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Stabilizing Solution and Parameter Dependence of
Modified Algebraic Riccati Equation with Application to

Discrete-time Network Synchronization

Michael Z. Q. Chen, Member, IEEE, Liangyin Zhang,
Housheng Su, and Guanrong Chen, Fellow, IEEE

Abstract—This technical note deals with a modified algebraic
Riccati equation (MARE) and its corresponding inequality and
difference equation, which arise in modified optimal control
and filtering problems and are introduced into the cooperative
control problems recently. The stabilizing property of the solution
to MARE is presented. Then, the uniqueness is proved for
the almost stabilizing and positive semi-definite solution. Next,
the parameter dependence of MARE is analyzed. An obtained
parameter dependence result is finally applied to the study of
semi-global synchronization of leader-following networks with
discrete-time linear dynamics subject to actuator saturation.

Index Terms—Riccati equation / inequality, stabilizing solution,
parameter dependence, synchronization, input saturation.

I. INTRODUCTION

This technical note considers the following modified alge-
braic Riccati equation (MARE):

P = ATPA− γATPB(BTPB +R)−1BTPA+Q.

This kind of quadratic matrix equation and its corresponding
inequality and difference equation have been studied in modi-
fied optimal control [1]–[3], modified filtering [4]–[7], and the
control and estimation for networked systems [8]–[12]. The
existence and uniqueness of a positive semi-definite solution
are established for MARE in [9]. Recently, MARE and the
modified algebraic Riccati inequality (MARI) are applied to
the discrete-time cooperative control problems in [13]–[17].

The scalar parameter γ in MARE is called the characteristic
parameter hereafter. If γ 6= 1, MARE cannot be transformed
to ARE via scaling. However, some properties of the discrete-
time ARE are still preserved for MARE even if γ 6= 1.
If γ is greater than a critical value γc and some other
conditions are satisfied, then there exists a unique positive
semi-definite solution [12]. In this note, it is shown that
this solution possesses the stabilizing property. Besides, a
similar relationship between the solutions of ARE and of
the algebraic Riccati inequality (ARI) is demonstrated for
MARE and MARI. In addition, it is noted that the critical
value γc non-decreasingly depends on the parameter matrices
Q and R. Furthermore, the monotonic dependence of MARE
solution on parameter matrices is shown to be the same as

This work was supported in part by the National Natural Science Founda-
tion of China under Grant 61374053 and Grant 61473129, in part by the Hong
Kong University Committee on Research and Conference Grants under Grant
201309176141, and in part by the Research Grants Council, Hong Kong,
through the General Research Fund under Grant CityU 1120/14.

M. Z. Q. Chen and L. Zhang are with the Department of Mechanical
Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,
Emails: mzqchen@hku.hk, leonzhangzly@gmail.com.

H. Su is with the School of Automation, Image Processing and Intelli-
gent Control Key Laboratory of Education Ministry of China, Huazhong
University of Science and Technology, Wuhan 430074, China, Email:
houshengsu@gmail.com.

G. Chen is with the Department of Electronic Engineering, City University
of Hong Kong, Hong Kong, Email: eegchen@cityu.edu.hk.

that for ARE; and the MARE solution is found to be non-
increasingly dependent on the characteristic parameter. To the
best of our knowledge, both stabilizing property and parameter
dependence have not been studied in detail for MARE before.
The parameter dependence results are important for studying
discrete-time network synchronization, including the event-
triggered cooperative control of linear dynamical networks
in [18] and the input-saturated synchronization in this note.

Noticeably, it is difficult to analyze the uniqueness of the
almost stabilizing solution for MARE. When γ 6= 1, none of
the existing methods in the literature for proving the unique-
ness of an almost stabilizing solution to ARE is applicable to
MARE. Nevertheless, for null controllable systems [19]–[23]
containing single-integrator [24]–[26], double-integrator [26],
[27] and multiple-integrator systems [28] as special cases,
that is, (A,B) is stabilizable and the spectral radius of A
is not larger than 1, the uniqueness of the almost stabilizing
and positive semi-definite solution of MARE with Q = 0
is demonstrated in this note. Consequently, a key parameter
dependence result for MARE can be established. Specifically,
under some assumptions, the solution converges monotonically
to a zero matrix as Q approaches zero.

This key MARE parameter dependence result is then ap-
plied to synchronization of dynamical networks with linear
dynamics subject to input saturation. We are concerned with
the discrete-time problem for leader-following networks on
undirected switching graphs. In this setting, the network
coupling makes it more difficult than the continuous-time
one discussed in [20], since the ARE results in [23] for one
single system will not work for multi-agent systems (MAS).
In light of this, the MARE is explored in this note. The
obtained MARE counterparts of the ARE results in [23] enable
one to design low-gain feedback laws for leader-following
networks with discrete-time higher-order dynamics subject
to input saturation, so as to achieve semi-global exponential
synchronization.

