5 research outputs found

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Efficient and portable multi-tasking for heterogeneous systems

    Get PDF
    Modern computing systems comprise heterogeneous designs which combine multiple and diverse architectures on a single system. These designs provide potentials for high performance under reduced power requirements but require advanced resource management and workload scheduling across the available processors. Programmability frameworks, such as OpenCL and CUDA, enable resource management and workload scheduling on heterogeneous systems. These frameworks fully assign the control of resource allocation and scheduling to the application. This design sufficiently serves the needs of dedicated application systems but introduces significant challenges for multi-tasking environments where multiple users and applications compete for access to system resources. This thesis considers these challenges and presents three major contributions that enable efficient multi-tasking on heterogeneous systems. The presented contributions are compatible with existing systems, remain portable across vendors and do not require application changes or recompilation. The first contribution of this thesis is an optimization technique that reduces host-device communication overhead for OpenCL applications. It does this without modification or recompilation of the application source code and is portable across platforms. This work enables efficiency and performance improvements for diverse application workloads found on multi-tasking systems. The second contribution is the design and implementation of a secure, user-space virtualization layer that integrates the accelerator resources of a system with the standard multi-tasking and user-space virtualization facilities of the commodity Linux OS. It enables fine-grained sharing of mixed-vendor accelerator resources and targets heterogeneous systems found in data center nodes and requires no modification to the OS, OpenCL or application. Lastly, the third contribution is a technique and software infrastructure that enable resource sharing control on accelerators, while supporting software managed scheduling on accelerators. The infrastructure remains transparent to existing systems and applications and requires no modifications or recompilation. In enforces fair accelerator sharing which is required for multi-tasking purposes

    Terrain Representation And Reasoning In Computer Generated Forces : A Survey Of Computer Generated Forces Systems And How They Represent And Reason About Terrain

    Get PDF
    Report on a survey of computer systems used to produce realistic or intelligent behavior by autonomous entities in simulation systems. In particular, it is concerned with the data structures used by computer generated forces systems to represent terrain and the algorithmic approaches used by those systems to reason about terrain

    Realistic visualisation of cultural heritage objects

    Get PDF
    This research investigation used digital photography in a hemispherical dome, enabling a set of 64 photographic images of an object to be captured in perfect pixel register, with each image illuminated from a different direction. This representation turns out to be much richer than a single 2D image, because it contains information at each point about both the 3D shape of the surface (gradient and local curvature) and the directionality of reflectance (gloss and specularity). Thereby it enables not only interactive visualisation through viewer software, giving the illusion of 3D, but also the reconstruction of an actual 3D surface and highly realistic rendering of a wide range of materials. The following seven outcomes of the research are claimed as novel and therefore as representing contributions to knowledge in the field: A method for determining the geometry of an illumination dome; An adaptive method for finding surface normals by bounded regression; Generating 3D surfaces from photometric stereo; Relationship between surface normals and specular angles; Modelling surface specularity by a modified Lorentzian function; Determining the optimal wavelengths of colour laser scanners; Characterising colour devices by synthetic reflectance spectra

    5.Uluslararası Öğrenciler Fen Bilimleri Kongresi Tam Metin Kitabı

    Get PDF
    Çevrimiçi (IX, 431 Sayfa; 26 cm.)
    corecore