
Title Event-based synchronisation of linear discrete-time dynamical
networks

Author(s) Chen, MZQ; Zhang, L; Su, H; Li, C

Citation IET Control Theory and Applications, 2015, v. 9 n. 5, p. 755-765

Issued Date 2015

URL http://hdl.handle.net/10722/217086

Rights

This paper is a postprint of a paper submitted to and accepted
for publication in IET Control Theory and Applications and is
subject to IET copyright. The copy of record is available at IET
Digital Library: http://digital-
library.theiet.org/content/journals/iet-cta

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38080775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Event-based Synchronization of Linear
Discrete-time Dynamical Networks

Michael Z. Q. Chen1 Liangyin Zhang1 Housheng Su2 Chanying Li3

1Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.

Email: mzqchen@hku.hk.

2School of Automation, Image Processing and Intelligent Control Key

Laboratory of Education Ministry of China, Huazhong University of Science and Technology,

Luoyu Road 1037, Wuhan 430074, China.

3National Center for Mathematics and Interdisciplinary Sciences,

Chinese Academy of Sciences, Beijing 100090, China.

Abstract

This paper investigates the problem of event-based synchronization of linear discrete-time
dynamical networks. Leader-following and leaderless synchronizations are achieved by a dis-
tributed event-trigger strategy. It is shown that feedback control updating is unnecessary until
an event is triggered. The combinational-state variables and the Riccati equation are used to
construct a Liapunov function and to design the event-triggering conditions. Numerical exam-
ples are provided to illustrate the theoretical results.

Keywords: Event-triggered control, discrete-time synchronization, leader-following / leaderless
networks, Riccati equation.

1 Introduction

Cooperative control of dynamical networks, which are modeled as multi-agent systems (MAS),

originates from two parallel studies: synchronization of circuit systems [1] and consensus problems

inspired by biological distributed behaviors [2]. It has received much research interest in the last

two decades [3]–[25]. Previous works on cooperative control focused on first-order and second-order

systems [4]–[11]. Recently, research attention is more on MAS with higher-order dynamics [12]–[22]

and nonlinear systems [23]–[25]. For first-order and second-order systems, there is no essential

difference between the cooperative control of continuous-time MAS and that of discrete-time MAS.

While for the general linear systems, the network coupling issue leads to more difficulties in analysis

of discrete-time MAS [18]–[22] than the continuous-time counterpart [12]–[17].

Event-based sampling and control have been studied since the late 1990s [26, 27]. This has led

to the gradually forming event-triggered control (ETC), which can prevent unnecessary control

updates with respect to the traditional periodic control. The ETC theory is first systematically

studied in [28], which is based on the Liapunov stability theory. The event-trigger strategy is

applied to sensor/actuator networks and generalized to a decentralized form in [29]. In addition,

the distributed ETC is analyzed in [30] as well. And the ETC over noisy feedback channels is studied

in [31]. Recently, the periodic event-triggered control (PETC) has been proposed in [32, 33]. This



scheme combines the advantages of both ETC and traditional periodic control. In ETC, the event-

triggering conditions need to be checked all the time. In PETC, traditional periodic sampling

is preserved while the updating of feedback control is event-triggered. Consequently, the event-

triggering conditions only need to be checked at sampling instants. Thus, the PETC system can

be modeled as the discrete-time ETC [34].

In the past several years, event-based cooperative control has attracted much research interest

[35]–[42]. The problems on first-order and second-order systems are resolved in [35]–[39]; and a

kind of linear MAS with the system matrices satisfying that rank(AB) = rank(A), which contains

the single-integrator and double-integrator as special cases, is considered in [40]. For the MAS

with general linear dynamics, the problems on the continuous-time system [41, 42] and the sampled

system [43] have been resolved. In [41], the algebraic Riccati equation (ARE) is used to design the

controller matrix. In [42], the combinational-state variables [38] are used for the Liapunov stability

analysis and the event-triggering conditions design. In the case of single-integrator or double-

integrator, the event-triggering function can be state-dependent [36, 39] and state-independent [37].

The advantage of the state-dependent method is that the asymptotic convergence can be achieved

and the convergence rate is independent from any external signal. Furthermore, the combinational-

state approach [38] can help the analysis and design for higher-order systems [42].

In this paper, the event-based leader-following and leaderless synchronizations of linear discrete-

time MAS are concerned. An event-trigger strategy is proposed for the feedback control updating.

Each follower agent is associated with an event-trigger to detect the event that the value of some

event-triggering function becomes positive. When such an event is detected by any one of the

agents, the control is updated for each agent using the local information obtained at that event

time. The combinational-state variables, which are combinations of each agent’s neighbors’ states

rather than the agents’ own states [38], are utilized to design the event-triggering functions and to

perform the Liapunov stability analysis; the modified algebraic Riccati equation (MARE) is used to

compute the controller matrix and the quadratic matrix for Liapunov function as well. Comparing

to the LMI approach in [43] for sampled higher-order MAS, the solvability condition of MARE is

straightforward to be checked.

The paper is organized as follows. In Section 2, the problem of event-based discrete-time synchro-

nization is formulated and some preliminaries in graph theory are reviewed. The main results of

leader-following and leaderless synchronizations are presented in Section 3. Numerical examples

are provided in Section 4. Finally, conclusion is drawn in Section 5.

Nomenclature: Throughout this paper, Rp and Rp×q represent the p-dimensional real vector

space and the set of all p × q real matrices, respectively. For x ∈ Rp, ‖x‖ denotes its Euclidian

norm; and ‖x‖∞ , maxi |xi|. For a sequence {x(t)}, x+ denotes the time-shift operator defined as

x+(t) , x(t+ 1). For X ∈ Rp×p, its eigenvalues are denoted by λ1(X), λ2(X),..., λp(X) satisfying

that |λ1(X)| ≤ ... ≤ |λp(X)|; and ρ(X) = |λp(X)| denotes its spectral radius. For M ∈ Rp×q, MT

denotes its transpose and ‖M‖ ,
√
ρ(MTM) denotes its spectral norm. A square matrix A is said

to be Schur if ρ(A) < 1. A matrix pair (A,B) is stabilizable if there exists some matrix F such

that (A + BF ) is Schur, where A ∈ Rn×n and B ∈ Rn×m. The p × p identity matrix is denoted

by Ip; 1p , [1 ... 1]T ∈ Rp; I denotes an identity matrix with compatible dimension; and diag{·}
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denotes a diagonal matrix. X � Y (respectively, X � Y ) means that (X − Y ) is positive definite

(respectively, positive semi-definite). Properties of the Kronecker product are reviewed.

