339 research outputs found

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Dynamic Chromatic Number of Regular Graphs

    Full text link
    A dynamic coloring of a graph GG is a proper coloring such that for every vertex v∈V(G)v\in V(G) of degree at least 2, the neighbors of vv receive at least 2 colors. It was conjectured [B. Montgomery. {\em Dynamic coloring of graphs}. PhD thesis, West Virginia University, 2001.] that if GG is a kk-regular graph, then Ο‡2(G)βˆ’Ο‡(G)≀2\chi_2(G)-\chi(G)\leq 2. In this paper, we prove that if GG is a kk-regular graph with Ο‡(G)β‰₯4\chi(G)\geq 4, then Ο‡2(G)≀χ(G)+Ξ±(G2)\chi_2(G)\leq \chi(G)+\alpha(G^2). It confirms the conjecture for all regular graph GG with diameter at most 2 and Ο‡(G)β‰₯4\chi(G)\geq 4. In fact, it shows that Ο‡2(G)βˆ’Ο‡(G)≀1\chi_2(G)-\chi(G)\leq 1 provided that GG has diameter at most 2 and Ο‡(G)β‰₯4\chi(G)\geq 4. Moreover, we show that for any kk-regular graph GG, Ο‡2(G)βˆ’Ο‡(G)≀6ln⁑k+2\chi_2(G)-\chi(G)\leq 6\ln k+2. Also, we show that for any nn there exists a regular graph GG whose chromatic number is nn and Ο‡2(G)βˆ’Ο‡(G)β‰₯1\chi_2(G)-\chi(G)\geq 1. This result gives a negative answer to a conjecture of [A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari. \newblock On the difference between chromatic number and dynamic chromatic number of graphs. \newblock {\em Discrete Math.}, In press].Comment: 8 page

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with Ο‡(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all kβ‰₯k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Hardness of Finding Independent Sets in 2-Colorable Hypergraphs and of Satisfiable CSPs

    Full text link
    This work revisits the PCP Verifiers used in the works of Hastad [Has01], Guruswami et al.[GHS02], Holmerin[Hol02] and Guruswami[Gur00] for satisfiable Max-E3-SAT and Max-Ek-Set-Splitting, and independent set in 2-colorable 4-uniform hypergraphs. We provide simpler and more efficient PCP Verifiers to prove the following improved hardness results: Assuming that NP\not\subseteq DTIME(N^{O(loglog N)}), There is no polynomial time algorithm that, given an n-vertex 2-colorable 4-uniform hypergraph, finds an independent set of n/(log n)^c vertices, for some constant c > 0. There is no polynomial time algorithm that satisfies 7/8 + 1/(log n)^c fraction of the clauses of a satisfiable Max-E3-SAT instance of size n, for some constant c > 0. For any fixed k >= 4, there is no polynomial time algorithm that finds a partition splitting (1 - 2^{-k+1}) + 1/(log n)^c fraction of the k-sets of a satisfiable Max-Ek-Set-Splitting instance of size n, for some constant c > 0. Our hardness factor for independent set in 2-colorable 4-uniform hypergraphs is an exponential improvement over the previous results of Guruswami et al.[GHS02] and Holmerin[Hol02]. Similarly, our inapproximability of (log n)^{-c} beyond the random assignment threshold for Max-E3-SAT and Max-Ek-Set-Splitting is an exponential improvement over the previous bounds proved in [Has01], [Hol02] and [Gur00]. The PCP Verifiers used in our results avoid the use of a variable bias parameter used in previous works, which leads to the improved hardness thresholds in addition to simplifying the analysis substantially. Apart from standard techniques from Fourier Analysis, for the first mentioned result we use a mixing estimate of Markov Chains based on uniform reverse hypercontractivity over general product spaces from the work of Mossel et al.[MOS13].Comment: 23 Page

    Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

    Full text link
    We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results. In particular, we prove quasi-NP-hardness of the following problems on nn-vertex hyper-graphs: * Coloring a 2-colorable 8-uniform hypergraph with 22Ω(log⁑log⁑n)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 4-colorable 4-uniform hypergraph with 22Ω(log⁑log⁑n)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 3-colorable 3-uniform hypergraph with (log⁑n)Ω(1/log⁑log⁑log⁑n)(\log n)^{\Omega(1/\log\log\log n)} colors. In each of these cases, the hardness results obtained are (at least) exponentially stronger than what was previously known for the respective cases. In fact, prior to this result, polylog n colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for O(1)-colorable hypergraphs. The fundamental bottleneck in obtaining coloring inapproximability results using the low- degree long code was a multipartite structural restriction in the PCP construction of Dinur-Guruswami. We are able to get around this restriction by simulating the multipartite structure implicitly by querying just one partition (albeit requiring 8 queries), which yields our result for 2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform hypergraphs is obtained via a 'query doubling' method. For 3-colorable 3-uniform hypergraphs, we exploit the ternary domain to design a test with an additive (as opposed to multiplicative) noise function, and analyze its efficacy in killing high weight Fourier coefficients via the pseudorandom properties of an associated quadratic form.Comment: 25 page

    Chromatic Ramsey number of acyclic hypergraphs

    Get PDF
    Suppose that TT is an acyclic rr-uniform hypergraph, with rβ‰₯2r\ge 2. We define the (tt-color) chromatic Ramsey number Ο‡(T,t)\chi(T,t) as the smallest mm with the following property: if the edges of any mm-chromatic rr-uniform hypergraph are colored with tt colors in any manner, there is a monochromatic copy of TT. We observe that Ο‡(T,t)\chi(T,t) is well defined and ⌈Rr(T,t)βˆ’1rβˆ’1βŒ‰+1≀χ(T,t)β‰€βˆ£E(T)∣t+1\left\lceil {R^r(T,t)-1\over r-1}\right \rceil +1 \le \chi(T,t)\le |E(T)|^t+1 where Rr(T,t)R^r(T,t) is the tt-color Ramsey number of HH. We give linear upper bounds for Ο‡(T,t)\chi(T,t) when T is a matching or star, proving that for rβ‰₯2,kβ‰₯1,tβ‰₯1r\ge 2, k\ge 1, t\ge 1, Ο‡(Mkr,t)≀(tβˆ’1)(kβˆ’1)+2k\chi(M_k^r,t)\le (t-1)(k-1)+2k and Ο‡(Skr,t)≀t(kβˆ’1)+2\chi(S_k^r,t)\le t(k-1)+2 where MkrM_k^r and SkrS_k^r are, respectively, the rr-uniform matching and star with kk edges. The general bounds are improved for 33-uniform hypergraphs. We prove that Ο‡(Mk3,2)=2k\chi(M_k^3,2)=2k, extending a special case of Alon-Frankl-Lov\'asz' theorem. We also prove that Ο‡(S23,t)≀t+1\chi(S_2^3,t)\le t+1, which is sharp for t=2,3t=2,3. This is a corollary of a more general result. We define H[1]H^{[1]} as the 1-intersection graph of HH, whose vertices represent hyperedges and whose edges represent intersections of hyperedges in exactly one vertex. We prove that Ο‡(H)≀χ(H[1])\chi(H)\le \chi(H^{[1]}) for any 33-uniform hypergraph HH (assuming Ο‡(H[1])β‰₯2\chi(H^{[1]})\ge 2). The proof uses the list coloring version of Brooks' theorem.Comment: 10 page
    • …
    corecore