Nomenclature: For X ∈ Rp×p, its eigenvalues are denoted
by λ1(X), λ2(X),..., λp(X) satisfying that |λ1(X)| ≤ ... ≤
|λp(X)|; and ρ(X) = |λp(X)| denotes its spectral radius. A
square matrix A is said to be Schur if ρ(A) < 1. I denotes an
identity matrix with compatible dimension; diag{·} denotes a
diagonal matrix; and ⊗ denotes the Kronecker product.

II. MODIFIED ALGEBRAIC RICCATI EQUATION

A. Preliminaries

Lemma 1. [9] Let Q ∈ Rn×n, R ∈ Rm×m, Q � 0, and R �
0. Assume that the pair (A,B) is stabilizable with ρ(A) ≥ 1.
Consider the modified algebraic Riccati equation (MARE)

P = gγ(P ) , ATPA−γATPB(BTPB+R)−1BTPA+Q,
(1)

and the modified algebraic Riccati inequality (MARI)

P � gγ(P ) for a symmetric matrix P, (2)

as well as the strict MARI

P � gγ(P ) for a symmetric matrix P. (3)
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Then, there exists a critical value γc ∈ [0, 1) satisfying that

γc , inf { γ | ∃ P � 0 solving MARI (3) } (4)

and γc ≥ γ1(A) , 1−1/(ρ(A))2 ≥ 0. For any γ ∈ (γ1(A), 1],
every positive semi-definite solution (if it exists) to MARI (2)
is positive definite. For any γ ∈ (γc, 1], MARE (1) has
a unique positive semi-definite solution P � 0, which is
positive definite; furthermore, P is the limit of any sequence
of matrices {Pk} defined by the following modified Riccati
difference equations:

Pk+1 = gγ(Pk), k = 0, 1, 2, ..., (5)

for any initial P0 � 0. The scalar parameter γ is referred to
as the characteristic parameter of MARE (1) and of other
corresponding Riccati equation/inequalities.

Lemma 2. [12, Lemma 5.4 (b)] The critical value γc defined
in (4) satisfies that 0 ≤ γ1(A) ≤ γc ≤ γ2(A), where γ1(A) =
1 − 1/(ρ(A))2 and γ2(A) , 1 − 1/(M(A))2, with M(A) ,∏n
i=1 max{1, |λi(A)|}.

Corollary 1. Assume that Q � 0, R � 0, and A is Schur.
For any γ ∈ (0, 1], every positive semi-definite solution to
MARI (2) is positive definite; and MARE (1) has a unique
positive semi-definite solution P , where P � 0; furthermore,
this solution P is the limit of any sequence {Pk} defined by (5)
for any initial P0 � 0.

Proof. If P � 0 solves (2), then by [9, Lemma 1 (f)], P �
gγ(P ) � (1 − γ)ATPA + Q � 0. Since A is Schur, there
exists a W � 0 such that W = ATWA + Q + I . Thus,
W solves (3) and the condition of [9, Lemma 4] is satisfied.
Denote Z1 = gγ(0), Zk+1 = gγ(Zk). By [9, Lemmas 1 (b,c),
and 4], ∃ Z̆ s.t. Z̆ � ... � Z2 � Z1 = Q. So P̄ , limk→∞ Zk
exists s.t. P̄ = gγ(P̄ ). Denote K̄ , −(BT P̄B+R)−1BT P̄A,
Ā , A+BK̄. Consider the operator L(Y ) = (1−γ)ATY A+
γĀTY Ā. One has L(P̄ ) + Q + γK̄TRK̄ = gγ(P̄ ) = P̄ �
L(P̄ ). By [9, Lemma 3], limk→∞ Lk(Y ) = 0, ∀ Y � 0.
For any Ẑ0 � P̄ , denote Ẑk+1 = gγ(Ẑk) � gγ(P̄ ) = P̄ .
By [9, Lemma 1 (a,b)], 0 � Ẑk+1 − P̄ = gγ(Ẑk)− gγ(P̄ ) �
(1−γ)AT (Ẑk− P̄ )A+γĀT (Ẑk− P̄ )Ā = L(Ẑk− P̄ ) � ... �
Lk+1(Ẑ0− P̄ )→ 0. Consequently, limk→∞ Ẑk = P̄ . For any
P0 � 0, Pk+1 = gγ(Pk), let Ẑ0 = P0 + P̄ � P0 � Z0 , 0.
By [9, Lemma 2], Ẑk � Pk � Zk. Thus, limk→∞ Pk = P̄ .
If P � 0 solves (1), let P0 = P , so finally one has P =
limk→∞ gγ(Pk) = limk→∞ Pk+1 = P̄ � 0.

