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Abstract

Fast Convergence in Consensus Control of Leader-Follower Multi-Agent

Systems

David Buzorgnia

In this thesis, different distributed consensus control strategies are introduced for a

multi-agent network with a leader-follower structure. The proposed strategies are based

on the nearest neighbor rule, and are shown to reach consensus faster than conventional

methods. Matrix equations are given to obtain equilibrium state of the network based on

which the average-based control input is defined accordingly. Two network control rules

are subsequently developed, where in one of them the control input is only applied to

the leader, and in the other one it is applied to the leader and its neighbors. The results

are then extended to the case of a time-varying network with switching topology and

a relatively large number of agents. The convergence performance under the proposed

strategies in the case of a time-invariant network with fixed topology is evaluated based

on the location of the dominant eigenvalue of the closed-loop system. For the case of a

time-varying network with switching topology, on the other hand, the state transition

matrix of the system is investigated to analyze the stability of the proposed strategies.

Finally, the input saturation in agents’ dynamics is considered and the stability of the

network under the proposed methods in the presence of saturation is studied.
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Chapter 1

Introduction

1.1 Motivation

The study of population density distribution is an interesting subject in biology concern-

ing both animals and plants, and has been investigated by researchers for more than half

a century [1]. Multi-agent systems have attracted researchers from different disciplines

in recent years due to their applications in a variety of engineering and science prob-

lems [2–6]. In particular, there has been an increasing interest in control community in

the control of a network of multi-agent systems, where it is desired to achieve a global ob-

jective such as rendezvous, flocking, formation and consensus by using local information

of the agents [7–12]. In control of multi-agent systems, it is desired to achieve a global

objective in forming a group by properly guiding each individual agent [13,14]. Different
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computer-based models and algorithms were developed in the past three decades based

on some dynamical equations in order to simulate the individual and team behavior in

this type of system [15, 16]. Several distributed control schemes are introduced in the

literature to achieve the above objectives for networks with small or large number of

agents, linear or nonlinear agent dynamics and fixed or switching topology [17–22]. In

particular, the consensus control problem is of special interest in the coordination of

multi-vehicle systems and data fusion in wireless sensor networks. Speed of convergence

is one of the important objectives in the control of multi-agent networks.

1.2 Literature Review and Preliminaries

Different aspects of multi-agent systems have been thoroughly investigated in the past

two decades and several global objectives in this type of network such as consensus,

flocking, rendezvous and formation have been studied [11, 23–26]. Graph theory has

been used extensively in the literature to analyze various aspects of multi-agent net-

works, where each agent is considered as a node and interaction between any pair of

agents is represented by an edge [24]. The graph of a network can be either directed or

undirected. In the case of an undirected graph, the communication between any pair of

connected nodes is bidirectional [17, 27], while in a directed graph (digraph) it can be

unidirectional [25, 28, 29]. A directed graph can be strongly or weakly connected [24].

In a strongly connected graph, there is a path between any pair of nodes. In [30], an
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algorithm is proposed to reach average consensus for a strongly connected balanced or

symmetric network, and in [31], a discrete-time average consensus control scheme is

provided for a strongly connected network. In a weakly connected graph, on the other

hand, there is no path from some nodes to some other nodes, which imposes some lim-

itations on the applicability of the consensus control algorithms. For a network with a

time-varying weighted digraphs, the authors in [32] investigate average consensus for a

weakly connected balanced network. In [33], the consensus control problem is studied

for a network with weakly connected subgraphs.

Different structures are used to model the information flow between the agents,

e.g., behavior-based, virtual structure and leader follower, and efficient control algo-

rithms are proposed for each [23]. In particular, the consensus problem is of special

importance in this type of network, where all agents are desired to asymptotically

reach a common state value by limited exchange of information between neighboring

agents [34–36]. This problem has application in emerging technologies such as the co-

ordination of autonomous vehicles and data fusion in wireless sensor networks [37–39].

Various optimization approaches are proposed in the literature to improve the overall

performance of the network [40–43]. It is well-known that the network structure plays a

key role in the choice of an efficient control algorithm for the agents, and in particular,

the leader-follower structure has attracted much attention in the literature [44–48].

Several distributed algorithms are proposed in the literature for consensus control

3



of leader-follower multi-agent networks [11,25,49]. In [11], the infinity norm of the state

transition matrix is investigated for the stability analysis of a network with switching

topology. The authors in [20] provide a consensus control method for a leader-follower

network under both fixed and switching topologies. Consensus control of a network

with time-varying edge weights in the presence of communication noise is studied in [50].

In [51] and [52] , the consensus problem for a network with switching topology and time-

varying delay is studied. One of the simple yet effective classes of distributed consensus

control methods is based on the nearest-neighbor rule [11, 17]. Nearest-neighbor-based

methods are effectively used in both homogeneous networks, where all agents have the

same dynamics, and heterogeneous networks, where the dynamic models of different

agents are not the same [23,37,53–55]. It is also used in networks with both linear and

nonlinear agent dynamics [56–59].

While the methods cited in the previous paragraph are widely used in consensus

control of multi-agent networks, it is usually assumed that the topology of the network

is fixed and its parameters are time-invariant. Many practical multi-agent systems,

however, are subject to change during the mission. Furthermore, it is often assumed

that the control system does not reach a physical limit, i.e., no saturation occurs in the

system. However, it is known that in real-world control systems saturation is ubiquitous

and any actuator or sensor is subject to saturation [60,61]. In [60], the input saturation

is studied for a symmetric network with fixed topology. For a homogeneous asymmetric
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network with fixed topology, [62] proposes a method based on ”bang-bang” type of

consensus protocol in the presence of saturation. In [61], input saturation is studied for

a linear multi-agent system with switching topology using an observer-based method.

Input saturation for a heterogeneous network with first-order and second-order dynamics

is investigated in [63].

1.3 Thesis Contributions

In this thesis, different algorithms are introduced for consensus control of leader-follower

multi-agent systems. The proposed algorithms are based on adding the control input to

the nearest-neighbor rule, and use the local information of a certain subset of agents to

generate the control command. The main objective is to achieve consensus with a high

convergence rate. The algorithms are then properly modified for the case of switching

topology and time-varying network parameters as well as input saturation.

Consensus control is studied in the discrete-time domain. Using the properties of

the transition matrix of the Markov chain [24], a method is proposed for a leaderless

network with a fixed topology and undirected graph to find the equilibrium state of

the network. The eigenvalues of the closed-loop system for certain topologies are also

derived for stability analysis.

A distributed control strategy is also proposed based on the relative state of the

leader with respect to its neighbors, which is applicable to any symmetric network with

5



weighted links. A convergence analysis is provided for a multi-agent system with fixed

topology based on the location of the dominant eigenvalue of the system matrix of the

network. A control command is also derived for the agents based on the states of the

neighbors of the leader. The convergence rate is evaluated by investigating the dominant

eigenvalue of the system. Furthermore, the stability of the proposed control scheme for

a network with switching topology and time-varying weights is investigated based on

the state transition matrix of the system. By letting every agent acts as a leader,

an algorithm is developed based on the hierarchical structure of the network, and its

stability is investigated accordingly using the state transition matrix. Finally, input

saturation is considered in the agents’ dynamics and a convergent control algorithm

is proposed in this case. Several numerical examples are provided to demonstrate the

effectiveness of the proposed strategies.

1.4 Thesis Layout

The structure of the thesis is as follows.

• Chapter 1 includes the motivation behind this study, the literature review on the

consensus control for various graph structures, and the conclusion of the current

work.

• Chapter 2 introduces an average-based control law which can be applied to the

6



leader in order to achieve the consensus objective. The proposed method is fur-

ther developed to generate control inputs for the leader’s immediate followers. It

is shown that under a mild condition on the topology of the network, the proposed

follower-based control allocation strategy converges faster than a leader-based con-

trol rule. Simulations confirm the effectiveness of the proposed method.

• Chapter 3 introduces different algorithms for consensus control of leader-follower

multi-agent systems. The proposed algorithms are based on the nearest-neighbor

rule, and use the local information of a certain subset of agents to generate the

control command. The main objective is to achieve consensus with a high conver-

gence rate. The results are then extended to the case of a time-varying network

with switching topology and a relatively large number of agents. The conver-

gence performance under the proposed strategies in the case of a time-invariant

network with fixed topology is evaluated based on the location of the dominant

eigenvalue of the closed-loop system. For the case of a time-varying network with

switching topology, on the other hand, the state transition matrix of the system is

investigated to analyze the stability of the proposed strategies. Finally, the input

saturation in agents’ dynamics is considered and the stability of the network under

the proposed methods in the presence of saturation is studied. The effectiveness

of the theoretical findings is verified by several numerical examples.

• Chapter 4 presents the conclusion and the possible direction for the future work.

7



Chapter 2

A Follower-Based Control

Allocation in Multi-Agent Networks

This chapter investigates the consensus problem in a multi-agent system with a leader,

using the concept of swarm intelligence. Matrix equations are given to obtain equilibrium

state of the network, and the average-based control input is defined accordingly. Two

network control rules are subsequently developed, where in one of them the control

input is only applied to the leader, and in the other one it is applied to the leader and

its neighbors (follower-based control allocation strategy or swarm intelligence approach).

It is shown that the latter control strategy has a faster convergence rate. Simulations

confirm the efficacy of the proposed follower-based control allocation strategy.

This chapter is based on the following publication:

8



D. Buzorgnia and A. G. Aghdam, ”A Follower-Based Control Allocation in Multi-Agent

Networksm” in 2018 American Control Conference, 2018, pp. 43-48.

2.1 Introduction

The study of population density distribution is an interesting subject in biology concern-

ing both animals and plants, and has been investigated by researchers for more than

half a century [1]. Some fundamental research in the control of multi-agent systems

was inspired by sophisticated biological systems such as flock of birds, swarm of insects,

and school of fish. In control of multi-agent systems, it is desired to achieve a global

objective in forming a group by properly guiding each individual agent [13, 14]. Differ-

ent computer-based models and algorithms were developed in the past three decades

based on some dynamical equations in order to simulate the individual and team be-

havior in this type of system [15, 16]. It is well-known that graph-theoretic techniques

can be very effective in the formulation and analysis of multi-agent network control

systems [11,23,24].

