37,756 research outputs found

    Graphes super-eulériens, problèmes hamiltonicité et extrémaux dans les graphes

    Get PDF
    Dans cette thèse, nous concentrons sur les sujets suivants: super-eulérien graphe, hamiltonien ligne graphes, le tolerant aux pannes hamiltonien laceabilité de Cayley graphe généré par des transposition arbres et plusieurs problèmes extrémaux concernant la (minimum et/ou maximum) taille des graphes qui ont la même propriété.Cette thèse comprend six chapitres. Le premier chapitre introduit des définitions et indique la conclusion des resultants principaux de cette thèse, et dans le dernier chapitre, nous introduisons la recherche de furture de la thèse. Les travaux principaux sont montrés dans les chapitres 2-5 comme suit:Dans le chapitre 2, nous explorons les conditions pour qu'un graphe soit super-eulérien.Dans la section 1, nous caractérisons des graphes dont le dégrée minimum est au moins de 2 et le nombre de matching est au plus de 3. Dans la section 2, nous prouvons que si pour tous les arcs xy E(G), d(x)+d(y)>=n-1-p(n), alors G est collapsible sauf quelques bien définis graphes qui ont la propriété p(n)=0 quand n est impair et p(n)=1 quand n est pair.Dans la section 3 de la Chapitre 2, nous trouvons les conditions suffisantes pour que un graphe de 3-arcs connectés soit pliable.Dans le chapitre 3, nous considérons surtout l'hamiltonien de 3-connecté ligne graphe.Dans la première section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement11-connecté ligne graphe est hamiltonien-connecté. Cela renforce le résultat dans [91]. Dans la seconde section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement 10-connecté ligne graphe est hamiltonien-connecté.Dans la troisième section de Chapitre 3, nous montrons que 3-connecté, essentiellement 4-connecté ligne graphe venant d'un graphe qui comprend au plus 9 sommets de degré 3 est hamiltonien. Dans le chapitre 4, nous montrons d'abord que pour tous FE(Cay(B:Sn))F\subseteq E(Cay(B:S_{n})), si Fn3|F|\leq n-3 et n4n\geq 4, il existe un hamiltonien graphe dans Cay(B:Sn)FCay(B:S_{n})-F entre tous les paires de sommets qui sont dans les différents partite ensembles. De plus, nous renforçons le résultat figurant ci-dessus dans la seconde section montrant que Cay(Sn,B)FCay(S_n,B)-F est bipancyclique si Cay(Sn,B)Cay(S_n,B) n'est pas un star graphe, n4n\geq 4 et Fn3|F|\leq n-3.Dans le chapitre 5, nous considérons plusieurs problems extrémaux concernant la taille des graphes.Dans la section 1 de Chapitre 5, nous bornons la taille de sous-graphe provoqué par mm sommets de hypercubes (nn-cubes). Dans la section 2 de Chapitre 5, nous étudions partiellement la taille minimale d'un graphe savant son degré minimum et son degré d'arc. Dans la section 3 de Chapitre 5, nous considérons la taille minimale des graphes satisfaisants la Ore-condition.In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if d(x)+d(y)n1p(n)d(x)+d(y)\geq n-1-p(n) for any edge xyE(G)xy\in E(G), then GG is collapsible except for several special graphs, where p(n)=0p(n)=0 for nn even and p(n)=1p(n)=1 for nn odd. As a corollary, a characterization for graphs satisfying d(x)+d(y)n1p(n)d(x)+d(y)\geq n-1-p(n) for any edge xyE(G)xy\in E(G) to be supereulerian is obtained. This result extends the result in [21].In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible.In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs.In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91].In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected.In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if GG has 10 vertices of degree 3 and its line graph is not hamiltonian, then GG can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any FE(Cay(B:Sn))F\subseteq E(Cay(B:S_{n})), if Fn3|F|\leq n-3 and n4n\geq4, then there exists a hamiltonian path in Cay(B:Sn)FCay(B:S_{n})-F between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that Cay(Sn,B)FCay(S_n,B)-F is bipancyclic if Cay(Sn,B)Cay(S_n,B) is not a star graph, n4n\geq4 and Fn3|F|\leq n-3.In Chapter 5, we consider several extremal problems on the size of graphs.In Section 1 of Chapter 5, we bounds the size of the subgraph induced by mm vertices of hypercubes. We show that a subgraph induced by mm (denote mm by i=0s2ti\sum\limits_{i=0}^ {s}2^{t_i}, t0=[log2m]t_0=[\log_2m] and ti=[log2(mr=0i12tr)]t_i= [\log_2({m-\sum\limits_{r=0}^{i-1}2 ^{t_r}})] for i1i\geq1) vertices of an nn-cube (hypercube) has at most i=0sti2ti1+i=0si2ti\sum\limits_{i=0}^{s}t_i2^{t_i-1} +\sum\limits_{i=0}^{s} i\cdot2^{t_i} edges. As its applications, we determine the mm-extra edge-connectivity of hypercubes for m2[n2]m\leq2^{[\frac{n}2]} and gg-extra edge-connectivity of the folded hypercube for gng\leq n.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs.In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness

    Degree and neighborhood conditions for hamiltonicity of claw-free graphs

    Get PDF
    For a graph H , let σ t ( H ) = min { Σ i = 1 t d H ( v i ) | { v 1 , v 2 , … , v t } is an independent set in H } and let U t ( H ) = min { | ⋃ i = 1 t N H ( v i ) | | { v 1 , v 2 , ⋯ , v t } is an independent set in H } . We show that for a given number ϵ and given integers p ≥ t \u3e 0 , k ∈ { 2 , 3 } and N = N ( p , ϵ ) , if H is a k -connected claw-free graph of order n \u3e N with δ ( H ) ≥ 3 and its Ryjác̆ek’s closure c l ( H ) = L ( G ) , and if d t ( H ) ≥ t ( n + ϵ ) ∕ p where d t ( H ) ∈ { σ t ( H ) , U t ( H ) } , then either H is Hamiltonian or G , the preimage of L ( G ) , can be contracted to a k -edge-connected K 3 -free graph of order at most max { 4 p − 5 , 2 p + 1 } and without spanning closed trails. As applications, we prove the following for such graphs H of order n with n sufficiently large: (i) If k = 2 , δ ( H ) ≥ 3 , and for a given t ( 1 ≤ t ≤ 4 ), then either H is Hamiltonian or c l ( H ) = L ( G ) where G is a graph obtained from K 2 , 3 by replacing each of the degree 2 vertices by a K 1 , s ( s ≥ 1 ). When t = 4 and d t ( H ) = σ 4 ( H ) , this proves a conjecture in Frydrych (2001). (ii) If k = 3 , δ ( H ) ≥ 24 , and for a given t ( 1 ≤ t ≤ 10 ) d t ( H ) \u3e t ( n + 5 ) 10 , then H is Hamiltonian. These bounds on d t ( H ) in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σ t and U t for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max { 4 p − 5 , 2 p + 1 } are fixed for given p , improvements to (i) or (ii) by increasing the value of p are possible with the help of a computer

    Biased orientation games

    Get PDF
    We study biased {\em orientation games}, in which the board is the complete graph KnK_n, and Maker and Breaker take turns in directing previously undirected edges of KnK_n. At the end of the game, the obtained graph is a tournament. Maker wins if the tournament has some property P\mathcal P and Breaker wins otherwise. We provide bounds on the bias that is required for a Maker's win and for a Breaker's win in three different games. In the first game Maker wins if the obtained tournament has a cycle. The second game is Hamiltonicity, where Maker wins if the obtained tournament contains a Hamilton cycle. Finally, we consider the HH-creation game, where Maker wins if the obtained tournament has a copy of some fixed graph HH
    corecore