14,122 research outputs found

    Event-triggered Synchronization of Multi-agent Systems with Partial Input Saturation

    Get PDF
    This paper is concerned with the distributed event/self-triggered synchronization problem for general linear multi-agent systems with partial input saturation. Both the event-based and self-triggered laws are designed using the local sampled, possibly saturated, state, which ensures the bounded synchronization of the multi-agent systems, and exclusion of the Zeno-behavior. The continuous communication between agents is avoided under these triggering protocols. Different from the existing related works, we show the fully distributed design for multi-agent systems, where the synchronization criteria, the designed input laws, and the proposed triggering protocols do not depend on any global information of the communication topology. In addition, the computation load of multi-agent systems is reduced significantly

    Stabilizing solution and parameter dependence of modified Algebraic Riccati Equation with application to discrete-time input-saturated network synchronization

    Get PDF
    published_or_final_versio

    Event-based synchronisation of linear discrete-time dynamical networks

    Get PDF
    postprin

    Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies

    Get PDF
    This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent is estimated by merging unknown input observer in the decentralized fault estimation hierarchy. Then, two kinds of distributed fault-tolerant consensus tracking control schemes with average dwelling time technique are developed to guarantee the mean-square exponential consensus convergence of multi-agent systems, respectively, on the basis of the relative neighboring output information as well as the estimated information in fault estimation. Simulation results demonstrate the effectiveness of the proposed fault-tolerant consensus tracking control algorithm

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Fast Convergence in Consensus Control of Leader-Follower Multi-Agent Systems

    Get PDF
    In this thesis, different distributed consensus control strategies are introduced for a multi-agent network with a leader-follower structure. The proposed strategies are based on the nearest neighbor rule, and are shown to reach consensus faster than conventional methods. Matrix equations are given to obtain equilibrium state of the network based on which the average-based control input is defined accordingly. Two network control rules are subsequently developed, where in one of them the control input is only applied to the leader, and in the other one it is applied to the leader and its neighbors. The results are then extended to the case of a time-varying network with switching topology and a relatively large number of agents. The convergence performance under the proposed strategies in the case of a time-invariant network with fixed topology is evaluated based on the location of the dominant eigenvalue of the closed-loop system. For the case of a time-varying network with switching topology, on the other hand, the state transition matrix of the system is investigated to analyze the stability of the proposed strategies. Finally, the input saturation in agents' dynamics is considered and the stability of the network under the proposed methods in the presence of saturation is studied
    • …
    corecore