Different aspects of multi-agent systems have been thoroughly investigated in the

past two decades and several global objectives in this type of network such as consensus,

flocking, rendezvous and formation have been studied [11,23–26]. Cooperation between

agents is of utmost importance in achieving these global objectives in the network.

Various optimization approaches are proposed in the literature to improve the overall
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performance of the network [40–43]. It is well-known that network structure plays a key

role in establishing efficient cooperation between the agents, and in particular, leader-

follower structures have attracted much attention in the literature [44–48]. Several

algorithms are developed for the control of multi-agent systems with different structures.

While several high-performance strategies are developed for control of multi-agent

networks, their convergence rate may not be desirable for many applications. An average-

based control law is introduced, which can be applied to the leader in order to achieve

the consensus objective. Motivated by the swarm intelligence paradigm, the proposed

method is further developed to generate control inputs for the leader’s immediate fol-

lowers. It is shown that under a mild condition on the topology of the network, the

proposed follower-based control allocation strategy converges faster than a leader-based

control rule. Simulations confirm the effectiveness of the proposed method.

The outline of the chapter is as follows. In Section 2.2, some preliminaries on con-

sensus problem in multi-agent networks are presented and the problem is formulated.

Then in Section 2.3 the swarm intelligence-based control allocation technique is intro-

duced as the main result of the chapter and numerical examples are given to verify the

theoretical findings. Conclusions are drawn in Section 2.4.

10



2.2 Consensus Problem

Consider a multi-agent network in a 2D space, represented by directed graph (digraph)

G = (V , E), where V = {1, 2, ..., n} is the set of vertices representing the agents, and

E ⊆ V ×V is the set of edges representing the communication links between the agents.

Consensus is one of the important global objectives in this type of network, which is

often desired to be achieved using a distributed control strategy [26,40,41].

2.2.1 Leaderless Network

Assume all agents are similar in terms of their functionality with respect to the other

agents. A discrete-time model of a simple consensus algorithm for the network, where

the agents move with the same speed but different heading angles is given below [11]:

xi(k + 1) = [xi(k)]r, (2.1)

[xi(k)]r = 1
1 + di

xi(k) +
∑
j∈Ni

xj(k)
 , (2.2)

where k ∈ {0, 1, 2, ...} is a discrete-time index, xi ∈ R is the state of the ith agent (heading

angle), Ni is the set of neighbors of agent i (i.e., the set of agents that can exchange

information with agent i), and di is the cardinality of this set. Using a graph-theoretic

11



approach, (2.1) can be written in matrix form as:

x(k + 1) = (I +D)−1(I + A)x(k), (2.3)

where x ∈ Rn is the network state vector, A is the adjacency matrix, D = diag ([di]ni=1)

is the degree matrix, and I is an identity matrix of appropriate dimension.

Assumption 2.1. Throughout this work, it is assumed that the graph representing the

multi-agent system is undirected and connected.

The steady-state characteristics of multi-agent system (2.3) is investigated in the

sequel.

Remark 2.1. Assume that G is a complete graph (i.e., there is a link between every

pair of nodes), representing a multi-agent system (2.1). Then, under the consensus

algorithm (2.1), the state vector of the network converges to the equilibrium state xeq =[
α α · · · α

]T
in the first iteration, where α ∈ R.

Let x(0) be the initial state in (2.1); the average of the states is then given by:

xavg(0) = α = 1
n

n∑
i=1

xi(0). (2.4)

Similarly,

xavg(1) = x1(1) + x2(1) + · · ·+ xn(1)
n

. (2.5)

12



Since G is a complete graph, (I + A) is a n × n matrix with all elements equal to one

and (I +D) is equal to nI. Thus, using (2.3) and (2.5):

xavg(1) =
1
n

n∑
i=1

xi(0) + · · ·+ 1
n

n∑
i=1

xi(0)

n
= α. (2.6)

Consider now a connected but not complete graph, and define P as:

P = (I +D)−1(I + A). (2.7)

Let the (i, j) element of the above matrix be denoted by pij. It is straightforward to

show that:

pij =


Aij
di + 1 , i 6= j

1
di + 1 , i = j

. (2.8)

The above matrix is, in fact, a Markov chain transition matrix, i.e., it satisfies the

following conditions [64]:

1. 0 ≤ pij ≤ 1,∀i, j ∈ Nn,

2. ∑n
j=1 pij = 1 , ∀i ∈ Nn.

Using the new notation, (2.3) can be written as:

x(k + 1) = Px(k). (2.9)

Note that x(k+ 1) depends only on its previous value x(k). Let the steady-state matrix

13



associated with the system matrix P be defined as:

Pss := lim
k→∞

P k. (2.10)

The equilibrium state can then be obtained from the initial state as follows:

xeq = Pssx(0). (2.11)

An alternative simple solution is given next for Pss using the properties of the transition

matrix.

Lemma 2.1. Matrix Pss has identical rows, given by the following vector:

pss = 1
d1 + · · ·+ dn + n

[
(d1 + 1) · · · (dn + 1)

]
1×n

. (2.12)

Proof. The state equation in (2.3) is said to have converged to consensus when all states

have the same value. Therefore, it follows from (2.11) that all rows of Pss have to be

identical. It is required now to check if a n × n matrix with the rows given by (2.12)

has the characteristics of a transition matrix as well as the steady-state matrix given by

(2.10). To this end, the following two conditions are verified:

1. To check the validity of the two conditions of a transition matrix described ear-

lier, it is noted that the denominator in (2.12) is greater than all numerators.
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Furthermore, the sum of the elements of vector pss is:

n∑
i=1

pssi = 1
d1 + ...+ dn + n

(d1 + 1 + · · ·+ dn + 1) = 1, (2.13)

where pssi is the ith element of vector pss.

2. The steady-state matrix associated with (2.9) remains unchanged if multiplied by

P from left or right, i.e.

P × Pss = Pss,

Pss × P = Pss.

(2.14)

The above relations follow immediately from the definition of Pss given by (2.10).

By substituting P with (2.7) and the rows of Pss with (2.12), the above relations

can be easily verified.

�

Remark 2.2. It is to be noted that Lemma 2.1 provides an algebraic solution for matrix

Pss defined in (2.10). Note also that once matrix Pss is obtained, the consensus state

can be determined as α = pssx(0)

Remark 2.3. Assume that graph G is not complete (note that still by assumption,

however, it is strongly connected). Then, it follows directly from (2.12) that under

consensus equation (2.9), the state of every agent converges to a weighted average of the
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states of different agents, leaning towards the states of agents with more connections in

G.

2.2.2 Network with Leader

So far, the equilibrium characteristics in a network without a leader was investigated.

Now, consider the consensus problem in a network with a leader. Without loss of

generality, re-order the indices of the agents such that the index of the leader is 1.

Consensus rule (2.2) can then be rewritten as follows [11]:

xi(k + 1) = 1
1 + di + bi

xi(k) +
∑
j∈Ni

xj(k) + bix1

 , (2.15)

where bi is equal to one for the neighbors of the leader, and zero for all other agents.

Network control rule 1. Assume that leader x1 has the same dynamics as the other

agents but is also driven by a control input u(.) as follows:

x1(k + 1) = 1
1 + d1

x1(k) +
∑
j∈N1

xj(k)
+ u(k). (2.16)

All other agents obey consensus rule (2.2) as before.

It is desired now to find a control input for (2.16) such that the entire network

obeys the same rule as (2.2). This would help compare (2.15) with other consensus

rules.
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Average-based control: Let the control input u be given in terms of the states of

neighbors as follows:

u(k) = xd −
1

1 + d1

x1(k) +
∑
j∈N1

xj(k)
 , (2.17)

where xd is the desired state of the leader. It can be easily verified that the state of the

leader under the above control input turns out to be the same as (2.15).

Note that in the presence of the control input, equation (2.9) is rewritten as:

x(k + 1) = Px(k) + u(k), (2.18)

where u is a n× 1 control vector with all zero elements except u1(k) = u(k).

Remark 2.4. For any initial state in (2.3), there is an equilibrium state xeq. Further-

more, in the absence of the control input, the equilibrium state can be determined from

the state at any point in time using an equation similar to (2.11). For instance, for any

k ∈ N:

xeq = Pssx(0) = PssP
kx(0) = Pssx(k + 1). (2.19)

However, in a network with a leader introduced in (2.18), xeq cannot be obtained as

above. In fact, the control input changes the equilibrium state at every step unless

α = xd or u(k) = 0.

The following theorem sheds some light on the evolution of the equilibrium state
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under the average-based control law.

Theorem 2.1. Consider a multi-agent system with a leader described by (2.18) and the

average-based control law (2.17). Convergence to equilibrium is faster when the leader

has a higher number of links.

Proof. Computing the equilibrium state in terms of only the initial state yields:

x0
eq = Pssx(0), (2.20)

where the superscript 0 indicates that xeq is obtained from the state at k = 0 (analogous

notation will be used in the sequel). Note that the equilibrium state for this multi-agent

system would be equal to x0
eq if there was no control input applied to the system for

k ≥ 0. In the next step, the equilibrium state is computed in term of the state at k = 1

only, which yields:

x1
eq = Pssx(1) = Pss (Px(0) + u(0)) . (2.21)

Vector u has only one non-zero element corresponding to the leader, as noted before.

Thus

x1
eq = Pssx(0) + pss1 u(0)1n = x0

eq + pss1 u(0)1n, (2.22)

where 1n is an all-one vector of appropriate length. Similar to the previous case, if

the control input was zero for all k ≥ 1, then xeq = x1
eq. Hence, xkeq is equal to its

previous value plus a multiple of the control input. Note that vector pss is given in
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(2.12), where each element of it is proportional to the number of links of the agent

associated with it. From Remark 2.3, a leader with more links yields a larger coefficient

(pss1 ) and consequently has a higher impact on the input control in (2.22), which in turn

decreases the convergence time. �

The following example compares the convergence behavior of a system with and

without a leader.