Lemma 1. [44] If A = [aij ] ∈ Rp×p and B ∈ Rq×q, then the Kronecker product of A and B,

denoted by A⊗B, is defined to be the partitioned matrix [aijB] ∈ Rpq×pq. The Kronecker product

has the following properties: 1) (A ⊗ B)T = AT ⊗ BT ; 2) (A ⊗ B)(C ⊗ D) = AC ⊗ BD, where

matrix multiplication has a higher priority than “⊗”; and 3) If A,B � 0, then A⊗B � 0.

2 Problem Statement

2.1 Event-based Synchronization Problem

Consider a group of N agents, labeled as 1, 2, ..., N , with general linear dynamics. The dynamics

of the agents are described by

x+i = Axi +Bui, i = 1, 2, ..., N, (1)

where (A,B) is stabilizable; xi ∈ Rn is the state of agent i; ui ∈ Rm is the control input acting

on agent i; and superscript “ + ” denotes the time-shift operator defined as x+i (t) , xi(t + 1),

t = 0, 1, 2, .... Denote x = [xT1 x
T
2 ... x

T
N ]T and u = [uT1 u

T
2 ...u

T
N ]T for notational convenience. The

motion of the leader, labeled as N + 1, is described by

x+N+1 = AxN+1. (2)

The problem of event-based leader-following synchronization for the agents and leader described

above is as follows: For each agent i, design some distributed event-triggering condition to generate

an event-triggered updating time sequence {t0, t1, ...}, which only depends on local communication

among neighboring agents and the leader; and design some feedback law ui, which uses only local

information at the updating time tk, k = 0, 1, ..., such that the synchronization

lim
t→∞
‖xi(t)− xN+1(t)‖ = 0, ∀i = 1, 2, ..., N, (3)

is achieved. While the problem of event-based leaderless synchronization is to achieve the following

synchronization:

lim
t→∞
‖xi(t)− xj(t)‖ = 0, ∀i, j = 1, 2, ..., N, (4)

for multi-agent system (1). The special leader-following case where the leader’s state xN+1 ap-

proaches a fixed point and the special leaderless case where each agent’s state converges to a

common point are usually called consensus problems.

2.2 Graph Theory

The communication network consisting of N agents is described by an undirected graph G = {V, E}.
In this graph, the set of vertices V = {1, 2, ..., N} represents the agents in the group and the set of

edges E = {(i, j) ∈ V × V : i 6= j}, containing unordered pairs of vertices, represents neighboring
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relations among the agents. Vertices i and j are said to be adjacent if (i, j) ∈ E . As usual, define

the adjacency matrix A , (aij) of graph G as aij = aji = 1 if (i, j) ∈ E , and aij = aji = 0 otherwise.

The Laplacian matrix of graph G with adjacency matrix A is given by L , D −A � 0, where the

in-degree matrix D is a diagonal matrix with the i-th diagonal element di ,
∑N

j=1 aij . As such,

λ1(L) = 0 with an eigenvector 1N . Moreover, di > 0 and λ2(L) > 0 if G is connected [45].

Let G be an extended graph generated by the leader and the undirected graph G consisting of N

agents, and the matrix H , diag{h1, h2, ..., hN} be defined as hi = 1 if agent i is a neighbor of

the leader, and hi = 0 otherwise; denote L , L + H. The neighboring set of agent i is defined

as N (i) , {j|aij 6= 0}
⋃
{N + 1} if hi 6= 0, and as N (i) , {j|j ≤ N, aij 6= 0} otherwise. The

neighboring set of the leader is defined as {i|hi 6= 0}.

Lemma 2. [8] For an extended graph G containing a spanning tree with the leader being the root

vertex, L � 0.

Lemma 3. (i) If an extended graph G contains a spanning tree with the leader being the root

vertex, then

min
ω∈R

max
i=1,...,N

|1− ωλi(L )| = λN (L )− λ1(L )

λN (L ) + λ1(L )
< 1,

arg min
ω

max
i=1,...,N

|1− ωλi(L )| = 2

λ1(L ) + λN (L )
.

(ii) [20] If an undirected graph G is connected, then

min
ω∈R

max
i=2,...,N

|1− ωλi(L)| = λN (L)− λ2(L)

λN (L) + λ2(L)
< 1, arg min

ω
max

i=2,...,N
|1− ωλi(L)| = 2

λ2(L) + λN (L)
.

Proof. The results in (ii) are exactly those in [20, (14)]; and (i) can be similarly obtained.

Accordingly, in a directed graph G = {V, E}, the set of vertices V = {1, 2, ..., Ñ}; the set of edges

E = {(i, j) ∈ V × V : i 6= j}; the adjacency matrix A = (aij) as aij > 0 if (j, i) ∈ E and aij = 0

otherwise; and the Laplacian matrix L = D −A, where D = diag{d1, ..., dÑ} with di =
∑Ñ

j=1 aij .

3 Main Results

Theoretical results are presented in this section. The event-trigger strategy is first described in Sec-

tion 3.1. Then, the control protocol for leader-following synchronization is designed in Section 3.2.

The leader-following synchronization is established in Section 3.3. The leaderless synchronization

is studied in Section 3.4.

3.1 Event-trigger Strategy

In this subsection, the event-triggered mechanism is described to generate the updating time se-

quence {tk}.
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Algorithm 1. Event-based updating:

Step 1. At every time step t ≥ 0, all agents and the leader broadcast their states to their neighboring

agents. The initial time is denoted as the first event time: t0 , 0. At the beginning of each updating

process, t = tk, k ≥ 0, all agents have received the state information from their neighboring agents,

and the feedback control input ui is updated for each agent i using the local information. Some

distributed event-triggering function fi(t) satisfying that fi(tk) ≤ 0 will be designed using only

local information for each agent i.

Step 2. For t ≥ tk + 1, the next updating event is triggered at instant tk+1 ≥ tk + 1 if fj(tk+1) > 0

for some agent j and fi(t) ≤ 0 for all t ∈ [tk, tk+1) and all agents i; if no such an event fi(t) > 0

occurs for any agent i and any time t ≥ tk + 1, denote tk+1 , +∞. The feedback control input will

be designed later in the form of ui(t) = g (t, xi(tk), aijxj(tk)), t ∈ [tk, tk+1).