B. Stabilizing Solution

Theorem 1. Assume that Q � 0, R � 0, and the pair (A,B)
is stabilizable. Let max{0, 1 − 1/ρ(A)2} < γ ≤ 1. Denote
α , 1−

√
1− γ > 0 and β , 1+

√
1− γ satisfying (1−α)2 =

(β − 1)2 = 1 − γ and 1 − 1/ρ(A) < α ≤ γ ≤ 1 ≤ β. For
τ ∈ [α, β], denote

Aτ , A− τB(BTPB +R)−1BTPA. (6)

Then, every positive semi-definite solution P (if it exists) to
MARI (2) renders Aτ to be Schur for all τ ∈ [α, β]. This
solution P is referred to as a stabilizing solution of MARI (2).

In particular, if this P also solves MARE (1), then it is referred
to as a stabilizing solution of MARE (1).

Proof. The stabilizing property with respect to τ = α, β
has been mentioned in [7, Theorem 2]. Similar to [7, Equa-
tion (10)], by straightforward manipulation, one obtains that

gγ(X) = (−τ2 + 2τ − γ)ATXB(BTXB +R)−1BTXA

+Aτ (X)TXAτ (X) +Kτ (X)TRKτ (X) +Q, (7)

where gγ(X) , ATXA−γATXB(BTXB+R)−1BTXA+
Q, Aτ (X) , A − BKτ (X), and Kτ (X) , τ(BTXB +
R)−1BTXA. For each τ ∈ [α, β], one has −τ2 +2τ −γ ≥ 0.
Then, if P � 0 solves MARI (2), since Q � 0, one has

P −ATτ PAτ � (Kτ (P ))TRKτ (P ) +Q � 0. (8)

Due to the property of the Liapunov equation [33, Theorem 4],
Aτ is Schur, and the positive definite solution P is a stabilizing
solution to MARI (2).

Remark 1. The stabilizing property with respect to τ = α, β
plays an important role in the modified optimal filtering
problem [7]; the case of τ = 1 can be verified following [29,
Theorem 13.5.2]. If γ = 1, α = γ = 1 = β, the MARI/MARE
stabilizing property is the well-known one for ARI/ARE.

For MARI (2) or MARE (1) with general real symmetric
Q and R, if R is nonsingular and a solution P satisfies that
(BTPB + R) is nonsingular and ρ(Aγ) ≤ 1 with Aγ = Aτ
defined in (6) having τ = γ, then this solution P is said to be
almost stabilizing. If ρ(A) ≤ 1, it is trivial to see that P =
0 is an almost stabilizing and positive semi-definite solution
to MARI (2) and MARE (1) with Q = 0. Furthermore, we
will demonstrate the uniqueness of an almost stabilizing and
positive semi-definite solution to the following MARE:

X = ATXA− γATXB(BTXB +R)−1BTXA. (9)

Theorem 2. Assume that R � 0, (A,B) is stabilizable, and
ρ(A) ≤ 1. Let γ ∈ (0, 1]. Then, X = 0 is the unique almost
stabilizing and positive semi-definite solution to MARE (9).

Proof. On the contrary, suppose that there exists a non-zero
almost stabilizing solution Y � 0. Denote Aγ(X) , A −
γB(BTXB+R)−1BTXA. Then, X = 0 and X = Y are both
positive semi-definite solutions to the linear matrix equation
(LME) [30]: X = ATXAγ(Y ) = (Aγ(Y ))TXA. Applying
[29, Theorem 5.2.3], there exists an eigenvalue λr of A and
an eigenvalue λs of Aγ(Y ) such that λrλs = 1. Since |λr| =
|λs| ≤ 1, one has |λr| = |λs| = 1, and both A and Aγ(Y )
are not Schur. Thus, if ρ(A) < 1, a contradiction is obtained
already. Now, assume that ρ(A) = 1.

Since the positive semi-definite matrix Y is orthogonally
diagonalizable, there exists an orthogonal matrix U such that
Y = UTΛU with Λ being diagonal, and Λ = diag{0, Y },
where Y � 0 is a diagonal matrix with diagonal elements
being the positive eigenvalues of Y . Denote Ā , UAUT ,
B̄ , UB, and Āγ , Ā− γB̄(B̄TΛB̄ +R)−1B̄TΛĀ. Then,

Λ = ĀTΛĀ− γĀTΛB̄(B̄TΛB̄ +R)−1B̄TΛĀ, (10)

where (Ā, B̄) is stabilizable, and the eigenvalues of Ā and
Āγ are all located within the closed unit disc. Now, partition
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Ā and B̄ into block matrices with compatible dimensions as

Ā =

[
A1 A4

A3 A2

]
, B̄ =

[
B1

B2

]
, such that (10) reduces to

the following through straightforward manipulation:

Y = AT2 Y A2 − γAT2 Y B2(BT2 Y B2 +R)−1BT2 Y A2, (11)