Example 2.1. Consider a network of 10 mobile robots with the following adjacency

matrix

A =



0 0 0 1 0 1 0 1 1 0

0 0 1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 0 0

1 1 0 1 1 0 1 1 0 0

0 0 0 0 0 1 0 0 1 1

1 0 0 1 0 1 0 0 1 1

1 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 1 0 0



.
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Assume that all agents have the same speed but different heading angles as follows:

x(0) =
[
2 4 5 1 7 7 5 3 5 2

]T
× π

5 .

Three systems are examined here: (i) a network without a leader, (ii) a network with a

leader and minimum number of links, and (iii) a network with a leader and maximum

number of links. Two different quantities are evaluated: the average state

xavg(k) =
n∑
i=1

xi(k) (2.23)

and the consensus state

αk = pssx(k) (2.24)

for all k. Figure 2.1 shows the above quantities for the network without a leader. As

expected, α is fixed (i.e., it is independent of k). Furthermore, xavg(k) converges to α

with an error less than 0.01 after k = 15 time steps.

Consider now the network with a leader. From the adjacency matrix A, the 6th agent

has the highest number of links, while the 2th and 5th agents are the ones with lowest

number of links. Let xd in (2.17) be equal to 7π/5 . Figure 2.2 compares αk for the

two cases. For the case of a leader with the highest number of links, αk converges to

the desired state with an error less than 0.01 in 36 steps which is much faster than the

case where the network has a leader with the lowest number of links, which converges
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Figure 2.1: Convergence of xavg(k) to α in the network of Example 2.1 without a leader.

after 137 steps. Furthermore, Figure 2.3 shows that the discrepancy of the average state

|xavg(k)−αk| in the network where leader has the highest number of links is much smaller

than the case of a leader with lowest number of links.

2.3 Follower-Based Control Allocation

In this section, a new consensus rule is proposed with a faster convergence time compared

to the one proposed in the previous section.

Network control rule 2. Consider the same system introduced in (2.18) but instead

of applying the control input only to the leader, assume that the leader dictates a control

input to all of its neighbors and itself, and no input is applied to any other agent.
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Figure 2.4: Two network topologies in which the leader is connected to all agents.

Assume that the leader is connected to all agents as demonstrated in Figure 2.4,

where the leader is labeled as node 1. Figure 2.4 (a) shows a complete graph in which

all agents have the same number of links. Figure 2.4 (b), on the other hand, depicts a

star graph in which the leader is the only neighbor of any other agent.

Theorem 2.2. Consider a network represented by a complete graph or a star graph.

The convergence of the network to consensus is faster under control rule 2, compared to

that under control rule 1.

Proof. First, consider a complete graph with n agents and system matrix P = 1
n
1n1Tn .

From (2.18)

x(k + 1) = 1
n

1n1Tnx(k) + u(k). (2.25)

Control input (2.17) for a complete graph under control rule 2 is

u(k) = 1n
(
xd −

1
n

1Tnx(k)
)
. (2.26)

23



Substituting (2.26) into (2.25) yields x(k+1) = xd1n, which means that the set of eigen-

values of the closed-loop system matrix P r2 with control rule 2 is Λ(P r2) = {0, . . . , 0}.

Now, consider the same topology with Network control rule 1. The closed-loop system

matrix P r1 is

P r1 =



0 0 . . . 0

1
n

1
n

. . . 1
n

... ...

1
n

1
n

. . . 1
n


. (2.27)

Hence, the set of eigenvalues of P r1 is Λ(P r1) = {n−1
n
, 0, . . . , 0}. Comparing the two sets

of eigenvalues obtained by the two control rules, it is concluded that the network under

control rule 2 converges faster to consensus.

Consider now a star topology with n agents. Since the leader is connected to all

agents, the control input is the same as (2.26). The closed-loop system matrix under

control rule 2 is then given by

P r2 =



0 0 0 0 . . . 0

(1
2 −

1
n
) (1

2 −
1
n
) − 1

n
− 1
n

. . . − 1
n

(1
2 −

1
n
) − 1

n
(1

2 −
1
n
) − 1

n
. . . − 1

n

... ... ...

(1
2 −

1
n
) − 1

n
− 1
n

. . . (1
2 −

1
n
)



. (2.28)
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The set of eigenvalues of the above matrix is Λ(P r2) = {0, −0.5n+1
n

, 0.5, . . . , 0.5}. Simi-

larly, consider the same network topology with control rule 1. The closed-loop system

matrix in this case is

P r1 =



0 0 . . . 0

1
2

1
2 0 0 . . . 0

1
2 0 1

2 0 . . . 0

... . . .

1
2 0 0 . . . 1

2



(2.29)

with the set of eigenvalues Λ(P r1) = {0, 0.5, . . . , 0.5}. By comparing the set of eigen-

values of the closed-loop system matrices obtained by control rules 1 and 2 for star

topology, it is concluded that the network under control rule 2 converges faster to con-

sensus because |−0.5n+1
n
| < 0.5, for all n > 1. �

Example 2.2. Consider a network with the same adjacency matrix and initial state as

in Example 2.1, and let xd = 8π/5. It is desired to investigate the convergence of the

multi-agent system with leader under network control rule 1 and 2 with average-based

control law. In particular, note that the closed-loop dynamics under network control

rule 1 in this case is equal to (2.15). Figure 2.5 compares consensus state (2.24) resulted

by using the two network control rules in this example. It can be observed from this

figure that convergence under the second rule is much faster.
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Figure 2.5: Comparison of the convergence of consensus state for the multi-agent system of
Example 2.2 under network control rule 1 and 2.

Remark 2.5. The control input (and its performance) is subject to the physical lim-

itations of the agents. For instance, the heading angle in mobile robots is between 0

and 360 degrees. Hence, applying a control input larger than a certain value may have

a negative impact on the convergence rate.

2.4 Conclusion

In this chapter, the equilibrium characteristics in multi-agent networks are studied. Us-

ing a Markov chain model, a simple technique for computing the steady-state matrix is

provided. It is then shown how the number of links can impact the convergence time. A

swarm intelligence-type network control rule is subsequently proposed, which is shown
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to have a faster convergence rate compared to conventional control rules. Simulation re-

sults confirm the superior performance of the proposed follower-based control allocation

strategy.
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Chapter 3

Distributed Consensus Protocols for

Time-Varying Multi-Agent

Networks with Improved

Convergence Properties

In this chapter, different distributed consensus control strategies are introduced for a

multi-agent network with a leader-follower structure. The proposed strategies are based

on the nearest neighbor rule, and are shown to reach consensus faster than conventional

methods. The results are then extended to the case of a time-varying network with
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switching topology and a relatively large number of agents. The convergence perfor-

mance under the proposed strategies in the case of a time-invariant network with fixed

topology is evaluated based on the location of the dominant eigenvalue of the closed-loop

system. For the case of a time-varying network with switching topology, on the other

hand, the state transition matrix of the system is investigated to analyze the stability of

the proposed strategies. Finally, the input saturation in agents’ dynamics is considered

and the stability of the network under the proposed methods in the presence of satura-

tion is studied. A number of numerical examples are provided to verify the effectiveness

of the proposed control schemes.

3.1 Introduction

Multi-agent systems have attracted researchers from different disciplines in recent years

due to their applications in a variety of engineering and science problems [2–5]. In

particular, there has been an increasing interest in the control of multi-agent networks,

where it is desired to achieve a global objective such as rendezvous, flocking, formation

and consensus, using information locally available to agents [7–11]. Several distributed

control schemes are introduced in the literature to achieve the above objectives for

networks with small or large number of agents, linear or nonlinear agent dynamics, and

fixed or switching topology [17–21].

Graph theory has been used extensively in the literature to analyze various aspects
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of multi-agent networks, where each agent is considered as a node and interaction be-

tween any pair of agents is represented by an edge [24]. Different structures are used to

model the information flow between the agents, e.g., behavior-based, virtual structure

and leader follower, and efficient control algorithms are proposed for each [16,23,65]. In

particular, the consensus problem is of special importance in this type of network, where

all agents are desired to asymptotically reach a common state value by limited exchange

of information between neighboring agents [34, 35]. This problem has application in

emerging technologies such as the coordination of autonomous vehicles and data fusion

in wireless sensor networks [37–39].

Several distributed algorithms are proposed in the literature for consensus control

in leader-follower multi-agent networks [11,25,49]. One of the simple yet effective classes

of distributed consensus protocols is based on the nearest-neighbor rule [11,17]. Accord-

ing to this rule, every agent updates its state based on the average of the states of its

neighbors. As a result, the state of every agent converges to the states of its neighbors,

leading all agents to a global convergence under some mild conditions. Nearest-neighbor-

based methods are effectively used in both homogeneous networks, where all agents have

the same dynamics, and heterogeneous networks, where the dynamic models of different

agents are not the same [23,37,53–55]. It is also used in networks with both linear and

nonlinear agent dynamics [56–58].

While the methods cited in the previous paragraph are widely used in consensus

30



control of multi-agent networks, most of them assume that the topology of the network

is fixed and its parameters are time-invariant. Many practical multi-agent systems,

however, are subject to change during the mission. In addition, the convergence of the

existing consensus protocols is not sufficiently fast for some applications. Furthermore,

it is often assumed that the control system does not reach a physical limit, i.e., no

saturation occurs in the system. However, it is known that in real-world control systems

saturation is ubiquitous and any actuator or sensor is subject to saturation [60, 61,

63]. In this chapter, different algorithms are introduced for consensus control of leader-

follower multi-agent systems with faster convergence rate compared to the standard

protocols. The proposed algorithms are based on the nearest-neighbor rule, and use the

local information of a certain subset of agents to generate the control command. The

algorithms are then properly modified for the case of switching topology and time-varying

network parameters as well as input saturation. The effectiveness of the theoretical

findings is verified by several numerical examples.

The structure of the chapter is as follows. Section 3.2 formulates the problem

under consideration. In Section 3.3, the convergence rate of the consensus algorithms is

investigated using the notion of dominant eigenvalues. The position of the agents in the

network structure and their importance in convergence rate is discussed in Section 3.4.

Then in Section 3.5, the results are extended to the case of a network with switching

topology and time-varying edge weights. In Section 3.6, a new algorithm is proposed
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which allows a subset of agents to act as leaders. The algorithms are properly modified

in Section 3.7 to account for input saturation. Finally, concluding remarks are provided

in Section 3.8.

