87,267 research outputs found

    Toward a history of the space shuttle. An annotated bibliography

    Get PDF
    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work

    Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    Get PDF
    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design

    Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)

    Get PDF
    Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan

    Definition of satellite servicing technology development missions for early space stations

    Get PDF
    Mission requirements, mission definition of selected satellite servicing technology development missions, and programmatic analysis of the selected missions are addressed

    "Making Safety Happen" Through Probabilistic Risk Assessment at NASA

    Get PDF
    NASA is using Probabilistic Risk Assessment (PRA) as one of the tools in its Safety & Mission Assurance (S&MA) tool belt to identify and quantify risks associated with human spaceflight. This paper discusses some of the challenges and benefits associated with developing and using PRA for NASA human space programs. Some programs have entered operation prior to developing a PRA, while some have implemented PRA from the start of the program. It has been observed that the earlier a design change is made in the concept or design phase, the less impact it has on cost and schedule. Not finding risks until the operation phase yields much costlier design changes and major delays, which can result in discussions of just accepting the risk. Risk contributors identified by PRA are not just associated with hardware failures. They include but are not limited to crew fatality due to medical causes, the environment the vehicle and crew are exposed to, the software being used, and the reliability of the crew performing required actions. Some programs have entered operation prior to developing a PRA, and while PRA can still provide a benefit for operations and future design trades, the benefit of implementing PRA from the start of the program provides the added benefit of informing design and reducing risk early in program development. Currently, NASAs International Space Station (ISS) program is in its 20th year of on-orbit operations around the Earth and has several new programs in the design phase preparing to enter the operation phase all of which have active (or living) PRAs. These programs incorporate PRA as part of their Risk-Informed, Decision-Making (RIDM) process. For new NASA human spaceflight programs discussion begins with mission concept, establishing requirements, forming the PRA team, and continues through the design cycles into the operational phase. Several examples of PRA related applications and observed lessons are included

    Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    Get PDF
    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments

    Final design report of a personnel launch system and a family of heavy lift launch vehicles

    Get PDF
    The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket

    National Security Space Launch

    Get PDF
    The United States Space Force’s National Security Space Launch (NSSL) program, formerly known as the Evolved Expendable Launch Vehicle (EELV) program, was first established in 1994 by President William J. Clinton’s National Space Transportation Policy. The policy assigned the responsibility for expendable launch vehicles to the Department of Defense (DoD), with the goals of lowering launch costs and ensuring national security access to space. As such, the United States Air Force Space and Missile Systems Center (SMC) started the EELV program to acquire more affordable and reliable launch capability for valuable U.S. military satellites, such as national reconnaissance satellites that cost billions per satellite. In March 2019, the program name was changed from EELV to NSSL, which reflected several important features: 1.) The emphasis on “assured access to space,” 2.) transition from the Russian-made RD-180 rocket engine used on the Atlas V to a US-sourced engine (now scheduled to be complete by 2022), 3.) adaptation to manifest changes (such as enabling satellite swaps and return of manifest to normal operations both within 12 months of a need or an anomaly), and 4.) potential use of reusable launch vehicles. As of August 2019, Blue Origin, Northrop Grumman Innovation Systems, SpaceX, and United Launch Alliance (ULA) have all submitted proposals. From these, the U.S. Air Force will be selecting two companies to fulfill approximately 34 launches over a period of five years, beginning in 2022. This paper will therefore first examine the objectives for the NSSL as presented in the 2017 National Security Strategy, Fiscal Year 2019, Fiscal Year 2020, and Fiscal Year 2021 National Defense Authorization Acts (NDAA), and National Presidential Directive No. 40. The paper will then identify areas of potential weakness and gaps that exist in space launch programs as a whole and explore the security implications that impact the NSSL specifically. Finally, the paper will examine how the trajectory of the NSSL program could be adjusted in order to facilitate a smooth transition into new launch vehicles, while maintaining mission success, minimizing national security vulnerabilities, and clarifying the defense acquisition process.No embargoAcademic Major: EnglishAcademic Major: International Studie

    What is a system? NASA's phased project description

    Get PDF
    NASA phase A and B projects are addressed. The Phase A study is the preliminary analysis of a space concept. These concepts could have come from a pre-Phase A study or from other sources within or external to NASA. The majority of concepts that are studied at MSFC are assigned by NASA Headquarters and funded accordingly. The overall program schedule depicts important milestones that establish the start and finish dates of each study phase, including design, development, launch, and operations. The Phase B of the project consists of the refinement of preliminary requirements, cost estimates, schedules and risk assessments prior to starting final design and development. The goal of a concept definition activity is to determine the best and most feasible concept(s) that will satisfy the mission and science requirements
    corecore