

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Efficient and Portable Multi-Tasking for
Heterogeneous Systems

Christos Margiolas

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2015

Abstract
Modern computing systems comprise heterogeneous designs which combine multiple

and diverse architectures on a single system. These designs provide potentials for

high performance under reduced power requirements but require advanced resource

management and workload scheduling across the available processors.

Programmability frameworks, such as OpenCL and CUDA, enable resource man-

agement and workload scheduling on heterogeneous systems. These frameworks fully

assign the control of resource allocation and scheduling to the application. This design

sufficiently serves the needs of dedicated application systems but introduces signifi-

cant challenges for multi-tasking environments where multiple users and applications

compete for access to system resources.

This thesis considers these challenges and presents three major contributions that

enable efficient multi-tasking on heterogeneous systems. The presented contributions

are compatible with existing systems, remain portable across vendors and do not re-

quire application changes or recompilation.

The first contribution of this thesis is an optimization technique that reduces host-

device communication overhead for OpenCL applications. It does this without modifi-

cation or recompilation of the application source code and is portable across platforms.

This work enables efficiency and performance improvements for diverse application

workloads found on multi-tasking systems.

The second contribution is the design and implementation of a secure, user-space

virtualization layer that integrates the accelerator resources of a system with the stan-

dard multi-tasking and user-space virtualization facilities of the commodity Linux OS.

It enables fine-grained sharing of mixed-vendor accelerator resources and targets het-

erogeneous systems found in data center nodes and requires no modification to the OS,

OpenCL or application.

Lastly, the third contribution is a technique and software infrastructure that enable

resource sharing control on accelerators, while supporting software managed schedul-

ing on accelerators. The infrastructure remains transparent to existing systems and

applications and requires no modifications or recompilation. In enforces fair accelera-

tor sharing which is required for multi-tasking purposes.

iii

Lay Summary of Thesis
Modern computing systems comprise heterogeneous designs which combine multiple

and diverse architectures on a single system. These designs provide potentials for

high performance under reduced power requirements but require advanced resource

management and workload scheduling across the available processors.

This thesis considers these challenges and presents three major contributions that

enable efficient multi-tasking on heterogeneous systems. The presented contributions

are compatible with existing systems, remain portable across vendors and do not re-

quire application changes or recompilation.

iv

Acknowledgements
First of all, I would like to thank my academic advisor, Professor Michael O’Boyle,

for his support over the past years. His advice and guidance have been invaluable both

for pursuing my PhD and a successful career.

Next, I would like to thank my friends and colleagues in the CArD research group

for our technical discussions, continuous brainstorming and funny moments. In partic-

ular, I would like to thank Alberto Magni, Konstantina Mitropoulou, and Vasileios Por-

podas who helped me understand the challenges of academia during the first months of

my studies. I also thank my officemates Harry Wagstaff, Stephen Kyle, Thibaut Lutz,

Thomas Spink and Tobias Edler von Koch. I am also grateful to my good friends and

colleagues Chris Fensch, Juan José Fumero, Kiran Chandramohan, Yuan Wen, Stavros

Gerakaris and Dimitrios Papadopoulos. I would also like to thank Stratis Viglas for

our Big Data and startup discussions.

I would like to thank my old buddies that we are still in touch and share tech-

nical ideas. In particular, I thank Anastasios Panagianis, George Kiagiadakis, George

Kafentzis, Georgios Detorakis, Ioannis Manousakis, Michael Alvanos and Stathis Zavvos.

In addition, I would like to thank Bob Dreyer, Jason Kim and Mike Sharp for nine

insightful and challenging months at the Qualcomm Innovation Center.

I thank my Bay Area friends Adam Smith, Behrooz Mahasseni, Gokul Subrama-

nian, Hariharan Bhagavatheeswaran, Lee Yuan and Dimitrios Skarlatos.

As an act of narcissism, I would also like to thank myself for enduring the academic

procedures and investing infinite hours in interesting projects.

Finally, I would like to thank my family for their unconditional support.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• Christos Margiolas and Michael F. P. O’Boyle. ”Hyda: A hybrid dependence

analysis for the adaptive optimisation of opencl kernels”. In Proceedings of the

International Workshop on Adaptive Self-tuning Computing Systems, ADAPT

2014.

• Christos Margiolas and Michael F. P. O’Boyle. ”Portable and transparent host-

device communication optimization for gpgpu environments”. In Proceedings

of the Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO 2014.

• Christos Margiolas and Michael F.P. O’Boyle. ”Palmos: A transparent, multi-

tasking acceleration layer for parallel heterogeneous systems”. In Proceedings

of the 29th ACM on International Conference on Supercomputing, ICS 2015.

• Christos Margiolas and Michael F.P. O’Boyle. ”accelOS: Portable and trans-

parent software managed scheduling on accelerators for fair resource sharing”.

Under submission.

(Christos Margiolas)

vi

Table of Contents

1 Introduction 1
1.1 Multi-tasking Challenges on Heterogeneous Systems 2

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Technical Background 7
2.1 Heterogeneous Systems . 7

2.1.1 Concept . 7

2.1.2 Central Processing Units . 9

2.1.3 Graphics Processing Units 9

2.1.4 Non-Uniform Memory Access Systems 12

2.1.5 Thesis Directions . 13

2.2 Accelerator Programmability . 14

2.2.1 Concept . 15

2.2.2 OpenCL . 16

2.2.3 CUDA Comparison . 20

2.2.4 Thesis Directions . 21

2.3 Runtime Environments . 22

2.3.1 Concept . 22

2.3.2 Design Aspects . 23

2.4 Compiler Infrastructure . 24

2.4.1 Concept . 24

2.4.2 LLVM Compiler Infrastructure 25

2.5 Evaluation Methodology . 27

2.5.1 Metrics . 27

2.5.2 Benchmarks . 28

2.6 Summary . 28

vii

3 Related Work 31

3.1 System Resource Sharing . 31

3.1.1 Homogeneous Systems . 32

3.1.2 Heterogeneous Systems . 33

3.1.3 Inter-Node Accelerator Resource Sharing 35

3.2 System Resource Virtualization . 36

3.2.1 Hypervisor based Virtualization 36

3.2.2 OS-level Virtualization . 38

3.2.3 Accelerator Virtualization 39

3.3 Workload Scheduling on Heterogeneous Systems 40

3.3.1 Runtime and Compiler Approaches 41

3.3.2 Computer Architecture . 42

3.4 Memory Management and Data Sharing 44

3.4.1 Memory Allocators . 44

3.4.2 Non-Uniform Memory Access Architectures 46

3.4.3 Communication Optimizations for Heterogeneous Systems . . 46

3.5 Performance Evaluation & Modeling on Accelerators 48

3.6 Summary . 50

4 Host-Device Communication Optimization 51

4.1 Introduction . 52

4.2 Motivation . 53

4.2.1 Performance Impact . 56

4.2.2 Summary . 56

4.3 Optimization Overview . 57

4.3.1 Platform Characterization 58

4.3.2 Application Characterization 58

4.3.3 Runtime Optimization . 59

4.4 Platform Characterization . 59

4.4.1 Memory Allocation Policies 59

4.4.2 Platform Characterization Procedure 61

4.5 Application Tracing . 62

4.5.1 Call Trace . 63

4.5.2 Trace Compression . 65

4.6 Application Analysis . 66

viii

4.7 Runtime Optimization . 67

4.7.1 Memory Allocation Manager 68

4.8 Experimental Setup . 69

4.8.1 Platforms . 69

4.8.2 Benchmarks . 69

4.9 Results . 70

4.9.1 Results on NVIDIA GTX 580 70

4.9.2 Results on AMD Radeon HD 5970 and NVIDIA Tesla k20c . 75

4.9.3 Tuned Version of Parboil for NVIDIA 75

4.9.4 What policy to use . 76

4.9.5 Comparing against a naive approach 79

4.10 Summary . 79

5 Heterogeneous Acceleration Layer 81

5.1 Introduction . 81

5.2 Motivation . 83

5.3 Layer Overview . 84

5.3.1 Key Design Choices . 85

5.3.2 PALMOS Structured Design 86

5.4 Virtual OpenCL . 87

5.4.1 Shared Stack . 89

5.4.2 Shared Data . 89

5.5 Inter-space Memory Allocator . 90

5.5.1 Two-Level Memory Allocator 90

5.5.2 Address Space Translator . 90

5.5.3 Lock-free Design . 92

5.6 Resource Manager & Application Scheduler 92

5.6.1 PALMOS Session . 92

5.6.2 Application Scheduling . 94

5.6.3 NUMA Awareness . 96

5.7 Security . 96

5.8 Experimental Setup . 97

5.8.1 Workloads . 98

5.8.2 Platform . 98

5.8.3 Comparison to existing approaches 99

ix

5.9 Results . 100

5.9.1 Single application performance 100

5.9.2 Multi-program performance 105

5.9.3 PALMOS against existing approaches 106

5.10 Summary . 108

6 Resource Sharing Control on Accelerators 111

6.1 Introduction . 111

6.2 Motivation . 115

6.2.1 Motivational Example . 115

6.2.2 Standard Scheduling Approach 117

6.2.3 accelOS: Software Scheduling & Resource Sharing Control . 117

6.3 Accelerator Resource Sharing Scheme 119

6.4 Infrastructure Overview . 121

6.5 Host Runtime . 122

6.5.1 Application Monitor . 122

6.5.2 Kernel Scheduler . 123

6.6 Just In Time Compilation . 123

6.6.1 Compilation Procedure . 124

6.6.2 Transformation Overview 124

6.6.3 GPU Runtime Library . 127

6.6.4 Adaptive Scheduling . 127

6.7 Experimental Setup . 128

6.7.1 Evaluation Platforms . 128

6.7.2 Workloads . 128

6.7.3 Comparison to other approaches 128

6.7.4 Metrics . 128

6.8 Results . 129

6.8.1 Fairness in Accelerator Sharing 130

6.8.2 Concurrent Kernel Executions 134

6.8.3 System Throughput . 135

6.8.4 accelOS Overhead . 136

6.8.5 Additional Evaluation Metrics 139

6.9 Summary . 139

x

7 Conclusion 141
7.1 Contributions . 141

7.1.1 Host-Device Communication Optimization 141

7.1.2 Heterogeneous Acceleration Layer 142

7.1.3 Resource Sharing Control on Accelerators 142

7.2 Critical Analysis . 142

7.2.1 Alternative Designs in Kernel Space 143

7.2.2 Feedback Driven Resource Management 143

7.2.3 Unified Management of Computation and Graphics Workloads 144

7.2.4 Performance Evaluation with non GPU accelerators 144

7.3 Future Work . 144

7.3.1 Unified Management of Computation and Graphics 144

7.3.2 Workload Migration across Processors 145

7.3.3 Dynamic Code Optimizations 145

7.3.4 Power Aware Resource Management 145

7.3.5 Integrated and Mobile GPUs 145

7.3.6 Operating Systems running on Accelerators 145

7.4 Summary . 146

Bibliography 147

xi

Chapter 1

Introduction

Modern computing systems increasingly have heterogeneous designs where multiple,

diverse processors are combined on a single system. Such systems have the potential

for high computational throughput with reduced power requirements. Processor het-

erogeneity is the evolution of multi-core Central Processing Unit (CPU) designs which

replaced the high frequency and power greedy sequential processor architectures in

mid 2000’s.

A heterogeneous system comprises multiple processors with diverse architectures

specialized to different types of computation. In these systems, appropriate resource

management and workload scheduling deliver high performance while preserving low

power requirements. The vast majority of modern systems ranging from embedded

and mobile areas to data centers and High Performance Computing (HPC) have het-

erogeneous designs. They consist of multi-core CPUs and one or more computational

accelerators. Accelerators, traditionally, were specialized and expensive processor de-

signs with limited application areas. However, the Cell BE [86] architecture and later

the evolution of Graphics Processing Units (GPUs) from fixed pipeline graphic pro-

cessors to fully programmable multi-cores enabled general purpose programming on

accelerators. Nowadays, the most popular family of accelerators are GPUs while Dig-

ital Signal Processors (DSPs) and Xeon Phi [88] serve special application needs in

mobile systems and HPC, respectively.

Software development on heterogeneous systems introduces additional complex-

ity due to the design of mainstream programming languages that exclusively assume

general purpose CPUs. This has lead to the development of specialized languages and

programming frameworks, such as OpenCL[58] and CUDA[81], which enable work-

1

2 Chapter 1. Introduction

load scheduling on accelerator resources. These frameworks fully assign the control

of resource allocation, data communication and workload scheduling to the applica-

tion and there is no centralized control for resource management and scheduling. This

design is sufficient for dedicated application systems but introduces significant chal-

lenges for multi-tasking environments where multiple applications and users compete

for accessing system resources. This thesis addresses these challenges and provides

solutions that enable efficient multi-tasking on existing hardware and software stacks

without requiring any modification or recompilation of existing applications or any

software stack changes.

1.1 Multi-tasking Challenges on Heterogeneous

Systems

The existing software stack and programming models of heterogeneous systems lack

efficient support for multi-tasking. They provide full control of accelerator resources

to user applications and there is no central management. This leads to significant per-

formance overhead, inefficient resource management and unfair accelerator sharing.

The following paragraphs present some of the key challenges for multi-tasking on het-

erogeneous systems.

Communication Overhead: Modern heterogeneous systems consist of multiple

processors which may have separate physical memories. This design guarantees high

throughput memory accesses for the processors but introduces data copies across the

different memories. These data copies cause performance overhead as they are not part

of the original application payload but data communication enforced by the architec-

ture design. Communication overhead may severely reduce the benefits of leveraging

accelerators and are well known performance bottlenecks across all the types of het-

erogeneous software including applications running on HPC environments and multi-

tasking systems. In particular, applications running on multi-tasking systems present

relatively small workloads and communication overheads may dominate application

execution times.

Vendor Interoperability: Programming accelerators requires new programming

models and a number of software stack components including runtime environments,

Just In Time (JIT) compilers and kernel drivers. Each vendor tends to provide its

own software stack design which is typically closed source and incompatible with

1.2. Contributions 3

third party designs. This is the case even for implementations of OpenCL, which is a

standard programming model for leveraging accelerators in a portable manner. This

prevents efficient use of multi-vendor heterogeneous systems and hinders the design

of unified software stacks that are portable across vendors.

Accelerator Management: The existing programming models provide full control

of accelerators to applications and there is no central management of accelerator re-

sources. An application fully controls accelerator allocation, data transfers and work-

load scheduling. This design is sufficient for dedicated application systems where a

single application exclusively executes on the system. In contrast, this design is prob-

lematic for multi-tasking systems. The lack of central management leads to unbal-

anced system sharing, poor resource allocation decisions and significant performance

overheads. Furthermore, the lack of vendor interoperability, as described above, com-

plicates the management of multi-vendor heterogeneous systems.

Accelerator Resource Sharing: The existing programming models and software

stacks do not provide resource sharing control on accelerators for parallel execution re-

quests made by different applications and users. A high level abstraction of accelerator

resources is available to the developer and the application but there is no mechanism

to control resource allocation. On modern dedicated GPUs, where context switch is

not supported, the first application that performs a request may exclusively reserve ac-

celerator resources. This behavior leads to scenarios where one application dominates

accelerator usage, while other applications may suffer long delays before performing

their computations on accelerators. This unfair accelerator sharing and the limited

opportunities for concurrent accelerator usage undermines the capabilities of a multi-

tasking environments. Some users or applications are favored while others suffer long

delays.

1.2 Contributions

This thesis presents state of the art solutions to the four challenges described above.

An automatic technique that optimizes host-device communication is proposed which

reduces communication overheads and improves application performance. A virtual-

ization layer for heterogeneous resources is then presented. It enables central manage-

ment of accelerators, inter-vendor accelerator sharing and improves both application

and system performance. It solves the vendor interoperability and accelerator manage-

ment challenges described above. Finally, a technique that enables resource sharing

4 Chapter 1. Introduction

control on accelerator is proposed.

The following list briefly summarizes the main contributions of this thesis:

• The first contribution of this thesis develops an approach that reduces host-device

communication overhead for OpenCL applications. It does this without modi-

fication or recompilation of the application source code and is portable across

platforms. It achieves this by tracing and analyzing calls to the runtime made by

the application and then selecting the best platform specific memory allocation

and communication policy. It delivers speedups for a large number of applica-

tions. A detailed description is given in chapter 4.

• The second contribution is the design and implementation of a secure, user-space

virtualization layer that integrates the accelerator resources of a system with the

standard multi-tasking and user-space virtualization facilities of the commod-

ity Linux OS. It targets heterogeneous commodity systems found in data center

nodes and requires no modification to the OS, OpenCL or application. It elimi-

nates high setup overhead, enables fine-grained sharing of mixed-vendor acceler-

ator resources and provides resource and platform aware scheduling. It delivers

application speedups and system throughput speedups. This work is presented

in chapter 5.

• The last major contribution is a technique and a runtime and Just In Time com-

piler infrastructure that enable resource sharing control on accelerators, while

also enabling software managed scheduling on accelerators. The infrastructure

remains transparent to existing systems and applications and requires no modi-

fications or recompilation. It delivers fairness improvements, system throughput

speedups and application speedups. Chapter 6 presents this contribution in more

detail.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2: This chapter presents the technical background that is required for the

understanding of this thesis. It first introduces the concept of heterogeneous systems

and discusses accelerator programmability. It then describes key concepts on runtime

environments and compiler infrastructures. It concludes by presenting the evaluation

methodology used in this thesis.