Step 3. When a finite tk+1 is triggered, a new updating cycle will begin, then go to Step 1 and

reset fi(tk+1) ≤ 0. Thus, fi(t) ≤ 0 holds for each agent i all the time.

3.2 Event-based Control Protocol

For a Schur A, zero control input can achieve synchronization. For a singular A, there exists a T such

that T−1AT = diag{0, Ã}, where Ã is nonsingular. Accordingly, denote T−1B = [BT
1 BT

2 ]T , and

T−1xi = Xi = [X1
i X

2
i ]T . For i = 1, ..., N , one has that (X1

i )+ = B1ui and (X2
i )+ = ÃX2

i + B2ui.

Then, X2
i can be treated as the new state variables for the state-space model of MAS (1) and (2),

and the control input ui can be computed using only X2
i . It is straightforward that synchronization

with respect to X2
i implies synchronization with respect to xi. Thus, Assumption 1 below is made

without loss of generality.

Assumption 1. The pair (A,B) is stabilizable, and A is nonsingular and not Schur.

The following assumptions are important for the event-based leader-following synchronization.

Assumption 2. The extended graph G consisting of the N agents and the leader is fixed and

contains a spanning tree rooted at the leader.

Assumption 3. For the extended graph G, γ > γc, where

γ ,
4λ1(L )λN (L )

(λ1(L ) + λN (L ))2
∈ (0, 1], (5)

and γc is defined in Lemma 4 below.

Lemma 4. [46] Let ε > 0, R ∈ Rm×m and R � 0. Assume that the pair (A,B) is stabilizable and

A is not Schur. For the modified algebraic Riccati equation (MARE)

P = gγ̃(P ) , ATPA− γ̃ATPB(BTPB +R)−1BTPA+ εI, (6)

there exists a critical value γc ∈ [0, 1) satisfying that

γc , inf { γ̃ | ∃ P � 0 s.t. P � gγ̃(P )} ≥ 1− 1/(ρ(A))2.

For any γ̃ ∈ (γc, 1], MARE (6) has a unique positive semi-definite solution P (ε), which is positive

definite. An method for numerically calculating γc is available in [46, Corollary 1].
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Assumption 4. For the extended graph G,

‖BTP0B‖ ≤
λN (L ) + λ1(L )

λN (L )− λ1(L )
,

where P0 , limε→0 P (ε) � 0, and P (ε) is the positive definite solution to MARE (6) with γ̃ = γ

defined in (5).

The event-based control in this paper is based on the combinational-state variables vi(t) and the

combinational-error variables wi(t), which will be defined in the following. For t ∈ [tk, tk+1), k ≥ 0,

define the error variables as

ei(t) , A
t−tkxi(tk)− xi(t), i = 1, ..., N,N + 1; (7)

e(t) , [eT1 e
T
2 ... e

T
N ]T .

For i = 1, ..., N , the combinational-state variables and the combinational-error variables are respec-

tively defined as

vi(t) , hi(xi(t)− xN+1(t)) +
N∑
j=1

aij(xi(t)− xj(t)); (8)

wi(t) , hi(ei(t)− eN+1(t)) +
N∑
j=1

aij(ei(t)− ej(t)), (9)

where wi(t) depends on the neighboring information aijej(t). One has that v(t) , [vT1 v
T
2 ... v

T
N ]T =

(L ⊗ In)x − H1N ⊗ xN+1 and w(t) , [wT1 w
T
2 ... w

T
N ]T = (L ⊗ In)e − H1N ⊗ eN+1. Denote

x̃i(t) , xi − xN+1, x̃(t) , [x̃T1 x̃
T
2 ... x̃

T
N ]T ; ẽi(t) , ei − eN+1, ẽ(t) , [ẽT1 ẽ

T
2 ... ẽ

T
N ]T . In fact, eN+1 ≡ 0

and ẽ = e. Thus,

v(t) = (L ⊗ In)x̃(t), w(t) = (L ⊗ In)ẽ(t); (10)

v(t) =
(
IN ⊗At−tk

)
v(tk)− w(t), t ∈ [tk, tk+1). (11)

The design of the control protocol for synchronization of multi-agent systems (1) and (2) is per-

formed in three steps.

Algorithm 2. Event-based Leader-following Synchronization:

Step 1. Find P (ε) � 0 to solve the MARE

P = ATPA− γATPB(BTPB + I)−1BTPA+ εI, (12)

where ε > 0 is the MARE parameter to be designed, and γ is defined in (5). The existence of P (ε),

as well as a numerically computing method, is referred to [46].

Step 2. Denote that

K(ε) , −ω(BTP (ε)B + I)−1BTP (ε)A, (13)

where

ω ,
2

λ1(L ) + λN (L )
. (14)
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For brevity, P (ε) and K(ε) are denoted as P and K, respectively in the sequel. By Assumption 1,

‖KTK‖ = ‖K‖2 > 0. For agents i = 1, 2, ..., N, design a feedback law using xi(tk) and aijxj(tk) as

ui(t) = KAt−tkvi(tk) = K(vi(t) + wi(t)), t ∈ [tk, tk+1), k ≥ 0, (15)

where vi is defined in (8).

Step 3. The updating time sequence {tk} is generated by Algorithm 1, where the event-triggering

function fi(t) for agent i is designed as

fi(t) =
1

θ
%2(ε, θ)‖wi(t)‖2 − σ (ε− θ%(ε)) ‖vi(t)‖2 (16)

with the parameter σ satisfying σ ∈ (0, 1); %(ε) , min{maxi{2di + hi} · ‖S(ε)‖, ‖Θ(ε)‖}, where

S(ε) , −ATPBK − λ1(L )KTBTPBK, Θ(ε) , −L ⊗ATPBK −L 2 ⊗KTBTPBK; (17)

the parameter θ to be determined later such that

0 < θ ≤ ε

2%(ε)
; (18)

and %2(ε, θ) , min{maxi{2di + hi} · ‖S2(ε, θ)‖, ‖Θ2(ε, θ)‖}, where

S2(ε, θ) , −ATPBK − (1− θ)λ1(L )KTBTPBK, Θ2(ε, θ) , θL
2 ⊗KTBTPBK + Θ(ε). (19)

