an optimal player which will play close to the NE by 

proposing a new fitness criterion. Preliminary studies on a simplified version of 

poker highlighted the intransitivity nature of poker. The evolved player displays 

strategies which are logical but reveals insights that are hard to comprehend e.g. 

bluffing. The player is benchmarked against Poki and PSOpti, which is the best 

heads-up Texas Hold’em A.I. to date and plays closest to the optimal NE. Despite 

the much constrained chromosomal strategy representation, the simulated results 

verified that CEAs are effective in creating strategies that are comparable to Poki 

and PSOpti in the absence of expert knowledge. 

Chapter 4 examines the comparative performance and adaptability issues 

of evolutionary, learning and memetic strategies in different environment settings 

in the IPD. Evolutionary strategies are realized by GA based on co-evolutionary 

principles and learning strategies by a double-loop incremental learning scheme, 

ILS that incorporates a classification component, probabilistic update of strategies 

and feedback learning mechanism. A memetic adaptation framework is developed 

for IPD strategies to exploit the complementary features of evolution and learning. 

In the framework, learning serves as a form of directed search to guide evolving 

strategies to attain eventual convergence towards acquiring good strategy traits 

while evolution helps to minimize disparity in performance among the learning 

strategies. A series of simulation results verify that the two adaptation techniques, 

when employed concurrently, are able to complement each other’s strengths and 
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compensate for each other’s weaknesses, leading to the formation of strategies 

that will adapt and thrive well in complex, dynamic environments. 

 Chapter 5 focuses on the development of a spatial evolutionary multi-agent 

social network to study the macroscopic-behavioral dynamics of civil violence 

that culminates as a result of the microscopic game-theoretic interactions between 

the goal-oriented agents. Agents are modeled from multi-disciplinary perspectives 

and their strategies are evolved over time through collective co-evolution and 

independent learning. Spatial and temporal simulation results reveal fascinating 

global emergence phenomena as well as interesting patterns of group movement 

and autonomous behavioral development. Extensions of varying complexity are 

also used to investigate the impact of various decision parameters on the outcome 

of unrest. Analysis of the results provides insights into the intricate dynamics of 

civil upheavals and serves as a good avenue to gain a more holistic understanding 

of the fundamental nature of civil violence. 

 Chapter 6 presents a co-evolutionary, game theoretic approach to simulate 

and study the collective outcome of public goods provisioning in an agent-based 

model. Using asymmetric information as the basis for decision making, distinct 

groups are configured to interact in an iterated N-player public goods game, where 

co-evolutionary learning is used as the mechanism of adaptation to the dynamic 

environment. The impact of information type, number of players, group size, rate 

of interaction, number of available choices, nature of PG provision and selection 

schemes are studied over a variety of settings. Simulation results reveal interesting 

dynamics of strategy and usage profiles, level of derived welfare and the evolution 

of cooperation. Analysis of these attributes offers a more holistic understanding 

into the nature of collective action and some insights of how the effects of Social 
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Dilemma can be mitigated. This might provide a good guide to achieve efficient 

public goods provision in the practical context. 

 

7.2 Future works 
 
Although we have successfully applied CEAs to model game theoretic interaction 

and examined the outcomes of agent-based co-evolutionary simulation in different 

contexts, the series of works presented in this thesis barely scratched the surface 

of what is potentially left to be addressed. 

 The current poker model presented in Chapter 3 can be further improved 

from several perspectives. Better strategies could be evolved by simply increasing 

the precision of strategy parameters e.g. splitting hand strength information into 

finer intervals, or incorporating more parameters like position information in the 

model e.g. so as to account for scenarios with multiple players in a poker game. 

Such are, however, subjected to the availability of computational resources. The 

co-evolutionary process can also be sped up by injecting expert knowledge in the 

form of fixed non-evolving opponents. Though these players do not evolve, they 

do affect the fitness of evolving players and play a crucial role in shaping their 

strategies. On a side note, a better fitness criterion or tournament model can also 

be devised so that fluctuations due to intransitivity can be further reduced. 