1.3. Thesis Outline 5

Chapter 3: This chapter discusses prior work. It first presents research in the ar-

eas of resource sharing and virtualization. It then introduces workload scheduling and

communication optimization techniques. It concludes by reviewing memory manage-

ment and performance evaluation techniques.

Chapter 4: This chapter presents an approach that reduces host-device communi-

cation overhead for OpenCL applications. It does this without modification or recom-

pilation of the application source code and is portable across platforms. This approach

outperforms competitive approaches. This chapter is based on the work published in

paper [69].

Chapter 5: This chapter introduces a secure, user-space virtualization layer that

integrates the accelerator resources of a system with the standard multi-tasking and

user-space virtualization facilities of commodity Linux OS. The infrastructure remains

transparent to existing systems and applications and requires no modifications or re-

compilation. The approach is evaluated on a large set of benchmarks and compared

with alternative schemes. This chapter is based on the work published in paper [71].

Chapter 6: The chapter presents a technique and an infrastructure that enable

resource sharing control on accelerators. The infrastructure remains transparent to

existing systems and applications and requires no modifications or recompilation. The

approach is evaluated on a large set of benchmarks and compared with alternative

schemes. This chapter is based on the work that is under submission in paper [70].

Chapter 7: This chapter concludes this thesis with a summary of the main contri-

butions. It provides a critical analysis of some of the technical aspects and discusses

ideas for potential future work.

Chapter 2

Technical Background

This section provides a high level overview of the technical background that is re-

quired for the understanding of this thesis and its contributions. Key concepts such

as heterogeneity, runtime environments and compiler infrastructure are discussed here.

Section 2.1 introduces the concept of heterogeneous computing and presents the main

processor types used in heterogeneous systems. Section 2.2 presents the program-

ming model and frameworks required for computing on accelerators. Runtime envi-

ronments, their role and core functionality are described in section 2.3. Compiler tech-

nologies and the LLVM compiler infrastructure are discussed in section 2.4. Finally,

common evaluation methodologies used to evaluate the contributions of this thesis are

given in section 2.5. The chapter concludes with a summary in section 2.6.

2.1 Heterogeneous Systems

This section presents the key features of heterogeneous systems. It first introduces the

heterogeneity concept by providing an abstract architecture and then describes popular

processor families found in heterogeneous system configurations.

2.1.1 Concept

Heterogeneity refers to computer architectures where a system consists of more than

one processor types. This type of systems typically combine diverse processor types

that serve different performance needs. Efficient workload scheduling across the avail-

able processors can deliver high computational performance with reduced power re-

quirements. Figure 2.1 shows an abstract representation of a heterogeneous system

7

8 Chapter 2. Technical Background

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host

CPU Cores

Memory

Host Side

Accel. Cores

Memory

Device

Interconnect

H2D

D2H

Figure 2.1: High level abstraction of a Heterogeneous System. It consists of two parts,

the host and device. The host contains multi-core CPUs and the main system memory,

while the device contains accelerator processors and their local memory sub-systems.

An interconnect supports data communication in both directions.

that consists of two processor types. The first processor is a multi-core CPU which

along with the main system memory are known as the host . The second processor is

a computational accelerator, such as Graphics Processing Units (GPUs), which has a

separate memory subsystem. The accelerator and its local memory are known as the

device. The host and device are connected via an interconnect and data communication

can take place in both directions. The operation of copying data from host memory to

the device memory is named Host to Device Communication (H2D Communication),

while data copying to the opposite direction is named Device to Host Communication

(D2H Communication).

In modern systems, the host processor is frequently of x86 or ARM architecture.

While the accelerator processor on the device may be a GPU, a Digital Signal Processor

(DSP), a Field-programmable gate array (FPGA) or Intel Xeon Phi [88]. However,

heterogeneous computing evolves rapidly and new vendors and products may provide

divergent solutions.

There are heterogeneous system designs where different types of processing cores

share the same chip and a single physical memory sub-system. This approach is fol-

lowed by Intel processors with integrated graphics and the AMD Accelerated Pro-

cessing Units (APU). In addition, single-ISA heterogeneous chips, such as the ARM

big.LITTLE architecture, fall into this category. This type of chips is equipped with

multiple types of cores that share the same instruction set but have different computing

and power capabilities.

This abstract heterogeneous system definition can be generalized to system con-

2.1. Heterogeneous Systems 9

figurations where the number and type of accelerators may vary. The next sections

present the key features of CPU and GPU architectures which are components of the

heterogeneous systems considered in this thesis.

2.1.2 Central Processing Units

The Central Processing Unit (CPU) is the de-facto processor type used in every modern

computing system. It is a general purpose processor that performs all the computations

required by any level of software including the Operating System and user applications.

Over the years CPU architectures have evolved from sequential designs to multi-core,

parallel processors where a single chip die has multiple identical cores that perform

computations in parallel.

CPUs may incorporate additional levels of parallelism such as superscalar designs

and instruction pipelining which permit multiple instructions to execute concurrently.

They may also support Single Instruction Multiple Data (SIMD) operations which en-

able the parallel processing of multiple data elements per single instruction. SIMD is

typically supported via architecture extensions such as Streaming SIMD Extensions

(SSE) version 4 and Advanced Vector Extensions (AVX) version 2 for x86 and Ad-

vanced SIMD extension (NEON) for ARM architectures.

A modern processor typically is equipped with at least three levels of memory

caches in order to mitigate the large main memory access times. Every level has been

designed with a trade-off between speed and capacity. Cache levels closer to the CPU

components tend to be faster but smaller in capacity while levels closer to memory

have slower access times but larger capacity. Depending on the CPU design and the

type of memory coherency, a cache level may be shared or not among the chip cores

and the cache coherence protocol is responsible for enforcing a consistent memory

view across the cores.

2.1.3 Graphics Processing Units

A Graphics Processor Unit (GPU) is a processor type that originally was targeted of

graphics computation and acceleration. The first generations of GPUs were processors

with fixed-function hardware units that performed predefined graphics computations.

However, over the last 15 years GPUs have evolved to powerful data parallel architec-

tures that can perform both graphics and general purpose computations. They contain

a large number of programmable cores that are capable of performing complex graph-

10 Chapter 2. Technical Background

Figure 2.2: Abstract comparison of CPU and GPU architectures. CPU designs contains

a small number of powerful cores while GPU designs contains thousands basic cores.

CPUs efficiently handle irregular program control flows and memory accesses while

GPUs specialize in data parallel workloads.

ics computations which are described in software. This flexible scheme also allows

general purpose computing on GPUs for data parallel applications. Application devel-

opers use programming models such as OpenCL and CUDA and write general purpose

tasks that are executed on GPUs. This type of programming is called General-purpose

computing on graphics processing units (GPGPU).

GPU architecture designs are radically different to CPUs as can be seen in fig-

ure 2.2. While CPUs typically have a small number of powerful cores and advanced

memory caches, GPUs follow a different approach. GPUs have hundreds of small com-

putational cores which are efficient for computation operations but they lack efficiency

for managing complex program control flows and irregular memory access patterns.

Furthermore, GPU designs either completely discard cache use or they provide a very

basic cache hierarchy with low space and logic requirements.

Multiprocessors: GPUs have a massive number of cores which are grouped in

Multiprocessors. The cores of a multiprocessor share a single Program Counter and

they work in lockstep; they perform computations in a Single Instruction Multiple Data

(SIMD) manner. Every core executes the same instruction at a time but on different

data. This design is extremely effective for computation operations but introduces

significant overhead for divergent control flows. Each time a branch instruction sets

different execution paths across the cores, the execution of the different paths is per-

2.1. Heterogeneous Systems 11

Figure 2.3: Memory Access Coalescing on GPU architectures. In order to achieve

peak performance, the cores of a multiprocessor are required to access consecutive

addresses in memory. Figure taken from [81].

formed sequentially. Furthermore, the cores of a multiprocessor share a single large

Register file and a software managed scratchpad memory which is typically named lo-

cal memory and is accessible by the programming models. A GPU contains multiple

multiprocessors and each of which may execute different parts of a program or even

different programs. This way Single Program Multiple Data and Multiple Program

Multiple Data models are supported by GPUs.

Memory Hierarchy: GPUs originally did not have any memory cache. Latest

generations come with two levels of cache. The first level, L1, is typically shared

among the cores of a multiprocessor, while the second level, L2, is shared among all

the cores of the GPU. L1 cache and local memory share the same silicon area and their

capacity is adjustable. A GPU has access to a global memory that is based on DRAM

technology. The global memory may be a dedicated memory subsystem or the main

system memory in case of integrated GPUs. GPU memory access interfaces are wider

than standard CPU interfaces and are meant to serve multiple cores per memory read

or write request. These wide interfaces provide higher memory access throughput but

12 Chapter 2. Technical Background

Memory

CPU Cores

Accelerator

CPU Cores

Accelerator

Memory

Node 1 Node 2

PCI-Express
Interface

PCI-Express
Interface

Node
Interconnect

Figure 2.4: Abstraction of a Non-Uniform Memory Access (NUMA) System. CPU

chips and physical memory are distributed in multiple nodes (or sockets). System

nodes are connected via an interconnect.

introduce a significant constraint. In order to achieve peak performance, the cores of a

multiprocessor are required to access consecutive addresses in memory as it is shown

in figure 2.3. This type of memory accesses is called memory coalescing. Depend-

ing on the architecture capabilities different memory access patterns are supported for

memory coalescing.

2.1.4 Non-Uniform Memory Access Systems

Non-Uniform Memory Access (NUMA) Systems are a family of shared memory ar-

chitectures where CPU chips and physical memory are distributed in multiple nodes

(or sockets). As can be seen in figure 2.4, every node typically consists of a local CPU

socket and local memory slots, while the nodes are connected and communicate via

an interconnect. The key feature of this design is that intra-node memory accesses are

faster than inter-node accesses. Accessing local memory only involves communication

between a local CPU core and the local memory subsystem while, while inter-node

communication requires additional communication over the interconnect. The abstract

heterogeneous system presented here also presumes that every node has a local PCI

Express interface and that an accelerator is connected on it. Whilst, this type of sys-

tems supports highly scalable shared memory systems it also introduces challenges in

memory management and thread scheduling.

Thread Mapping and Data Placement: Due to the distributed design of NUMA

systems, thread scheduling and memory management should be aware of system topol-

2.1. Heterogeneous Systems 13

Memory

CPU Cores

Accelerator

CPU Cores

Accelerator

Memory

Node 1 Node 2

PCI-Express
Interface

PCI-Express
Interface

Node
Interconnect

Figure 2.5: Efficient Thread Mapping and Data Placement on NUMA systems. An

application using CPU cores and memory from a single node suffers minimal inter-

node communication.

ogy and resource locality. A failure to detect and exploit resource locality leads to poor

performance because of the introduced inter-node interconnect overhead. Ideally, the

threads of a process should be mapped to a single node and allocate memory from the

same node, as shown in figure 2.5. However, this is not always feasible, application

requirements may exceed the node resources or the node resources may be reserved

by other processes. In practice, an Operating System or a runtime resource manager

performs best-effort thread scheduling and data placement.

Heterogeneity Challenges: Heterogeneous computing on NUMA systems intro-

duces additional complexity. Performing computations on accelerators involves data

transfers between the system and accelerator memories and requires extensive synchro-

nization. Accelerator location should be considered in resource allocation decisions.

An accelerator that is locally connected to the node where the host part of the appli-

cation runs will deliver better performance than an accelerator connected to a remote

node. Once, again, the threads of a process should be mapped to a single node and

allocate memory from the same node and use the accelerator that is locally connected

to the node, as it is shown in figure 2.6. However, an accelerator may not be available

or be reserved by other processes and a system should follow a best-effort approach.

2.1.5 Thesis Directions

This thesis explores software multi-tasking on heterogeneous systems. It delivers state

of the art solutions for multi-tasking via accelerator resource virtualization and re-

14 Chapter 2. Technical Background

Memory

CPU Cores

Accelerator

CPU Cores

Accelerator

Memory

Node 1 Node 2

PCI-Express
Interface

PCI-Express
Interface

Node
Interconnect

Figure 2.6: Efficient Thread Mapping, Data Placement and Accelerator Selection on

NUMA systems. An application using CPU cores, memory and accelerators from a

single node suffers minimal inter-node communication.

source sharing control on accelerators. Furthermore, it delivers significant perfor-

mance improvements via a novel communication optimization and improved system

resource management.

All the presented contributions are software solutions and do not require any mod-

ification of the application code, Operating System or runtime environments. This the-

sis work integrates seamlessly with the existing software stacks and does not require

any hardware changes.

Key choice of this work is the development of portable designs which are applica-

ble to a broad range of heterogeneous systems and accelerators types which have vary-

ing hardware capabilities. This thesis presents solutions involving the development of

new runtime environments and compiler technologies that rely on open programming

standards, such as OpenCL, for accessing and leveraging multi-vendor accelerator re-

sources. The proposed designs, however, take advantage of the diverse underlying

accelerator hardware and specialize their resource management and sharing practices.

2.2 Accelerator Programmability

This section provides a high level description of the programming models used for

heterogeneous computing. It first introduces the workload offloading concept, the key

operation for computing on accelerators. It then provides a detailed description of the

OpenCL programming model which is an open standard that supports a large range of

processor types including GPUs and CPU multi-cores. In conclusion, a short descrip-

2.2. Accelerator Programmability 15

tion of CUDA programming model, which targets NVIDIA GPUs, is given.

2.2.1 Concept

Workload offloading, shown in figure 2.7, is the key operation in heterogeneous com-

puting which takes place every time an application performs tasks on accelerators. It

is the procedure of assigning a task for computation to the device of a heterogeneous

system. It involves three steps. It first copies the input data from host to the device

memory, then dispatches the kernel for computation and the accelerator performs the

computation. Finally, it copies the output data from device to the host memory. Data

copies may not be necessary for heterogeneous systems that support shared memory.

However, it may be still desirable for performance purposes.

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

Figure 2.7: Workload Offloading for Computation on Accelerators. It first copies input

data from host to the device memory, then dispatches a kernel for computation to the

accelerator. The accelerator performs the computation and the output data is copied

back to the host.

Runtime support is required for managing accelerator resources, controlling data

communication and workload scheduling. Compiler infrastructure with Just In Time

(JIT) capabilities is also required for handling multi-target compilations and perform-

ing dynamic code specialization. OpenCL and CUDA are two frameworks for hetero-

16 Chapter 2. Technical Background

Application

OpenCL API

OpenCL Runtime
Library

OpenCL Runtime
Library

OpenCL Runtime
Library

GPU
Driver

CPU
Driver

Other
Driver

GPU
Hardware

CPU
Hardware

Other Processor
Type

...

...

...

Vendor 1 Vendor 2 Vendor N

Figure 2.8: OpenCL Application Portability. An application may perform across di-

verse processor types. The OpenCL standard defines a library interface that is sup-

ported by multiple processor vendors. A single application implementation written in

OpenCL can leverage all these processors.

geneous computing that provide runtime and compiler support and encapsulate work-

load offloading as part of a programming model.

2.2.2 OpenCL

OpenCL is an open standard that enables heterogeneous computing for a large range of

processors including CPU multi-cores, GPUs, FPGAs and DSPs. OpenCL organizes

a program code in two parts, the host code and device code which respectively run on

the host and device of a heterogeneous system.

The OpenCL standard defines a host library and OpenCL C language. The library,

which is linked against the host code, handles accelerator management, data communi-

cation, workload scheduling and drives a Just In Time (JIT) compiler which compiles

device code for the accelerator architectures. OpenCL C is a variant of C language

that supports the development of device code. The device code is organized in special

functions, named kernels.

An OpenCL application that is fully compliant with the OpenCL standard can be

executed on diverse heterogeneous systems with various accelerator types, given that

2.2. Accelerator Programmability 17

the platform vendors provide OpenCL support. This application portability is shown

in figure 2.8. OpenCL applications use the OpenCL library interface to interact with

the OpenCL infrastructure while they provide device code in OpenCL C. Each vendor

implements the OpenCL standard by providing individual versions of OpenCL library

implementations and required drivers. An application can use different accelerators by

accessing different OpenCL library implementations.

Device Abstraction: The OpenCL standard supports a wide range of processors

and introduces a high level device abstraction, shown in figure 2.9. This abstraction

supports data parallel architectures, such as GPUs and commodity multi-core CPUs.

The resources of a device are organized in groups, named Compute Units. A Com-

pute Unit typically consists of multiple hardware cores/threads, named Processing El-

ements. Every Processing Element maintains its own private memory while it also

shares a local memory with the Processing Elements of the Compute Unit it belongs.

Process Elements have access to a Global Device Memory which typically has a large

capacity via a Global Data Cache. A device may also have a faster read-only global

memory, named Constant Memory while a special cache, named Constant Data Cache

improves access times to it. The OpenCL memory model is relaxed and hardware

support for memory coherence is not considered. The memory state visible to one

Process Element is not guaranteed to be the same across elements. A consistent view

of local memory can be enforced at Compute Unit level via barrier operations. Fur-

thermore, atomic memory access operations guarantee serialized access to memory

locations both in local and global memories.

Platform Abstraction: OpenCL considers multiple accelerator types that may co-

exist on a platform at the same type. It provides a platform abstraction, shown in fig-

ure 2.12 where there is a single host and multiple devices are available. The OpenCL

library interfaces permit an application to query the available devices and their capabil-

ities and then reserve the desired devices. An application can leverage multiple devices

at the same time, even devices coming from different vendors.

