47,049 research outputs found

    ICT-enabled Value Creation in Community Pharmacies: An Applied Design Science Research Approach

    Get PDF
    Pharmacist-patient communication is currently limited to infrequent encounters in pharmacies, which limits the delivery of and value created by pharmacy services. We seek to better understand how ICT can enable value creation by extending pharmacist-patient communication beyond these encounters. In an applied design science research study with 21 Swiss community pharmacies, we designed an artifact that unleashes the provision of pharmacy services from personal encounters. We investigate (1) strategic intent for extending the communication, (2) business model requirements that are generated, (3) ICT capabilities that need to be developed, and (4) value that is created by the artifact instantiation. The findings can help healthcare practitioners to gain a better understanding of their current and future value proposition and policy-makers can (re-)consider the role of pharmacies and ICT-enablement in healthcare reforms. The presented process and artifact evaluation can contribute to the scientific dialog on co-evolution of artifact design and value creation

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Modeling the Evolution of Artifact Capabilities in Multi-Agent Based Simulations

    Get PDF
    Cognitive scientists agree that the exploitation of objects as tools or artifacts has played a significant role in the evolution of human societies. In the realm of autonomous agents and multi-agent systems, a recent artifact theory proposes the artifact concept as an abstraction for representing functional system components that proactive agents may exploit towards realizing their goals. As a complement, the cognition of rational agents has been extended to accommodate the notion of artifact capabilities denoting the reasoning and planning capacities of agents with respect to artifacts. Multi-Agent Based Simulation (MABS) a well established discipline for modeling complex social systems, has been identified as an area that should benefit from these theories. In MABS the evolution of artifact exploitation can play an important role in the overall performance of the system. The primary contribution of this dissertation is a computational model for integrating artifacts into MABS. The emphasis of the model is on an evolutionary approach that facilitates understanding the effects of artifacts and their exploitation in artificial social systems over time. The artifact theories are extended to support agents designed to evolve artifact exploitation through a variety of learning and adaptation strategies. The model accents strategies that benefit from the social dimensions of MABS. Realized with evolutionary computation methods specifically genetic algorithms, cultural algorithms and multi-population cultural algorithms, artifact capability evolution is supported at individual, population and multi-population levels. A generic MABS and case studies are provided to demonstrate the use of the model in new and existing MABS systems. The accommodation of artifact capability evolution in artificial social systems is applicable in many domains, particularly when the modeled system is one where artifact exploitation is relevant to the evolution of the society and its overall behavior. With artifacts acknowledged as major contributors to societal evolution the impact of our model is significant, providing advanced tools that enable social scientists to analyze their findings. The model can inform archaeologists, economists, evolution theorists, sociologists and anthropologists among others

    Making Design Rules: A Multi-Domain Perspective

    Get PDF
    This study analyzes the processes whereby organizations develop radical innovations in response to environmental transformations. It explores the changes in organizational structures, practices and business strategies entailed by the implementation of such innovations. From the literature on modularity, we borrow the idea that the evolutionary dynamics of artifacts and organizations are linked by design rules, i.e. a set of principles that allocate functions to components, identify the operating principle of each component and determine the interfaces among modules. Through an in-depth case study of radical innovation in tire manufacturing, we study the joint dynamics of technical and organizational change during the transition from old to new design rules. We argue that technical change and organization adaptation are linked, but that such relationship is mediated and rendered open-ended by the evolution of the underlying bodies of knowledge.organizational change, innovation, technological change, modularity, tire manufacturing

    E-Health business models prototyping by incremental design

    Get PDF
    User-Driven Healthcare: Concepts, Methodologies, Tools, and Applications provides a global discussion on the practice of user-driven learning in healthcare and connected disciplines and its influence on learning through clinical problem solving. This book brings together different perspectives for researchers and practitioners to develop a comprehensive framework of user-driven healthcare.Postprint (published version

    The evolutionary neuroscience of tool making

    Get PDF
    The appearance of the first intentionally modified stone tools over 2.5 million years ago marked a watershed in human evolutionary history, expanding the human adaptive niche and initiating a trend of technological elaboration that continues to the present day. However, the cognitive foundations of this behavioral revolution remain controversial, as do its implications for the nature and evolution of modern human technological abilities. Here we shed new light on the neural and evolutionary foundations of human tool making skill by presenting functional brain imaging data from six inexperienced subjects learning to make stone tools of the kind found in the earliest archaeological record. Functional imaging of this complex, naturalistic task was accomplished through positron emission tomography with the slowly decaying radiological tracer (18)flouro-2-deoxyglucose. Results show that simple stone tool making is supported by a mosaic of primitive and derived parietofrontal perceptual-motor systems, including recently identified human specializations for representation of the central visual field and perception of three-dimensional form from motion. In the naive tool makers reported here, no activation was observed in prefrontal executive cortices associated with strategic action planning or in inferior parietal cortex thought to play a role in the representation of everyday tool use skills. We conclude that uniquely human capacities for sensorimotor adaptation and affordance perception, rather than abstract conceptualization and planning, were central factors in the initial stages of human technological evolution. The appearance of the first intentionally modified stone tools over 2.5 million years ago marked a watershed in human evolutionary history, expanding the human adaptive niche and initiating a trend of technological elaboration that continues to the present day. However, the cognitive foundations of this behavioral revolution remain controversial, as do its implications for the nature and evolution of modern human technological abilities. Here we shed new light on the neural and evolutionary foundations of human tool making skill by presenting functional brain imaging data from six inexperienced subjects learning to make stone tools of the kind found in the earliest archaeological record. Functional imaging of this complex, naturalistic task was accomplished through positron emission tomography with the slowly decaying radiological tracer (18)flouro-2-deoxyglucose. Results show that simple stone tool making is supported by a mosaic of primitive and derived parietofrontal perceptual-motor systems, including recently identified human specializations for representation of the central visual field and perception of three-dimensional form from motion. In the naive tool makers reported here, no activation was observed in prefrontal executive cortices associated with strategic action planning or in inferior parietal cortex thought to play a role in the representation of everyday tool use skills. We conclude that uniquely human capacities for sensorimotor adaptation and affordance perception, rather than abstract conceptualization and planning, were central factors in the initial stages of human technological evolution

    The Space Object Ontology

    Get PDF
    Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework for formulating such characterizations in a computable fashion. Space object data are aligned with classes and relations in the Space Object Ontology and stored in a dynamically updated Resource Description Framework triple store, which can be queried to support space domain awareness and the needs of spacecraft operators. This paper presents the core of the Space Object Ontology, discusses its advantages over other approaches to space object classification, and demonstrates its ability to combine diverse sets of data from multiple sources within an expandable framework. Finally, we show how the ontology provides benefits for enhancing and maintaining longterm space domain awareness

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general
    • …
    corecore