402 research outputs found

    Opportunistic Spectrum Utilization by Cognitive Radio Networks: Challenges and Solutions

    Get PDF
    Cognitive Radio Network (CRN) is an emerging paradigm that makes use of Dynamic Spectrum Access (DSA) to communicate opportunistically, in the un-licensed Industrial, Scientific and Medical bands or frequency bands otherwise licensed to incumbent users such as TV broadcast. Interest in the development of CRNs is because of severe under-utilization of spectrum bands by the incumbent Primary Users (PUs) that have the license to use them coupled with an ever-increasing demand for unlicensed spectrum for a variety of new mobile and wireless applications. The essence of Cognitive Radio (CR) operation is the cooperative and opportunistic utilization of licensed spectrum bands by the Secondary Users (SUs) that collectively form the CRN without causing any interference to PUs\u27 communications. CRN operation is characterized by factors such as network-wide quiet periods for cooperative spectrum sensing, opportunistic/dynamic spectrum access and non-deterministic operation of PUs. These factors can have a devastating impact on the overall throughput and can significantly increase the control overheads. Therefore, to support the same level of QoS as traditional wireless access technologies, very closer interaction is required between layers of the protocol stack. Opportunistic spectrum utilization without causing interference to the PUs is only possible if the SUs periodically sense the spectrum for the presence of PUs\u27 signal. To minimize the effects of hardware capabilities, terrain features and PUs\u27 transmission ranges, DSA is undertaken in a collaborative manner where SUs periodically carry out spectrum sensing in their respective geographical locations. Collaborative spectrum sensing has numerous security loopholes and can be favorable to malicious nodes in the network that may exploit vulnerabilities associated with DSA such as launching a spectrum sensing data falsification (SSDF) attack. Some CRN standards such as the IEEE 802.22 wireless regional area network employ a two-stage quiet period mechanism based on a mandatory Fast Sensing and an optional Fine Sensing stage for DSA. This arrangement is meant to strike a balance between the conflicting goals of proper protection of incumbent PUs\u27 signals and optimum QoS for SUs so that only as much time is spent for spectrum sensing as needed. Malicious nodes in the CRN however, can take advantage of the two-stage spectrum sensing mechanism to launch smart denial of service (DoS) jamming attacks on CRNs during the fast sensing stage. Coexistence protocols enable collocated CRNs to contend for and share the available spectrum. However, most coexistence protocols do not take into consideration the fact that channels of the available spectrum can be heterogeneous in the sense that they can vary in their characteristics and quality such as SNR or bandwidth. Without any mechanism to enforce fairness in accessing varying quality channels, ensuring coexistence with minimal contention and efficient spectrum utilization for CRNs is likely to become a very difficult task. The cooperative and opportunistic nature of communication has many challenges associated with CRNs\u27 operation. In view of the challenges described above, this dissertation presents solutions including cross-layer approaches, reputation system, optimization and game theoretic approaches to handle (1) degradation in TCP\u27s throughput resulting from packet losses and disruptions in spectrum availability due non-deterministic use of spectrum by the PUs (2) presence of malicious SUs in the CRN that may launch various attacks on CRNs\u27 including SSDF and jamming and (3) sharing of heterogeneous spectrum resources among collocated CRNs without a centralized mechanism to enforce cooperation among otherwise non-cooperative CRN

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Efficient Power Allocation Schemes for Hybrid Decode-Amplify-Forward Relay Based Wireless Cooperative Network

    Get PDF
    Cooperative communication in various wireless domains, such as cellular networks, sensor networks and wireless ad hoc networks, has gained significant interest recently. In cooperative network, relays between the source and the destination, form a virtual MIMO that creates spatial diversity at the destination, which overcomes the fading effect of wireless channels. Such relay assisted schemes have potential to increase the channel capacity and network coverage. Most current research on cooperative communication are focused broadly on efficient protocol design and analysis, resource allocation, relay selection and cross layer optimization. The first part of this research aims at introducing hybrid decode-amplify-forward (HDAF) relaying in a distributed Alamouti coded cooperative network. Performance of such adaptive relaying scheme in terms of symbol error rate (SER), outage probability and average channel capacity is derived theoretically and verified through simulation based study. This work is further extended to a generalized multi HDAF relaying cooperative frame work. Various efficient power allocation schemes such as maximized channel capacity based, minimized SER based and total power minimization based are proposed and their superiority in performance over the existing equal power allocation scheme is demonstrated in the simulation results. Due to the broadcast nature of wireless transmission, information privacy in wireless networks becomes a critical issue. In the context of physical layer security, the role of multi HDAF relaying based cooperative model with control jamming and multiple eavesdroppers is explored in the second part of the research. Performance evaluation parameters such as secrecy rate, secrecy outage and intercept probability are derived theoretically. Further the importance of the proposed power allocation schemes in enhancing the secrecy performance of the network in the presence of multiple eavesdroppers is studied in detail through simulation based study and analysis. For all the proposed power allocation schemes in this research, the optimization problems are defined under total power constraint and are solved using Lagrange multiplier method and also evolutionary algorithms such as Differential evolution and Invasive Weed Optimization are employed. Monte Carlo simulation based study is adopted throughout the research. It is concluded that HDAF relaying based wireless cooperative network with optimal power allocation schemes offers improved and reliable performance compared to conventional amplify forward and decode forward relaying schemes. Above research contributions will be applicable for future generation wireless cooperative networks

    A Secure, Configurable, Wireless System for Transfer of Sensor Data from Aircraft to Ground

    Get PDF
    Modern aircraft are complex systems, equipped with hundreds of embedded sensors that record a wide repertoire of data during flight, such as crucial engine and airframe parameters, status of flight control system, air conditioning system, landing gear, life-saving and emergency systems. The data from the sensors is stored in the Flight Data Recorder. Maintenance personnel routinely transfer this sensor data to a ground terminal device to analyze it for aircraft health and performance monitoring purposes. Manual methods of extracting sensor data can be tedious and error-prone when large fleets of aircraft are involved. This paper presents a novel system to extract sensor data from aircraft to a ground terminal, wirelessly. The wireless system is implemented using unique, configurable wireless transmitter receivers (WTRs) designed for this purpose. The hardware for the wireless transfer of data was designed, interfaced with a modern aircraft’s system, and tested with the aircraft on the ground and another flying object. The data from the aircraft’s Flight Data Recorder was successfully transmitted and received wirelessly by the ground terminal, over a distance of 50 meters (with aircraft on ground) and 10 Kilometers (with a flying object), in a secure mode with zero packet loss. The WTRs have also qualified the requisite tests for airborne certification
    corecore