Notations

R is the set of real numbers, R≥0 is the set of non-negative real numbers, and Rn×n
≥0

is an n × n matrix with non-negative real elements, referred to hereafter as a non-

negative matrix. Nn denotes the finite set {1, . . . , n} and Z is the set of whole numbers.

Furthermore, 1n is a vector of all ones.

For a vector x := [xi]ni=1 with n elements, the ith element is denoted by xi, and for

a n× n matrix A, the (i, j) element is represented by aij. For a diagonal matrix A, the

(i, i) element is denoted by ai, for ease of display. Given a matrix A, ‖A‖∞ denotes its

infinity norm, which is max
i

∑
j |aij|.

3.2 Consensus Based on the Leader’s Command

Consider a multi-agent network in a 2D space, represented by a weighted graph G =

(V , E ,W ), where V = Nn is the set of vertices denoting the agents, E = {(i, j) : i, j ∈ V}

is the set of edges denoting the observation links between the agents, and W is the weight

matrix whose (i, j) element wij is the weight of the edge from vertex j to vertex i, and

is a non-negative real number. This weight is greater than zero if agent i can observe
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agent j, and zero otherwise (note that wij = wji for any i, j ∈ V). Assume that G has

no self-loops (i.e. (i, i) /∈ E , ∀i ∈ V) or repeated edges. Denote the leader as agent 1,

and assume that all agents are similar in terms of dynamics as well as their functionality

and ability to exchange information with others. Inspired by the consensus algorithm

proposed in [11], the following update rule is considered:

xi(k + 1) = 1
1 + di

xi(k) +
∑
j∈Ni

wijxj(k) + ui(k)
 ,

i ∈ Nn − {1}, k ∈ Z,

(3.1)

where xi ∈ R is the state of the ith agent, defined as its heading angle, ui is the command

generated by the leader for agent i, if this agent is in the neighborhood set of the leader,

and is zero otherwise, Ni is the set of neighbors of agent i (i.e., the set of agents observed

by agent i), and di is the degree of agent i, defined as:

di =
∑
j∈Ni

wij. (3.2)

It is assumed that the leader has a fixed heading angle, i.e.:

x1(k + 1) = x1(k). (3.3)

Using a graph-theoretic approach, (3.1) and (3.3) can be written in the matrix form

given below:

x(k + 1) = Px(k) +Bu(k), (3.4)
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P = (I +D)−1(I +W ), (3.5)

B = (I +D)−1, (3.6)

where x ∈ Rn is the state vector, u ∈ Rn is the control input vector, D is the degree

matrix, which is diagonal and its (i, i) element is equal to di, ∀i ∈ Nn, W = [wij]ni,j=1 is

the weight matrix, and P , B are n× n real matrices. Moreover, I is the identity matrix

of appropriate dimension.

Assumption 3.1. Assume that graph G is connected. By removing the leader and its

links, the graph will be divided into multiple subgraphs (and in the special case, just one

subgraph). Each subgraph is, in fact, a weighted undirected graph (and in the special

case, it represents just a single agent).

Remark 3.1. Matrix P has the following properties [24,66]:

• 0 ≤ pij ≤ 1

• ∑n
j=1 pij = 1

Define the error vector as:

e(k) = x11n − x(k). (3.7)
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Multiplying (3.4) by a negative sign and adding x11n to both sides yields:

x11n − x(k + 1) = x11n − Px(k)−Bu(k). (3.8)

It follows from Remark 3.1 that:

P1n = 1n. (3.9)

Thus, (3.8) can be rewritten as:

x11n − x(k + 1) = P
(
x11n − x(k)

)
−Bu(k). (3.10)

From (3.7), the above equation can be expressed in the following form:

e(k + 1) = Pe(k)−Bu(k), (3.11)

where the control command u, sent by the leader to its neighbors, is defined as:

ui(k) =


ei(k), i ∈ N1

0, i /∈ N1

. (3.12)

Note that the relative error ei is available to the leader.
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3.3 Convergence Rate

In this section, the convergence rate of the error dynamics characterized by (3.11) with

the control input defined in (3.12) is investigated. Note that the convergence of the

error to zero implies that the state of every agent in (3.4) converges to that of the

leader. Subsection 3.3.1 discusses the structure of the system matrix with and without

control input.

3.3.1 Structure of System Matrix

For the case where u(k) = 0, from (3.3) and (3.7) the error of the leader’s state is given

by:

e1(k) = x1 − x1(k) = 0. (3.13)

Therefore, one can remove the first row and column of P in (3.11) to obtain the new

equation for the error as:

ẽ(k + 1) = P̃ ẽ(k), (3.14)

where ẽ(k) := [ei(k)]ni=2, and P̃ is a matrix characterized in the next remark.

Remark 3.2. Let P̃i denote the system matrix of the ith subgraph obtained by re-

moving the leader, for any i ∈ Nm, where m is the total number of subgraphs (see

Assumption 3.1). Then, the eigenvalues of P̃ in (3.14) are the union of the eigenvalues
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of all subgraphs, multiplicities included, i.e.:

Λ(P̃ ) = {Λ(P̃1), . . . ,Λ(P̃m)}, (3.15)

where Λ(.) denotes the spectrum of a matrix.

Assume that subgraph i has ni agents. The corresponding system matrix can be

written as follows:

P̃i = (Ii +Di)−1(Ii +Wi), (3.16)

where Di and Wi are, respectively, the ni × ni degree and weight matrices.

Now, let the control input u(k) given by (3.12) be applied to the system. From

(3.11), the error dynamics for agent i can be expanded as follows:

ei(k + 1) = 1
1 + di

ei(k) +
∑
j∈Ni

wijej(k)− ui(k)
 . (3.17)

If agent i is a neighbor of the leader, then it results from (3.12) that ui(k) = ei(k) and:

ei(k + 1) = 1
1 + di

∑
j∈Ni

wijej(k)
 . (3.18)

Otherwise, ui(k) = 0 and:

ei(k + 1) = 1
1 + di

ei(k) +
∑
j∈Ni

wijej(k)
 . (3.19)
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By considering the above two equations, (3.11) can be written in closed-loop form as:

e(k + 1) = P cle(k), (3.20)

P cl = (I +D)−1(H +W ), (3.21)

where P cl is the closed-loop system matrix and H is a diagonal matrix whose ith diagonal

element is hi, for any i ∈ Nn, where:

hi =


0, i ∈ N1

1, i /∈ N1

. (3.22)

Again, from (3.13), the first row and column of P cl, which correspond to the leader, can

be removed. Denote the system matrix after these removals by P̃ cl. Hence:

ẽ(k + 1) = P̃ clẽ(k). (3.23)

Remark 3.3. Let P̃ cl
i , i = 1, . . . ,m, denote the system matrix of the subgraphs obtained

by removing the leader. Then, the set of eigenvalues of P̃ cl is the union of the set of

eigenvalues of all of these matrices, multiplicities included, i.e.:

Λ(P̃ cl) = {Λ(P̃ cl
1 ), . . . ,Λ(P̃ cl

m)}. (3.24)
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The closed-loop system matrix of subgraph i with ni agents can be written as:

P̃ cl
i = (Ii +Di)−1(Hi +Wi), (3.25)

where Hi is a diagonal matrix with the diagonal elements defined in (3.22).

3.3.2 Dominant Eigenvalue

Assume that A ∈ Rn×n is a diagonalizable Hurwitz matrix, i.e., there exists an invertible

matrix V such that:

∆ = V −1AV, (3.26)

where ∆ is a diagonal matrix whose diagonal elements are the eigenvalues of A, denoted

by λ1, . . . , λn with |λn| ≤ |λn−1| ≤ . . . ≤ |λ2| < |λ1| < 1. Then, any non-zero vector

x ∈ Rn can be written as [67,68]:

x = c1v1 + c2v2 + . . .+ cnvn, (3.27)

where c1, . . . , cn are scalar coefficients and vi is the ith column of matrix V , i = 1, . . . , n.

As a result:

Ax = c1λ1v1 + c2λ2v2 + . . .+ cnλnvn, (3.28)

and consequently:

Akx = c1λ
k
1v1 + c2λ

k
2v2 + . . .+ cnλ

k
nvn. (3.29)

39



The above equation can be written as:

Akx = λk1(c1v1 + c2(λ2

λ1
)kv2 + . . .+ cn(λn

λ1
)kvn). (3.30)

Recall that by assumption λ1 is the eigenvalue with the greatest magnitude, and hence

is referred to as the dominant eigenvalue. Thus:

lim
k→∞

Akx = λk1c1v1. (3.31)

Remark 3.4. It is known that any real symmetric matrix is diagonalizable with real

diagonal terms [69].

Given a symmetric network with no leader, there is a similarity transformation to

convert matrix P in the state equation into a symmetric matrix A = T−1PT [66, 70].

Since A is symmetric, it has a dominant eigenvalue and so does P .

Remark 3.5. There exists a similarity transformation matrix Ti for both P̃i and P̃ cl
i

(defined by (3.16) and (3.25)) which converts them into symmetric matrices. This matrix

is diagonal and is given by:

Ti = (Ii +Di)−
1
2 . (3.32)

The resultant transformed matrix is then obtained as:

Ai = T−1
i P̃iTi = (Ii +Di)−

1
2 (Ii +Wi)(Ii +Di)−

1
2 . (3.33)
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Note that Ii is diagonal and Wi is symmetric. It can be easily verified that multiplying

the symmetric matrix (Ii + Wi) by the diagonal matrix (Ii + Di)−
1
2 form both sides

results in a symmetric matrix. Now, consider P̃ cl
i given in (3.25) and compute Acli as

follows:

Acli = T−1
i P̃ cl

i Ti = (Ii +Di)−
1
2 (Hi +Wi)(Ii +Di)−

1
2 . (3.34)

Similarly, Acli is a symmetric matrix.

Remark 3.6. The subgraphs represented by the system matrices P̃i and P̃ cl
i are assumed

to be strongly connected. Therefore, these matrices are irreducible, and from the Perron-

Frobenius theorem, their dominant eigenvalues are positive [69].

