6 research outputs found

    Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges

    Get PDF
    A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation and training of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. While many works exist in the literature, no comprehensive surveys currently exist focusing exclusively on the strengths and limitations of using neuroevolution approaches in DNNs. Prolonged absence of such surveys can lead to a disjointed and fragmented field preventing DNNs researchers potentially adopting neuroevolutionary methods in their own research, resulting in lost opportunities for improving performance and wider application within real-world deep learning problems. This paper presents a comprehensive survey, discussion and evaluation of the state-of-the-art works on using EAs for architectural configuration and training of DNNs. Based on this survey, the paper highlights the most pertinent current issues and challenges in neuroevolution and identifies multiple promising future research directions.Comment: 20 pages (double column), 2 figures, 3 tables, 157 reference

    Harnessing Evolution in-Materio as an Unconventional Computing Resource

    Get PDF
    This thesis illustrates the use and development of physical conductive analogue systems for unconventional computing using the Evolution in-Materio (EiM) paradigm. EiM uses an Evolutionary Algorithm to configure and exploit a physical material (or medium) for computation. While EiM processors show promise, fundamental questions and scaling issues remain. Additionally, their development is hindered by slow manufacturing and physical experimentation. This work addressed these issues by implementing simulated models to speed up research efforts, followed by investigations of physically implemented novel in-materio devices. Initial work leveraged simulated conductive networks as single substrate ‘monolithic’ EiM processors, performing classification by formulating the system as an optimisation problem, solved using Differential Evolution. Different material properties and algorithm parameters were isolated and investigated; which explained the capabilities of configurable parameters and showed ideal nanomaterial choice depended upon problem complexity. Subsequently, drawing from concepts in the wider Machine Learning field, several enhancements to monolithic EiM processors were proposed and investigated. These ensured more efficient use of training data, better classification decision boundary placement, an independently optimised readout layer, and a smoother search space. Finally, scalability and performance issues were addressed by constructing in-Materio Neural Networks (iM-NNs), where several EiM processors were stacked in parallel and operated as physical realisations of Hidden Layer neurons. Greater flexibility in system implementation was achieved by re-using a single physical substrate recursively as several virtual neurons, but this sacrificed faster parallelised execution. These novel iM-NNs were first implemented using Simulated in-Materio neurons, and trained for classification as Extreme Learning Machines, which were found to outperform artificial networks of a similar size. Physical iM-NN were then implemented using a Raspberry Pi, custom Hardware Interface and Lambda Diode based Physical in-Materio neurons, which were trained successfully with neuroevolution. A more complex AutoEncoder structure was then proposed and implemented physically to perform dimensionality reduction on a handwritten digits dataset, outperforming both Principal Component Analysis and artificial AutoEncoders. This work presents an approach to exploit systems with interesting physical dynamics, and leverage them as a computational resource. Such systems could become low power, high speed, unconventional computing assets in the future

    Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries

    Get PDF
    S tím, jak se neustále vyvíjejí nové technologie pro energeticky náročná průmyslová odvětví, stávající zařízení postupně zaostávají v efektivitě a produktivitě. Tvrdá konkurence na trhu a legislativa v oblasti životního prostředí nutí tato tradiční zařízení k ukončení provozu a k odstavení. Zlepšování procesu a projekty modernizace jsou zásadní v udržování provozních výkonů těchto zařízení. Současné přístupy pro zlepšování procesů jsou hlavně: integrace procesů, optimalizace procesů a intenzifikace procesů. Obecně se v těchto oblastech využívá matematické optimalizace, zkušeností řešitele a provozní heuristiky. Tyto přístupy slouží jako základ pro zlepšování procesů. Avšak, jejich výkon lze dále zlepšit pomocí moderní výpočtové inteligence. Účelem této práce je tudíž aplikace pokročilých technik umělé inteligence a strojového učení za účelem zlepšování procesů v energeticky náročných průmyslových procesech. V této práci je využit přístup, který řeší tento problém simulací průmyslových systémů a přispívá následujícím: (i)Aplikace techniky strojového učení, která zahrnuje jednorázové učení a neuro-evoluci pro modelování a optimalizaci jednotlivých jednotek na základě dat. (ii) Aplikace redukce dimenze (např. Analýza hlavních komponent, autoendkodér) pro vícekriteriální optimalizaci procesu s více jednotkami. (iii) Návrh nového nástroje pro analýzu problematických částí systému za účelem jejich odstranění (bottleneck tree analysis – BOTA). Bylo také navrženo rozšíření nástroje, které umožňuje řešit vícerozměrné problémy pomocí přístupu založeného na datech. (iv) Prokázání účinnosti simulací Monte-Carlo, neuronové sítě a rozhodovacích stromů pro rozhodování při integraci nové technologie procesu do stávajících procesů. (v) Porovnání techniky HTM (Hierarchical Temporal Memory) a duální optimalizace s několika prediktivními nástroji pro podporu managementu provozu v reálném čase. (vi) Implementace umělé neuronové sítě v rámci rozhraní pro konvenční procesní graf (P-graf). (vii) Zdůraznění budoucnosti umělé inteligence a procesního inženýrství v biosystémech prostřednictvím komerčně založeného paradigmatu multi-omics.Zlepšení průmyslových procesů, Model založený na datech, Optimalizace procesu, Strojové učení, Průmyslové systémy, Energeticky náročná průmyslová odvětví, Umělá inteligence.
    corecore