AT3 Y A3 = γAT3 Y B2(BT2 Y B2 +R)−1BT2 Y A3,

AT3 Y A2 = γAT3 Y B2(BT2 Y B2 +R)−1BT2 Y A2. (12)

By (11) and noting that Y � 0, one can easily verify that A2

is nonsingular. By (12), A3 = γB2(BT2 Y B2 +R)−1BT2 Y A3.
Applying the Matrix Inversion Formulas [31], B2(BT2 Y B2 +
R)−1BT2 Y = I − (I +B2R

−1BT2 Y )−1, thus one obtains that
(γ − 1)A3 = γ(I +B2R

−1BT2 Y )−1A3. Therefore,

A3A
T
3 = (γ − 1)B2R

−1BT2 Y A3A
T
3 . (13)

For any eigenvalue λ(A3A
T
3 ) of A3A

T
3 � 0 with a real eigen-

vector x 6= 0, left-multiplying xTY and right-multiplying x
on (13), one obtains λ(A3A

T
3 ) = 0; otherwise, one would

have 0 < xTY x = (γ − 1)xTY B2R
−1BT2 Y x ≤ 0, which is

impossible. Since the Jordan form of A3A
T
3 is diagonal, one

concludes that A3 = 0, and the eigenvalues of A1 and A2 are
all located within the closed unit disc.

Next, applying the Popov-Belevitch-Hautus (PBH) rank test
for stabilizability [32] to the pair (Ā, B̄), one obtains that
[A2 − λI,B2] is of full row-rank for any λ satisfying that
|λ| ≥ 1, which in turn shows that (A2, B2) is stabilizable.
Comparing (11) with (9), one obtains similarly that both A2

and A2γ are not Schur, where A2γ , A2 − γB2(BT2 Y B2 +
R)−1BT2 Y A2. Denote F = γ(BT2 Y B2+R)−1BT2 Y A2. Then,
A2 = A2γ +B2F , and by (11),

Y = AT2γY A2γ +AT2γY B2F . (14)

Noting that AT2γY B2F = AT2 Y B2F − F
T
BT2 Y B2F =

( 1
γ − 1)F

T
BT2 Y B2F + 1

γF
T
RF � 0, Equation (14) can be

rewritten as AT2γY A2γ + G
T
G = Y � 0, where G

T
G ,

( 1
γ − 1)F

T
BT2 Y B2F + 1

γF
T
RF. Thus, by the property of

Liapunov equation [33, Theorem 3], the eigenvalues of A2γ

corresponding to the observable modes of the pair (G,A2γ)
are all located inside the open unit disc. Since A2γ is not
Schur, at least one eigenvalue µ exists such that |µ| = 1 and
the corresponding mode of (G,A2γ) is unobservable. Then,
applying the eigenvector test for detectability [32], there exists
an eigenvector y 6= 0 of A2γ corresponding to µ such that
A2γy = µy and Gy = 0.

Therefore, G
T
Gy = 0; Fy = 0, BT2 Y A2 · y = 0. Thus,

A2 · y = A2γy = µy, BT2 Y y = 0, and y = µ̄A2 · y. Besides,
by (11), AT2 Y A2 ·y = Y y. Since (A2, B2) is stabilizable, there
exists K2 such that both (A2 + B2K2) and (AT2 + KT

2 B
T
2 )

are Schur. Denoting ỹ = Y y, one obtains that

(AT2 +KT
2 B

T
2 )ỹ = µ̄AT2 Y A2 · y +KT

2 B
T
2 Y y = µ̄ỹ,

with |µ̄| = 1, ỹ = 0. Thus, y = Y
−1
ỹ = 0, which is a

contradiction.
Therefore, X = 0 is the only positive semi-definite and

almost stabilizing solution to MARE (9).

Remark 2. When γ = 1, for any Q � 0, R � 0 and stabiliz-
able (A,B), the reduced ARE of MARE (1) has a unique
almost stabilizing solution which is maximal and positive
semi-definite [29, Theorem 13.5.2]. However, for MARE (1)
with the parameter matrix Q = 0 and the characteristic
parameter γ ∈ (γc, 1), the available methods in the literature,
e.g. [29], for proving the uniqueness of an almost stabilizing
solution are all inapplicable. Nevertheless, the uniqueness as
shown in Theorem 2 is obtained when ρ(A) ≤ 1 and Q = 0.

C. Parameter Dependence

Proposition 1. Assume that the pair (A,B) is stabilizable with
ρ(A) ≥ 1; Q � 0, R � 0; and γ ∈ (γc, 1] with γc defined in
(4). Consider MARI (2), MARE (1), and the following MARI:

gγ(P ) � P. (15)

Let three positive semi-definite matrices P̆ , P̃ and P̂ solve (2),
(1) and (15), respectively. Then, P̆ � P̃ � P̂ and P̃ � Q.