OpenCL Kernels: OpenCL C is a subset of C99 language with extensions to sup-

port multiple address spaces, vector data types and textures. Device code is written in

OpenCL C which comprises special functions named OpenCL kernels. A kernel exam-

ple is given in figure 2.11. This kernel performs vector addition, it reads elements from

A and B and writes the results on C. This kernel is executed in parallel across the Pro-

cessing Elements of the device and special intrinsic functions, such as get global id,

are required to index the appropriate data.

18 Chapter 2. Technical Background

Figure 2.9: OpenCL Device Abstraction. The OpenCL environment provides an ab-

stract representation of accelerator resources. This abstraction supports data parallel

architectures, such as GPUs and commodity multi-core CPUs. Figure taken from[58].

Kernel Execution Space: A kernel execution launches multiple instances of the

kernel code. These instances are organized within a multi-dimensional index-space,

named NDRange, as shown in figure 2.12. Each instance of the kernel execution is

named work item. Furthermore, work items are organized in groups, named work

groups, where a work item is member of a single work group. The sizes of the ex-

ecution space and work groups are specified during application runtime. Each work

item is globally characterized by a unique tuple, named global id and a second tuple,

named local id, which uniquely characterizes it within its work group. Work groups

are characterized by a unique tuple, named group id. During a kernel execution, the

device scheduler first maps work groups to Compute Units and then work items to

Processing Elements.

2.2. Accelerator Programmability 19

Figure 2.10: OpenCL Platform Abstraction. Figure taken from[58].

kernel void vectoradd(global float *A, global float *B,
global float *C)

{
int i = get_global_id(0);
C[i] = A[i] + B[i];

}

Figure 2.11: Example of an OpenCL kernel that performs vector addition.

The following terms describe a kernel execution space in OpenCL [58]:

• NDRange space size: (Gx,Gy)

• Size of each work-group: (Sx,Sy)

• Number of work-groups: (Wx,Wy)

• Work-item global indexes: (gx,gy)

• Work-group global indexes: (wx,wy)

• Work-item local indexes, inside the work-group: (lx,ly)

The above terms are correlated and the following formulas define their relationship:

• (gx,gy) = (wx Sx +lx,wy Sy +ly)

• (Wx,Wy)=(Gx/Sx,Gy/Sy)

• (wx,wy) = ((gx sx)/Sx,(gy sy)/Sy)

20 Chapter 2. Technical Background

Figure 2.12: OpenCL Kernel Execution Space (NDRange). A kernel execution

launches multiple instances of the kernel code. These instances are organized within a

multi-dimensional index-space, named NDRange. Figure taken from[58].

Just In Time Compilation: OpenCL applications provide device code in OpenCL

C or binary representations and the OpenCL runtime is responsible for driving a Just-

In-Time compiler that compiles the device code for the target accelerator architectures.

This is done in two steps as shown in figure 2.13. The application first provides the

device code to the OpenCL runtime via a call to clCreateProgramWithSource or clCre-

ateProgramwithBinary which generates a new clProgram object. The second step re-

quires a call to clBuildProgram with the newly created clProgram. This call generates

native code for the accelerator architecture. The OpenCL standard also defines low

level interfaces that provide additional control over the compilation procedure.

2.2.3 CUDA Comparison

The CUDA framework is a proprietary software stack developed by NVIDIA that ex-

clusively enables heterogeneous computing on NVIDIA GPUS. However, it was de-

veloped and released before the OpenCL framework and has been the pioneer in many

aspects of heterogeneous computing, specially in the area of GPUs. OpenCL and

CUDA share many concepts and have similar programming models. In this thesis,

2.2. Accelerator Programmability 21

Step 2

Step 1

OpenCL JIT Compiler

OpenCL SPIR

Native Code

clCreateProgramWithSource
clCreateProgramWithBinary

clBuildProgram

Figure 2.13: OpenCL Just In Time (JIT) Compilation. The OpenCL runtime performs

a JIT compilation of the OpenCL kernels targeting the available accelerators.

OpenCL CUDA

NDRange grid

work-item thread

work-group thread block

global memory global or device memory

constant memory constant memory

local memory shared memory

private memory registers

Table 2.1: List of OpenCL terms and their equivalents in CUDA.

the OpenCL terminology has been adopted as it is broadly used and remains abstract

and vendor independent. To understand how OpenCL and CUDA relate to each other,

table 2.1 provides a list of key OpenCL terms and their equivalents in CUDA.

2.2.4 Thesis Directions

The work of this thesis relies on the Khronos OpenCL 1.x versions for accessing

and utilizing accelerators. This enables immediate deployment for diverse accelera-

tor types of different vendors. Furthermore, the presented compiler work also relies on

the Standard Portable Intermediate Representation (SPIR) 1.x [59]. SPIR permits the

use of vendor compiler backends as part of custom compilation infrastructures.

Recently released versions of OpenCL, such as OpenCL version 2.0 and 2.1, in-

troduce new features such as shared virtual memory and dynamic parallelism. How-

ever, at the time of writing this thesis, no stable implementation of these specifications

22 Chapter 2. Technical Background

Operating System

C Lib
OpenCL Lib

C Lib POSIX Lib

MPI Lib

C Lib POSIX Lib

Application

Kernel
Space

User
Space

Figure 2.14: An application example that relies on multiple runtime environments. It

relies on the C language runtime provided by C library, the OpenCL runtime provided

by OpenCL library and the MPI runtime, provided by MPI library.

has been made available by hardware vendors. Furthermore, Khronos Vulcan, a new

programming standard that unifies graphics processing and generic computation on

accelerators, has been introduced. Again, at the time of writing this thesis no final

specification or implementation is available.

The work and techniques presented in this thesis follow a generic approach which

is directly applicable to future versions of OpenCL or other programming standards

such as Khronos Vulcan. The virtualization, resource management and scheduling

approaches can be extended to support new programming interfaces and leverage new

hardware functionality.

2.3 Runtime Environments

This section provides a brief description of runtime environments. It first introduces

the concept of runtime environment and then presents key design approaches.

2.3.1 Concept

A runtime environment is a software stack component that provides low level, system

functionality to user applications or other runtime environments. The type of function-

ality delivered by a runtime environment is typically beneficial for a large number of

applications. Typical examples of runtime environments are the C and C++ runtime

libraries, networking libraries and the OpenCL library.

Figure 2.14 provides a high level visualization of a software stack where a user

application relies on the functionality of a set of runtime environments for perform-

ing its tasks. In this example, we consider applications found in heterogeneous HPC

2.3. Runtime Environments 23

centers which leverage accelerators via OpenCL and rely on MPI[76] for inter-node

communication and workload partitioning. The example application relies on the C

language runtime provided by C library, the OpenCL runtime provided by OpenCL

library and the MPI runtime, provided by MPI library. The C language runtime does

not have any dependency on third runtimes and performs system calls to communicate

with the kernel. Both OpenCL and MPI runtimes in turn rely on the C language and

POSIX runtimes.

2.3.2 Design Aspects

This section discusses key aspects for the design and implementation of runtime envi-

ronments. It first presents different runtime categories, then discusses system depen-

dencies and finally compares the benefits of user-space development against kernel-

space designs.

Runtime Environment Categories: Runtime environments are typically devel-

oped as system libraries where applications need to be statically or dynamically linked

against them. An application then accesses the environment functionality by perform-

ing function calls to the library. However, other designs are available too. A runtime

environment may be a system process or a kernel space task which is driven by sys-

tem signals and interrupts or requests arriving from network sockets or Inter-Process

shared memory. Language Virtual Machines is another popular category where the

application binary targets an abstract architecture and the virtual machine is respon-

sible for performing the application execution. Virtual machine operations require a

complex runtime environment that manages memory allocations, task scheduling and

code generation.

System Dependencies: The development of runtime environments typically re-

quires access to system resource management. This is either done by relying on other

runtime environments or, when required, by performing system calls directly to the

kernel of the Operating System.

User-Space vs Kernel-Space: An important trade-off for designing new runtime

environments is whether they should be developed in user-space or be part of the ker-

nel components. Placing a runtime environment in user-space provides great flexibility

and low overhead access to the runtime operations, while it comes with limited control

and access to low system resource management which is performed by the Operating

System kernel. Developing the new functionality in kernel-space provides full access

24 Chapter 2. Technical Background

Front
End

Middle
End

Back
End

Source
Files

Executable
Binary

Figure 2.15: Overview of a Compilation Procedure. A modern compiler consists of

three components, the front-end, middle-end and back-end.

to resource management but it introduces significant overheads for accessing its opera-

tions. In practice, user-space, kernel-space and hybrid approaches are in use. A typical

case of hybrid designs is the OpenCL support on GPUs where parts of the runtime

environments are developed in user-space while others are designed as part of kernel

drivers.

2.4 Compiler Infrastructure

This section provides a brief description of compiler operations and then presents an

overview of the LLVM compiler infrastructure which has been used in work presented

in this thesis.

2.4.1 Concept

A compiler is a software program which is responsible for converting a software writ-

ten in a source language such as C or C++ into target code which typically is an ar-

chitecture computer language, known as assembly. It typically translates the source

program into lower intermediate representations which are optimized before the tar-

get code generation. A modern compiler is organized in three components which are

described in the next paragraphs.

Front-end: This compiler component is responsible for reading and analyzing the

source code provided by the developer. It then generates an intermediate representation

of the program that is semantically equivalent to the original source code. It operations

involve a set of analyses phases. First, the Lexical Analysis organizes the program in

valid tokens which are single atomic units of the language. Valid tokens are produc-

tions of regular expressions. Syntax Analysis uses the collected tokens and a formal

grammar that defines the language in order to extract the syntactic structure of the pro-

gram which is represented as parse trees. Then, Semantic Analysis takes place where

the compiler checks the semantic correctness of the syntax trees and constructs symbol

2.4. Compiler Infrastructure 25

tables. A preprocessing phase is also available for languages with preprocessing capa-

bilities such as C and C++. Finally, if a source program has successfully passed all the

described phases the front-end generates the intermediate representation.

Middle-end: This component reads the intermediate representation generated by

the front-end and performs platform independent optimizations where it transforms

the original intermediate representation to versions that are semantically equivalent

but they have been altered to improve system performance. The optimizations are typ-

ically organized in independent passes which also require independent code analysis

passes. Depending the compiler configurations the passes are organized in a pipeline

and they are sequentially applied to the input intermediate representation. Common op-

timizations are Common Subexpression Elimination, Global Value Numbering, Dead

Code Elimination, Constant Propagation, Loop Optimizations, Auto-Vectorization and

Auto-Parallelization. The correctness of the code transformations is typically checked

with rigorous testing. However there are alternative approaches where formal methods

define the operation of transformations. Some compiler designs require the middle-

end component to generate a different intermediate representation which is later used

as input to the compiler Back-end.

Back-end: This component reads the intermediate code generated by the middle-

end and transforms it to assembly language which is suitable for execution on the

target architecture. Two major operations are performed by the compiler back-end, the

Register Allocation and Instruction Scheduling. Modern intermediate representations

assume an infinite number of registers and the back-end with its register allocation al-

gorithm is responsible for mapping the registers of the intermediate representation to

the actual registers of the processor. This procedure typically introduces the use of pro-

gram stack due the limited number of physical registers of the processor. Instruction

Scheduling is responsible for ordering the program instructions in a manner that max-

imizes processor performance while it does not violate their dependencies. Modern

back-ends perform additional target specific optimizations.

2.4.2 LLVM Compiler Infrastructure

LLVM[63] is an open-source compiler infrastructure which provides a framework for

aggressive code optimizations under reduced compilation times. LLVM follows a

modular design where its components are provided as libraries which can be com-

bined in different ways and serve varying application areas and performance goals. It

26 Chapter 2. Technical Background

supports code generation for a large range of processor families ranging from mobile

ARM to x86 and GPU architectures. Similarly LLVM supports multiple source lan-

guages and has Just In Time compilation capabilities. The next paragraphs present the

key features and design of LLVM.

LLVM Design: LLVM follows a modular design where each compiler functional-

ity is organized as a library which can be loaded as part of a compiler driver or directly

used by an application. Furthermore, LLVM follows the three component compiler

design we described in the previous section. The standard compiler front-end which

supports C, C++ and their variations is named clang and is provided both as an end-user

compiler driver and as a library for integration with external applications and compiler

tools. The LLVM core libraries provide the functionality of the middle-end and an

end-user utility, named opt, provides access to its functionality. Finally, LLVM has a

set of libraries that support the back-end operations which perform code generation.

The end-user utility that provides direct access to the back-end functionality is named

llc.

LLVM Intermediate Representation: LLVM introduces a low level intermediate

representation, named LLVM IR, that relies on Static Single Assignment (SSA)[90][24],

where a variable declaration is assigned a value a single time. Programs in LLVM IR

are organized into Modules. A module corresponds to a single translation unit of a pro-

gram that has been processed by the front-end. Each module contains Functions and

global variables and each function is made of Basic Blocks. A basic block is a set of

IR Instructions. LLVM IR is an abstract assembly language that is independent of the

source language and target architecture. It is portable across processor architectures

and execution environments. Furthermore, it is extensible either via LLVM metadata

or intrinsics.

Pass Manager: LLVM organizes optimizations and the required code analyses in

compiler passes. LLVM supports multiple type of passes that may operate at module,

function, basic block or loop level and provides mechanisms for expressing dependen-

cies between the available passes. A Pass Manager is the mechanism that handles the

scheduling of both analysis and optimization passes. It minimizes compilation times

while respecting inter-pass dependencies.

OpenCL Transformations: Contributions of this thesis require the analysis and

transformation of OpenCL kernel codes which are either provided in OpenCL C or

Standard Portable Intermediate Representation (SPIR)[59]. The LLVM C/C++ front-

end, clang, supports LLVM IR generation from OpenCL C files. SPIR is a subset of

2.5. Evaluation Methodology 27

LLVM IR and the existing LLVM infrastructure can correctly analyze and transform it.

LLVM represents OpenCL concepts such as multiple address spaces, intrinsic function

calls and kernel attributes via metadata and intrinsics. LLVM infrastructure supports

code generation for both NVIDIA and AMD GPUs with experimental compiler back-

ends and also provides a back-end for SPIR code generation.

2.5 Evaluation Methodology

The contributions of this thesis provide new functionality for heterogeneous comput-

ing and their performance evaluation is crucially important. This section presents the

metrics and benchmarks used for the evaluation of the contributions.

2.5.1 Metrics

This section presents the performance evaluation metrics.

Relative Performance: The contributions of this thesis propose new software

stack components that enable new functionality and improve performance. The perfor-

mance improvements for individual tasks are quantified by the speedup metric which

is defined as:

speedup =
tbaseline

tnew

Where the tbaseline is the execution time of the experiment running with the config-

uration considered as the baseline, while tnew is the execution time delivered by the

contribution presented in this thesis. For system level evaluation, where the perfor-

mance of a set of tasks is evaluated, the throughput speedup metric is used, which is

defined as

throughputspeedup =
Tbaseline

Tnew

Where Tbaseline is the total execution time for the experiment tasks running with the

configuration considered as the baseline, while Tnew is the total execution time deliv-

ered by the contribution of this thesis. Summary results are provided as the geometric

mean of the speedups of the individual experiments.

Execution Time Breakdowns: Some evaluation scenarios presented in the next

chapters require execution time breakdowns where the execution times of individual

program phases are provided in addition to the total execution times. In those cases the

28 Chapter 2. Technical Background

following condition is always valid:

N

∑
i=0

tphasei = tTotal

Where tphasei is the execution time for a particular phase of a program while tTotal is

the total execution time of the program.

System Fairness: Chapter 6 evaluates system fairness. However because this type

of evaluation is not performed in the rest of the thesis the required metrics are provided

in the experimental setup of the chapter.

2.5.2 Benchmarks

The experiments performed in this thesis consider the Parboil[101] and Rodinia[18]

benchmark suites. The exact configurations, benchmark selections and evaluation pur-

poses are described in the experimental setup sections of the following chapters. A list

of the available benchmarks is given in table 2.2.

2.6 Summary

This section presented the technical background required for the understanding of this

thesis and its contributions. It first introduced the concept of heterogeneous comput-

ing and presented mainstream processor types used in heterogeneous systems. It then

presented the programming model and frameworks required for computing on accel-

erators. Runtime environments, compiler technologies and the LLVM compiler infras-

tructure were briefly discussed. Finally, common evaluation methodologies used to

evaluate the contributions of this thesis were given.

Before presenting the contributions of this thesis, starting in chapter 4, the follow-

ing chapter discusses prior work relevant to this thesis.

2.6. Summary 29

Benchmark Name Source

backprop rodinia

bfs parboil

bfs rodinia

cfd rodinia

cutcp parboil

gaussian rodinia

heardwall rodinia

histo parboil

hotspot rodinia

kmeans rodinia

lavaMD rodinia

lbm parboil

leukocyte rodinia

lud rodinia

mri-gridding parboil

mri-q parboil

nn rodinia

nw rodinia

particlefilter rodinia

pathfinder rodinia

sad parboil

sgemm parboil

spmv parboil

srad rodinia

stencil parboil

streamcluster rodinia

tpacf parboil

Table 2.2: List of OpenCL benchmarks available in Parboil and Rodinia suites.

Chapter 3

Related Work

This chapter discusses prior work related to the areas covered in this thesis. A brief

review of publications is provided for each area.

This chapter is organized as follows. Section 3.1 deals with resource sharing tech-

niques and practices for multi-tasking systems where multiple users and applications

compete for resource usage. Next, section 3.2 discusses virtualization technologies

for homogeneous and heterogeneous systems. Prior work on workload scheduling on

heterogeneous systems is discussed in section 3.3. Memory management and data

sharing is discussed in section 3.4. This section specially discusses memory alloca-

tors, resource management for Non-Uniform Memory Access (NUMA) architectures

and communication optimization techniques for heterogeneous systems. Prior work on

performance evaluation and modeling on accelerators is presented in section 3.5. The

chapter concludes with a brief summary of the discussed work in section 3.6.

