46 research outputs found

    Genetic algorithms for the generation of models with micropopulations

    Get PDF
    Proceedings of: EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM Essex, UK, April 14–16, 2003The present article puts forward a method for an interactive model generation through the use of Genetic Algorithms applied to small populations. Micropopulations actually worsen the problem of the premature convergence of the algorithm, since genetic diversity is very limited. In addition, some key factors, which modify the changing likelihood of alleles, cause the likelihood of premature convergence to decrease. The present technique has been applied to the design of 3D models, starting from generic and standard pieces, using objective searches and searches with no defined objective

    Expression-based evolution of faces

    Get PDF
    [Abstract] The combination of a classifier system with an evolutionary image generation engine is explored. The framework is instantiated using an off-the-shelf face detection system and a general purpose, expression-based, genetic programming engine. By default, the classifier returns a binary output, which is inadequate to guide evolution. By retrieving information provided by intermediate results of the classification task, it became possible to develop a suitable fitness function. The experimental results show the ability of the system to evolve images that are classified as faces. A subjective analysis also reveals the unexpected nature and artistic potential of the evolved images.Portugal. Fundação para a Ciência e a Tecnologia; PTDC/EIA–EIA/115667/2009Ministerio de Ciencia y Tecnología; TIN2008–06562/TINGalicia. Consellería de Innovación, Industria e Comercio; PGIDIT10TIC105008P

    A complexity approach for identifying aesthetic composite landscapes

    Get PDF
    Third European Conference, EvoMUSART 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers[Abstract] The present paper describes a series of features related to complexity which may allow to estimate the complexity of an image as a whole, of all the elements integrating it and of those which are its focus of attention. Using a neural network to create a classifier based on those features an accuracy over 85% in an aesthetic composition binary classification task is achieved. The obtained network seems to be useful for the purpose of assessing the Aesthetic Composition of landscapes. It could be used as part of a media device for facilitating the creation of images or videos with a more professional aesthetic composition.Galicia. Consellería de Innovación, Industria e Comercio; PGIDIT 10TIC105008PRPortugal. Fundação para a Ciência e a Tecnologia; PTDC/EIA-EIA/115667/200

    Authorship ans aesthetics experiments: comparision of results between human and computational systems

    Get PDF
    [Abstract] This paper presents the results of two experiments comparing the functioning of a computational system and a group of humans when performing tasks related to art and aesthetics. The first experiment consists of the identification of a painting, while the second one uses the Maitland Graves’s aesthetic appreciation test. The proposed system employs a series of metrics based on complexity estimators and low level features. These metrics feed a learning system using neural networks. The computational approach achieves similar results to those achieved by humans, thus suggesting that the system captures some of the artistic style and aesthetics features which are relevant to the experiments performed

    Editorial

    Get PDF
    calls & calendarEDITORIA

    CES-485 Approximating the Set of Pareto Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm

    Get PDF
    Most existing multiobjective evolutionary algorithms aim at approximating the PF, the distribution of the Pareto optimal solutions in the objective space. In many real-life applications, however, a good approximation to the PS, the distribution of the Pareto optimal solutions in the decision space, is also required by a decision maker. This paper considers a class of MOPs, in which the dimensionalities of the PS and PF are different so that a good approximation to the PF might not approximate the PS very well. It proposes a probabilistic model based multiobjective evolutionary algorithm, called MMEA, for approximating the PS and the PF simultaneously for a MOP in this class. In the modelling phase of MMEA, the population is clustered into a number of subpopulations based on their distribution in the objective space, the PCA technique is used to detect the dimensionality of the centroid of each subpopulation, and then a probabilistic model is built for modelling the distribution of the Pareto optimal solutions in the decision space. Such modelling procedure could promote the population diversity in both the decision and objective spaces. To ease the burden of setting the number of subpopulations, a dynamic strategy for periodically adjusting it has been adopted in MMEA. The experimental comparison between MMEA and the two other methods, KP1 and Omni-Optimizer on a set of test instances, some of which are proposed in this paper, have been made in this paper. It is clear from the experiments that MMEA has a big advantage over the two other methods in approximating both the PS and the PF of a MOP when the PS is a nonlinear manifold, although it might not be able to perform significantly better in the case when the PS is a linear manifold

    Genetic programming applied to morphological image processing

    Get PDF
    This thesis presents three approaches to the automatic design of algorithms for the processing of binary images based on the Genetic Programming (GP) paradigm. In the first approach the algorithms are designed using the basic Mathematical Morphology (MM) operators, i.e. erosion and dilation, with a variety of Structuring Elements (SEs). GP is used to design algorithms to convert a binary image into another containing just a particular characteristic of interest. In the study we have tested two similarity fitness functions, training sets with different numbers of elements and different sizes of the training images over three different objectives. The results of the first approach showed some success in the evolution of MM algorithms but also identifed problems with the amount of computational resources the method required. The second approach uses Sub-Machine-Code GP (SMCGP) and bitwise operators as an attempt to speed-up the evolution of the algorithms and to make them both feasible and effective. The SMCGP approach was successful in the speeding up of the computation but it was not successful in improving the quality of the obtained algorithms. The third approach presents the combination of logical and morphological operators in an attempt to improve the quality of the automatically designed algorithms. The results obtained provide empirical evidence showing that the evolution of high quality MM algorithms using GP is possible and that this technique has a broad potential that should be explored further. This thesis includes an analysis of the potential of GP and other Machine Learning techniques for solving the general problem of Signal Understanding by means of exploring Mathematical Morphology

    The Rolling Tide Evolutionary Algorithm: A Multi-Objective Optimiser for Noisy Optimisation Problems

    Get PDF
    As the methods for evolutionary multiobjective optimization (EMO) mature and are applied to a greater number of real-world problems, there has been gathering interest in the effect of uncertainty and noise on multiobjective optimization, specifically how algorithms are affected by it, how to mitigate its effects, and whether some optimizers are better suited to dealing with it than others. Here we address the problem of uncertain evaluation, in which the uncertainty can be modeled as an additive noise in objective space. We develop a novel algorithm, the rolling tide evolutionary algorithm (RTEA), which progressively improves the accuracy of its estimated Pareto set, while simultaneously driving the front toward the true Pareto front. It can cope with noise whose characteristics change as a function of location (both design and objective), or which alter during the course of an optimization. Four state-of-the-art noise-tolerant EMO algorithms, as well as four widely used standard EMO algorithms, are compared to RTEA on 70 instances of ten continuous space test problems from the CEC'09 multiobjective optimization test suite. Different instances of these problems are generated by modifying them to exhibit different types and intensities of noise. RTEA seems to provide competitive performance across both the range of test problems used and noise types
    corecore