Theorem 3.1. Error dynamics (3.11) with control input (3.12) converges to zero faster

than that with no control input.

Proof. P̃ cl and P̃ are the system matrices of the network with and without control input,

respectively. From Remarks 3.2 and 3.3, the eigenvalues of each matrix can be obtained

from the eigenvalues of their subgraphs P̃ cl
i and P̃i, for any i ∈ Nm. From the similarity

transformation (3.34), Acli and P̃ cl
i have the same eigenvalues. From Remark 3.4, Acli is

a symmetric matrix. Assume that λcli,1 is the dominant eigenvalue of Acli . Thus:

λcli,1 = vTi,1A
cl
i vi,1 = vTi,1T

−1P̃ cl
i Tvi,1, (3.35)

where vi,1 is the normalized eigenvector (‖vi,1‖2 = 1) associated with the eigenvalue λcli,1.
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Substituting (3.25) and (3.32) in the left side of the above equation yields:

vTi,1T
−1P̃ cl

i Tvi,1 = vTi,1(Ii +Di)−
1
2 (Hi +Wi)(Ii +Di)−

1
2vi,1. (3.36)

Since Hi is a diagonal matrix with diagonal elements equal to one or zero (as defined in

(3.22)), one can write:

vTi,1(Ii +Di)−
1
2Hi(Ii +Di)−

1
2vi,1 <

vTi,1(Ii +Di)−
1
2 Ii(Ii +Di)−

1
2vi,1.

(3.37)

Adding vTi,1(Ii +Di)−
1
2Wi(Ii +Di)−

1
2vi,1 to both sides of the above inequality results in:

vTi,1(Ii +Di)−
1
2 (Hi +Wi)(Ii +Di)−

1
2vi,1 <

vTi,1(Ii +Di)−
1
2 (Ii +Wi)(Ii +Di)−

1
2vi,1,

(3.38)

where:

vTi,1(Ii +Di)−
1
2 (Ii +Wi)(Ii +Di)−

1
2vi,1 = vTi,1T

−1P̃iTvi,1. (3.39)

From Remark 3.5, one arrives at:

vTi,1T
−1P̃iTvi,1 = vTi,1Aivi,1. (3.40)

Since the eigenvectors of Ai are orthogonal and its dominant eigenvalue is positive, it
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can be concluded that:

vTi,1Aivi,1 ≤ sup
v∈Rni ,‖v‖=1

vTAiv = λi,1, (3.41)

where λi,1 is the dominant eigenvalue of Ai. Therefore, from (3.35)-(3.41):

λcli,1 < λi,1, ∀i ∈ Nni
. (3.42)

The dominant eigenvalue of the system matrix of every subgraph can be made smaller

by using an appropriate control command. By doing so, the dominant eigenvalue of P̃ cl

will be smaller than that of P̃ . Hence, P̃ cl converges to zero faster than P̃ . �

Example 3.1. Consider a network of 5 mobile robots with the topology and weights

depicted in Figure 3.1. The objective is that the state of every agent (which is its heading

angle) converges to the state of the leader. Consider the following initial values:

x(0) =
[
0 −120 −62 −45 −75

]T
.

Figures 3.2 and 3.3 show the states of the network without and with the proposed control

command, respectively. In both figures, each agent’s heading converges to the leader’s

heading with approximately the same rate that its neighbors’ headings do. Figure 3.4

gives the average of the states of all agents at every time step. It can be observed from

this figure that under the proposed control command, the average state of the network
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Figure 3.1: Topology of the network of Example 3.1.
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Figure 3.2: State of the network under the standard protocol.

converges to the state of the leader almost twice as fast as that of the network with the

standard protocol.

3.4 Network Configuration: Leader and Subleaders

Convergence time is highly dependent on the topology of the network. For instance,

consider two networks with five agents but different configurations for the leader as

depicted in Figures 3.5 and 3.6. Assume that all weights are equal to one, and that both
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Figure 3.3: State of the network under the proposed control command.
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Figure 3.4: Comparison between the average of the states of all agents for the network with
the standard protocol and proposed control command.
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Figure 3.5: Examples of a network with a leader with 4 neighbors. Dashed lines are the leader’s
connections.
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Figure 3.6: Examples of a network with a leader with one neighbor. Dashed lines are the
leader’s connections.

networks use the control rule (3.12). Convergence time of the network whose leader

has four neighbors is almost twice faster than the network whose leader has only one

neighbor. This section studies the impact of network configuration on the convergence

time. It will be shown how the neighbors of the leader can be employed as so-called

”subleaders” to improve the rate of convergence.

Assume that the neighbors of the leader can also send a command to their neigh-

bors. The corresponding control rule, which has a distributed architecture and relies on

the relative heading angle, can be described as:

uij(k) = x1(k)− xj(k), i ∈ Nj, j ∈ N1. (3.43)

Note that the states of x1(k) and xi(k) are both available to agent j.
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Assumption 3.2. A neighbor of the leader cannot act as a subleader for another neigh-

bor of the leader. In other words, for any i, j ∈ N1, uij(k) = 0.

Remark 3.7. Note that if an agent receives multiple commands from different sublead-

ers, they will all be the same because according to (3.43), only the relative information

of the leader and that agent is important, i.e., the subleaders’ states play no role in the

control process. The control input of agent i, described by (3.43), can be considered

as an error signal ei(k). Thus, the control input u(k) resulted from the leader’s and

subleaders’ commands can be rewritten as:

ui(k) =


ei(k), i ∈ N1 ∪Nj, j ∈ N1

0, otherwise
. (3.44)

To investigate the convergence rate, consider the error dynamics (3.11) with the

control rule (3.44). The closed-loop system can be expressed as:

e(k + 1) = P se(k), (3.45)

P s = (I +D)−1(Hs +W ), (3.46)

where P s is the system matrix and Hs is a diagonal matrix whose diagonal element hsi

is given by:

hsi =


0, i ∈ N1 ∪Nj, j ∈ N1

1, otherwise
. (3.47)
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From (3.13), the first row and column of P s, which correspond to the leader, can be

removed. Denote the system matrix after removing the first row and column by P̃ s.

Hence:

ẽ(k + 1) = P̃ sẽ(k). (3.48)

Remark 3.8. Let P̃ s
i denote the system matrix of the ith subgraph after removing the

leader, for any i ∈ Nm. Then, the set of eigenvalues of P̃ s is the union of the set of

eigenvalues of all the above matrices, multiplicities included, i.e.:

Λ(P̃ s) = {Λ(P̃ s
1 ), . . . ,Λ(P̃ s

m)}. (3.49)

The closed-loop system matrix of subgraph i with ni agents can then be written as

follows:

P̃ s
i = (Ii +Di)−1(Hs

i +Wi), (3.50)

where Hs
i is a diagonal matrix with the diagonal elements given by (3.47).

Theorem 3.2. The state error of the network, defined by (3.11), converges to zero faster

under the control input (3.44) than that under the control input (3.12).

Proof. Using an argument similar to Remark 3.5, it follows that P̃ s
i also has a similarity

transformation matrix which converts it to a symmetric form. Consider the system

matrices P̃ cl
i and P̃ s

i . From (3.25) and (3.50), both Hi and Hs
i are diagonal matrices
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with Hi having more non-zero elements than Hs
i . Thus, for any non-zero vector v:

vT (Ii +Di)−
1
2Hs

i (Ii +Di)−
1
2v <

vT (Ii +Di)−
1
2Hi(Ii +Di)−

1
2v.

(3.51)

Hence, using an argument similar to the proof of Theorem 3.1, it can be shown that the

dominant eigenvalue of Hs
i is smaller than that of Hi. �

Example 3.2. Consider the network given in Example 3.1 with the same initial values.

By applying the control command (3.44) to the network, the state of every agent con-

verges to that of the leader as depicted in Figure 3.7. Figure 3.8 provides a comparison

between the average of the states of all agents in the network for three scenarios: (i) with

the standard protocol; (ii) with the leader’s control command (as given in Example 3.1),

and (iii) with the leader and subleader’s control commands. It can be observed that as

expected, the system with leader and subleader’s control commands converges faster. It

is also observed that the states of the agents converge to the state of the leader.

3.5 Network with Switching Topology and Time-

Varying Weights

Consider graph Gk = (V , Eσ(k),W (k)), where the set of vertices V is fixed the same as

before but the set of edges Eσ(k) is not the same for different values of σ(k) ∈ S, where
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Figure 3.7: States of the agents with control command from the leader and subleader.
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Figure 3.8: Comparison between the network with the standard protocol, with leader’s control
command, and with leader’s and subleader’s control commands.
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the set S = Nl represents the switching topology.

Assumption 3.3. Assume that Gk, is connected for all σ(k) ∈ S, and that it satisfies

Assumption 3.1. Assume also that the weight matrix W (k) can change at any time step,

independently of the topology.

With the switching topology and time-varying weights, (3.1) can be rewritten as:

xi(k + 1) = 1
1 + di(k)

xi(k) +
∑

j∈Ni(k)
wij(k)xj(k) + ui(k)

,
i ∈ Nn − {1}, k ∈ Z,

(3.52)

where Ni(k) is the set of neighbors of agent i at time k, wij(k) ∈ R≥0 is the weight of

the link between agent i and j at time k, and di(k) is the degree of agent i at time k

given by:

di(k) =
∑

j∈Ni(k)
wij(k). (3.53)

Let the leader have the same dynamics as (3.3). Using a graph-theoretic approach,

(3.52) and (3.3) can be written in matrix form as:

x(k + 1) = P (k)x(k) +B(k)u(k), (3.54)

P (k) = (I +D(k))−1(I +W (k)), (3.55)

B(k) = (I +D(k))−1, (3.56)
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where P (k) ∈ Rn×n
≥0 is the system matrix, B(k) ∈ Rn×n

≥0 is the input channel matrix,

D(k) is the degree matrix, which is diagonal, and W (k) is the weight matrix, all at time

k. Note that Remark 3.1 still holds for P (k) at all times. From (3.7), the error dynamics

can be written as:

e(k + 1) = P (k)e(k)−B(k)u(k). (3.57)

Consider the control command obtained in (3.44). The closed-loop system can be ob-

tained as:

e(k + 1) = P s(k)e(k), (3.58)

P s(k) = (I +D(k))−1(Hs(k) +W (k)), (3.59)

where P s(k) is the system matrix and Hs(k) is a diagonal matrix whose (i, i)th element

is given by:

hsi (k) =


0, i ∈ N1(k) ∪Nj(k), j ∈ N1(k)

1, otherwise
. (3.60)

Similarly, from (3.13), the first row and column of P s(k), which correspond to the leader,

can be removed. Denote the system matrix after these removal by P̃ s(k). Hence:

ẽ(k + 1) = P̃ s(k)ẽ(k), (3.61)

where:

P̃ s(k) = (Ĩ + D̃(k))−1(H̃s(k) + W̃ (k)). (3.62)
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Theorem 3.3. Consider a set of graphs G = {G1, . . . ,Gl}, where Gi, i ∈ Nl, is com-

posed of a set of jointly connected graphs. The error dynamics (3.61) for G is globally

asymptotically stable.