3.1 System Resource Sharing

This section reviews prior work for resource sharing on multi-tasking systems where

multiple users and applications compete for access to system resources. Section 3.1.1

presents related publications for homogeneous systems while section 3.1.2 discusses

resource sharing on modern heterogeneous systems. Finally, section 3.1.3 reviews

prior work related to accelerator sharing across multiple computing nodes that are

connected via a network, as part of a cluster or cloud configuration.

31

32 Chapter 3. Related Work

3.1.1 Homogeneous Systems

This section presents resource sharing techniques for standard homogeneous systems

where a single processor architecture is available. Prior work investigates software and

architecture solutions that enable efficient system sharing and high performance.

SOS[98] is a job scheduler which combines an overhead-free sample phase that

collects information about the possible schedules on the system and a symbiosis phase

which uses the collected information to predict the schedule that will deliver the highest

processor utilization and system performance. This scheme enables efficient schedul-

ing for systems equipped with simultaneous multi-threading processors where multiple

jobs compete for resource usage. The paper of Cazorla [17] investigates system shar-

ing for multi-threading processors too. They investigate the unpredictable performance

delivered for real time applications and they present a resource management scheme

that eliminates performance unpredictability in SMTs.

The paper of Eyerman [34] proposes a probabilistic job symbiosis modeling. It pre-

dicts which sets of jobs will lead to positive or negative symbiosis when co-scheduled

without requiring prior co-schedule evaluation. It does not require sampling phase

or heuristics while it preserves system-level priorities. It also readjusts the job co-

schedule continuously and introduces low overhead.

Time-sharing on shared memory multi-processors is investigated in the paper of

Tucker [104] where the authors present a scheme where they maximize application

performance while they enable fair resource sharing. The dynamic nature of multi-

tasking systems is considered where the system load is continuously varying and a

scheduling scheme is proposed which controls the number of active processes.

A technique for mitigating contention for shared resources via thread scheduling

is provided by Zhuravlev [114]. A comprehensive analysis of contention mitigating

techniques that rely on software scheduling and a thread classification scheme are pre-

sented. The proposed solution reduces contention for the cache hierarchy, memory

controller, memory bus and hardware pre-fetching and also enforces quality of ser-

vice.

The paper of Gabor [36] enables fairness and throughput improvements on systems

with switch on event multi-threading. This type of multi-threading reduces the power

requirements by switching threads on execution stalls. However, the original scheme

does not consider fairness, a problem that is solved by this paper. This work also

defines a fairness metric by using the ratio of individual thread speedups.

3.1. System Resource Sharing 33

The paper of Ghodsi [41] investigates fairness in computer networking where mul-

tiple resources need to be shared in parallel and proposes a new algorithm, named

Dominant Resource Fair Queuing (DRFQ). This algorithm retains the attractive prop-

erties that fair sharing provides for one resource. It generalizes the concept of virtual

time in classical fair queuing to multi-resource settings. The algorithm is generally

applicable in contexts where several resource types need to be multiplexed.

The technical report of Jain [49] investigates fairness for resource sharing in vari-

ous areas of computer science. It then proposes a quantitative fairness metric named

Fairness Index that is applicable to any resource sharing or allocation problem.

FST[32], Fairness via Source Throttling, is a mechanism that enforces fairness in

the entire memory sub-system of modern computer architectures. Its design elimi-

nates the need for developing fairness mechanisms for each individual resource of the

memory sub-system. This work provides metrics for quantifying unfairness at system

level. It enforces thread priorities, supports different fairness objectives and fairness-

performance trade-offs.

This section presented software and hardware solutions for resource sharing on

standard homogeneous architectures. The discussed publications provide significant

functionality and performance improvements for single architecture systems but they

do not manage the sharing of accelerator resources found in heterogeneous systems.

3.1.2 Heterogeneous Systems

This section presents resource sharing techniques for heterogeneous systems. Here, a

system typically comprises multiple processor types. Resource sharing on heteroge-

neous systems faces the challenges found in commodity systems and additional com-

plexity introduced by diverse processor architectures.

Elastic Kernels[85] proposes a technique that improves graphic processor utiliza-

tion and leads to increased system throughput. This work exploits concurrent kernel

executions using multi-program workloads to achieve higher performance. The tech-

nique involves code transformations that enable resource allocation control.

Spatial multi-tasking on graphic processors has been proposed in paper Adriaens [1].

This work analyzes pre-existing, multi-tasking techniques such as cooperative and pre-

emptive multi-tasking which partition GPU time among different applications and in-

dicates weakness of these approaches. It then introduces spatial multi-tasking where

GPU resources are partitioned among multiple applications simultaneously. The work

34 Chapter 3. Related Work

concludes by demonstrating the benefits of using spatial multi-tasking instead of, or in

combination with, preemptive or cooperative multitasking.

The paper of Guevara [43] proposes the static merge of workload codes that are

dispatched to GPUs for computation. This technique improves the utilization of GPU

resources and delivers throughput speedups both for workload kernels that underutilize

the processor resources and kernels that have a memory-bound behavior.

The multikernel [9] proposes a new Operating System architecture for multi-core

heterogeneous systems. The proposed architecture aims to efficiently manage systems

consisting of large number of processor cores of different architectures, memory hi-

erarchies, interconnects, instruction sets and Input/Output configurations. This work

adopts a distributed design where individual cores operate independently and exchange

messages for system level coordination. Finally, it explores key Operating System op-

erations, such as memory management, that typically require central management and

demonstrates how they can be implemented on the proposed distributed scheme.

TimeGraph [56] is a real-time scheduler, developed at driver level, that enables

GPU multi-tasking for real-time graphics applications. It guarantees minimum perfor-

mance interference for graphic workloads by adopting a new event driven model that

prioritizes computation requests made by user-space applications. It deploys a resource

reservation mechanism and a predictive execution cost model in order to enforce fair

GPU sharing and quality of service. TimeGraph maintains the frame-rates of primary

GPU tasks at the desired level even in the face of extreme GPU workloads, whereas

these tasks become nearly unresponsive without TimeGraph support.

Fair accelerator scheduling is also explored by Menychtas [75]. This work indi-

cates the problematic management of modern accelerators performed by commodity

Operating Systems and proposes explicit accelerator scheduling and resource man-

agement. It proposes a disengaged scheduling strategy in which the kernel intercedes

between applications and the accelerator, monitors accelerator usage by different ap-

plications and enforces fairness by prioritizing kernel execution requests among the

applications. Multiple scheduling policies are supported.

GPUfs [97] eases GPU programmability and integration by making the existing

file system directly accessible from the GPU code. This work provides a POSIX-like

API that accesses directly file streams from the Filesystem of the Operating System. It

exploits GPU parallelism and enables GPU file access by extending the buffer cache

into GPU memory. It enables extensive Input/Output operations from the kernel code

and leads to performance improvements.

3.1. System Resource Sharing 35

This section discusses solutions for sharing accelerator resources. The reviewed

papers provide software solutions that require the static merge of different applica-

tions, hardware modifications or Operating System changes. This thesis considers

their findings and directly compares against them when it is appropriate.

3.1.3 Inter-Node Accelerator Resource Sharing

This section reviews prior work related to inter-node sharing of accelerating resources.

The reviewed solutions enable accelerator sharing across the nodes of a cluster or cloud

infrastructure.

A runtime infrastructure that enables the network abstraction and sharing of GPUs

is provided by Becchi [11]. It improves concurrent accelerator usage, while it applies

a virtual memory abstraction via a memory manager where each application operates

in isolation. This work enables multiple scheduling policies, dynamic binding of ap-

plications to GPUs, load balancing and resilience to accelerator failures. The proposed

solution can be either integrated with cloud infrastructures and enable the virtualization

of accelerator resources or be part of the integrated resource management infrastruc-

ture for heterogeneous clusters in High Performance Computing.

VOCL [111], which stands for virtual OpenCL, is a framework that enables trans-

parent access and utilization of local and remote GPU resources. This work relies on

the OpenCL programming model and enforces the virtualization of physical GPUs that

can be transparently managed. It requires no source code modifications or changes to

existing applications. This work concludes by proposing strategies to minimize the

communication overhead introduced by VOCL.

Libwater[42] provides a uniform approach for programming distributed heteroge-

neous computing systems. It extends the OpenCL programming model by introducing

an additional but simple programming interface. Libwater also consists of a runtime

environment that handles OpenCL operations across multiple nodes instead of standard

OpenCL that is limited to a single node. Furthermore, Libwater provides an enhanced

event system that enables inter-context and inter-node device synchronization. The

event system is used for the construction of Directed Acyclic Graphs of computation

dependencies. A series of runtime optimizations are then built on the top of the graph.

rCUDA[30] is a framework that enables remote GPU acceleration in HPC clusters

which allows a reduction in the number of accelerators required for the cluster opera-

tion. This leads to energy, maintenance, space and cost savings. It extends the CUDA

36 Chapter 3. Related Work

programming model in order to access and control GPUs on remote nodes while it also

natively supports GPUs that are locally attached.

This section reviewed work on network sharing of accelerator resources. The con-

sidered publications combine inter-node communication protocols with heterogeneous

computing frameworks and enable remote access to accelerators. This type of work

tends to consider HPC application scenarios with limited multi-tasking capabilities.

3.2 System Resource Virtualization

This section reviews prior work for system resource virtualization targeting operations

isolation, resource sharing control and deployment of secure computing environments.

Virtualization solutions are categorized in Hypervisor-based virtualization where the

Operating System performs on the top of a virtual environment and Operating-system-

level (OS-level) virtualization where a virtual environment takes place for every pro-

cess. Prior work on Hypervisor-based virtualization is provided in section 3.2.1. Sec-

tion 3.2.2 discusses work in the area of Operating-system-level virtualization. Finally,

section 3.2.3 presents existing solutions for the virtualization of accelerator resources.

3.2.1 Hypervisor based Virtualization

This section presents prior work and solutions for Hypervisor-based virtualization

where Operating Systems operate on the top of virtualized hardware resources.

Xen[6] is an x86 virtual machine monitor which allows multiple commodity Op-

erating Systems to share standard hardware in a safe and resource managed manner.

Xen provides a virtual machine abstraction and requires every Operating System to

have special driver support for efficient virtualization. The Xen design scales up to

100 virtual machines on a server and introduces a small overhead when compared with

unvirtualized systems.

Kvm [61] is the default virtualization solution of Linux kernel. It operates as an

independent Linux sub-system and leverages the virtualization extensions of modern

processors to enable Operating System virtualization with negligible overhead. The

Linux kernel treats the virtual machines monitored by Kvm as regular processes. The

Kvm operations are fully and seamlessly integrated with the Linux kernel.

A quantitative comparison of Xen and Kvm is given by Deshane [27]. The study

focuses on overall performance, performance isolation and scalability of virtual ma-

3.2. System Resource Virtualization 37

chines.

The Input/Output and multi-core scaling challenges that virtualization faces in

High Performance Computing are discussed by Gavrilovska [37]. This paper analyzes

and quantifies these issues and then proposes new methods for device virtualization

that improves I/O performance. It also describes techniques for Quality of Service and

reliability.

The approach of VMware hypervisor for the virtualization of Input/Oupput devices

is presented by Sugerman [102]. This approach relies on the Operating System of the

host platform in order to virtualize the CPU and memory resources. Furthermore, it

uses the existing drivers and services of the host system for the Input/Output opera-

tions of virtual machines. It does that by providing virtual Input/Output devices and

performing a set of optimizations that minimize the CPU utilization for this type of

virtualization.

Support for soft real-time requirements in the context of virtualialized environ-

ments is proposed by Lee [66]. The authors indicate that modern hypervisors have not

been designed for soft real-time applications due to the low performance of Input/Out-

put virtualization, increased scheduling latencies and shared-cache contention. They

propose a new virtual machine scheduler that manages scheduling latency as a first-

class resource and performs cache management. Its revised load balancing mechanism

also minimizes delays.

CloudScale [94] is a system that performs fine-grained resource sharing for multi-

tenant cloud computing infrastructures and requires minimum resource provisioning.

It relies on online, adaptive resource demand prediction and it does not require any

prior knowledge of the application workloads. It is implemented on top of Xen.

The mapping of HPC applications to hybrid infrastructures of dedicated and cloud

resources is explored by Gupta [44]. The work is logically divided in two parts. First,

application characterization takes place by analyzing the application performance on

both dedicated clusters and cloud. Then, an algorithm uses the characterization results

and provides an efficient mapping.

This section considered state of the art solutions for hypervisor-based virtualization

of systems resources. The reviewed publications consider homogeneous systems and

emphasize on lightweight virtualization for Operating Systems.

38 Chapter 3. Related Work

3.2.2 OS-level Virtualization

This section presets virtualization solutions for the isolation of individual system pro-

cesses. This type of virtualization enforces both secure execution environments and

resource allocation control.

The paper of Banga [5] presents and evaluates a new operating system abstraction,

named resource container, which separates the process protection mechanisms from

the system resource management. The new abstraction enables fine-grained resource

management across system processes and enables the development of robust servers.

The proposed design exposes a simple and firm control over priority policies.

Virtualization use cases, such as HPC, that require both a high degree of isolation

and efficiency are considered by Soltesz [99]. This work presents an alternative to hy-

pervisor virtualization that delivers better results for the considered application areas.

The proposed solution provides an Operating System abstraction of resource and secu-

rity containers. The container mechanisms are applied to general-purpose, time-shared

Operating Systems. This work specifically describes the design and implementation of

Linux-VServer which leads to higher performance than Hypervisor solutions.

PDS[2] is a virtual execution environment that enables efficient software develop-

ment and central management. It enables a partial system virtualization and supports

the reproduction of virtual environments across different host machines. A framework

permits optimizations that require semantic awareness that is not available at the Op-

erating system level.

Denali[108] is an isolation Operating System kernel designed to safely multiplex

large numbers of untrusted processes on shared systems. It achieves this by defining

a virtualization abstraction at the Operating System level where it enforces security

and resource management. This type of resource sharing reduces the cost and effort of

managing physical systems.

Tessellation [21] is an Operating System design targeting Quality of Service for

diverse workloads including high-throughput parallel, real-time, and interactive ap-

plications. Tessellation distributes system resources to groups, named cells. It then

performs a two level management of system resources. The first level allocates re-

sources at cell level, while the second manages resources within the cell by serving

specific application requirements.

The overhead and performance effects of dynamic resource management of cloud

infrastructures are investigated by Wang [107]. This work considers capacity over-

3.2. System Resource Virtualization 39

heads and actuation delays that may occur due to frequent re-scheduling. This work

quanitifies the related overheads and compares the performance delivered by hypervi-

sor solutions agaist OS-level virtualization approaches.

Shuttle [93] is a communication mechanism that is part of the Operating System

and enables the efficient communication of applications that operate in different Vir-

tual Machines. This work considers the inter-application communication needs for

enterprise-class servers, HPC clusters and fault tolerant systems. It then proposes a

scheme for inter-application interaction that integrates with the existing mechanisms

of OS-level virtualization and does not compromise system security or application iso-

lation.

Docker [28] and OpenVZ [84] are production technologies that provide lightweight,

OS-level virtualization. They both rely on the mechanism of Linux kernel containers.

The paper of Kim [60] presents a virtualization framework that combines multi-

ple GPUs and treats them as a single compute accelerator. It enables the transparent

adaptivity of applications written for a single GPU to multi-GPU systems, where they

exploit the computational and memory resources of all the available GPUs. A runtime

environment maintains a virtual, unified, device memory that is mapped to the phys-

ical memories of the individual GPUs. The OpenCL environment treats this virtual

memory as if it were the memory of a single GPU. The framework automatically dis-

tributes at run-time OpenCL kernels written for a single GPU to multiple kernels that

perform in parallel on different GPUs. It also applies a run-time memory access range

analysis to kernels by performing a sampling run and it identifies the optimal kernel

distribution.

This section reviewed publications on OS-level virtualization which supports iso-

lation and resource allocation control for individual processes. This type of virtu-

alization, which is extremely lightweight, is highly relevant to the virtualization of

heterogeneous resources which is presented in this thesis.

3.2.3 Accelerator Virtualization

This section presents virtualization solutions for accelerator resources.

The techniques and system architecture for the virtualization of GPU resources on

VMware products are provided by Dowty [29]. This work provides a full design that

takes advantage of hardware acceleration and delivers performance results compara-

ble to native GPU usage. However, the various graphics stack implementations and

40 Chapter 3. Related Work

applications lead to distinct performance variations.

gVirt[103] is a product level GPU virtualizaton infrastructure that enables full GPU

virtualization by running native drivers as part of the guest Operating System. This vir-

tualization approach exploits mediated pass-through which delivers high performance,

scalability and secure isolation. gVirt permits Virtual Machines to directly access GPU

resources without requiring hypervisor intervention.

The work of Yang [112] uses the PCI pass-through technology in order to make

GPU accelerators available to Virtual Machines. This infrastructure enables Virtual

Machines to directly access GPU resources and perform computations on them via the

CUDA programming interface. An evaluation is given where the proposed infrastruc-

ture is compared against native GPU usage and open source virtualization solutions.

vCUDA [95] is a virtualization solution for GPU computing. It allows applications

running on Virtual Machines to directly perform computations on GPUs via the CUDA

API. vCUDA intercepts and redirects CUDA calls and uses an efficient Remote Process

Call scheme. This scheme forwards computation requests to the hypervisor which

performs the actual calls to the CUDA driver.