Remark 1. Noting that the combinational-state variable vi(t) in (8) and the combinational-error

variable wi(t) in (9) depend on the states xj(t) and the error variables ej(t), respectively of the

neighbors of agent i, the event-triggering function fi(t) in (16) for the event-based control updating

algorithm requires local information exchange at each time step. This is similar to the results

in [39] for sampled single-integrator dynamics. In [38], the inherent minimum inter-event time

for continuous-time event-triggered systems is used to design an event-trigger strategy that can

prevent continuous information broadcasting. But this method is inapplicable to discrete-time

systems. In [37], the event-based broadcasting is studied for first-order and second-order systems,

where the convergence rate depends on an external signal since that the event-triggering function

is state-independent. In [43], the event-triggered broadcasting strategy is proposed for sampled

higher-order systems through the LMI approach, which is subject to a feasibility problem that is

not straightforward. Just like in [19, 22], the feasibility of the Riccati design in this paper can be

easily checked by verifying Assumptions 3 and 4. Assumption 3 guarantees the synchronizability

of the network [19, 22]; and Assumption 4 is devoted to ensuring the existence of a feasible ε for

Algorithm 2. It is noted in [47] that if ρ(A) ≤ 1, which contains the single, double, and higher-order

integrator dynamics as special cases, then γc = 0 and P0 = 0; thus, Assumptions 3 and 4 hold for

any network graph satisfying Assumption 2.

3.3 Event-based Leader-following Synchronization

An equivalent condition for synchronization is established in the following lemma.

Lemma 5. Let Assumption 2 hold. Then, the synchronization in the sense of (3) is equivalent to

lim
t→∞
‖v(t)‖ = 0.
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Proof. The synchronization in the sense of (3) is equivalent to lim
t→∞
‖x̃(t)‖ = 0. Due to Assump-

tion 2, L ⊗ In is positive definite, which can be verified using Lemmas 2 and 1. By (10), one has

that lim
t→∞
‖x̃(t)‖ = 0 is equivalent to lim

t→∞
‖v(t)‖ = 0.

The main result of event-based leader-following synchronization is presented in Theorem 1 below.

Theorem 1. Consider a multi-agent system consisting of N agents with general linear dynamics (1)

and a leader with dynamics (2). Let Assumptions 1, 2, 3 and 4 hold. Then, Algorithms 1 and 2

can achieve exponential synchronization of the multi-agent system. That is, for any σ ∈ (0, 1) in

event-triggering function (16), there exist an MARE parameter ε = ε∗ > 0 and a corresponding θ

in (18) such that limt→∞ ‖xi(t)− xN+1(t)‖ = 0 exponentially for any i = 1, ..., N .

Proof. Step 1. Closed-loop Dynamics.

For t ∈ [tk, tk+1), combining (1), (7) and (15), and applying the Kronecker product, one has

u(t) = (L ⊗K)(x̃+ ẽ) = (IN ⊗K)(v(t) + w(t)), (20)

and the closed-loop dynamics are described by

x+ = (IN ⊗A)x+ (IN ⊗B)u;

x̃+ = (IN ⊗A)x̃+ (IN ⊗B)u.
(21)

Then, since e(t) = (IN ⊗At−tk)x(tk)− x(t), one has that

e+ = (IN ⊗A)e− (IN ⊗B)u;

ẽ+ = (IN ⊗A)ẽ− (IN ⊗B)u.
(22)

By (10), it is straightforward to verify that

v+ = (Ā+ L̄ B̄K̄)v + L̄ B̄K̄w, (23)

w+ = (Ā− L̄ B̄K̄)w − L̄ B̄K̄v, (24)

where Ā , IN ⊗A, L̄ , L ⊗ In, B̄ , IN ⊗B, and K̄ , IN ⊗K.

Step 2. Liapunov Analysis.

For the stability analysis of (23), the following quadratic Liapunov function is used:

V (v(t)) , vT (IN ⊗ P ) v = vT P̄ v, (25)

where P̄ , IN ⊗ P . By (23) and (25), one can evaluate ∆V (t) , V (v(t+ 1))− V (v(t)), which is

the variation of V along the discrete-time trajectories of v, as follows:

∆V (t) =vT
(
ĀT P̄ Ā− P̄ + 2ĀT P̄ L̄ B̄K̄ + K̄T B̄T L̄ P̄ L̄ B̄K̄

)
v + wT K̄T B̄T L̄ P̄ L̄ B̄K̄w

+ 2vT
(
ĀT P̄ L̄ B̄K̄ + K̄T B̄T L̄ P̄ L̄ B̄K̄

)
w

=vT
(
IN ⊗

(
ATPA− P

)
+ 2L ⊗ATPBK + L 2 ⊗KTBTPBK

)
v

+ wT
(
L 2 ⊗KTBTPBK

)
w + 2vT

(
L ⊗ATPBK + L 2 ⊗KTBTPBK

)
w. (26)
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The positive definiteness of L implies that there exists an orthogonal matrix U ∈ RN×N such that

L = UTΛU, Λ , diag{λ1(L ), λ2(L ), ..., λN (L )}, where λi(L ) > 0. Denote ξ(t) , (U ⊗ In)v(t)

and ξ = [ξT1 ξ
T
2 ... ξ

T
N ]T with ξi(t) ∈ Rn. By (12), one has that

vT
(
IN ⊗

(
ATPA− P

)
+ 2L ⊗ATPBK + L 2 ⊗KTBTPBK

)
v

= ξT (IN ⊗ (ATPA− P ) + Λ⊗ 2ATPBK + Λ2 ⊗KTBTPBK)ξ

= −
N∑
i=1

ξTi Φ(λi(L ))ξi, (27)

where Φ(φ) , −ATPA + P − 2φATPBK − φ2KTBTPBK. The proof of the following claim is

given in Appendix A.

Claim 1.

−
N∑
i=1

ξTi Φ(λi(L ))ξi ≤ −εξT ξ = −εvT v. (28)

Step 3. MARE Parameter Setting.

Next, the MARE parameter ε will be set such that

Θ(ε) = −L ⊗ATPBK −L 2 ⊗KTBTPBK � 0, (29)

which is equivalent to (UL − 1
2 ⊗ In)Θ(ε)(L − 1

2UT ⊗ In) = −IN ⊗ATPBK −Λ⊗KTBTPBK � 0.

Then, it is sufficient to make −ATPBK � λN (L )KTBTPBK, which is guaranteed by setting

ε = ε∗ such that

‖BTP (ε∗)B‖ ≤ λN (L ) + λ1(L )

λN (L )− λ1(L )
. (30)

This can be verified by noting that (30) implies (λ1(L )+λN (L )
2λN (L ) (BTPB+I)) � BTPB, which further

implies ( 1
λN (L )ω (BTPB + I)−1) � (BTPB + I)−1BTPB(BTPB + I)−1. In the remaining proof,

ε is set as ε∗ following (30) such that (29) holds.