Proof. Let Gi = {Gi,k, . . . ,Gi,k0} correspond to the state transition matrix Φi(k+1, k0) =

P̃ s(k)× . . .× P̃ s(k0). On the other hand, from the properties of the discrete-time state

transition matrix, Φi(k0, k0) = I and Φi(k + 1, k0) = P̃ s(k)Φi(k, k0) [71]. First, consider

Φi(k0 +1, k0) = P̃ s(k0). From (3.60) and (3.62), the ith row sum of P̃ s(k0) can be written

as:

n−1∑
j=1

p̃sij(k0)


< 1, i ∈ N1(k0) ∪Nj(k0), j ∈ N1(k0)

= 1, otherwise
. (3.63)

So, Φi(k0 + 1, k0)1(n−1) can be considered as a vector of ones, except for the neighbors

of the leader and the neighbors of the neighbors of the leader, which are less than one.

At the next time step, Φi(k0 + 2, k0) = P̃ s(k0 + 1)Φi(k0 + 1, k0) and the ith row sum is:

n−1∑
j=1

φij(k0 + 2,k0) = p̃si1(k0 + 1)
n−1∑
j=1

φ̃1j(k0 + 1, k0) + . . .

+ p̃si(n−1)(k0 + 1)
n−1∑
j=1

φ̃(n−1)j(k0 + 1, k0).
(3.64)

The above row sum is less than 1 when ∑n−1
j=1 φtj(k0 + 1, k0) < 1 for any t ∈ Ni(k0 +

1) or when ∑n−1
j=1 p̃

s
ij(k0 + 1) < 1 (or both). From the connectivity of the graph and

equation (3.64), it can be concluded that the number of elements of vector Φi(k0 +

2, k0)1(n−1) which are less than one is greater than the number of elements of vector
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Φi(k0 + 1, k0)1(n−1) which are less than one. Similarly, it can be concluded that as time

increases, the number of elements which are less than one is growing. Since the graph

is jointly connected, k > n− 1 guarantees that all row sums are less than one, and that

there exists a positive real number δ < 1 such that:

‖Φi(k, k0)‖∞ < δ, (3.65)

where the norm in the left side of (3.65) varies with k, and δ depends on the net-

work topology. Let Φ(kl, k0) be the state transition matrix corresponding to G; then

Φ(kl, k0) = Φl(kl, k(l−1))× . . .× Φ1(k1, k0). Note that:

lim
l→∞
‖Φ(kl, k0)‖∞ ≤ lim

l→∞
δl = 0. (3.66)

Therefore, the system is globally asymptotically stable [11,72]. �

Example 3.3. Consider a network of 10 mobile robots. The topology of the network and

its weight matrix are assumed to be time-varying. The weights are randomly selected

between 0 and 1 at each time step. The generalized algebraic connectivity [73] of the

network at different times is depicted in Figure 3.9. Note that the maximum possible

generalized algebraic connectivity for this network is equal to one. Figures 3.10−3.12

show the states of the agents with the standard protocol, with control command from the

leader (3.12), and with control command from the leader and subleaders (3.44). These

figures demonstrate the effectiveness of the proposed control strategies, analogously to
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Figure 3.9: Generalized algebraic connectivity of the network of Example 3.3.

the case of fixed topology, in asymptotic convergence of the heading angles of the agents

to that of the leader. Figure 3.13, on the other hand, shows the average of the states

of the agents under the above-mentioned control actions. It can be observed from this

figure that the system with the leader and subleaders’ control command converges faster

than the other two.

3.6 Leader Centric Connectivity

The effectiveness of the control command (3.44) strongly depends on the size of the

neighbor set of the leader and its neighbors; if the leader and its neighbors have a

relatively large number of neighbors compared to the total number of agents, then the

control command (3.44) is more effective, otherwise, the convergence time under the
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Figure 3.10: States of the agents in the time-varying network of Example 3.3 with the standard
protocol.
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Figure 3.11: States of the agents in the time-varying network of Example 3.3 with the proposed
control command from the leader.
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Figure 3.12: States of the agents in the time-varying network of Example 3.3 with the proposed
control command from the leader and subleaders.
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Figure 3.13: Comparison between the time-varying network of Example 3.3 with the standard
protocol, with leader’s control command, and with leader and subleaders’ control commands.
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Figure 3.14: An example a network with multiple layers of hierarchy with respect to the leader.

control command (3.44) will also be relatively large. In this section, a decentralized

control algorithm is proposed to address this problem.

Assume that all agents have the ability to send and receive control commands

(act both as a leader and/or follower). Since it is desired to have a distributed control

structure, the control command should be based on the relative state information. To

clarify the concept, consider a network of 10 agents with the topology shown in Figure

3.14. This network has different layers of hierarchy, with the first one corresponding to

the leader, the second one the neighbors of the leader and so on. In other words, the

agents of each layer have the same number of links in their shortest path to the leader.

For example, the shortest path from the agents of layer 3 to the leader is two and this

number for the agents of layer 4 is three. Note that the agents of higher layers receive

the information of the leader with more delay. Since the agents of each layer have access

to the information of both upper and lower layers, they can share the information of the

agents of the lower layer with the agents of the higher layer.

Assumption 3.4. The agents of each layer can only send commands to their neighbors
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Algorithm 1: Control command for agent i
1 if ui(k − 1) 6= 0 then

2 x̄ =
∑

ri
xri(k)

ci(k) , ri ∈ Ni(k) ∪ L(fi−1)(k)
3 uji(k) = x̄− xj(k), j ∈ Ni(k) ∪ L(fi+1)(k)
4 else
5 uji(k) = 0, ∀j ∈ Ni(k)
6 end

in the higher layer.

Assumption 3.5. If an agent receives commands from different agents of the lower

layer, then the average of the received commands is used.

Assume that uij is the command that agent i receives from agent j. Then, the

control input is:

uj(k) =
∑
i uji(k)
cj(k) , i ∈ Nj, (3.67)

where cj(k) is the total number of commands that agent j receives at time k. Now, let

fi denote the layer number corresponding to agent i and Lfi
be the set of all agents in

layer fi. Then, the control commands that agent i sends to its neighbors are obtained

by using Algorithm 1. Agent i can send commands to its higher layer neighbors only if

it receives commands at the previous time step. Furthermore, if agent i is a neighbor of

multiple agents at the lower layer, then the average of their states is used as the leader

state to compute the control command for the next layer. Note that the main leader

still uses (3.12) as the control command.
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Remark 3.9. Using Algorithm 1, the same control rule is applied to all agents except

for the leader. This simplifies the implementation of the algorithm.

Consider Gk = (V , Eσ(k),W (k)), defined in Section 3.5, and let the agent dynamics

be described by equation (3.54). To write the network equations based on the error

dynamics, the control commands given by Algorithm 1 should be expressed in terms of

the error vector. Adding x1 − x1 to the control command yields:

uji(k) =
∑
ri
xri

(k)
ci(k) − x1 + x1 − xj(k), (3.68)

where i, j, ri are the same indices used in Algorithm 1. Considering the following error

dynamics:

uji(k) = ej(k)−
∑
ri
eri

(k)
ci(k) . (3.69)

Substituting (3.69) in (3.67) results in:

uj(k) = ej(k)−
∑
i

∑
ri
eri

(k)
ci(k)cj(k) . (3.70)

Note that the second term in the right side of the above equation is a summation over

the average error of the agents that act as leaders for layer fi.

Remark 3.10. If agent i is in layer 2, then eri
(k) = e1 = 0. One can easily verify that

in this case using the proposed algorithm for the leader’s neighbor will result in the same

command as in Section 3.4.
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For stability analysis, let the control input u(.) be divided into two vectors. The

first vector u1(.) is generated based on the state of the leader and the neighbors of the

leader. Thus, (3.70) and (3.44) give the same value for u1(.). The second vector u2(.)

is generated based on the states off all other agents. Note that those elements of u2(.)

which correspond to the leader and its neighbors are zero. Hence, (3.57) can be rewritten

as:

e(k + 1) = P s(k)e(k)−B(k)u2(k). (3.71)

By excluding the leader from the above equation, it can be written as:

ẽ(k + 1) = P̃ s(k)ẽ(k)− B̃(k)ũ2(k). (3.72)

where P̃ s(.) was defined earlier, B̃(.) is obtained by removing the first row and column

of B(.), and ũ2(.) is obtained by removing the first element of u2(.). Note that B(.)

is a diagonal matrix whose first diagonal element b11 corresponds to the leader. From

(3.3), the leader has a fixed dynamics; therefore, b11 is 0, which makes the first row and

column of B(.) equal to zero.

Theorem 3.4. Consider a network represented by a set of graphs G = {G1, . . . ,Gl} where

the subgraph Gi is composed of a set of jointly connected graphs. The error dynamics of

the network states (3.72) is globally asymptotically stable.