Gdev [57] enables resource management for GPUs as part of the Operating System.

Its functionality enables efficient GPU sharing and accessibility both for user-space ap-

plications and Operating System operations. It provides a virtual memory manager for

GPUs that enables data swapping for excessive memory resource demands and effi-

cient data sharing. Furthermore, Gdev virtualizes physical GPUs and provides multi-

ple logical instances. This way it enforces process isolation and secure multi-tasking.

Gdev authors have ported filesystem operations to take advantage of GPU resources

and report significant performance improvements.

This section reviewed accelerator virtualization techniques for hypervisor systems.

The presented approaches are typically vendor specific and they suit HPC scenarios

instead of multi-tasking use cases due to the high overhead they introduce.

3.3 Workload Scheduling on Heterogeneous Systems

This section discusses prior work on workload scheduling for heterogeneous systems.

Section 3.3.1 reviews publications on software techniques and system stack designs

for workload scheduling. Prior work in computer architecture for improved accelerator

scheduling is provided in section 3.3.2.

3.3. Workload Scheduling on Heterogeneous Systems 41

3.3.1 Runtime and Compiler Approaches

This section presents software techniques for workload scheduling on heterogeneous

systems. The presented work focuses on improving performance, enhancing pro-

grammability and accelerator utilization.

SKMD [65] is a runtime infrastructure that transparently manages collaborative

execution of single data-parallel kernels across multiple and asymmetric processors of

different types, such as CPUs and GPUs. The developer provides a single OpenCL ker-

nel and the required input data, SKMD then partitions the workload across the available

processors and performs the computation, it then merges the partial outputs together.

SKMD is also equipped with profitability heuristics for workload offloading with re-

spect to data transfer overheads. SKMD improves the kernel execution performance

by leveraging all the processor resources in parallel.

Concord [7] is a C++ compiler framework that enables GPU acceleration of a wide

range of applications with minimal changes. Concord is accompanied by a low-cost

runtime environment that provides Shared Virtual Memory between CPU and GPU

cores which enables seamless sharing of pointer-containing data structures. This way

software running on CPU and GPU can share complex data structures without code

changes or explicit data transfers. Concord’s compiler also performs GPU specific

optimizations. This work delivers performance improvements and energy efficiency.

Lime [31] is a Java-compatible language targeting heterogeneous systems. The

language type system and annotations allow the compiler to generate and optimize

high quality GPU code. The high level language semantics enforce isolation and im-

mutability invariants. These semantics provide the necessary guarantees for advanced

compiler optimizations and efficient and transparent management of data transfers.

ADSM[39], Asymmetric Distributed Shared Memory, is a programming model

that maintains a logical memory space for CPUs to access objects in the accelerator

physical memory. This asymmetric design supports lightweight runtime implementa-

tions. The proposed model requires developers to assign data objects to performance

critical code. If a critical code is selected for accelerator execution, its associated data

objects are allocated in the accelerator memory. However, ADSM makes these al-

locations visible to the host code via the shared logical memory space. This model

simplifies accelerator programmability.

The paper of Udupa [105] provides the design and implementation of a runtime

and compiler infrastructure for the execution of StreamIt, a programming language for

42 Chapter 3. Related Work

streaming applications, on GPUs. A program written in StreamIt consists a graph that

represents task, data and pipeline parallelism. This work presents an efficient mapping

of this graph to GPU resources and proposes a software pipeline technique for efficient

execution that relies on solving an integer linear program (ILP). This work also pro-

poses data layout transformations for improving the performance of GPU executions.

The work of Shou [96] maps OpenMP annotated software to GPUs and provides

DSM, a software distributed shared memory system that establishes a logic shared

memory space and transparently manages data communication between CPUs and

GPUs. This work optimizes DSM operations with a compiler assisted data prefetching

scheme.

The paper of Phothilimthana [87] presents an auto-tuning framework for perfor-

mance portability across various heterogeneous systems equipped with different pro-

cessor types. The programming systems and memory models differ dramatically mak-

ing performance portability a significant problem. This work presents a empirical

model that takes place at application installation time and delivers an improved map-

ping of programs to processors and memories. Programs provide descriptions in how

their individual algorithms may work and a compiler generates multiple versions of

the code that perform different mapping of workloads across the available processors.

The empirical model evaluates the available versions at installation time and provides

an efficient mapping.

Yang [113] presents an optimizing compiler for general purpose computing on

GPUs. It focuses on the effective utilization of GPU memory hierarchy and parallelism

management. In addition to standard compiler analyses, it detects memory access pat-

terns and performs automatic vectorization, memory coalescing, tiling and unrolling. It

also performs thread block remapping or address-offset insertion for partition-camping

elimination.

This section reviews prior work on runtime and compiler techniques for improved

programmability and performance optimizations on heterogeneous systems. The re-

viewed publications provide significant performance improvements but they only con-

sider single application performance and static workload configurations.

3.3.2 Computer Architecture

This section presents prior work in computer architecture for improved accelerator

scheduling which delivers performance improvements and better accelerator utiliza-

3.3. Workload Scheduling on Heterogeneous Systems 43

tion.

Fung [35] considers performance degradations caused by diverging control flow

executions on GPUs. The authors solve this problem by proposing a stack scheme that

allows different SIMD processing elements to execute diverging program paths after

branch instructions. The proposed technique dynamically regroups threads into new

warps based on their control flow behavior.

Narasiman [79] proposes GPU architecture changes in order to improve resource

utilization. Standard GPU architectures group threads into warps and thread blocks.

This work extends this scheme by proposing a large warp concept and two-level warp

scheduling. This way it reduces stalls due to long latency operations, such as memory

accesses and conditional branch instructions.

Chen [20] investigates thread scheduling algorithms for GPUs and indicates that

classical round-robin schemes are inefficient in scheduling instructions and memory

accesses with disparate latencies. It then proposes a flexible scheduling policy that sup-

ports flexible round-robin distance for efficient utilization of multi-thread parallelism.

This scheme also allows more overlaps between short-latency compute instructions

and long-latency memory accesses.

CCWS [89] is a thread scheduling scheme for GPUs that is cache aware. It is

equipped with an intra-wave locality detector for memory accesses. CCWS shapes

memory access patterns to avoid thrashing the shared L1 caches. This way it outper-

forms replacement-based scheduling schemes.

Huo [45] presents a scheduling mechanism to efficiently support recursion in mod-

ern GPUs. Code recursion causes diverging control flow for the various threads of a

kernel execution and leads to significant performance slowdowns. This work provides

a set of scheduling policies that solve this problem.

OWL [53] is a thread block aware scheduling mechanism for GPUs. It delivers

improved performance by tolerating long memory latencies. The mechanism sup-

ports four schemes in order to minimize the impact of long latencies. The first two

schemes, CTA-aware two-level warp scheduling and locality aware warp scheduling

reduce cache contention and improve the latency hiding. The third scheme, named

bank-level parallelism aware warp scheduling, improves performance by enhancing

DRAM bank-level parallelism. The last scheme performs memory-side prefetching to

enhance performance by taking advantage of open DRAM rows.

Brunie [16] presents two techniques that mitigate the impact of thread divergence

on GPUs. The proposed techniques relax the Single-Instruction Multiple-Thread (SIMT)

44 Chapter 3. Related Work

model by allowing two distinct instructions to be scheduled to disjoint subsets of the

same row of execution units, instead of one single instruction. This relaxed model

enables more thread grouping opportunities and improves GPU utilization.

This section reviewed prior work on computer architecture techniques that optimize

the performance of workload executions on accelerators. The presented work requires

significant architecture changes which are not available today and emphasizes on single

workload executions instead of multi-tasking scenarios. The contributions of this thesis

are orthogonal to the reviewed architecture work.

3.4 Memory Management and Data Sharing

This section discusses prior work on memory management, data transfers and data

sharing techniques. Section 3.4.1 discusses memory allocation on homogeneous and

heterogeneous systems. Resource management for Non-Uniform Memory Access Ar-

chitectures (NUMA) is discussed in section 3.4.2. Finally, section 3.4.3 presents com-

munication optimizations for heterogeneous systems.

3.4.1 Memory Allocators

This section discusses prior work on memory management for parallel systems con-

ducting multi-tasking computations.

Hoard [12] is a scalable memory allocator that delivers high performance with

efficient memory management for parallel applications such as web servers, database

managers and scientific applications. It efficiently tackles problems found in traditional

memory allocators, such as poor scalability and performance, and heap organizations

that introduce false sharing. Hoard leverages a global heap and per-processor heaps in

a scheme that minimizes synchronization overheads and dramatically reduces memory

fragmentation.

Heap layers[14] is a C++ template framework library that provides a powerful in-

frastructure for building custom and general purpose memory allocators that deliver

high performance. Developers are given building blocks via a clean, easy-to-use al-

locator interface that allows fast and error free design of general purpose memory

allocators that compete the performance of state of the art solutions, or specialized

allocations for particular application needs.

TCMalloc[40] is a user-space memory management library developed by Google.

3.4. Memory Management and Data Sharing 45

It delivers higher performance than standard memory management solutions found

in production systems. It achieves that by supporting low overhead memory man-

agement operations that scale to parallel multi-core systems. TCMalloc reduces lock

contention, where there is virtually zero contention for small objects. If lock opera-

tions are required, spinlocks are used which introduce lower overheads than traditional

mutual exclusion mechanisms such as mutexes. The design of the user-space memory

manager of the FreeBSD Unix project is given by Kamp [55].

SFMalloc [92] is a dynamic memory allocator for multi-threaded software. Each

thread manages its own local heap and local memory management does not require

any synchronization. SFMalloc design rarely uses synchronization and in cases where

it is required lock free mechanisms are used. It also exploits memory block caching

mechanisms in order to reduce the overhead of memory management operations. Freed

blocks or intermediate memory chunks are cached hierarchically in each thread’s heap

and they are used for future memory allocation.

DieHard [13] is memory management runtime that makes software tolerant to

memory errors such as buffer overflows, dangling pointers and reads of uninitialized

memory. DieHard approximates an infinite-sized heap by using randomization and

replication in order to probabilistically achieve memory safety. DieHard is equipped

with a memory manager that randomizes the location of objects in memory. In addi-

tion, DieHard supports a replicated mode, where multiple instances of the same appli-

cation run in parallel and agreement on the output is required. DieHard’s resilience in

memory errors can reduce program crashes, security vulnerabilities and unpredictable

behavior without requiring changes in the original application code.

RSMV [51], which stands for Region-based Software Virtual Memory (RSVM), is

a virtual memory mechanism that resides on both CPU and GPU in a distributed and

cooperative manner. It enables automatic GPU memory management and transparent

data transfers between CPU and GPU memories. It enables kernel-issued on demand

data fetching from the host into the GPU memory. It also permits transparent GPU

memory swapping into the main memory and scales GPU kernels to large problem

sizes that originally cannot fit into the GPU memory.

This section reviewed prior work on memory management for parallel and hetero-

geneous systems. This thesis work requires advanced memory management and relies

on the findings of the reviewed publications.

46 Chapter 3. Related Work

3.4.2 Non-Uniform Memory Access Architectures

This section reviews prior work on resource management for Non-Uniform Memory

Access (NUMA) architectures. These systems have multiple CPU sockets with lo-

cal RAM interfaces that are called NUMA nodes. Intra-node local memory accesses

typically are faster than accesses to remote nodes’ memories.

A NUMA aware version of Google’s TCMalloc memory manager is presented by

Kaminski [54]. This work makes the memory manager aware of NUMA topologies,

the number of nodes and the local memory available to each of them. The memory

allocation approach has been modified to consider memory location and the applied

practices attempt to minimize the inter-node communication overhead.

Larowe [62] proposes an Operating System design that efficiently manages data

placement and communication on complex NUMA architectures. The memory man-

agement subsystem has been modified to support a modular interface for multiple

memory management policies which improve system performance for existing appli-

cations without requiring any changes in the programming model.

Carrefour [25] is a memory placement algorithm for NUMA architectures that

minimizes the congestion on memory controllers and interconnects, caused by mem-

ory traffic of data-intensive applications. Modern NUMA hardware delivers small

inter-node communication overhead and the cost of remote memory accesses which

is solved via access locality optimizations is not the main performance concern. Traf-

fic congestion is the main cause of performance slowdowns and Carrefour solves this.

This section reviewed publications for memory management and data placement

on Non Uniform Memory Access (NUMA) systems. The thesis contributions con-

sider NUMA architectures and use the findings of the reviewed papers for memory

management and data placement.

3.4.3 Communication Optimizations for Heterogeneous Systems

This section reviews communication optimizations for heterogeneous systems. These

optimizations typically target the reduction of communication overhead either by im-

proving performance or eliminating redundant data transfers.

Jablin [48] presents a fully automatic system for managing and optimizing CPU-

GPU communications. The proposed system combines a run-time environment and

a set of compiler transformations while its operation does not rely on static code

analysis or programmer given annotations. This work simplifies manual GPU par-

3.4. Memory Management and Data Sharing 47

allelization while it improves the applicability and performance of automatic GPU

parallelizations. The proposed scheme suffers from inefficiencies of alias analysis and

type-inference. DyManD[47] overcomes these limitations and enables automatic man-

agement for complex and recursive data-structures without any need for static analysis.

This is done via memory alias checks and type-inference at run-time.

Lee [64] investigates data streaming and data compression in order to reduce the

communication overhead introduced by heterogeneous computing. The data streaming

technique enables overlap of communication and computation, while data compression

reduces the data sizes transferred between the host and GPU memories. Both tech-

niques introduce additional overhead but their data manipulation leads to significant

reduction of communication overheads and deliver overall performance improvements.

Two case studies of radix sort and 3-start are discussed.

MVAPICH2 library [106] is a novel MPI design that unifies the management of

CUDA and MPI data transfers and exposes a single MPI interface. This interface

enables direct communication with GPUs for both read and write operations. Data

transfers from GPU and network are now overlapped. MVAPICH2 reduces one way

communication latencies and increases the throughput of collective operations.

White III [109] explores performance improvements from overlapping computa-

tion and communication operations on hybrid clusters equipped with GPUs of various

generations and different types of interconnect. The evaluation considers computa-

tional software written in Fortran, MPI, OpenMP and CUDA. The authors find that

overlapping CPU computation, GPU computation, parallel communication, and CPU-

GPU communication can provide performance improvements of more than a factor of

two.

A GPU aware implementation of the MPI runtime is given by Ji [50]. Standard

MPI implementations are unaware of accelerators and their memory hierarchy. This,

typically, leads to additional copy operations which introduce significant overhead.

The proposed runtime is aware of GPU resources and leads to efficient intra-node

communications across GPUs and eliminates redundant copies.

CudaDMA[8] proposes architecture and programming model changes targeting

improved data transfers between the on-chip and off-chip memories of GPUs. DMA

warps improve memory bandwidth utilization by better exploiting the available memory-

level parallelism and by introducing inter-warp producer-consumer synchronization

mechanisms. DMA warps simplify the CUDA programming by decoupling the need

for thread array shapes to match data layout.

48 Chapter 3. Related Work

CUBA[38] is an architecture where accelerators have direct access to the required

input and output data without the need for explicit data transfers. This is achieved

by mapping data structures required for kernel computations between the host and ac-

celerator memories. The proposed mapping, which does not require any data layout

transformation, minimizes and optimizes data transfers between the host and acceler-

ator memories. This approach reduces communication overheads and simplifies the

programming model because there is no need for explicit data transfer management.

The mapping is built on the top of a cache mechanism that has a selective write-through

policy.

Dymaxion[19] is an API extension for CUDA that enables memory mapping op-

timizations which improve the efficiency of memory accesses on GPUs. Dymaxion

requires the developer to specify memory layout remapping and index transforma-

tion functions. These functions are then used by a runtime library that transparently

transforms the data layout of input and output buffers to representations that lead to

improved memory access performance on GPUs. The data layout transformation over-

laps with host-device communication, this way the overhead remains low.

This section presents prior work on communication optimization for heterogeneous

systems. The reviewed papers provide programming and architecture techniques that

optimize data communication on heterogeneous systems. One of they key contribu-

tions of this thesis is a communication optimization which is orthogonal to the pre-

sented papers.

3.5 Performance Evaluation & Modeling on

Accelerators

This section reviews prior work on techniques and frameworks for the performance

evaluation and modeling of heterogeneous systems. It also reviews benchmarks suites

for heterogeneous computing.

Coutinho [23] presents a profiling tool that relies on performance predicates. The

tool quantifies the major sources of performance degradation. It uses the collected

information to provide hints to the developer on how to improve his code.

TAUcuda[68] package is a performance measurement technology for CUDA ap-

plications that integrates with the TAU parallel performance system. The design of

this package relies on experimental software stack and provides detailed performance

3.5. Performance Evaluation & Modeling on Accelerators 49

information for kernel executions and CUDA operations. Furthermore, this work does

not require any modification of the program source or executable code.

Baghsorkhi [4] presents an analytical model for predicting the performance of com-

putations on GPUs. The model analyzes GPU kernels by identifying how they exercise

the GPU hardware features. Each kernel has a work flow graph representation which

is used for execution time estimation. The model is either used by an auto-tuning

compiler for selecting the more promising optimizations or can be used by application

developers as a profiling tool. The proposed model captures full system complexity in

detail and shows high accuracy in predicting the performance trends of different kernel

optimizations.

Keeneland[100] is a performance evaluation system for NUMA systems equipped

with multiple GPUs. It keeps track of complex performance phenomena and detects

contention for shared system resources. This work concludes its contributions by

proposing programming strategies that maximize performance and system utilization.