Proof. First, using (7), one obtains that gγ(X) � Q for any
X � 0. Therefore, the unique positive semi-definite solution
P̃ to MARE (1) satisfies that P̃ � Q. Denote P̆0 , P̆ and
P̂0 , P̂ , and define two sequences of matrices through mod-
ified Riccati difference equation (5); that is, P̆k+1 , gγ(P̆k),
P̂k+1 , gγ(P̂k), k = 0, 1, 2, .... Then, gγ(P̆k) � Q, and
using [9, Lemma 1 (c) and Lemma 4], one obtains that
P̆ � P̆1 � P̆2 � ... � Q � 0, and MP̂ � ... � P̂2 � P̂1 � P̂ ,
where MP̂ is a P̂ -dependent upper-bounded matrix, which
exists as P̂ � 0 and γ > γc. Meanwhile, since P̆0 � 0
and P̂0 � 0, Lemma 1 can be applied to show that the two
sequences {P̆k} and {P̂k} both converge to P̃ . Consequently,
P̆ � P̃ � P̂ .

Proposition 2. In Lemma 1, the critical value γc is non-
decreasing with respect to the matrix Q in the sense that if
Q2 � Q1, then γc(Q2) ≥ γc(Q1), where the critical value
γc = γc(Q2) for Q2 and γc = γc(Q1) for Q1. Meanwhile, γc
is non-decreasing with respect to the matrix R; specifically, if
Q = εI and R = δI with ε, δ > 0, then γc = γc(ε, δ) is a
non-decreasing function with respect to both ε and δ.

Proof. It follows from the definition of γc in (4).

Theorem 3. Assume that the pair (A,B) is stabilizable with
ρ(A) ≥ 1; Q0 � 0, R0 � 0; and γ ∈ (γc, 1], where γc
is defined in (4) with Q = Q0 and R = R0. Then, the
unique positive semi-definite solution to MARE (1), denoted
as P (Q,R), is non-decreasing and, hence, continuous with
respect to both parameter matrices Q and R in the sense
that if Q0 � Q2 � Q1 � 0, R0 � R2 � R1 � 0, then
P (Q2, R2) � P (Q1, R1). Specifically, if Q0 = ε̃I , R0 = δ̃I
with ε̃, δ̃ > 0, and Q = εI and R = δI with ε ∈ (0, ε̃] and
δ ∈ (0, δ̃], then P (ε, δ) , P (εI, δI) is non-decreasing and,
hence, continuous with respect to both ε and δ. Besides, for
fixed Q = Q0 and R = R0, the unique positive semi-definite
solution to MARE (1), denoted as P (γ), is non-increasing with
respect to the MARE characteristic parameter γ ∈ (γc, 1].
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Proof. Denote γc with respect to (Q1, R1) and (Q2, R2)
as γc(Q1, R1) and γc(Q2, R2), respectively. By Proposi-
tion 2, γc(Q1, R1) ≤ γc(Q2, R2). Let γ > γc(Q2, R2),
and denote the corresponding gγ(X) as gγ(X,Q1, R1) and
gγ(X,Q2, R2), respectively. Then, P2 = gγ(P2, Q2, R2) �
gγ(P2, Q1, R1) and P1 = gγ(P1, Q1, R1), where P2 ,
P (Q2, R2) and P1 , P (Q1, R1). By Proposition 1, P2 � P1.
The non-increasing monotonicity of the solution with respect
to γ can be similarly verified.

Proposition 3. Assume that ε̃, δ̃ > 0 and the pair (A,B)
is stabilizable with ρ(A) ≥ 1. Let γ ∈ (γc, 1] with γc =
γc(ε̃, δ̃) defined in Proposition 2. Then, for any ε ∈ (0, ε̃] and
δ ∈ (0, δ̃], there exists a unique positive semi-definite matrix
P (ε, δ) solving the MARE: P = ATPA−γATPB(BTPB+
δI)−1BTPA+εI; and P (ε, δ) � 0. Therefore, there exists at
least one positive definite solution P to the MARI

P � ATPA− γATPB(BTPB + δI)−1BTPA+ εI. (16)

Proof. It follows from Proposition 2 and Lemma 1.

Remark 3. A special case of MARI (16) is the following:

P � ATPA− γATPB(BTPB)−1BTPA, (17)

which is presented in [8, (9)], and plays an important role
in [14]–[17]. Any possible solution P � 0 to MARI (17)
also solves MARI (16) for some sufficiently small ε, δ > 0.
In Theorem 3, the continuity of ARE solution with respect
to parameter matrices (see [34]) is extended to MARE. The
results in Theorem 3 can be applied to the discrete-time event-
triggered synchronization problem [18].

D. Key Result on Parameter Dependence of MARE Solution

Assumption 1 below is standard for semi-global stabilization
of control systems subject to actuator saturation [19]–[23].