Proof. To prove the theorem, a procedure similar to the proof of Theorem 3.3 is used
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here. Assume that P̂ (k) is the closed-loop system matrix corresponding to (3.72), and

let j ∈ N1 ∪ Ni, ∀i ∈ N1. Then, p̂jt(k) = p̃sjt(k) and ∑t p̂jt(k) < 1, for all t ∈ Nn−1. On

the other hand, for j /∈ N1 ∪ Ni, ∀i ∈ N1, ẽj(k + 1) from (3.72) can be expanded as

follows:

ẽj(k + 1) =p̃sj1(k)ẽ1(k) + . . .+ p̃sjj(k)ẽj(k) + . . .+ p̃sj(n−1)(k)ẽn−1(k)

− 1
1 + dj(k) ẽj(k) + 1

1 + dj(k) ×
1
m

(ẽri1(k) + . . .+ ẽrim
(k)) ,

(3.73)

where m = ci(k)cj(k). From (3.5), it results that p̃sjj(k) = 1
1+dj(k) , which means that the

coefficient of ẽj(k) in the above equation is equal to zero (i.e. p̂jj(k) = 0). Note that

the sum of the coefficients of ẽt(k) over all t ∈ Nn−1 in the control command (3.70) is

1 − 1
m
×m = 0, i.e. ∑n−1

t=1 p̂jt(k) = ∑n−1
t=1 p̃

s
jt(k) = 1. Therefore, P̂ (k) is a non-negative

matrix with the following properties:

n−1∑
t=1

p̂jt(k)


< 1, j ∈ N1(k) ∪Ni(k), i ∈ N1(k)

= 1, otherwise
, (3.74)

which is the same as (3.63). Furthermore, P̂ (k) includes all the connections of P̃ s(k) as

well as the new links added by the control input. Thus, similar to the proof of Theo-

rem 3.3, k > n − 1 guarantees that the state transition matrix Φi(k, k0) corresponding

to Gi has an infinity norm less than δ, where δ is a positive real scalar less than one.

Hence, lim
l→∞
‖Φ(kl, k0)‖∞ converges to zero and this completes the proof. �
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Example 3.4. Consider a network of 100 mobile robots. The topology is updated

every 10 steps and the weight matrix is updated at every step (the weights are randomly

selected between 0 and 1). The generalized algebraic connectivity at each step is depicted

in Figure 3.15 (note that the maximum possible generalized algebraic connectivity for

the network is equal to one). Figures 3.16−3.19 show the states of the network with no

control command, with leader’s control command, with leader’s and subleaders’ control

commands, and with the control command of any agent acting as the leader, respectively.

In all four figures, the agents preserve their consensus in moving towards the leader.

Figure 3.20 shows the average of all states for four different control strategies. Under

the control strategy that all agents can act as the leader, the followers converge to the

leader faster than any other strategy. Although the network with leader’s and subleaders’

control commands does not have the fastest convergence, it has satisfactory performance.

Example 3.5. In this example, a comparison is provided between some existing methods

and the proposed strategies. The methods considered for this comparison are as follows:

1. The method in [11], which is the basis of the strategies proposed in this thesis,

and can be formulated as follows:

xi(k + 1) = 1
1 + di + bi

(
xi(k) +

∑
j∈Ni

xj(k) + bix0

)
(3.75)

where x0 is the leader’s state, and bi is equal to 1 if agent i is a neighbor of the
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Figure 3.15: Generalized algebraic connectivity of the system in Example 3.4.
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Figure 3.16: States of the agents in the time-varying network of Example 3.4 with 100 agents
under the standard protocol.
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Figure 3.17: States of the agents in the time-varying network of Example 3.4 with 100 agents
under leader’s control command.
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Figure 3.18: States of the agents in the time-varying network of Example 3.4 with 100 agents
under leader’s and subleaders’ control commands.
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Figure 3.19: States of the agents in the time-varying network of Example 3.4 with 100 agents
when they can all act as leader and/or follower.
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Figure 3.20: Comparison between different control strategies for the network of Example 3.4
with switching topology and time-varying weights.
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leader and is equal to zero otherwise.

2. The method in [25], in which:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij

(
xj(k)− xi(k)

)
(3.76)

where ε is the step size bounded as follows:

0 < ε <
1
δ

(3.77)

δ = max
i

∑
j 6=i

(aij) (3.78)

To increase the convergence rate in this comparison, ε is chosen equal to 1
δ
−0.001.

3. The method in [74], wherein a time-varying weight algorithm is used to achieve

fast convergence as follows::

xi(k + 1) = wii(k)xi(k) +
∑
j∈Ni

wij(k)xj(k) (3.79)

where wij(k) is the weight, and is obtained as:

wij(k) =



1/
(
1 + max(di, dj)

)
(i, j) ∈ E

1−
∑
l∈Ni

wil i = j

0 otherwise.

(3.80)
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Figure 3.21: A comparison between the proposed control strategies and three existing methods.

To compare all the methods, a network of 50 mobile robots with fixed topology is

considered. The weights of all links for all methods are assumed to be equal to one, except

the method in [74] whose corresponding weights are obtained by (3.80). Figure 3.21

shows the average of the heading angles for the network under the proposed control

strategies and that obtained by using the three methods noted earlier. The results

confirm that the proposed strategies yield faster convergence compared to all three

methods.

3.7 Network with Input Saturation

In this section, it is desired to incorporate input saturation into the dynamic equation

(3.52). The stability of the system under leader’s and subleader’s commands (3.44) is
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investigated.

To consider the input saturation in (3.52), the equation is rewritten as follows:

xi(k + 1) =xi(k)− xi(k) + 1
1 + di(k)xi(k) +

∑
j∈Ni(k)

wij(k)xj(k) + ui(k)


=xi(k) + 1
1 + di(k)−di(k)xi(k) +

∑
j∈Ni(k)

wij(k)xj(k) + ui(k)
 ,

i ∈ Nn − {1}, k ∈ Z.

(3.81)

The above equation can be expressed as:

xi(k + 1) = xi(k) + fi(x(k), ui(k), k), (3.82)

where fi(x(k), ui(k), k) is a scalar function associated with agent i, defined as:

fi(x(k), ui(k), k) = 1
1 + di(k) ∑

j∈Ni(k)
wij(k) (xj(k)− xi(k)) + ui(k)

 (3.83)

(note that the above function contains only relative information of agent i with respect

to its neighbors). On the other hand, input saturation can be defined for (3.82) as:

xi(k + 1) = xi(k) + sat
(
fi(x(k), ui(k), k)

)
, (3.84)
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where sat(.) is the saturation function described below:

sat(x) =


sign(x)ūi, |x| ≥ ūi

x, |x| < ūi

. (3.85)

Moreover, sign(.) is the sign function and ūi > 0 is the upper bound of the input

saturation for agent i. Equation (3.84) can be rewritten in the following form:

xi(k + 1) = xi(k) + αi
(
fi(x(k), ui(k), k)

)
fi(x(k), ui(k), k), (3.86)

where αi(.) is a scalar function given by:

αi(x) =


ūi
|x|
, |x| ≥ ūi

1, |x| < ūi

, (3.87)

and bounded as:

0 < αi(.) ≤ 1. (3.88)
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Equation (3.86) can then be expanded as follows:

xi(k + 1) = 1
1 + di(k)(1 + di(k)− di(k)αi

(
fi(x(k), ui(k), k)

))
xi(k)

+ αi
(
fi(x(k), ui(k), k)

) ∑
j∈Ni(k)

wij(k)xj(k)

+ αi
(
fi(x(k), ui(k), k)

)
ui(k)

.

(3.89)

The above equation can be written in matrix form for all agents as:

x(k + 1) = P
(
x(k),u(k), k

)
x(k) + B

(
x(k),u(k), k

)
u(k), (3.90)

where P and B are matrix-valued functions defined by:

P
(
x(k),u(k), k

)
= (I +D(k))−1I +D(k)

(
I −α

(
x(k),u(k), k

))
+α

(
x(k),u(k), k

)
W (k)

 (3.91)

B
(
x(k),u(k), k

)
= (I +D(k))−1α

(
x(k),u(k), k

)
, (3.92)

Furthermore, α
(
x(k),u(k), k

)
is a diagonal matrix function with αi

(
fi(x(k), ui(k), k)

)
being its ith diagonal element, i ∈ Nn.
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3.7.1 Stability Analysis

For u(k) = 0, x11n is an equilibrium of (3.90) because:

P
(
x11n, 0, k

)
x11n = x11n. (3.93)

To investigate the stability of the above equilibrium point, define x(k) = x11n − e(k)

and substitute it into (3.86) to obtain:

ei(k + 1) = ei(k) + αi
(
fi(e(k),−ui(k), k)

)
fi(e(k),−ui(k), k), (3.94)

where fi(e(k),−ui(k), k) is:

fi(e(k),−ui(k), k) = 1
1 + di(k) ∑

j∈Ni(k)
wij(k)

(
ej(k)− ei(k)

)
− ui(k)

 . (3.95)

Then, the dynamic equation of the network can be written as:

e(k + 1) = P
(
e(k),u(k), k

)
e(k)−B

(
e(k),u(k), k

)
u(k), (3.96)

where the functions P and B are defined in (3.91) and (3.92), with α
(
e(k),−u(k), k

)
=

diag(
[
α1
(
f1(e(k),−u1(k), k)

)
. . . αn

(
fn(e(k),−un(k), k)

)]
). Applying the control
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input defined in (3.44), one arrives at:

e(k + 1) = Pcl
(
e(k), k

)
e(k), (3.97)

where:

Pcl
(
e(k), k

)
= (I +D(k))−1H(
e(k), k

)
+D(k)

(
I −α

(
e(k), k

))
+α

(
e(k), k

)
W (k)

, (3.98)

Also H
(
e(k), k

)
is a diagonal matrix function, with hi

(
e(k), k

)
defined below being its

ith diagonal element:

hi

(
e(k), k

)
=


1− αi

(
fi(e(k),−ei(k), k)

)
, i ∈ N1(k) ∪Nj(k), j ∈ N1(k)

1, otherwise

, (3.99)

and α
(
e(k), k

)
is a diagonal matrix function with αi

(
e(k), k

)
defined below being its

ith diagonal element:

αi
(
e(k), k

)
=


αi
(
fi(e(k),−ei(k), k)

)
, i ∈ N1(k) ∪Nj(k), j ∈ N1(k)

αi
(
fi(e(k), 0, k)

)
, otherwise

. (3.100)
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Since the first element of e(k), which corresponds to the leader, is always zero, the first

row and column of Pcl can be removed. Thus, the new equation is written as:

ẽ(k + 1) = P̃cl
(
ẽ(k), k

)
ẽ(k), (3.101)

where P̃cl is:

P̃cl
(
ẽ(k), k

)
= (Ĩ + D̃(k))−1H̃(
ẽ(k), k

)
+ D̃(k)

(
Ĩ − α̃

(
ẽ(k), k

))
+ α̃

(
ẽ(k), k

)
W̃ (k)

. (3.102)

Moreover, D̃(k) :=diag(
[
d2(k) . . . dn(k)

]
), α̃

(
ẽ(k), k

)
:=diag(

[
α2
(
ẽ(k), k

)
. . . αn

(
ẽ(k), k

)]
),

H̃
(
ẽ(k), k

)
:=diag(

[
h2
(
ẽ(k), k

)
. . . hn

(
ẽ(k), k

)]
), W̃ (k) is obtained by removing the

first row and column of W (k), and Ĩ is the identity matrix of appropriate dimension.