McCurdy [73] investigates the performance behavior of multi-threaded scientific

software on NUMA systems. It describes the performance problems that NUMA sys-

tems may have for parallel software and demonstrates how modern NUMA system

behavior may lead to scaling failures. The authors propose methods which use hard-

ware performance counters and detect performance bottlenecks. Mephis is a proposed

toolset that relies on Instruction Based Sampling and pinpoints inefficient memory ac-

cesses.

Parboil[101] benchmark suite is a set of throughput computing applications which

can be used for the performance evaluation of accelerator architectures, runtimes and

compilers. The suite provides multiple implementations where different programming

models and paradigms have been used. It also provides benchmark versions of varying

levels of optimization.

Rodinia[18] is a benchmark suite for heterogeneous computing. It provides appli-

cations and kernels which target commodity CPU cores and GPU platforms. Further-

more, this work provides a characterization of the benchmarks. The selected bench-

marks cover a large number of parallel communication patterns, synchronization tech-

niques and power needs.

This section reviews prior work on performance evaluation, performance model-

ing and benchmark suites for heterogeneous systems. This thesis presents extensive

performance evaluations on heterogeneous systems which rely on this prior work.

50 Chapter 3. Related Work

3.6 Summary

This chapter has provided, to the best of the authors knowledge, a brief review of

prior work on the various areas touched upon in this thesis. It has covered resource

sharing and virtualization techniques for homogeneous and heterogeneous systems.

Furthermore, workload scheduling on accelerators and various methods for optimizing

data communication for software using accelerators have been discussed. Methods

for memory management, and resource management techniques on multi-node shared

memory systems have also been presented. Finally, this chapter reviewed performance

evaluation and modeling techniques.

The next chapter presents an approach that reduces host-device communication

overhead for OpenCL applications. It does this without requiring modification or re-

compilation of the application source code and is portable across platforms.

Chapter 4

Host-Device Communication
Optimization

This chapter develops an approach that reduces host-device communication overhead

for OpenCL applications. It does this without modification or recompilation of the

application source code and is portable across platforms. It achieves this by tracing

and analyzing calls to the runtime made by the application and then selecting the best

platform specific memory allocation and communication policy. This approach was

applied to 12 existing OpenCL benchmarks from Parboil and Rodinia suites on 3 dif-

ferent platforms where it gives on average a speedup of 1.51, 1.31 and 1.48, respec-

tively. In certain cases, our approach leads up to a factor of three times improvement

over current approaches.

The remainder of the chapter is organized as follows. An introduction of the chal-

lenges and contributions of this chapter are given in section 4.1. Section 4.2 describes

the motivation for our work. Section 4.3 presents a high level overview of our host-

device communication optimization. Section 4.4 describes our approach for dynamic

platform characterization. The application tracing and analysis that support the opti-

mization are discussed in sections 4.5 and 4.6, respectively. The runtime environment

that performs the optimization is discussed in section 4.7. Sections 4.8 and 4.9 present

the experimental setup and the evaluation results. Section 4.10 provides a summary of

this work.

51

52 Chapter 4. Host-Device Communication Optimization

4.1 Introduction

Modern computer architecture design has shifted from single core to parallel heteroge-

neous systems. Here, the OS and the legacy application stack typically run on a number

of commodity cores while GPU accelerators are exploited through workload dispatch

performed by the application. OpenCL[58] and CUDA[81] are popular frameworks

providing workload dispatch and data transfer management between the distinct mem-

ory sub-systems of the host and GPUs.

Although OpenCL and CUDA provide a unified interface for utilizing GPUs, trying

to optimize applications and estimating their performance remains a challenging task.

This is largely due to a lack of transparency. GPU architectures and the data exchange

protocols between the distinct memories are opaque and differ in behavior that can

lead to performance loss.

Currently, developers have to spend time tuning their code to each new GPU based

platform. Given the rate of GPU hardware evolution, this approach is time consuming

and is a significant barrier to heterogeneous computing. So while we have portable

code, we do not have portable performance.

Our approach to address this problem is to develop a portable framework targeted

at the optimization of host-device OpenCL communication. As we show, such com-

munication can be a significant overhead in OpenCL applications. By improving data

transfers between the different memory sub-systems, we can achieve significant per-

formance improvements automatically without altering the user’s application code.

Programming guidelines from GPU vendors recommend the use of memory locked

segments (memory pages are pinned in main memory) for the maximum exploit of

interconnect bandwidth [81]. Such an approach leads to improved communication

performance but with the penalty of prohibitive allocation times. It violates application

portability, as multiple assumptions about the hardware and OS are hard-wired into the

code. Current approaches therefore trade-off portability for performance.

Our work solves this problem by redirecting dynamic memory allocation requests,

selecting the memory allocation policy that best improves host-device communication

and reduces overall application time. Our host-device communication optimization

remains transparent to the application execution and does not require any alteration or

re-compilation of the application. To achieve this, we need knowledge of the particular

allocation and communication policies of the target platform and their associated costs.

This is achieved by an automatic platform characterization scheme.

4.2. Motivation 53

As well as platform characterization, our approach requires knowledge of appli-

cation behaviour. Specialized memory allocation is only of benefit, if the memory

allocated is involved in host to device communication. Using specialized memory

allocation for data that is used solely on the host incurs excessive overhead. To de-

termine if a memory allocation requires special treatment, the application is traced.

We record calls to OpenCL and memory allocation functions as well as tracking data

dependencies in SSA form. The traces are condensed into a compressed call trace so

to enable later analysis to determine candidate memory allocations for optimization.

After analyzing the compressed trace, we can determine those memory allocations that

are involved in host-device communication. This is used to determine the best memory

allocation and communication policy for each call site. This information is then used at

runtime to redirect dynamic requests appropriately. This is all performed transparently

to the user.

The chapter contributions are summarized as:

• A platform characterization scheme that automatically detects the host-device

communication and memory allocation capabilities of a platform.

• An on-line tool that traces heterogeneous applications and stores in a compressed

call trace.

• An optimization that analyses the compressed call trace to determine the best

allocation and communication policy per call.

• An empirical evaluation that shows significant improvement over 3 platforms

without any alteration or recompilation of the application program.

4.2 Motivation

This section presents a motivating example illustrating the communication optimiza-

tion enabled by our framework. Data is initially allocated on the host, typically via the

default memory allocator via a call to malloc. As this data is to be used by the device, a

data transfer is made. Once the data transfer is complete, kernel execution on the GPU

can start. After the kernel completes, data may be transfered back to the host memory.

When standard memory allocation is used, the device driver is forced to transfer

data page by page with multiple DMA transfers from host to device as shown in the

54 Chapter 4. Host-Device Communication Optimization

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Host/Device
Communication in Enhanced Environment

Reduced DMA
Transfers

Device/Host

Memory
Pages

Host to Device
Transfer

Kernel
Execution

Device to Host
Transfer

Host to Device
Transfer

Kernel
Execution

Device to
Host Transfer

Execution Time

Speedup Gain

Standard
Execution

 Environment

Enhanced
Execution

 Environment

s=malloc(...);

… code...

a=malloc(...);

H2D(s);

...code...

r=malloc(...);

b=malloc(...);

D2H(r);(b)

(c)

(a)

Figure 4.1: Our optimization reduces the number of DMA transfers for host-device

communication by using specialized memory allocation which guarantees memory

pages are in physical memory (Figure a). We use compiler techniques to determine

the memory allocations that will be served by our optimization with specialized mem-

ory allocation (Figure b). This improves the overall execution time of an application

by reducing the host-device communication overhead (Figure c).

left side of figure 4.1a. This is because it needs to handle page fault for pages that are

not present in main memory but stored on disk.

In our approach we exploit special memory allocation policies that provide mem-

ory locked segments. The memory pages remain permanently in main memory and are

not swapped to secondary storage. The driver now has the guarantee that all pages are

in main memory and performs the host to device communication with the fewest pos-

sible DMA transfers. The reduction of DMA transfers and the absence of page faults

increase the interconnect utilization. This is shown in the right side of figure 4.1a.

4.2. Motivation 55

Figure 4.2: Execution time breakdowns for two versions of mri-mridding bench-

mark: generic and nvidia. The left hand bar, Standard, shows its execution time

breakdown in the standard execution environment. The right hand bar, Enhanced

shows the execution time with our optimization in the enhanced execution environ-

ment. The overall execution time is broken down into kernel, communication and

cpu+sync subcomponents. In both cases our enhanced environment dramatically re-

duces the cost of communication and sync giving significantly improved execution

time.

This communication optimization is only of benefit if the memory allocated is in-

volved in host to device communication. Using specialized memory allocation for

data that is used solely on the host incurs excessive overhead and massive use of lim-

ited system resources. Our approach uses compiler analysis of compressed call traces

to determine those memory allocations that are associated with host to device commu-

nication. This is illustrated in figure 4.1b. Here there are multiple memory allocation

calls, but only 2 of them are involved in allocating data that will take part in host-device

communication. By using compiler analysis we can detect such memory allocations

and change their memory allocation policy. This analysis is critical to any perfor-

mance gains. Applying this technique reduces the communication overhead and hence

application execution time as shown in the bottom part of figure 4.1c.

56 Chapter 4. Host-Device Communication Optimization

4.2.1 Performance Impact

Figure 4.2 shows the speedup delivered by our optimization to the mri-gridding

benchmark of the Parboil suite. To illustrate the applicability of our approach, we

consider two versions of the benchmark. The first labelled generic is the generic

OpenCL implementation of mri-gridding. The second labelled nvidia is a version

specially developed for NVIDIA GPUs. Both versions are available in the Parboil

suite. Two bars are shown for each version. The left hand bar in each pair shows the

time spent in the standard environment (Standard), the right hand bar shows the time

spent with the optimization in our enhanced environment (Enhanced). In addition,

each bar shows a stack which gives the total time spent executing the program broken

down into subcomponents: kernel execution time, communication time between

host and device and CPU + Sync time.

For the generic version, we are able to reduce the total execution time from 800ms

to 500ms giving a speedup of 1.6x. This is due to the reduction of communication and

cpu+sync time from 450ms to 150ms. In the case of the nvidia optimized version,

the kernel is notably faster than the generic one, 230ms vs 280ms. However, improve-

ment in the kernel execution time means that communication time is actually a greater

percentage of application execution time. Applying our optimization technique again

reduces the cost of data transfers leading to a speedup of 1.8x. As programmers tune

their application kernels, the relative cost of communication grows, making such opti-

mizations increasingly important.

4.2.2 Summary

In this chapter, we present a host-device communication optimization which is portable

and transparent and does not require access or recompilation of the application code.

We achieve this by characterizing the memory allocation and communication capabili-

ties of a platform through micro-benchmarking and by performing application tracing.

We apply off-line compiler analysis of the collected compressed trace to determine

which allocations are associated with host-device communication . At run-time we

use platform information and application analysis to redirect memory allocation and

communication calls to the most profitable policy.

4.3. Optimization Overview 57

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Off-Line Characterizations
Platform Characterization

Application Characterization

Runtime Optimization

Enhanced Execution
Environment

OpenCL
Application

Mem. Allocation
Policies

Figure 4.3: An Overview of the Host-Device Communication Optimization. Our opti-

mization relies on the platform and application characterizations. The platform charac-

terization detects the memory allocation and host-device communication capabilities

of the platform. The application characterization traces and analyzes the application

for the detection of memory allocations that are used in host-device communication.

The enhanced environment uses the platform characterization and the results of ap-

plication analysis for the run-time selection of memory policy that gives the highest

communication speedup.

4.3 Optimization Overview

In this section, we provide a high level overview of our host-device communication

optimization and the key components that support it. The optimization exploits ar-

chitectural and driver features but in a portable and transparent manner with no code

modification or recompilation.

The optimization is based on the observation that different memory allocation poli-

cies affect the performance of OpenCL data transfers. One example of this case is

the use of programmer hard-coded memory locked segments (memory pages pinned

in main memory) in applications running on platforms with GPUs, where memory

locking improves the performance of OpenCL data transfers. Our work generalizes

this to a wider range of memory allocation policies without any inherently unportable

programmer hard-coding. Furthermore, the memory allocation and communication

capabilities of the platform are detected automatically. During application execution,

dynamic memory allocations are served by the policy that leads to the highest host-

device communication rates on that platform.

Our optimization, as can be seen in Figure 4.3, relies on two characterizations. The

first, platform characterization, is concerned with detecting the memory allocation cost

and host-device communication performance of the platform. The second, application

58 Chapter 4. Host-Device Communication Optimization

characterization, is concerned with the application tracing and the off-line analysis

of the traced data, both are required for the identification of memory allocations that

should be redirected by the optimization. Combining both components allows the

runtime optimization of the application. The following sub-sections provide further

details of the components and the runtime optimization.

4.3.1 Platform Characterization

Here, we evaluate the allocation and communication capabilities of the target plat-

form by using two micro-benchmarks. The first benchmark is used to measure the

allocation time for different data sizes. The second is used to measure host-device

communication rates for each policy. Curve fitting is applied to the data resulting in

simple performance estimation functions.

This benchmarking is performed just once per platform. The allocation policies

and their performance estimation functions are later used at runtime to optimize a

target application. Section 4.4 describes the platform characterization in further detail.

4.3.2 Application Characterization

We trace an application’s interaction with the OpenCL environment. We then analyze

the resulting trace to determine the best allocation policies for later runs. Tracing is

performed by monitoring application calls to the OpenCL library and memory alloca-

tion functions. Later, application analysis operates on the traced data and detects the

dynamic memory allocations that are used in host-device communication operations.

The detected allocations are later used as application dependent input by the runtime

optimization.

4.3.2.1 Application Tracing

The application executes with a sample input while its operation is monitored by our

tool. The framework monitors every application call to OpenCL and memory alloca-

tion functions, constructs a compressed call trace, builds data dependencies and col-

lects performance statistics. The application tracing is essential for the collection of

data required by the application analysis. The application tracing is further described

in Section 4.5.

4.4. Platform Characterization 59

4.3.2.2 Application Analysis

Our optimization requires the detection of dynamic memory allocations that are used

in host-device communication operations. We develop an algorithm that investigates

if applying the optimization is worthwhile for the application based on a simple eli-

gibility heuristic. If the application is optimization eligible, the algorithm detects the

allocations that are used in host-device communication operations. For further details

see 4.6.

4.3.3 Runtime Optimization

Our enhanced environment redirects only the memory allocation operations for the host

memory that is used in host-device communication. It replaces the standard allocation

policy with the one that is likely to lead to the highest bandwidth rates for host-device

communication. An allocation manager operates on top of the available policies and

uses the application analysis results and the performance estimation functions for the

redirection decisions. The manager leverages user-space memory allocators for poli-

cies that have prohibitive allocation times. The features of the enhanced environment

and the memory allocator are described in Section 4.7.

4.4 Platform Characterization

This section describes the platform characterization, where we detect the dynamic

memory allocation and host-device communication capabilities of a platform through

micro-benchmarking. We consider four allocation policies and for each we collect data

in allocation and host-device communication performance. Curve fitting is performed

on the collected data to give simple performance estimation functions.

4.4.1 Memory Allocation Policies

A memory allocation policy is considered as a set of memory management operations

that are used for the dynamic allocation of a segment. Our platform characterization

considers four allocation policies, the Standard, OpenCL, Standard with Locking

and Hybrid policies.

60 Chapter 4. Host-Device Communication Optimization

Standard: This is the default memory allocator, accessible through the standard

memory management functions of C/C++, e.g. malloc. In algorithm 4.1, we describe

the remaining policies.

OpenCL: Lines 3 to 9 describe the policy where the OpenCL runtime allocates a

memory segment on the host and attaches it to the application address space.

Standard with Locking: This policy is described on lines 13 to 18, where the

standard allocator provides a memory segment and the POSIX specified mlock function

locks the segment on main memory.

Hybrid: This policy is shown on lines 22 to 30 where a memory segment is allo-

cated through the standard allocator, after it is locked in main memory through mlock

and later an OpenCL buffer that exploits the segment space is created. In the end, the

buffer is attached to the application address space.

1 /*OpenCL*/

2

3 void *oclmalloc(size_t size)

4 {

5 cb=clCreateBuffer(c, CL_MEM_READ_WRITE |

6 CL_MEM_ALLOC_HOST_PTR , size , NULL , &rv);

7 return clEnqueueMapBuffer(q, cb, CL_TRUE ,

8 CL_MAP_READ , 0, size , 0, NULL , NULL , &rv);

9 }

10

11 /*Standard with Locking*/

12

13 void *lockmalloc(size_t size)

14 {

15 p=malloc(size);

16 mlock(p,size);

17 return p;

18 }

19

20 /* Hybrid*/

21

22 void *hybridmalloc(size_t size)

23 {

24 p=malloc(size);

25 mlock(p,size);

26 cb=clCreateBuffer(c, CL_MEM_READ_WRITE |

27 CL_MEM_USE_HOST_PTR , size , p, &rv);

28 return clEnqueueMapBuffer(q, cb, CL_TRUE ,

29 CL_MAP_READ , 0, size , 0, NULL , NULL , &rv);

30 }

Algorithm 4.1: Dynamic Memory Allocation Policies. The figure shows malloc

equivalent concepts for policies that support dynamic memory allocation in a way

different to the default system allocator.