By (29) and noting the fact that

αaTQa+
1

α
bTQb ≥ ±2aTQb (31)

for Q � 0 and α > 0, one obtains that

−2vTΘ(ε∗)w ≤ θvTΘ(ε∗)v +
1

θ
wTΘ(ε∗)w, (32)

where θ satisfying (18) is the parameter in (16). Then, by (26), (27), (28) and (32), one has

∆V (t) ≤ −εvT v + θvTΘ(ε∗)v +
1

θ
wTΘ2(ε

∗, θ)w, (33)

where Θ2(ε
∗, θ) = θL 2 ⊗KTBTPBK + Θ(ε∗).

Step 4. Event-triggering Conditions.

The proof of the following claim is given in Appendix A.
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Claim 2. The variation of V is upper-bounded as follows:

∆V (t) ≤ 1

θ
%2(ε

∗, θ)‖w‖2 − (ε∗ − θ%(ε∗)) ‖v‖2 = ΣN
i=1fi(t)− (1− σ) (ε∗ − θ%(ε∗)) ‖v‖2, (34)

where fi(t) and σ are defined in (16) and satisfy that

N∑
i=1

fi(t) =
1

θ
%2(ε

∗, θ)‖w‖2 − σ (ε∗ − θ%(ε∗)) ‖v‖2.

With the event-triggering function (16), by Claim 2, the event-trigger strategy in Algorithm 1

enforces that
∑N

i=1 fi(t) ≤ 0 and ∆V (t) ≤ 0 for all t ∈ [tk, tk+1].

Step 5. Exponential Synchronization.

At the beginning of each updating process, t = tk, k ≥ 0, if the network is not in synchrony,

v(tk) 6= 0, then by (11), for all t ∈ [tk, tk+1), one has w + v =
(
IN ⊗At−tk

)
v(tk) 6= 0 since

that
(
IN ⊗At−tk

)
is nonsingular, which results from Assumption 1; meanwhile, the event-trigger

strategy in Algorithm 1 enforces that 1
θ%2(ε

∗, θ)‖w‖2 ≤ σ (ε∗ − θ%(ε∗)) ‖v‖2. Thus, v(t) 6= 0,

∀t ∈ [tk, tk+1). Setting the MARE parameter ε = ε∗ following (30), one has that for all t ≥ 0,

∆V (t) ≤ −(1− σ) (ε∗ − θ%(ε∗)) ‖v‖2 < 0.

If v(tk) = 0 for some k ≥ 0, that is, synchronization is achieved in finite time, then it is straight-

forward to verify that u(t) ≡ 0, w(t) ≡ 0 and v(t) ≡ 0 for all t ≥ tk. Consequently, no event will

occur again and tk+1 = +∞.

By the Liapunov stability theory (see [48]), one obtains the exponential convergence lim
t→∞
‖v(t)‖ = 0,

which contains the possible finite-time synchronization at some updating time tk as a special case.

Applying Lemma 5, one has that limt→∞ ‖xi(t)−xN+1(t)‖ = 0 exponentially for each agent i. This

completes the proof of Theorem 1.

Remark 2. (i) The MARE parameter is theoretically set as ε = ε∗ specified in (30). The existence

of an ε∗ is guaranteed by Assumption 4. To numerically determine an ε∗ fulfilling (30), the method

of bisection [17] can be applied.

(ii) The demonstrated exponential synchronization is based on a quadratic Liapunov function which

is constructed through the combinational-state approach [38] and the Riccati design method [41,

19, 22]. In [37], the stability analysis for first-order and second-order systems is performed directly

instead of Liapunov analysis, but the convergence rate depends on an external signal. In [43],

the Liapunov function is constructed through the LMI approach, which is subject to a feasibility

problem that is not straightforward. While like in [19, 22], the feasibility of the MARE approach

in this paper can be easily checked.

(iii) From (29), (17) and (19), one has Θ2 � Θ � 0 and S2 � S � 0 since IN⊗S � (L −1⊗In)Θ � 0.

Therefore, %2(ε, θ) is a decreasing function of θ and %2(ε, θ) ≥ %(ε). To reduce the number of event-

triggered updates, by (16), the parameter θ for the event-triggering conditions can be set such

that the value of
(

1
%2(ε∗,θ)

· (ε∗ − %(ε∗)θ) θ
)

is maximized. One has that θ ≤ ε∗

2%(ε∗) , which explains

why (18) is required. In addition, it is noted that the parameter tuning for θ is independent of the

parameter σ.
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(iv) From (34), the smaller the parameters σ and θ are, the faster the synchronization will be. On

the other side, by (16), smaller σ and θ will lead to more event-triggered updates. So in the setting

of the parameters σ and θ, one needs to take into account of the trade-off between the speed of

convergence and the number of event-triggered updates.

3.4 Event-based Leaderless Synchronization

The following assumptions are important for the event-based leaderless synchronization.

Assumption 5. The communication network graph is fixed and connected.

Assumption 6. For the undirected graph G, γ > γc, where

γ =
4λ2(L)λN (L)

(λ2(L) + λN (L))2
∈ (0, 1]. (35)

and γc is defined in Lemma 4.

Assumption 7. For the undirected graph G,

‖BTP0B‖ ≤
λN (L) + λ2(L)

λN (L)− λ2(L)
,

where P0 , limε→0 P (ε) � 0, and P (ε) is the positive definite solution to MARE (6) with γ̃ = γ

defined in (35).

The combinational-state variables and the combinational-error variables are redefined for the lead-

erless case as

vi(t) ,
N∑
j=1

aij(xi(t)− xj(t)); (36)

wi(t) ,
N∑
j=1

aij(ei(t)− ej(t)), i = 1, ..., N. (37)

Denoting v(t) , [vT1 v
T
2 ... v

T
N ]T and w(t) , [wT1 w

T
2 ... w

T
N ]T , one has that (1TN ⊗ In)v = 0 due to

ΣN
i=1vi = 0; and

v(t) = (L⊗ In)x(t), w(t) = (L⊗ In)e(t); (38)

v(t) = (IN ⊗At−tk)v(tk)− w(t), t ∈ [tk, tk+1). (39)

The design of the control protocol for synchronization of multi-agent system (1) is performed in

three steps.

