2,133 research outputs found

    Moment-angle complexes, monomial ideals, and Massey products

    Full text link
    Associated to every finite simplicial complex K there is a "moment-angle" finite CW-complex, Z_K; if K is a triangulation of a sphere, Z_K is a smooth, compact manifold. Building on work of Buchstaber, Panov, and Baskakov, we study the cohomology ring, the homotopy groups, and the triple Massey products of a moment-angle complex, relating these topological invariants to the algebraic combinatorics of the underlying simplicial complex. Applications to the study of non-formal manifolds and subspace arrangements are given.Comment: 30 pages. Published versio

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction

    Brown's moduli spaces of curves and the gravity operad

    Full text link
    This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Brown's moduli spaces is essentially equivalent to the freeness of the dihedral operad underlying the gravity operad. We prove these two facts by relying on both the geometric and the algebraic aspects of the problem: the complete geometric description of the cohomology of Brown's moduli spaces and the coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of Bergstr\"om-Brown which expresses the Betti numbers of Brown's moduli spaces via the inversion of a generating series. This also generalizes the Salvatore-Tauraso theorem on the nonsymmetric Lie operad.Comment: 26 pages; corrected Figure

    The Deligne-Mostow 9-ball, and the monster

    Full text link
    The "monstrous proposal" of the first author is that the quotient of a certain 13-dimensional complex hyperbolic braid group, by the relations that its natural generators have order 2, is the bimonster" (M x M)semidirect Z/2. Here M is the monster simple group. We prove that this quotient is either the bimonster or Z/2. In the process, we give new information about the isomorphism found by Deligne-Mostow, between the moduli space of 12-tuples in CP1 and a quotient of the complex 9-ball. Namely, we identify which loops in the 9-ball quotient correspond to the standard braid generators

    Geometric Graph Theory and Wireless Sensor Networks

    Full text link
    In this work, we apply geometric and combinatorial methods to explore a variety of problems motivated by wireless sensor networks. Imagine sensors capable of communicating along straight lines except through obstacles like buildings or barriers, such that the communication network topology of the sensors is their visibility graph. Using a standard distributed algorithm, the sensors can build common knowledge of their network topology. We first study the following inverse visibility problem: What positions of sensors and obstacles define the computed visibility graph, with fewest obstacles? This is the problem of finding a minimum obstacle representation of a graph. This minimum number is the obstacle number of the graph. Using tools from extremal graph theory and discrete geometry, we obtain for every constant h that the number of n-vertex graphs that admit representations with h obstacles is 2o(n2). We improve this bound to show that graphs requiring Ω(n / log2 n) obstacles exist. We also study restrictions to convex obstacles, and to obstacles that are line segments. For example, we show that every outerplanar graph admits a representation with five convex obstacles, and that allowing obstacles to intersect sometimes decreases their required number. Finally, we study the corresponding problem for sensors equipped with GPS. Positional information allows sensors to establish common knowledge of their communication network geometry, hence we wish to compute a minimum obstacle representation of a given straight-line graph drawing. We prove that this problem is NP-complete, and provide a O(logOPT)-factor approximation algorithm by showing that the corresponding hypergraph family has bounded Vapnik-Chervonenkis dimension
    corecore