4.5. Application Tracing 61

Both OpenCL and Standard with Locking policies are expected to provide mem-

ory locked segments with the difference that the first provides the segment through

the OpenCL environment and the second through the standard system facilities. The

Hybrid policy overcomes the lack of full cooperation between some OpenCL imple-

mentations and the standard system. Some OpenCL implementations cannot detect

memory locked segments that are not allocated through OpenCL. The benefit of using

Hybrid instead of OpenCL policy is that Hybrid provides memory locked segments

through the standard system facilities that are recognizable by the OpenCL implemen-

tation as memory locked. Furthermore, Hybrid requires the use of an OpenCL context

only for the creation of the memory buffer while the actual allocation and memory

locking are performed by standard library functions and they can overlap with OpenCL

context creation.

4.4.2 Platform Characterization Procedure

Two micro-benchmarks are used to determine memory allocation times and host-device

communication rates. Both benchmarks are used to investigate a large range of alloca-

tion and data transfer sizes, respectively.

The allocation micro-benchmark investigates the overhead times for the al-

location policies described above. Allocation sizes of interest range from 1KB to

767MB.

The communication micro-benchmark investigates the host-device communica-

tion rates where the used host memory is allocated with every available policy. The

benchmark investigates the communication rates in both directions, from the host to

device and from the device to host. The benchmark produces statistics for a number

of concurrent data transfers ranging from one to four with transfer sizes ranging from

1KB to 150MB per transfer.

We perform curve fitting [22] on the collected data delivering performance esti-

mation functions for both allocation times and communication rates. Both functions

have a single input, the allocation and data transfer sizes respectively and they provide

performance estimation in constant time.

62 Chapter 4. Host-Device Communication Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Preceding
Calls

Proceeding
Calls

(a) Standard Call.

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Preceding
Calls

Proceeding
Calls

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

(b) Call with Tracing.

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Preceding
Calls

Proceeding
Calls

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

 Calls For
Redirection

(c) Call with Optimization.

Figure 4.4: Function Call Intercepting. This figure shows how our framework in-

tercepts the standard call procedure (Figure a) for the support of application tracing

(Figure b) and runtime optimization (Figure c).

4.5 Application Tracing

To best exploit the allocation/communication properties of a platform, we need knowl-

edge of application behavior. Our tool monitors the application execution by capturing

and recording every call to the OpenCL runtime and memory allocation functions.

Ideally, application tracing should be embedded in or attached to the OpenCL library.

Unfortunately, the OpenCL library is distributed as closed source with no attachment

mechanism. To overcome this, we developed a lightweight wrapping library that in-

4.5. Application Tracing 63

tercepts calls to the OpenCL functions and the memory allocation functions defined in

C/C++ and POSIX standards. Figure 4.4 (a) and (b) show how tracing is achieved.

Normally, as Figure 4.4a show, the application makes a call, passes the read argu-

ments onto the stack and performs the call. On return, the write arguments have been

updated. Figure 4.4b shows the call procedure when function calls are intercepted by

our wrapping library. The read arguments are passed on the stack and the call takes

place as before. Now, the execution control moves to our tracing code instead of the

original function definition. The tracing library collects the read arguments and for-

wards the execution to the function definition. On function completion, the execution

returns to our tracing code, that collects the write arguments and returns the execution

control to the application.

4.5.1 Call Trace

The runtime application behavior is captured as a compressed call trace. The trace

stores every application call to OpenCL and memory allocation functions along with

data dependencies of the calls (read and write arguments of call). The trace also stores

the overall application execution time and the execution times of host-device commu-

nication and kernel computation operations.

Two efficient data structures, called Call and Data represent the traced information

for function calls and data objects, respectively.

Function Call Representation: An instance of Call stores information for a sin-

gle function call. It contains the name of the function, the thread ID that performed

it and its execution time if the function is a kernel computation or communication

operation.

Data Representation: A Data instance stores information for a data object that is

a read or write dependency for one or more function calls. Supported data types are the

scalar types defined in C/C++ standards [46], abstract types of OpenCL, raw memory

segments and arrays of the previous types. If a Data instance represents a scalar data

object, it contains a copy of the actual data. If it represents a non-scalar, such as a raw

memory segment or an OpenCL Memory object, it contains a pointer to the data object

location and a unique ID provided by an SSA (Static Single Assignment) mechanism.

Non Scalar Data Versioning: We use SSA[24] representation to track non-scalar

data objects during the application execution. After a non-scalar object definition,

where the object is firstly created, or after its update by a function call, a new Data

64 Chapter 4. Host-Device Communication Optimization

1 segm=malloc(SIZE);

2 clSetKernelArg(kernel , 0, sizeof(void *), (void *)&buf);

3 for(i=0; i<n; i++)

4 {

5 do_smth(&segm);

6 clEnqueueWriteBuffer(cqueue , buf, 1, 0, SIZE , segm ,0,NULL ,NULL);

7 clEnqueueNDRangeKernel(cqueue , kernel , DIM, GWO, GWS, LWS, 0, NULL , NULL);

8 clEnqueueReadBuffer(cqueue , buf, 1, 0, SIZE , segm , 0, NULL , NULL);

9 }

(a) Sample OpenCL Code.

Call Def Use

malloc s0

karg k1 b0,k0

wbuffer b1 b0,s0,q0

kexec b2 b1,k1,q0

rbuffer s1 b2,s0,q0

wbuffer b3 b2,s1,q0

kexec b4 b3,k1,q0

rbuffer s2 b4,s0,q0

... n-3 loop iterations ...

wbuffer b2n+1 b2n,sn,q0

kexec b2n+2 b2n+1,k1,q0

rbuffer sn+1 b2n+2,s0,q0

(b) Performed Function Calls.

Call Def Use

malloc s0

karg k1 b0,k0

wbuffer(#n) b1 b0,s0,q0

kexec(#n) b2 b1,k1,q0

rbuffer(#n) s1 b2,s0,q0

(c) Compressed Call Trace.

Figure 4.5: Call Trace Generation and Compression. Figure (a) shows a simple code

segment where a set of OpenCL functions is executed n times. Figure (b) shows how

the OpenCL calls are captured by the wrapping library over the loop iterations. Figure

(c) shows the compressed trace after the completion of the code execution.

4.5. Application Tracing 65

instance is created and stores a pointer to the data address and a unique ID provided by

the SSA mechanism. Data instances that refer on different updates of the same non-

scalar object have a pointer to the same data address but they have different SSA IDs.

In addition, by tracking instead of copying non-scalar data objects we keep the tracing

overhead to negligible levels.

4.5.2 Trace Compression

The input or problem size of an application execution may affect the number of exe-

cutions for an OpenCL operation or group of operations. This could lead to huge call

traces that vary among the different problem or input sizes. We solve this by detecting

repeated calls to single functions or group of functions and merging the calls.

For trace compression, each call is represented as a production of the regular ex-

pression. We consider each call as a string, where the name of called function is

followed by the SSA name of its non-scalar data arguments its return type if not a

scalar.

Our compression technique is performed on the fly at run-time. Whenever a new

call is added on trace, our compression algorithm checks for repeated calls to the same

function or group of functions. Two calls are merged if they refer to the same function

and the SSA IDs of their non-scalar arguments refer to the same objects. Merging

between two groups of calls requires an one to one merging of the calls of the two

groups. When we compress, we use the lowest SSA IDs. Our trace compression

approach relies on the merging and transition labeling algorithm provided by [10]. We

use a DFA based algorithm for the matching of the calls we merge. The effect of our

compression technique is presented in Figure 4.5.

In the code of Figure 4.5a, after allocating a memory segment, the code copies the

segment contents to a device buffer, computes a kernel and copies the buffer data back

to the segment. This group of operations is performed n times due to the loop. Fig-

ure 4.5b provides the raw sequence of the function calls as they are performed during

code execution. Each call entry contains the function name and its non-scalar data

dependencies grouped as Definitions(Writes) and Uses(Reads). Figure 4.5c shows the

resulting compressed trace. Our compression technique merged the repeated calls to

the group of clEnqueueWriteBuffer, clNDRangeKernel and clEnqueReadBuffer func-

tions to three final call entries. The full trace contains five calls, including the two calls

that are not included in the loop.

66 Chapter 4. Host-Device Communication Optimization

Cumulative Host-Device Communication Time
Cumulative Device Computation Time

≥ 0.1

Figure 4.6: Optimization Eligibility Heuristic. The application analysis considers an

application as optimization eligible only if the communication overhead is comparable

or higher to the computational workload of the device. The dispatch ratio (Cumu-

lative Host-Device Communication Time / Cumulative Device Computation Time) is

required to be greater or equal to 0.1.

Trace compression is critical for the host-device communication optimization. In

practice, after compression, the compressed trace is less than 2 Kbytes. Our optimiza-

tion technique requires that the trace provided by the application characterization and

the one generated during the run-time optimization to be the same. If the two traces

are different, the optimization is not applicable and the default scheme is used. Our ex-

periments show that trace compression produces matching traces across all programs

within two benchmark suites.

4.6 Application Analysis

Once we have the compressed trace, we analyze it for optimization opportunities.

Memory allocation calls may be redirected at runtime from the standard allocation

policy to the one that leads to the highest transfer rates. However, an application may

perform dynamic memory allocations that are never involved in host-device communi-

cation and are only used in host operations. This type of allocation cannot benefit from

our scheme and may indeed incur overhead if redirected. Here, we describe the appli-

cation analysis that firstly checks if the optimization is worthwhile and then detects the

memory allocations that should be redirected.

An optimization for the host-device communication is meaningful in cases that the

communication overhead is comparable or higher than the computational workload

dispatched on the device, otherwise the communication improvement will not lead to

significant application speedups. Our application analysis checks if the optimization

is worthwhile for an application with the heuristic of Figure 4.6. If the dispatch ratio,

defined as the ratio of the Cumulative Host-Device Communication Time over the

Cumulative Device Computation Time, is greater or equal to 0.1, the application is

4.7. Runtime Optimization 67

considered optimization eligible. The value of 0.1 is specified after experimentation

and guarantees significant performance gain regardless the application.

If the application is optimization eligible, the algorithm 4.2 operates on the com-

pressed call trace of the application and detects the dynamic memory allocations that

are involved in OpenCL communication operations. The algorithm traverses the call

trace and for each call that performs a host-device communication operation, it re-

trieves the used memory segment. The algorithm then retrieves the first Data instance

that refers to the segment through SSA. After it annotates the memory allocation call

that created the data object as optimization candidate.

The output of the algorithm is the set of memory allocations that should be redi-

rected by the runtime optimization.

1 for each c in the Call Trace

2 if c is a host -device communication that involves a memory segment s

3 retrieve s’, the first state of s (through SSA)

4 retrieve co, the creator (allocation call) of s’

5 annotate co as optimization candidate

Algorithm 4.2: Allocation Detection Algorithm. The algorithm operates on the

Call Trace of the application and detects the dynamic memory allocations that are

used in host-device communication operations.

4.7 Runtime Optimization

Our enhanced execution environment controls the host-device communication opti-

mization. It uses the available memory allocation policies and performance estimation

functions provided by platform characterization. The optimization redirects the mem-

ory allocations indicated by the application analysis from the default allocation policy

to an allocation manager which decides the best policy to be used.

Request Interception: The redirection is achieved by intercepting the standard

call procedure with a technique similar to the one of application tracing (Section 4.5).

Figure 4.4c illustrates the call redirection. While the application is executed in the

enhanced environment, a call trace is constructed with a procedure identical to the

one of application tracing. Whenever a new allocation call is added to the trace, the

optimization checks if it is indicated by the application analysis for redirection. If not,

the call is served by the default memory allocation functions. Otherwise the call is

redirected to our allocation manager.

68 Chapter 4. Host-Device Communication Optimization

Trace Comparison: As described in Section 4.5, the optimization technique re-

quires the call trace generated by the application tracing phase and the one generated

during the application optimization to be the same. Trace compression preserves this

property for different sized inputs but not for different application behaviors. In case

that the application presents a behavior different than the expected one, where it con-

structs a different call trace, the enhanced environment will detect it. The enhanced

environment checks the function names and non-scalar data arguments of the calls it

encounters. In the case that they differ from the application analysis data, the opti-

mization is deactivated. The remaining of the execution performs conservatively and

the application completes its execution safely.

4.7.1 Memory Allocation Manager

It has direct access to the available allocation policies and serves the redirected al-

location requests. It serves each allocation request by selecting the policy that gives

the highest performance for host-device communication. The decision relies on the

performance estimation functions and the size of the allocation.

Depending on the allocation times of an allocation policy, the manager either uses

the policy directly or leverages a user-space memory allocator for it. An allocator uses

directly a policy to allocate a large memory segment during environment setup and

performs its own allocation algorithm in user-space. The allocation algorithm relies on

a Red-Black tree for efficient indexing of free memory chunks.

Policy Selection: During the environment setup, the allocation manager checks

the allocation times of the policy that leads to the highest communication performance

across varying transfer sizes. If it has high allocation times, a user-space memory

allocator is initialized. If two or more policies lead to similar communication perfor-

mance, the environment chooses the one that does not require allocator and deactivates

the others. If all of them require one, it chooses one of them.

Allocator Initialization: The memory allocator initialization is possible to overlap

with the OpenCL context creation, if the memory allocation operation of the policy can

operate partly or fully without an OpenCL context. Standard with Locking can

overlap completely with the context creation. In case of Hybrid, the time consuming

part of the allocation overlaps, as the memory allocation and locking is performed with

standard functions. The enhanced environment tends to enable allocators with policies

that can overlap with OpenCL context creation.

4.8. Experimental Setup 69

Platform CPU RAM GPU

GTXplatform Intel i7 X990 3.47GHz 12GB 1333MHz NVIDIA GTX 580

AMDplatform Intel i7 X990 3.47GHz 8GB 1333MHz ATI Radeon HD 5970

K20platform Intel i7 3820 3.60GHz 8GB 1333MHz NVIDIA Tesla K20c

Figure 4.7: Overview of the Evaluation Platforms.

Platform Limitations: Resource limits may be specified by the Operating System

or the OpenCL runtime when the environment uses special memory allocation policies.

Our work respects those limitations. In the case that a memory allocation policy fails to

serve more requests, the environment falls back to standard memory allocation policy.

4.8 Experimental Setup

Our host-device communication optimization approach is evaluated against two bench-

mark suites on three different platforms

4.8.1 Platforms

We use 3 platforms: the GTXplatform, AMDplatform and K20platform as shown in

figure 4.7. Each platform has an Intel i7 multicore and run Linux. The GTXplatform

has an NVIDIA GPU of Fermi[110] architecture. The AMDplatform has an AMD

GPU of Evergreen[3] architecture. The last platform, K20platform, has an NVIDIA

GPU of Kepler[80] architecture. The GPUs are connected with the main system

through PCI Express interconnects of version 2.0, 2.1 and 2.0 respectively.

4.8.2 Benchmarks

We use both the Parboil [101] and Rodinia [18] benchmark suites for evaluation. From

Parboil, we consider two versions of each benchmark, a generic one and a specialized

version, nvidia tuned for NVIDIA GPUs.

For each benchmark we consider two available inputs, one small and one large, to

evaluate our approach for different problem sizes. In certain cases, sad, streamcluster

and mri-gridding, only one data set is available, The backprop benchmark of Ro-

dinia and the NVIDIA version of bfs of Parboil both crash with segmentation faults

70 Chapter 4. Host-Device Communication Optimization

and are excluded.

We also exclude the bfs[r] and streamcluster from our evaluation. These two

Rodinia benchmarks both have hard-coded special memory allocation policies which

prevent portability and evaluation across platforms.

4.9 Results

In this section we evaluate our host-device communication optimization on the Parboil

and Rodinia benchmark suites on the 3 platforms. For those benchmarks which are

eligible for optimization, the reported speedups are significant; ranging from 1.25x for

small data zises on the AMDplatform to 1.51x on the GTXplatform for large datasizes.

Section 4.9.1 discuss in detail the evaluation results on the GTXplatform. It pro-

vides data for the dispatch ratios of the benchmarks, analyzes the speedup results and

provide execution time breakdowns that give an insight of the benchmark behavior in

both the standard and enhanced environments. This is followed by section 4.9.2 which

presents the results of our optimization on AMDplatform and K20platform.

In section 4.9.3 we evaluate our optimization on the NVIDIA tuned version of

the Parboil benchmarks and show how our technique has additional impact on perfor-

mance. This is followed in section 4.9.4 by an analysis of the allocation policies se-

lected by our scheme. In section 4.9.5, we compare our optimization technique against

potential naive approaches.

4.9.1 Results on NVIDIA GTX 580

Dispatch ratio:

The optimization eligibility of a benchmark is dependent on the dispatch ratio

(the ratio of Cumulative Host-Device Communication Time over the Cumulative De-

vice Computation Time) of its small input. If the value is greater or equal to 0.1 the

optimization is applied to the benchmark (Section 4.6). The use of this heuristic guar-

antees that the optimization will improve the benchmark execution time significantly.

To illustrate this, Figure 4.8a presents the dispatch ratios for the two inputs of each

benchmark. The benchmarks are ordered by their dispatch ratio for their small input,

starting from the benchmark with the lowest value.

Providing both dispatch ratios per benchmark is not required by the eligibility

heuristic of application analysis but is useful in interpreting speedup results. For bench-

4.9. Results 71

(a) Generic Benchmark Version (generic)

(b) NVIDIA Tuned Version (nvidia)

Figure 4.8: Benchmark Dispatch Ratio. The figures show the dispatch ratios for the

benchmarks of both Parboil and Rodinia suites. Each benchmark has two bars repre-

senting the dispatch ratio for two different inputs. Benchmarks whose dispatch ratio is

equal or greater to 0.1 for their small input are considered optimization eligible. Fig-

ure (a) provides dispatch ratio values for the generic version of benchmarks. Figure (b)

shows the dispatch ratio for NVIDIA version of Parboil benchmarks that are originally

optimization eligible.