Algorithm 3. Event-based Leaderless Synchronization:

Step 1. For the MARE parameter ε > 0 that is to be designed, find P � 0 to solve MARE (12)

with γ redefined in (35).

Step 2. For agents i = 1, 2, ..., N, construct a feedback law using xi(tk) and aijxj(tk) as

ui(t) = KAt−tkvi(tk) = K(vi(t) + wi(t)), t ∈ [tk, tk+1), k ≥ 0, (40)
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where vi is defined in (36) and K is the same as (13), that is,

K = −ω(BTPB + I)−1BTPA (41)

but with

ω ,
2

λ2(L) + λN (L)
. (42)

Step 3. The updating time sequence {tk} is generated by Algorithm 1, where the event-triggering

function fi(t) for agent i is designed as

fi(t) =
1

θ
%2(ε, θ)‖wi(t)‖2 − σ (ε− θ%(ε)) ‖vi(t)‖2 (43)

with the parameter σ satisfying σ ∈ (0, 1); %(ε) redefined as %(ε) , min{2 maxi{di}·‖S(ε)‖, ‖Θ(ε)‖},
where S(ε) , −ATPBK − λ2(L)KTBTPBK, Θ(ε) , −L ⊗ ATPBK − L2 ⊗ KTBTPBK; the

parameter θ to be determined later such that

0 < θ ≤ ε

2%(ε)
; (44)

and %2(ε, θ) redefined as %2(ε, θ) , min{2 maxi{di} · ‖S2(ε, θ)‖, ‖Θ2(ε, θ)‖}, where

S2(ε, θ) , −ATPBK − (1− θ)λ2(L)KTBTPBK, Θ2(ε, θ) , θL
2 ⊗KTBTPBK + Θ(ε).

An equivalent condition for synchronization based on the combinational-state variables [38] is es-

tablished in the following lemma, the idea for which is from [42].

Lemma 6. [42] Let Assumption 5 hold. Then, the synchronization in the sense of (4) is equivalent

to lim
t→∞
‖v(t)‖ = 0.

Proof. See Appendix B.

The main result of event-based leaderless synchronization is presented in the following theorem.

Theorem 2. Consider a multi-agent system consisting of N agents with general linear dynam-

ics (1). Let Assumptions 1, 5, 6 and 7 hold. Then, Algorithms 1 and 3 can achieve exponential

synchronization of the multi-agent system. That is, for any σ ∈ (0, 1) in event-triggering func-

tion (43), there exist an MARE parameter ε = ε∗ > 0 and a corresponding θ in (44) such that

limt→∞ ‖xi(t)− xj(t)‖ = 0 exponentially for any i, j = 1, 2, ..., N .

Proof. For t ∈ [tk, tk+1), combining (1), (7) and (40), one has that

u(t) = (L⊗K)(x+ e) = (IN ⊗K)(v(t) + w(t)), (45)

and the closed-loop dynamics are described by

x+ = (IN ⊗A)x+ (IN ⊗B)u; (46)

e+ = (IN ⊗A)e− (IN ⊗B)u. (47)
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By (38), it is straightforward to verify that

v+ = (Ā+ L̄B̄K̄)v + L̄B̄K̄w, (48)

w+ = (Ā− L̄B̄K̄)w − L̄B̄K̄v, (49)

where Ā = IN ⊗A, L̄ , L⊗ In, B̄ = IN ⊗B, and K̄ = IN ⊗K.

For the stability analysis of (48), the same Liapunov function is used as in (25), that is, V (v(t)) =

vT P̄ v = vT (IN ⊗ P (ε)) v. Similar to (26), one has that

∆V (t) =vT
(
ĀT P̄ Ā− P̄ + 2ĀT P̄ L̄B̄K̄ + K̄T B̄T L̄P̄ L̄B̄K̄

)
v + wT K̄T B̄T L̄P̄ L̄B̄K̄w

+ 2vT
(
ĀT P̄ L̄B̄K̄ + K̄T B̄T L̄P̄ L̄B̄K̄

)
w

=vT
(
IN ⊗

(
ATPA− P

)
+ 2L⊗ATPBK + L2 ⊗KTBTPBK

)
v

+ wT
(
L2 ⊗KTBTPBK

)
w + 2vT

(
L⊗ATPBK + L2 ⊗KTBTPBK

)
w. (50)

The positive semi-definiteness of L implies that there exists an orthogonal matrix U ∈ RN×N such

that L = UTΛU, Λ , diag{0, λ2(L), ..., λN (L)}. The first row of U is a left-eigenvector of L, with

all elements being
√
N/N . Denote ξ(t) , (U ⊗ In)v(t) and ξ = [ξT1 ξ

T
2 ... ξ

T
N ]T with ξi(t) ∈ Rn and

ξ1 = 0. By (12) and similar to Theorem 1,

vT
(
IN ⊗

(
ATPA− P

)
+ 2L⊗ATPBK + L2 ⊗KTBTPBK

)
v

= ξT (IN ⊗ (ATPA− P ) + Λ⊗ 2ATPBK + Λ2 ⊗KTBTPBK)ξ ≤ −εξT ξ = −εvT v.

Next, set the MARE parameter as ε = ε∗ such that

‖BTP (ε∗)B‖ ≤ λN (L) + λ2(L)

λN (L)− λ2(L)
. (51)

Then, one has that

Θ(ε) = −L⊗ATPBK − L2 ⊗KTBTPBK � 0.

The remainder of the proof of Theorem 2 is similar to that of Theorem 1.

Remark 3. (i) Although the Riccati design works for any homogeneous network dynamics satisfying

Assumptions 1, 2, 3 and 4, it may result in more updates than the LMI approach [43, 42].

(ii) The results in Theorems 1 and 2 cannot be directly extended to the case of heterogeneous

agents since that: 1) the controller in (15) or (40) becomes meaningless if the agent dynamics are

not identical; 2) the properties such as (26) and (50) do not hold for heterogeneous networks and

the Liapunov stability analysis becomes more difficult.

(iii) The proposed event-based synchronization algorithms can be extended to directed graphs.

Noting that for a directed graph G containing a spanning tree, there exists a positive diagonal

matrix Σ � 0 such that LΣ + ΣLT � 0 [49]. This matrix (LΣ + ΣLT ) can be used, instead of the

Laplacian matrix L, for Liapunov stability analysis.

4 Numerical Examples

In this section, simulation results are presented to illustrate the theoretical results.
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(a) The leader-following network graph. (b) The leaderless network graph.