 As far as the IPD study in Chapter 4 is concerned, possible improvements 

can encompass experimental simulation of the IPD game in the presence of other 

sophisticated benchmark strategies, deriving efficient learning methodologies as 

well as applying memetic learning to complex test settings through adding noise, 

devising complex payoff matrices and conducting evolutionary tournaments to 

analyze the interaction between strategies in terms of their growth rate and group 
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performance. A thorough research study to investigate complicated situations like 

the above-mentioned would be useful in providing us with greater insights into the 

intricacies and complexity involved in the IPD. 

 In the aspects of civil violence modeling presented in Chapter 5, additional 

research work can be carried out to study how the specific movement strategies of 

various agent groups are evolved over time, impact of vision radius and situational 

awareness on the performance of agents as they negotiate their way through the 

environment of interaction, extending the proposed spatial IPD model by adopting 

an N-player mode of game theoretic interaction, and exploring interesting areas of 

behavioral development. Maturity of such models will not only serve as a form of 

verification for complex social theories but more importantly, present a feasible 

avenue to simulate realistic scenarios of civil violence; in the hope to formulate 

violence management measures that are paramount to the mitigation of casualties. 

 For the multi-player IPGG in Chapter 6, future works can be embarked on 

to investigate models which incorporate behavioral elements such as punishment, 

reputation and mutual expectation; as well as those where players can realistically 

adopt beliefs that vary from time to time. Though interesting, complexity of the 

inherent model dynamics must be well managed for simulation outcomes to be 

effectively and meaningfully analyzed. Apart from just contributing or free-riding, 

the action spaces of players can be extended to include an added option of non-

participation. Assessing possible impacts of the above-mentioned model attributes 

can provide avenues that will aid in constructing more cooperative landscapes. 
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Appendix A 

Ranking Poker Combinations 
 

 

Figure A.1: Name of poker cards combinations 

 

• Each card has a value (A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2) and a suit (♠, ♣, ♥, 

♦). The values from largest to smallest are: A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2. 

All suits are equal. 

• In Texas Hold’em, it is to be noted that each player form the best 5-cards 

combination from the seven cards they can use. The unused two cards are not 

used in any way in determining whose combination has a higher ranking. 

• The highest ranked combination is the “Royal Flush”. It is made up of the 

cards A, K, Q, J, 10 of any suits. All royal flush are equal. 

• The 2nd ranked combination is “Straight Flush” and is made up of any five 

consecutive cards of the same suit. If there is more than one “Straight Flush”, 

the one that is made up of larger values is higher ranked, otherwise they are 

equal.  

• The 3rd ranked combination is “Four of a Kind”, made up of four cards of the 

same value and 1 any other card. A “Four of a Kind” with larger value for the 
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four same-valued cards will be higher ranked than one with a smaller value. If 

there are still ties, the value of the 5th card will determine the better 

combination. If all the cards are equal in value, then the combinations are also 

equal. 

• The 4th ranked combination is “Full House”, made up of three cards of the 

same value and another two cards of the same value. For more than one “Full 

House”, the one with larger value for three cards wins. If there is still a tie, one 

with larger value for two cards wins. 

• The 5th ranked combination is “Flush”, which is made of all five cards of the 

same suit. If there is more than one “Flush”, the one with the higher highest 

value wins. If the highest values are equal, then the next highest value is 

compared and so on. 

• The 6th ranked combination is “Straight”, consisting of five cards of 

consecutive values. A “Straight” made up of larger values will be bigger than 

one with smaller values. 

• The 7th ranked combination is “Three of a Kind”. The “Three of a Kind” with 

larger value for the three same-valued cards will be ranked higher. Otherwise 

the larger of the last two cards will be compared, finally followed by the last 

card. 

• The 8th ranked combination is “Two pairs”. If there are more than one “Two 

pairs”, the larger pair of all combinations will be compared. The largest of 

them will be ranked the highest. If the larger pairs are all equal, the smaller 

pairs will be compared. If there is still a tie, the last card with the highest value 

will be highest ranked, otherwise all are equal. 
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• The 9th ranked combination is the “Pair”. A “Pair” with higher valued pair will 

be larger than one with the smaller value. If the “Pairs” are the same, then 

each remaining card will be compared staring with the largest one. 

• The smallest combination is the “High Card”. If there is more than one “High 

Card”, the largest card of each player will be compared first. If it is still tied, 

then the next largest card will be compared, and so on. 

 


