15 research outputs found

    Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask)

    Get PDF
    Given two graphs H and G, the Subgraph Isomorphism problem asks if H is isomorphic to a subgraph of G. While NP-hard in general, algorithms exist for various parameterized versions of the problem. However, the literature contains very little guidance on which combinations of parameters can or cannot be exploited algorithmically. Our goal is to systematically investigate the possible parameterized algorithms that can exist for Subgraph Isomorphism. We develop a framework involving 10 relevant parameters for each of H and G (such as treewidth, pathwidth, genus, maximum degree, number of vertices, number of components, etc.), and ask if an algorithm with running time f1_(p_1,p_2,...,p_l).n^f_2(p_(l+1),...,p_k) exists, where each of p_1,...,p_k is one of the 10 parameters depending only on H or G. We show that all the questions arising in this framework are answered by a set of 11 maximal positive results (algorithms) and a set of 17 maximal negative results (hardness proofs); some of these results already appear in the literature, while others are new in this paper. On the algorithmic side, our study reveals for example that an unexpected combination of bounded degree, genus, and feedback vertex set number of G gives rise to a highly nontrivial algorithm for Subgraph Isomorphism. On the hardness side, we present W[1]-hardness proofs under extremely restricted conditions, such as when H is a bounded-degree tree of constant pathwidth and G is a planar graph of bounded pathwidth

    On the complexity of computing the kk-restricted edge-connectivity of a graph

    Full text link
    The \emph{kk-restricted edge-connectivity} of a graph GG, denoted by λk(G)\lambda_k(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least kk vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G)\lambda_k(G). Very recently, in the parameterized complexity community the notion of \emph{good edge separation} of a graph has been defined, which happens to be essentially the same as the kk-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.Comment: 16 pages, 4 figure

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    Parameterized Rural Postman Problem

    Full text link
    The Directed Rural Postman Problem (DRPP) can be formulated as follows: given a strongly connected directed multigraph D=(V,A)D=(V,A) with nonnegative integral weights on the arcs, a subset RR of AA and a nonnegative integer ℓ\ell, decide whether DD has a closed directed walk containing every arc of RR and of total weight at most ℓ\ell. Let kk be the number of weakly connected components in the the subgraph of DD induced by RR. Sorge et al. (2012) ask whether the DRPP is fixed-parameter tractable (FPT) when parameterized by kk, i.e., whether there is an algorithm of running time O∗(f(k))O^*(f(k)) where ff is a function of kk only and the O∗O^* notation suppresses polynomial factors. Sorge et al. (2012) note that this question is of significant practical relevance and has been open for more than thirty years. Using an algebraic approach, we prove that DRPP has a randomized algorithm of running time O∗(2k)O^*(2^k) when ℓ\ell is bounded by a polynomial in the number of vertices in DD. We also show that the same result holds for the undirected version of DRPP, where DD is a connected undirected multigraph

    A Tight Algorithm for Strongly Connected Steiner Subgraph On Two Terminals With Demands

    Get PDF
    Given an edge-weighted directed graph G=(V,E)G=(V,E) on nn vertices and a set T={t1,t2,
,tp}T=\{t_1, t_2, \ldots, t_p\} of pp terminals, the objective of the \scss (pp-SCSS) problem is to find an edge set H⊆EH\subseteq E of minimum weight such that G[H]G[H] contains an ti→tjt_{i}\rightarrow t_j path for each 1≀i≠j≀p1\leq i\neq j\leq p. In this paper, we investigate the computational complexity of a variant of 22-SCSS where we have demands for the number of paths between each terminal pair. Formally, the \sharinggeneral problem is defined as follows: given an edge-weighted directed graph G=(V,E)G=(V,E) with weight function ω:E→R≄0\omega: E\rightarrow \mathbb{R}^{\geq 0}, two terminal vertices s,ts, t, and integers k1,k2k_1, k_2 ; the objective is to find a set of k1k_1 paths F1,F2,
,Fk1F_1, F_2, \ldots, F_{k_1} from s⇝ts\leadsto t and k2k_2 paths B1,B2,
,Bk2B_1, B_2, \ldots, B_{k_2} from t⇝st\leadsto s such that ∑e∈Eω(e)⋅ϕ(e)\sum_{e\in E} \omega(e)\cdot \phi(e) is minimized, where ϕ(e)=max⁥{∣{i∈[k1]:e∈Fi}∣ , ∣{j∈[k2]:e∈Bj}∣}\phi(e)= \max \Big\{|\{i\in [k_1] : e\in F_i\}|\ ,\ |\{j\in [k_2] : e\in B_j\}|\Big\}. For each k≄1k\geq 1, we show the following: The \sharing problem can be solved in nO(k)n^{O(k)} time. A matching lower bound for our algorithm: the \sharing problem does not have an f(k)⋅no(k)f(k)\cdot n^{o(k)} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. Our algorithm for \sharing relies on a structural result regarding an optimal solution followed by using the idea of a "token game" similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the \sharinggeneral problem if min⁥{k1,k2}≄2\min\{k_1, k_2\}\geq 2. Therefore \sharing is the most general problem one can attempt to solve with our techniques.Comment: To appear in Algorithmica. An extended abstract appeared in IPEC '1