Figure 1: The communication network topologies.

4.1 Leader-following Synchronization

Example 1. Simulations are performed on a dynamical network consisting of one leader and four

follower agents with the following sampled triple-integrator dynamics: x+i1 = xi1+0.3xi2+0.045xi3+

0.0045ui, x
+
i2 = xi2+0.3xi3+0.045ui, x

+
i3 = xi3+0.3ui, i = 1, ..., 4. That is, the state-space matrices

for the follower dynamics are as follows:

A =

 1 0.3 0.045
0 1 0.3
0 0 1

 , B =

 0.0045
0.045
0.3

 .
The communication topology is shown in Figure 1(a). One has λ1(L ) = 0.3820 and λN (L ) =

3.6180. By (5) and (14), γ = 0.3455 and ω = 0.5. The initial values of the components xi1, xi2

and xi3 of follower agent states are randomly chosen from the cube [−4, 4] × [−4, 4] × [−4, 4] for

i = 1, 2, 3, 4; while for the leader, x51, x52 and x53 are randomly chosen from the cube [−1, 1] ×
[−1, 1]× [−1, 1]. To numerically solve MARE (12) by applying [46, Theorem 6], CVX is used, which

is a package for solving convex programs [50]. The MARE parameter is set as ε = ε∗ = 9.45×10−3

such that (30) holds:

‖BTP (ε∗)B‖ = 1.2360 <
λN (L ) + λ1(L )

λN (L )− λ1(L )
= 1.2361.

The corresponding controller in (13) is obtained as K = [−0.0553,−0.3322,−0.9703]. The param-

eter σ in (16) is chosen as σ = 0.8. The other parameters for the event-triggering functions in

Algorithm 2 are obtained as follows: ‖Θ(ε∗)‖ = 4.0292, ‖S(ε∗)‖ = 4.2194, maxi{2di + hi} = 4,

then %(ε∗) = min{maxi{2di + hi} · ‖S(ε∗)‖, ‖Θ(ε∗)‖} = 4.0292; since ε∗

2%(ε∗) = 0.0012 is small, for

any θ ≤ 0.0012, one has %2(ε
∗, θ) ≈ %(ε∗), then the parameter θ is set as θ = ε∗

2%(ε∗) = 0.0012 such

that ( 1
%2(ε∗,θ)

· (ε∗ − %(ε∗)θ) θ) is almost maximized; and ‖Θ2(ε
∗, θ)‖ = 4.0322, ‖S2(ε∗, θ)‖ = 4.2200,

then %2(ε
∗, θ) = 4.0322. The event-triggering condition for agent i is eventually obtained as

fi = 3.4385× 103‖wi‖2 − 0.0038‖vi‖2 > 0,

or equivalently, ‖wi‖/‖vi‖ > 0.0010. This theoretically obtained trigger threshold value of 0.001

is very small. One set of simulation data is shown in Figure 2. The practical synchronization is

achieved within the first 150 steps. Within the first 300 steps, there are 292 feedback updates.

In practice, the trigger threshold value can be tuned to be larger than the theoretically obtained

value of 0.001. It is verified that with the event-triggering condition ‖wi‖/‖vi‖ > 0.014 for agent i,

the practical synchronization is always achieved within the first 150 steps in 100 times of simulations;
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(a) xi1 (b) xi2 (c) xi3

Figure 2: Leader-following synchronization: (a) The 1st, (b) the 2nd, and (c) the 3rd state compo-
nents, where the followers are represented by dashed lines and the leader is marked by diamonds.

while the number of feedback updates in the first 300 steps varies from 190 to 220. And with the

event-triggering condition ‖wi‖/‖vi‖ > 0.14 for agent i, the practical synchronization can always be

achieved within the first 150 steps in 100 times of simulations as well; while the number of feedback

updates in the first 300 steps is about 150 on average.

4.2 Leaderless Synchronization

Example 2. [43] Simulations are performed on a dynamical network consisting four agents with

the same sampled dynamics with [43, Example 2] but subject to multiplicative noise: x+i1 = xi1 +

0.0593xi2 + 0.0489 × (1 + n)ui, x
+
i2 = 0.9763xi2 + 0.0296 × (1 + n)ui, i = 1, ..., 4, where n(t) is a

white Gaussian noise sequence. That is, the state-space model for the dynamics are as follows:

x+i = Axi +B(1 + n)ui, A =

[
1 0.0593
0 0.9763

]
, B =

[
0.0489
0.0296

]
.

The communication topology is shown in Figure 1(b), which is a line graph. One has λ2(L) = 0.3820

and λN (L) = 3.6180. By (35) and (42), γ = 0.5 and ω = 0.5. The initial values of the components

xi1 and xi2 of agent states are randomly chosen from the square [−4, 4] × [−4, 4] for i = 1, 2, 3, 4.

The MARE parameter is set as ε = ε∗ = 110.97 such that (51) holds:

‖BTP (ε∗)B‖ = 1.4141 <
λN (L) + λ2(L)

λN (L)− λ2(L)
= 1.4142.

The corresponding controller in (41) is obtained as K = [−4.7941,−2.2112]. The parameter σ

in (16) is chosen as σ = 0.8. The other parameters for the event-triggering functions in Al-

gorithm 3 are obtained as follows: ‖Θ(ε∗)‖ = 111.4927, ‖S(ε∗)‖ = 111.4893, 2 maxi{di} = 4,

then %(ε∗) = min{2 maxi{di} · ‖S(ε∗)‖, ‖Θ(ε∗)‖} = 111.4927; since ε∗

2%(ε∗) = 0.4977 is small, for

any θ ≤ 0.4977, one has %2(ε
∗, θ) ≈ %(ε∗), then the parameter θ is set as θ = 0.4977 such that

( 1
%2(ε∗,θ)

· (ε∗ − %(ε∗)θ) θ) is almost maximized; and ‖Θ2(ε
∗, θ)‖ = 228.6695, ‖S2(ε∗, θ)‖ = 122.9803,

then %2(ε
∗, θ) = 228.6695. The event-triggering condition for agent i is eventually obtained as

fi = 459.4932‖wi‖2 − 44.3880‖vi‖2 > 0,

15



(a) xi1 (b) xi2

Figure 3: Leaderless consensus: (a) The 1st and (b) the 2nd state components of the four agents.

or equivalently, ‖wi‖/‖vi‖ > 0.3108. This theoretically obtained trigger threshold value of 0.3108

is not small. One set of simulation data is shown in Figure 3. The practical consensus is achieved

within the first 150 steps. Within the first 300 steps, there are only 109 feedback updates. This

example shows that the proposed event-trigger strategy can also work under some non-ideal con-

ditions, such as the case with system disturbance.