Assumption 1. The pair (A,B) is stabilizable and ρ(A) = 1.

Theorem 4. Let Assumption 1 hold and γ ∈ (0, 1], ε̃ > 0.
Then, for each ε ∈ (0, ε̃], there exists a unique positive definite
matrix P (ε) that solves the MARE

P = ATPA− γATPB(BTPB + I)−1BTPA+ εI. (18)

Moreover, limε→0 P (ε) = 0 monotonically.

Proof. Combining Lemma 2, Proposition 3, and Theorems 1–
3, one obtains the results.

Remark 4. To prove limε→0 P (ε) = 0, it is necessary to
establish the uniqueness of an almost stabilizing and positive
semi-definite solution. The result in [23, Lemma 3.1] is merely
a special case of Theorem 4. If γ 6= 1, no scaling manipulation
can let γ be absorbed into P , B, A, R and Q.

III. SEMI-GLOBAL DISCRETE-TIME SYNCHRONIZATION
VIA LOW-GAIN FEEDBACK

In this section, the MARE results are applied to the semi-
global synchronization problem for discrete-time linear MAS
subject to input saturation. Consider a group of N agents,
labeled as 1, 2, ..., N . The motion of each agent is as follows:

xi(t+ 1) = Axi(t) +B · sat(ui(t)), i = 1, 2, ..., N, (19)

where xi ∈ Rn is the state of agent i; ui ∈ Rm
is the control input for agent i; and sat : Rm →
Rm is a saturation operator defined as sat(ui) ,
[sat(ui1), sat(ui2), ..., sat(uim)]T , with the saturation function
sat(uij) , sgn(uij) min{|uij |, $} for an a priori given input-
saturation threshold $ > 0. Denote u = [uT1 , u

T
2 , ..., u

T
N ]T and

ũ , [sat(u1)T , sat(u2)T , ..., sat(uN )T ]T . The dynamics of the
leader, labeled as N + 1, are described by

xN+1(t+ 1) = AxN+1(t). (20)

The problem of semi-global leader-following synchronization
for the agents and leader described above is as follows: Design
some linear feedback law ui for each agent i, which uses
only local information from neighboring agents, such that for
any a priori given bounded set X ⊂ Rn, the synchronization
limt→∞ ‖xi(t)−xN+1(t)‖ = 0, ∀i = 1, 2, ..., N, is exponen-
tially achieved as long as xi(0) ∈ X , ∀i = 1, 2, ..., N,N + 1.

A communication network consisting of N agents is de-
scribed by an undirected graph G(t) = {V, E(t)} [20], [21].
Let G(t) = Gδ(t) be an extended graph generated by the leader
and G(t), and H(t) , diag{h1(t), h2(t), ..., hN (t)} = Hδ(t)

be defined as hi(t) = 1 if agent i is a neighbor of the leader
at time step t, and hi(t) = 0 otherwise, and L(t) = Lδ(t)
be the Laplacian matrix ([20], [21]) of G(t); denote L (t) ,
L(t) + H(t) = Lδ(t). Here, δ : N → Γ is a switching signal
whose value at time t equals the index of G(t), and the index
set Γ contains indexes of all extended graphs. Γtree denotes
the set of indexes of extended graphs that contain a spanning
tree with the leader as the root vertex. If δ(t) = s ∈ Γtree and
Ls = Ls +Hs, then Ls � 0 [20], [21].

Lemma 3. Let s ∈ Γtree and Ls = Ls+Hs with eigenvalues
0 < λ1 ≤ ... ≤ λN . Then, minω∈R maxi=1,...,N |1 − ωλi| =
(λN − λ1)/(λN + λ1) < 1, arg minω maxi=1,...,N |1−ωλi| =
2/(λ1 + λN ).

Proof. It can be proved similarly to [15, Equation (14)].

Remark 5. For s ∈ Γtree, because the number of possible
values of λ1/N (Ls) , λ1/λN is finite, one can find the mini-
mum λ1/N (Ls), denoted as min{λ1/N}, using an exhaustive
search method; and there are a finite number of possible values
of (2/(λ1 + λN )), the set of which is denoted by Ω.

Assumption 2. Extended graph G(t) consisting of the N
agents and the leader contains a spanning tree rooted at the
leader all the time, that is, δ(t) ∈ Γtree, ∀t ∈ N.

A low-gain feedback design for leader-following multi-
agent systems (19) and (20) is carried out in three steps.

Step (i). Find P = P (ε) � 0 to solve the MARE

P = ATPA− θATPB(BTPB + I)−1BTPA+ εI, (21)
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where ε ∈ (0, 1] is the low-gain parameter to be designed, and
the MARE characteristic parameter θ is given by

θ ,
4

(
√

min{λ1/N}+ 1√
min{λ1/N}

)2
∈ (0, 1], (22)

with min{λ1/N} defined in Remark 5.
Step (ii). Set the controller parameter ω(t) as

ω(t) ,
2

λ1(t) + λN (t)
∈ Ω, (23)

where λ1(t) and λN (t) denote the smallest and the largest
eigenvalues, respectively, of L (t) = L(t) + H(t); and Ω is
defined in Remark 5.