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels

    Full text link
    We study two fundamental problems related to finding subgraphs: (1) given graphs G and H, Subgraph Test asks if H is isomorphic to a subgraph of G, (2) given graphs G, H, and an integer t, Packing asks if G contains t vertex-disjoint subgraphs isomorphic to H. For every graph class F, let F-Subgraph Test and F-Packing be the special cases of the two problems where H is restricted to be in F. Our goal is to study which classes F make the two problems tractable in one of the following senses: * (randomized) polynomial-time solvable, * admits a polynomial (many-one) kernel, or * admits a polynomial Turing kernel (that is, has an adaptive polynomial-time procedure that reduces the problem to a polynomial number of instances, each of which has size bounded polynomially by the size of the solution). We identify a simple combinatorial property such that if a hereditary class F has this property, then F-Packing admits a polynomial kernel, and has no polynomial (many-one) kernel otherwise, unless the polynomial hierarchy collapses. Furthermore, if F does not have this property, then F-Packing is either WK[1]-hard, W[1]-hard, or Long Path-hard, giving evidence that it does not admit polynomial Turing kernels either. For F-Subgraph Test, we show that if every graph of a hereditary class F satisfies the property that it is possible to delete a bounded number of vertices such that every remaining component has size at most two, then F-Subgraph Test is solvable in randomized polynomial time and it is NP-hard otherwise. We introduce a combinatorial property called (a,b,c,d)-splittability and show that if every graph in a hereditary class F has this property, then F-Subgraph Test admits a polynomial Turing kernel and it is WK[1]-hard, W[1]-hard, or Long Path-hard, otherwise.Comment: 69 pages, extended abstract to appear in the proceedings of SODA 201

    Efficient Frequent Subtree Mining Beyond Forests

    Get PDF
    A common paradigm in distance-based learning is to embed the instance space into some appropriately chosen feature space equipped with a metric and to define the dissimilarity between instances by the distance of their images in the feature space. If the instances are graphs, then frequent connected subgraphs are a well-suited pattern language to define such feature spaces. Identifying the set of frequent connected subgraphs and subsequently computing embeddings for graph instances, however, is computationally intractable. As a result, existing frequent subgraph mining algorithms either restrict the structural complexity of the instance graphs or require exponential delay between the output of subsequent patterns. Hence distance-based learners lack an efficient way to operate on arbitrary graph data. To resolve this problem, in this thesis we present a mining system that gives up the demand on the completeness of the pattern set to instead guarantee a polynomial delay between subsequent patterns. Complementing this, we devise efficient methods to compute the embedding of arbitrary graphs into the Hamming space spanned by our pattern set. As a result, we present a system that allows to efficiently apply distance-based learning methods to arbitrary graph databases. To overcome the computational intractability of the mining step, we consider only frequent subtrees for arbitrary graph databases. This restriction alone, however, does not suffice to make the problem tractable. We reduce the mining problem from arbitrary graphs to forests by replacing each graph by a polynomially sized forest obtained from a random sample of its spanning trees. This results in an incomplete mining algorithm. However, we prove that the probability of missing a frequent subtree pattern is low. We show empirically that this is true in practice even for very small sized forests. As a result, our algorithm is able to mine frequent subtrees in a range of graph databases where state-of-the-art exact frequent subgraph mining systems fail to produce patterns in reasonable time or even at all. Furthermore, the predictive performance of our patterns is comparable to that of exact frequent connected subgraphs, where available. The above method considers polynomially many spanning trees for the forest, while many graphs have exponentially many spanning trees. The number of patterns found by our mining algorithm can be negatively influenced by this exponential gap. We hence propose a method that can (implicitly) consider forests of exponential size, while remaining computationally tractable. This results in a higher recall for our incomplete mining algorithm. Furthermore, the methods extend the known positive results on the tractability of exact frequent subtree mining to a novel class of transaction graphs. We conjecture that the next natural extension of our results to a larger transaction graph class is at least as difficult as proving whether P = NP, or not. Regarding the graph embedding step, we apply a similar strategy as in the mining step. We represent a novel graph by a forest of its spanning trees and decide whether the frequent trees from the mining step are subgraph isomorphic to this forest. As a result, the embedding computation has one-sided error with respect to the exact subgraph isomorphism test but is computationally tractable. Furthermore, we show that we can leverage a partial order on the pattern set. This structure can be used to reduce the runtime of the embedding computation dramatically. For the special case of Jaccard-similarity between graph embeddings, a further substantial reduction of runtime can be achieved using min-hashing. The Jaccard-distance can be approximated using small sketch vectors that can be computed fast, again using the partial order on the tree patterns
    corecore