Theorem 3.5. System (3.101) is globally asymptotically stable.

Proof. As the first step of the proof, note that the saturation function αi(ẽ(k), k) is

bounded according to (3.88). Instead of the scalar function αi(ẽ(k), k), consider an

unknown time-varying scalar âi(k) with the same upper and lower bounds as (3.88) [75].

Thus, the function matrix P̃cl
(
ẽ(k), k

)
in (3.102) is converted into a time-varying matrix
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P̃ cl(k) as follows:

P̃ cl(k) =
(
Ĩ + D̃(k)

)−1

(
Ĥ(k) + D̃(k)

(
Ĩ − Â(k)

)
+ Â(k)W̃ (k)

)
,

(3.103)

where Â(k) is a diagonal matrix, with âi(k) being its ith diagonal element, and Ĥ(k) is

a diagonal matrix, with ĥi(k) defined below being its ith diagonal element:

ĥi(k) =


1− âi(k), i ∈ N1(k) ∪Nj(k), j ∈ N1(k)

1, otherwise

. (3.104)

Assume that i ∈ N1(k). Then, the ith row sum of P̃ cl(k) is:

n−1∑
j=1

p̃clij(k) =
(

1 + d̃i(k)
)−1(

1− âi(k) + d̃i(k)− d̃i(k)âi(k) + d̃i(k)α̂i(k)− wi1âi(k)
)

=
(

1 + d̃i(k)
)−1(

1− âi(k) + d̃i(k)− wi1âi(k)
)
.

(3.105)

Note that ∑n−1
j=1 w̃ij(k) = d̃i(k) − wi1(k) given that the first row of W is removed to

obtain W̃ . Furthermore, 0 ≤ 1− âi(k) < 1 and d̃i(k) > wi1âi(k). Thus:

(
1 + d̃i(k)

)
>
(

1− âi(k) + d̃i(k)− wi1âi(k)
)
, (3.106)

and
n−1∑
j=1

p̃clij(k) < 1. (3.107)
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Now, assume that i ∈ Nj(k), where j ∈ N1(k). Then, the ith row sum of P̃ cl(k) is:

n−1∑
j=1

p̃clij(k) =
(

1 + d̃i(k)
)−1(

1− âi(k) + d̃i(k)− d̃i(k)âi(k) + d̃i(k)âi(k)
)

<1.

(3.108)

Finally, assume that i /∈ N1(k) ∪Nj(k), where j ∈ N1(k). The ith row sum of P̃ cl(k) is:

n−1∑
j=1

p̃clij(k) =
(

1 + d̃i(k)
)−1(

1 + d̃i(k)− d̃i(k)âi(k) + d̃i(k)âi(k)
)

=1.

(3.109)

The above row sum is the same as that of P̃ s(k) in (3.63). Since Ĩ − Â(k) is a diagonal

non-negative matrix, P̃ cl(k) is a non-negative matrix as well. Hence, P̃ cl(k) and P̃ s(k)

have similar properties and the same network connectivity (W̃ (k) is the same in both

(3.59) and (3.103)). Thus, following a procedure similar to the proof of Theorem 3.3,

it is concluded that (3.103) is asymptotically stable. Hence, it is guaranteed that the

equilibrium e = 0 for the nonlinear system is locally asymptotically stable. To study

the global stability, it is required to find the region of attraction R, defined as [76]:

R = {e(k0) ∈ Rn−1 | Φ(kl, k0)→ 0 as l→∞} (3.110)

To obtain an estimate of R, the boundary of e in the nonlinear system should be derived
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first [75]. From (3.88) and (3.94):

fi(e(k),−ui(k), k) ≤ ūi
αmin

, (3.111)

where αmin is the minimum value of αi which is zero as given in (3.88). This means that

the size of the region R is infinite, and hence the region of attraction of the equilibrium

of the nonlinear function at the origin is the entire space. Thus, (3.101) is globally

asymptotically stable. �

Remark 3.11. One can use an approach similar to the proof of Theorem 3.5 to show

that under the control command described in Algorithm 1 the network subject to input

saturation described by (3.90) is globally asymptotically stable.

Example 3.6. Consider a network of 100 mobile robots with a topology which is up-

dated at every 20 steps and a weight matrix which is updated at every step. Let all

agents be subjected to input saturation with the upper bound ūi = 2.8, ∀i ∈ Nn. The

generalized algebraic connectivity of the system is depicted in Figure 3.22. Figures 3.23-

3.26 show the states of the network for the system subject to input saturation without

any control command, with leader’s control command, with leader’s and subleaders’ con-

trol commands, and with the commands of all agents that act as a leader. These figures

demonstrate that under all four control strategies all agents converge to the leader. Fig-

ure 3.27 compares the average of the states of the agents under all four control strategies.

It is clear that using all agents as the leader and follower can lead the system to a faster
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Figure 3.22: Generalized algebraic connectivity of the network in Example 3.6.

convergence even in presence of the input saturation.

3.8 Conclusions

Consensus control of a multi-agent network with leader-follower structure is investigated

in this chapter. The control strategy uses local information of the agents, based on the

nearest neighbor rule. The network can be as simple as one with a small number of

agents, time-invariant weights and fixed topology, and can be as complex as one with

a large number of agents, time-varying weights and switching topology. Accordingly,

the control scheme can be as simple as some commands generated by the leader for all

agents, commands generated by the leader and its neighbors, and commands generated
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Figure 3.23: States of the agents in the network in the presence of input saturation in Exam-
ple 3.6 with the standard protocol.
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Figure 3.24: States of the agents in the network in the presence of input saturation in Exam-
ple 3.6 with leader’s control command.
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Figure 3.25: States of the agents in the network in the presence of input saturation in Exam-
ple 3.6 with leader’s and subleaders’ control commands.
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Figure 3.26: States of the agents in the network in the presence of input saturation in Exam-
ple 3.6 with the commands of all agents that act as a leader.
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Figure 3.27: Comparison between all four control strategies for the network of Example 3.6
with switching topology, time-varying weights, and input saturation.

by all agents for their neighbors. To evaluate the convergence performance of the pro-

posed control schemes, the location of the dominant eigenvalue of the closed-loop system

for the case of time-invariant weights with fixed topology, and the composition of the

state transition matrix for the case of time-varying weights with switching topology are

investigated. The stability of the closed-loop system in the presence of input saturation

is also analyzed. The efficacy of the results obtained is confirmed by several numerical

examples.
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Chapter 4

Conclusion and Future Work

This thesis investigates consensus control of a multi-agent network with leader-follower

structure. The main contribution of this thesis is introducing a new consensus control

scheme by adding the control command to the dynamic equation of the network under

nearest neighbor rule. Networks with fixed and switching topologies are studied and the

input saturation in agents’ dynamics is also considered. The stability of the network

under the proposed methods is investigated.

In Chapter 2, the equilibrium characteristics in multi-agent networks are studied.

Using a Markov chain model, a simple technique for computing the steady-state matrix

is provided. It is then shown how the number of links can impact the convergence

time. A control rule is subsequently proposed and the eigenvalues of the resultant

closed-loop system for two network topologies are investigated for convergence analysis.
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The results show that the proposed method has a faster convergence rate compared

to the conventional consensus control rules. Simulation results confirm the superior

performance of the proposed follower-based control allocation strategy.

In Chapter 3, consensus control of a multi-agent network with leader-follower struc-

ture is investigated. The control strategy uses local information of the agents, based on

the nearest neighbor rule. The network can be as simple as one with a small number of

agents, time-invariant weights and fixed topology, and can be as complex as one with

a large number of agents, time-varying weights and switching topology. Accordingly,

the control scheme can be as simple as some commands generated by the leader for

all agents, commands generated by the leader and its neighbors, and commands gener-

ated by all agents for their neighbors. To evaluate the convergence performance of the

proposed control schemes, the location of the dominant eigenvalues of the closed-loop

system for the case of time-invariant weights with fixed topology, and the composition

of the state transition matrix for the case of time-varying weights with switching topol-

ogy are investigated. The stability of the closed-loop system in the presence of input

saturation is also analyzed. The efficacy of the results obtained is confirmed by several

numerical examples.
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4.1 Suggestions for Future Work

The main contribution of this thesis is to develop distributed control strategies for a

multi-agent network with leader-follower structure based on the nearest neighbor rule.

The following ideas are suggested for future research directions.

• In the present work it is assumed that after removing the leader and its links, the

graph of the network will be divided into multiple subgraphs. Each subgraph is also

assumed to be a weighted undirected graph. It would be interesting to investigate

an asymmetric network with weighted links. Note that the convergence analysis in

this case will be more complicated given that the graph representing an asymmetric

network is directed.

• Throughout this work, the network is assumed to be homogeneous. It would be

interesting to extend the results to the case of heterogeneous networks.

• The control command for each agent in this work is computed based on the rel-

ative information of the agent with respect to its neighbors. To achieve faster

convergence, each agent can compute its control command based on both its local

information and estimates of the states of all other agents.

• This work can be extended to the case when communications between agents is

subject to perturbation, noise or data loss. Therefore, it would be interesting

to develop a robust, reliable and fault-tolerant control strategy for this type of
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multi-agent network.
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