Step (iii). Construct a linear feedback law as

ui = K(hi(t)(xi − xN+1) +
∑N

j=1
aij(t)(xi − xj)) (24)

for agents i = 1, 2, ..., N, where

K , −ω(BTP (ε)B + I)−1BTP (ε)A, (25)

with ω = ω(t) at time step t.
The numerical solution for P (ε) is referred to [9, Theo-

rem 6]. The key MARE result limε→0 P (ε) = 0 in Theorem 4
guarantees the effectiveness of the bounded input technique.

Lemma 4. The unique positive definite solution P (ε) to
MARE (21) and the controller matrix K in (25) satisfy that

IN ⊗ P (ε) �
(
L (t)⊗K)T (L (t)⊗K

)
, (26)

where ⊗ denotes the Kronecker product [30].

Proof. Denote s̃ = arg mins∈Γtree λ1(Ls)/λN (Ls). Then,
θ = 4λ1(Ls̃)λN (Ls̃)/(λ1(Ls̃) + λN (Ls̃))

2. Denoting
β , 1 +

√
1− θ = 2λN (Ls̃)/(λ1(Ls̃) + λN (Ls̃)) ≥

2λN (t)/(λ1(t) + λN (t)) = λN (t)ω(t) and by (8) with
(Q,R, γ, τ) = (εI, I, θ, β), one has P (ε) � λN (t)2KTK +
εI � λN (t)2KTK. Obviously, λN (t)2IN � L (t)2. Then,
one has IN ⊗ P (ε) � λN (t)2IN ⊗KTK � L (t)2 ⊗KTK
= (L (t)⊗K)T (L (t)⊗K).

Theorem 5. Consider a multi-agent system consisting of N
agents with linear dynamics (19) subject to an a priori given
input-saturation threshold $ > 0, and a leader with dynam-
ics (20). Let Assumptions 1 and 2 hold. Then, the controller
given by (24) and (25) achieves semi-global synchronization of
the multi-agent system. That is, for any a priori given bounded
set X = {x ∈ Rn | ‖x‖∞ < RX } with RX > 0, there
exists an ε∗ ∈ (0, 1] such that for the low-gain parameter
ε = ε∗, limt→∞ ‖xi(t) − xN+1(t)‖ = 0,∀i = 1, 2, ..., N, as
long as xi(0) ∈ X for all i = 1, 2, ..., N,N + 1. Moreover,
the convergence speed for the synchronization is exponential.
Furthermore, an ε∗ can be chosen such that

ρ(P (ε∗)) ≤ $2/(4NnR2
X ). (27)

Proof. Denote x̃i , xi − xN+1, and x̃ = [x̃T1 , x̃
T
2 , ..., x̃

T
N ]T .

Applying the Kronecker product [30], ui = Khi(t)x̃i +∑N
j=1K (aij(t)(x̃i − x̃j)); u = (L (t)⊗K)x̃. Therefore,

x̃i(t+ 1) = Ax̃i(t) +B · sat ((L (t)⊗K)x̃(t)) , (28)

for which the common quadratic Liapunov function V (x̃) ,∑N
i=1x̃

T
i P (ε)x̃i = x̃T (IN ⊗ P (ε)) x̃ is used.

For any ε0 ∈ (0, 1], since X is bounded, a level set
parameter c(ε0) > 0 can be defined as

c(ε0) , sup
ε=ε0,xi(0)∈X ,i=1,2,...,N+1

V (x̃(0)). (29)

And for ε = ε0, define the level set

LV (c(ε0)) , {ξ ∈ RNn|V (ξ) ≤ c(ε0)}, (30)

which is bounded. Choose a sufficiently small ε∗ such that
when ε0 = ε∗, conditions x̃(t) ∈ LV (c(ε∗)) and ω(t) ∈ Ω
imply that ‖(L (t)⊗K)x̃‖∞ ≤ $ for i = 1, 2, ..., N ,
where $ > 0 is the a priori given saturation thresh-
old. The existence of an ε∗ is guaranteed by the con-
vergence limε→0 P (ε) = 0 established in Theorem 4. In
fact, if ε∗ is chosen such that (27) holds, since P (ε∗) �
ρ(P (ε∗))I , by (29), one has c(ε∗) ≤ ρ(P (ε∗))

∑N
i=1‖x̃i(0)‖2

≤ ($2/(4nNR2
X ))Nn‖x̃i(0)‖2∞ ≤ ($2/(4R2

X ))(2RX )2 =
$2. By (26) and (30), if x̃(t) ∈ LV (c(ε∗)) and ω(t) ∈ Ω,
then ‖(L (t)⊗K)x̃‖∞ ≤ ‖(L (t) ⊗ K)x̃‖ ≤

√
c(ε∗) ≤ $.