5 Conclusion

The event-based leader-following and leaderless synchronizations of discrete-time linear dynami-

cal networks have been established using the distributed event-triggering conditions based on the

combinational-state variables and Riccati equation. Future work may include the event-based

control of dynamical networks with switching directed graphs, the distributed event-based broad-

casting, the event-based stochastic synchronization of dynamical networks with noises, and the

event-based synchronization of heterogeneous networks.
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A Proof of Claim 1 and Claim 2

A.1 For Claim 1

Pre- and post-multiplying both sides of the inequality BTPB+ I � BTPB by (BTPB+ I)−1, one

has that (BTPB + I)−1 � (BTPB + I)−1BTPB(BTPB + I)−1. Then, it can be obtained that

−ωATPBK � KTBTPBK, where ω = 2/(λ1(L ) + λN (L )). Therefore, Φ(φ) is bounded from

below as

Φ(φ) � Ψ(ψ(φ)), ψ(φ) , 1− (1− φω)2, (52)

Ψ(ψ) , P −ATPA+ ψATPB(BTPB + I)−1BTPA.

Denote ψi , 1− (1− λi(L )ω)2. Using Lemma 3, one has

mini=1,...,N ψi = 4λN (L )λ1(L )/(λN (L ) + λ1(L ))2 = γ, ∀ i = 1, ..., N,

where γ is defined in (5). Combining (12) and (52), one has Φ(λi(L )) � Ψ(ψi) � Ψ(γ) = εI. Then,

(28) is obtained. �

A.2 For Claim 2

On one hand, vTΘ(ε∗)v ≤ ‖Θ(ε∗)‖vT v. On the other hand, vTΘ(ε∗)v ≤ vT (L ⊗ S(ε∗))v, where

S(ε∗) = −ATPBK − λ1(L )KTBTPBK; and

vT (L ⊗ S(ε∗))v =
N∑
i=1

vTi S(ε∗)

hivi +
N∑
j=1

aij(vi − vj)


=

N∑
i=1

(di + hi)v
T
i S(ε∗)vi −

N∑
i,j=1

aijv
T
i S(ε∗)vj .

By (31), one has that

−
N∑

i,j=1

aijv
T
i S(ε∗)vj ≤

N∑
i,j=1

aij
2

(
vTi S(ε∗)vi + vTj S(ε∗)vj

)
=

N∑
i

div
T
i S(ε∗)vi.

Thus, vTΘ(ε∗)v ≤
∑N

i (2di + hi)v
T
i S(ε∗)vi ≤ maxi{2di + hi}‖S(ε∗)‖vT v. As a result, θvTΘ(ε∗)v ≤

θ%(ε∗)vT v with %(ε∗) = min {maxi{2di + hi} · ‖S(ε∗)‖, ‖Θ(ε∗)‖}. Similarly, 1
θw

TΘ2(ε
∗, θ)w ≤

1
θ%2(ε

∗, θ)wTw, with %2(ε
∗, θ) = min {maxi{2di + hi} · ‖S2(ε∗, θ)‖, ‖Θ2(ε

∗, θ)‖}. Therefore, by (33),

one obtains (34). �

B Proof of Lemma 6

For the proof of Lemma 6, Lemma 7 below, which is related to a directed graph, is first reviewed.

The idea for Lemma 7 is from [41], and a proof is provided here.
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Lemma 7. [41] For a directed graph G = {V, E} with V = {1, 2, ..., Ñ}, denote Lii as the matrix

generated by deleting the i-th row and the i-th column of L; and ai , (ai1, ..., ai(i−1), ai(i+1), ..., aiÑ )

for each i ∈ V. Then, the eigenvalues of the matrix
(
Lii + 1Ñ−1ai

)
are λ2(L), λ3(L), ..., λÑ (L).

Proof. Denote Eij as the Ñ × Ñ matrix with all elements being zero except the entry at i-th row

and j-th column being 1; and denote P (i, j(k)) = IÑ + kEij . One has that det(P (i, j(k))) = 1.

Let the characteristic polynomial of L be denoted by f(s) = det(sIÑ − L) = s
∏Ñ
i=2(s − λi(L)).

Denote M1(s) = (sIÑ − L)
∏Ñ
i=2 P (i, 1(1)) and M2(s) =

∏Ñ
i=2 P (i, 1(−1))M1(s). On one hand,

det(M2(s)) = f(s). On the other hand, M1(s) is obtained by adding all other columns to the

first column of (sIÑ − L); and M2(s) is obtained by subtracting the first row from all other rows

of M1(s). Then, M2(s) is a block upper-triangular matrix with two diagonal blocks: the first

block is the scalar s and the second block is the matrix
(
sIÑ−1 −

(
L11 + 1Ñ−1a1

))
. As a result,

det(M2(s)) = s ·det
(
sIÑ−1 −

(
L11 + 1Ñ−1a1

))
= s

∏Ñ
i=2(s−λi(L)), and Lemma 7 is concluded for

the case of i = 1. For general case of i, considering the matrix

M2(s) =
∏
j 6=i P (j, i(−1))

(
(sIÑ − L)

∏
j 6=i P (j, i(1))

)
instead of M2(s), one can similarly obtain the result given in Lemma 7.

Applying Lemma 7 to the extended graph G, one can easily obtain a proof of Lemma 2 that is

different from the one in [8]. Now, the proof of Lemma 6 is as follows.

Proof of Lemma 6: Taking Ñ = N and letting G be undirected and connected, one has that

Lii + 1Ñ−1ai � 0. Denote xi as the vector generated by deleting xi from x, and vi as the vector

generated by deleting vi from v. Through straightforward algebraic manipulation, one obtains that(
Lii + 1Ñ−1ai

) (
1Ñ−1 ⊗ xi − x

i
)

= 1Ñ−1 ⊗ vi − v
i, (53)

from which one has xi = xj , ∀j 6= i ⇔ vi = vj , ∀j 6= i. If lim
t→∞
‖v(t)‖ = 0, by (53), one obtains (4);

if (4) holds, by (36), one has lim
t→∞
‖v(t)‖ = 0. This completes the proof of Lemma 6. �
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