Within LV (c(ε∗)), the dynamics of (28) remain linear for
any δ(t) = s ∈ Γtree, and can be equivalently expressed
as x̃(t + 1) = (IN ⊗A+ L (t)⊗BK) x̃(t), where L (t) =
L(t) +H(t), and K is given in (25).

For the remainder of the proof, ε = ε∗, and P (ε∗) is denoted
as P for short. Now, through straightforward manipulation,
one can evaluate ∆V (t) , V (x̃(t+ 1)) − V (x̃(t)), which
is the variation of V along the discrete-time trajectories of x̃
within the set LV (c), as follows:

∆V (t) =x̃T
(
IN ⊗

(
ATPA− P

)
+ 2L (t)⊗ATPBK

+ L (t)2 ⊗KTBTPBK
)
x̃. (31)

Since L (t) � 0, there exists an orthogonal matrix U(t) =
Uδ(t) such that L (t) = Lδ(t) = UT (t)Λ(t)U(t), Λ(t) ,
diag{λ1(t), λ2(t), ..., λN (t)} = Λδ(t), where λi(t) > 0 are
eigenvalues of L (t). Denote z , (U(t) ⊗ In)x̃ and z =
[zT1 , z

T
2 , ..., z

T
N ]T with zi(t) ∈ Rn. Thus, (31) is continued as

∆V (t) = zT (IN ⊗ (ATPA− P ) + Λ(t)⊗ 2ATPBK

+Λ2(t)⊗KTBTPBK)z = −
∑N

i=1
zTi Φ(λi(t))zi, (32)

where Φ(φ) , −ATPA+P−2φATPBK−φ2KTBTPBK.
Pre- and post-multiplying both sides of the inequality
BTPB + I � BTPB by (BTPB + I)−1, one can easily
obtain that −ωATPBK � KTBTPBK. Therefore,

Φ(φ) � Ψ(ψ), ψ , 1− (1− φω)2, (33)

where Ψ(ψ) , P −ATPA+ψATPB(BTPB+I)−1BTPA.
Denote ψi(t, ω) , 1 − (1 − λi(t)ω)2. Using Lemma 3, then
maxω mini=1,...,N ψi(t, ω) = 4λN (t)λ1(t)/(λN (t) + λ1(t))2

is achieved by taking ω = 2/(λ1(t) + λN (t)) = ω(t).
Thus, for all i = 1, ..., N , one has ψi(t, ω(t)) ≥
4/(
√
λ1(t)/λN (t) + 1/

√
λ1(t)/λN (t))2 ≥ θ > 0, where

θ is defined in (22). By (21) and (33), Φ(λi(t)) �
Ψ(ψi(t, ω(t))) � Ψ(θ) = ε∗I. By (32) and the fact that
zT z = x̃T x̃, one has

∆V (t) ≤ −ε∗x̃T x̃ < 0,∀x̃ ∈ LV (c) \ {0}. (34)
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Since x̃(0) ∈ LV (c), x̃(t) will always stay in LV (c) and the
agent dynamics will always remain linear. Consequently, by
the Liapunov stability theory, the discrete-time trajectory x̃
starting from the level set LV (c) will converge exponentially
to the origin x̃ = 0 as t goes to infinity, which in turn implies
that limt→∞ ‖xi(t)− xN+1(t)‖ = 0, i = 1, 2, ..., N.

Remark 6. The control design for the semi-global synchro-
nization is dependent on the given bounded set X , which can
be arbitrarily large. The low-gain feedback law (24) depends
on ε = ε∗ satisfying (27) to prevent input saturation. In
view of (34), the low-gain parameter acts as a synchronization
performance indicator. The larger the ε∗ is, the faster the
synchronization will be. While by (27), the setting of ε∗ is
dependent on the input-saturation threshold $ and the bounded
set X for the initial states. The larger the $ is, the larger the ε∗

can be; the smaller the X is, the larger the ε∗ can be. Given $
and X , the best low-gain setting is to make (27) an equality.
In addition, because MAS (19) is allowed to contain high-
order integrator dynamics, the global synchronization cannot
be achieved via a saturated linear controller [22], [23].

IV. CONCLUSION

In this note, the stabilizing property and the parameter
dependence have been studied for MARE. The uniqueness
of an almost stabilizing and positive semi-definite solution
has been established for MARE with Q = 0. The discrete-
time semi-global synchronization problem has been solved for
linear MAS subject to input saturation. Future studies include:
MARE with general real symmetric parameter matrices Q
and R; the global synchronization for networks containing
high-order integrator dynamics subject to actuator saturation.
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