72 Chapter 4. Host-Device Communication Optimization

marks such as bfs and nn the dispatch ratio increases on the large input. For bfs,

dispatch ratio increases from 0.25 to 0.55 and for nn from 29.71 to 38.09. For others

such as kmeans and sgemm the dispatch ratio decreases on the large input. The ratio of

kmeans decreases from 0.45 to 0.32 and for sgemm from 1.05 to 0.2. Benchmarks such

as histo has relatively similar dispatch ratios for both inputs. The ratios of histo are

5.53 and 5.2 for its small and large inputs as computation scales with communication

for this benchmark.

Speedups: Figure 4.9a shows the speedups achieved by the execution of bench-

marks in our enhanced environment compared to their execution in the standard envi-

ronment. The speedups range from 1.05x to 3x. Benchmarks that have dispatch ratios

proportional to the input size, such as nw and nn, present higher speedups for the large

input. For nw and nn the speedup increases by 1.0 and 0.2, respectively. Benchmarks

that have dispatch ratios inversely proportional to the input size, such lbm and sgemm

have lower speedups for the large input.

For histo, our optimization gives significantly higher performance with the large

input despite a dispatch ratios similar to the smaller size, This is because the large input

can be improved by a special policy. For large input, the memory manager allocates

segments with the Hybrid policy, which leads to the lowest communication overhead.

The execution with the small input requires only small size transfers where a special

policy is not beneficial and the manager uses the Standard policy(Section 4.9.4).

Execution Breakdown: Figure 4.10a presents the execution time breakdowns for

the benchmarks running in both the standard and our enhanced execution environment

for the large input sizes. Each benchmark has a pair of bars. Each bar shows a stack

which gives the total time spent executing the program broken down into subcompo-

nents: kernel execution time, communication time between host and device and CPU

+ Sync time. The optimization reduces the host-device communication times and in

many cases the CPU + Sync times. This time includes the delays caused by synchro-

nizations. Synchronizations are performed either explicitly by synchronization calls or

implicitly by the ordering and synchronization of OpenCL command queues and the

OpenCL implementation. The reduction of host-device communication times leads to

the reduction of those delays too.

Benchmarks that have high dispatch ratios and speedups tend to spend significant

parts of their execution for communication and the optimization reduces massively

the communication times. Benchmarks such as nw, histo and sad present critical

reduction of their communication and cpu+sync times. Benchmarks such as lbm and

4.9. Results 73

(a) GTXplatform (b) AMDplatform

(c) K20platform

Figure 4.9: Benchmark Speedup. The figure shows the speedup for the optimization

eligible benchmarks on the three platforms. It compares the overall benchmark execu-

tion times of benchmarks running on the standard execution environment of OpenCL

with the times of our enhanced execution environment that enables the host-device

communication optimization. It provides results for two input sets and the resulted

geometric means.

74 Chapter 4. Host-Device Communication Optimization

(a) Generic Benchmark Version (generic)

(b) NVIDIA Tuned Version (nvidia)

Figure 4.10: Execution Time Breakdown. This figure shows the execution time break-

downs for the benchmarks running on the standard execution environment (left bar)

and our enhanced execution environment (right bar) which enables our optimization.

The data refers to the large input of benchmarks.

4.9. Results 75

lud which have less communication, show a lower scale of performance improvement.

The breakdown for the smaller input has a similar structure.

4.9.2 Results on AMD Radeon HD 5970 and NVIDIA Tesla k20c

For the AMDplatform, the speedups of figure 4.9b are significantly lower than the

speedups of the platforms with NVIDIA GPUs. This is because of the AMD OpenCL

implementation. It preallocates memory locked segments and uses them as interme-

diate buffers in host-device communication[3]. In addition, the size of the available

memory locked segments is limited. For many benchmarks such as histo and nn, this

amount of memory is insufficient and the allocation manager is forced to switch back

to the use of the default memory allocator, when OpenCL policy runs out of memory.

The application completes its execution properly but the optimization opportunity is

lost. However, the speedup results on the platform have similar trends to the NVIDIA

platforms. Benchmarks such as nw and nn have high speedups and benchmarks such

as bfs and kmeans present lower speedup levels.

Figure 4.9c shows the speedups achieved by our optimization on K20platform.

There is similar speedup levels as the GTXplatform with the exception of the nw and

nn benchmarks. The nw kernel code runs less efficiently on K20platform and it cuts

down the relative impact of communication overhead reduction. In contrast, the nn

kernel code is faster on K20platform.

4.9.3 Tuned Version of Parboil for NVIDIA

As programmers tune their applications, how does this affect our approach? To an-

swer this, we evaluate our host-device optimization with the tuned version of Parboil

benchmarks for NVIDIA GPUs.

Figure 4.8b shows the dispatch ratios of the benchmarks, which are now increased.

The ratios for sad and histo are doubled. The sgemm and lbm benchmarks present

highly increased ratios for their large and small inputs, respectively. The remaining of

the benchmarks present lower increases with the exception of stencil that remains

on the same levels.

Figure 4.11 shows the optimization speedups for the NVIDIA version of bench-

marks. The optimization now leads to higher speedups for all the benchmarks with the

exception of stencil, which has the same speedup as its generic version. The sad and

histo benchmarks obtain the largest speedup increase. Sad increases from a speedup

76 Chapter 4. Host-Device Communication Optimization

Figure 4.11: Benchmark Speedup (NVIDIA tuned version).

1.7x of its generic version to 2.8x. Histo delivers speedups of 2x and 2.8x for its in-

puts, which are increased by approximately 40% and 60% in comparison to its generic

version. The lbm, mri-griding present a lower speedup increase of approximately

20%. In the case of sgemm, we observe approximately the same speedup for the small

input and a speedup increase of approximately 20% for the large one. In case of spmv,

the small input presents a speedup increase from 1.2x to 1.6x and its large one presents

a speedup increase of 10%.

Surprisingly, in the case of histo, its execution time is much slower than the

generic version, despite it being tuned for the GPU. This happens in both the stan-

dard execution environment and our enhanced execution environment and it is caused

by the benchmark implementation. Figure 4.10b shows the execution time breakdowns

for the NVIDIA version of the benchmarks. In this case, the optimization leads again to

the reduction of communication and cpu+sync times. The impact on the K20platform

is similar.

4.9.4 What policy to use

At the heart of our technique is the benefit gained form different allocation policies.

In this section we analyze the allocation time overhead and host-device communica-

4.9. Results 77

Figure 4.12: Allocation Overhead (in milliseconds) for the four policies for a range

of allocation sizes on GTXplatform. Std, Std(Lock), OpenCL and Hybrid refer to the

Standard, Standard with Locking, OpenCL and Hybrid policies, respectively. Lower

is better. The circle and polygon shapes are meant for easing readability on black and

white printouts.

tion rates for each policy. We provide detailed statistics for the GTXplatform and we

describe the capabilities of the three platforms.

Figure 4.12 shows the memory allocation cost of the four policies for a range

of allocation sizes on the GTXplatform. The Standard (Std) policy shows negli-

gible allocation times in comparison to the other policies. Standard with Locking

(Std(Lock)) has notably higher cost but remains significantly lower than the OpenCL.

The last policy, Hybrid, has the highest overhead.

Figure 4.13 shows the communication overhead of the four policies for communi-

cation in both directions on the GTXplatform. Here, lower values denote higher com-

munication performance. HTD denotes a host to device transfer and DTH the opposite.

It is clear that both OpenCL(OpenCL) and Hybrid(Hybrid) lead to the lowest commu-

nication cost for the majority of transfer sizes in both communication directions. In

contrast the Standard(Std) and Standard with Locking(Std(Lock)) lead to no-

tably higher communication overheads. Thus the fastest allocation time comes at the

expense of greater communication cost.

78 Chapter 4. Host-Device Communication Optimization

Figure 4.13: Communication Overhead (in milliseconds) for the four policies on

GTXplatform. Std, Std(Lock), OpenCL and Hybrid refer to the Standard, Standard

with Locking, OpenCL and Hybrid policies, respectively. H2D denotes a data trans-

fer from the host memory to device memory and D2H the opposite. Lower is better.

The circle and polygon shapes are meant for easing readability on black and white

printouts.

The OpenCL, Hybrid and Standard with Locking policies provide memory locked

segments, which have their memory pages pinned permanently in main memory and

the GPU driver should take advantage of it. However, only OpenCL and Hybrid lead

to peak communication rates and lower overheads. The reason is that the NVIDIA

OpenCL implementation cannot recognize a segment provided by Standard with

Locking as memory locked. In addition, it should be reported that for low transfer

sizes, all the policies lead to similar communication overheads.

GTXplatform: On this platform the enhanced execution environment uses Standard

for allocation of small segments and Hybrid for larger sizes. It chooses Hybrid instead

of OpenCL because the initialization of the required user-space allocator with Hybrid

overlaps with the OpenCL context creation.

AMDplatform: Here the policies that provide memory locked segments lead to a

lower scale of performance improvement. This potentially happens because of OpenCL

implementation internals. The AMD implementation allocates memory locked seg-

4.10. Summary 79

ments and uses them as internal buffers during host-device communication. It may

also lock memory segments of the application under specific circumstances[3]. This

implementation makes the policies with memory locking less effective. The enhanced

environment uses the Standard policy for low sizes and the OpenCL for higher.

K20platform: Here the behavior is similar to GTXplatform with similar commu-

nication overheads. NVIDIA Tesla K20c supports PCI Express version 3.0, however

the motherboard of K20platform supports only the second generation of PCI Express

and the GPU adapts to it. The enhanced environment uses the same policies as for

GTXplatform.

Summary: This evaluation has shown that selecting the correct allocation policy

based on platform and communication size can have significant performance impact

across all 3 platforms. It gives on average a speedup of 1.51, 1.31 and 1.48, respec-

tively. In certain cases, our approach leads up to a factor of three times improvement.

4.9.5 Comparing against a naive approach

Our optimization leverages user-space memory allocators for policies with high alloca-

tion times. In that way, it reduces prohibitive allocation overheads. Here we compare

this approach against an alternative naive scheme where all allocation policies are used

directly without the use of user-space allocators. Using this approach increases execu-

tion time by 5% to 40%. It could also be argued that all memory allocations requests

should be treated equally avoiding the need for application characterization. In fact

less than 5% of the total memory allocations across all the benchmarks are optimiza-

tion candidates. Using a high overhead allocator for the remaining 95% is prohibitively

expensive. Our approach is clearly important for performance.

4.10 Summary

In this chapter, we presented a portable and transparent optimization for the reduction

of host-device communication overhead of OpenCL applications. Our technique is

platform and application unaware and does not require modification or recompilation

of the application source code. The optimization was applied to 12 existing OpenCL

benchmarks where it gives on average speedups of 1.51, 1.31 and 1.48 for three eval-

uation platforms. In certain cases, it leads up to a factor of three times improvement.

The next chapter presents the design and implementation of an acceleration layer

80 Chapter 4. Host-Device Communication Optimization

for heterogeneous resources. It enables central management of accelerator resources

and fine-grained, mixed-vendor accelerator sharing. It integrates with the existing

multi-tasking and user-space virtualization facilities of the commodity Linux OS.

Chapter 5

Heterogeneous Acceleration Layer

This chapter presents a secure, user-space virtualization layer that integrates the accel-

erator resources of a system with the standard multi-tasking and user-space virtualiza-

tion facilities of commodity Linux OS. It targets heterogeneous commodity systems

found in data center nodes and requires no modification to the OS, OpenCL or applica-

tion. It eliminates high setup overhead, enables fine-grained sharing of mixed-vendor

accelerator resources and provides resource and platform aware scheduling. The av-

erage throughput improvement across workloads and mixed-vendor platform config-

urations varies from 1.29x to 3.87x speedup over existing schemes. Our approach

outperforms both vendor accelerator sharing facilities and message passing solutions.

The remainder of the chapter is organized as follows. An introduction of the chal-

lenges and contributions of this chapter are given in section 5.1. Section 5.2 describes

our motivation for PALMOS. Section 5.3 provides a high-level overview of PALMOS.

Sections 5.4, 5.5 and 5.6 present the key components and features of PALMOS. Sec-

tion 5.7 describes our security control. We present our experimental setup and evalua-

tion in sections 5.8 and 5.9, respectively. Section 5.10 discusses chapter summary.

5.1 Introduction

Accelerators, such as Graphic Processing Units (GPUs), have proved to be popular

components of modern heterogeneous systems. They provide the potential for low-

cost, high-performance computing for highly parallel workloads. This move towards

heterogeneity has been mirrored by the development of parallel programming lan-

guages such as

81

82 Chapter 5. Heterogeneous Acceleration Layer

CUDA[81] and OpenCL[58] which is portable across accelerators and standard multi-

cores.

However, there is no further integration across the system software stack. Each

accelerator is still viewed as a co-processor managed by the application; there is no

transparent Operating System (OS) support for sharing accelerator resources between

applications and users. There is no scheduling control for multi-accelerator systems.

Currently, an accelerator is either exclusively dedicated to an application or supports

limited sharing via vendor drivers where the sharing preconditions are non-obvious and

lack fine-grained control. Such an approach may be sufficient for traditional HPC and

single application systems, but introduces significant issues for multi-tasking systems.

There are a number of issues that are barriers to general use of heterogeneous sys-

tems. Firstly, accelerator sharing is either limited or not supported depending on the

vendor. There is no support for mixed-vendor accelerator sharing between applica-

tions. Secondly, there is no OS-level resource isolation support for heterogeneous

software using accelerators. Applications ignore the presence and activity of other

applications and their accelerator usage which leads to resource contention. Thirdly,

application setup times for heterogeneous software are currently prohibitive. This in-

troduces a significant overhead for multi-tasking and virtualized environments where

multiple applications co-exist. Finally, as applications run on shared memory plat-

forms with multiple physical nodes, data placement and the selection of appropriate

CPUs and accelerators can significantly affect the performance of an application or the

system.

In this chapter, we introduce PALMOS, a user-space virtualization layer that inte-

grates the accelerator resources of a system with standard OS multi-tasking and enables

OS-level virtualization for heterogeneous software. Our design reduces setup over-

head, enables inter-vendor accelerator sharing and provides resource aware scheduling

for heterogeneous applications. Our approach exclusively relies on the interfaces of

OpenCL and standard system libraries. It remains compatible with existing software

and systems. It does not require any modification of the OS, OpenCL library or appli-

cation.

PALMOS targets standard heterogeneous systems found in data center nodes. Dat-

acenter nodes support large numbers of diverse user tasks which need both perfor-

mance and secure execution. While there is support for communication and task

scheduling between nodes such as Quasar[26], or Whare-Map[72], there is no appro-

priate support on node level, specially for systems with accelerators.

5.2. Motivation 83

Hypervisors such as Xen[6]or Kvm[61] efficiently support OS virtualization but

there is an upcoming need for more lightweight approaches [5][99][2][108] which pro-

vide virtualization and resource isolation for individual processes at user-space instead

of full OS virtualization. Production technologies such as Docker [28] and OpenVZ

[84] enable user-space virtualization but they focus on traditional applications and not

on heterogeneous software. NVIDIA supports accelerator sharing between Virtual Ma-

chines [82]. However, it does not provide scheduling and resource sharing control or

user-space virtualization. It is also vendor specific.

PALMOS performs accelerator management and sharing at user-space level, en-

abling virtualization for heterogeneous software. To summarize, this work makes the

following contributions:

• A lightweight and secure virtualization layer for multi-user heterogeneous com-

puting.

• Seamless system integration requiring no modification to existing applications,

OS or accelerators.

• Fine-grain sharing and control of inter-vendor accelerator resources between ap-

plications and users.

• Resource and NUMA aware multi-tasking and scheduling on host and accelera-

tors.

We evaluate PALMOS across different, mixed-vendor platform configurations and

workloads. It improves average throughput from 2.1x to 3.87x speedup over existing

schemes.

5.2 Motivation

This section provides a simple motivational example for this work. Consider figure 6.1

which shows the execution of four heterogeneous applications on a system with two

accelerators.

On current systems, as shown in the left hand side of the figure 6.1, applications di-

rectly access the accelerators. Depending on the capabilities of the accelerators, some

applications may fail to execute, stall or execute concurrently[80]. The OS has no

84 Chapter 5. Heterogeneous Acceleration Layer

OpenCL

Traditional
OS

X86/ARM coresAccelerator

OpenCL

Accelerator

Driver Driver

App 0 App 1 App 2 App 3
K

e
rn

e
l

S
p

a
c

e
U

s
e

rs
p

a
c

e

Standard OS OS with PALMOS enabled

Traditional
OS

X86/ARM coresAccelerator Accelerator

PALMOS

Driver Driver

App 0 App 1 App 2 App 3

OpenCL OpenCL

App 0 App 1 App 2 App 3

System
Libraries

Stall Stall

Figure 5.1: Motivation for PALMOS. Standard OpenCL accesses directly accelera-

tor resources, suffers from large setup times and there is no resource sharing control.

PALMOS enables fine-grained and inter-vendor accelerator sharing between multi-

user applications, reduces setup overhead and performs resource aware scheduling.

knowledge about the accelerators and their capabilities and completely ignores mem-

ory transfers and scheduling on them. Everything is controlled by the application and

there is no handling from a system perspective.

PALMOS, as shown in the right side of the figure, operates transparently as a user-

space virtualization layer between the application and OS. Here, the applications do

not directly access the accelerator resources. Instead, PALMOS controls scheduling

on CPUs and accelerators and enforces fine grained inter-vendor sharing between the

applications. Furthermore, it integrates smoothly with OS-level virtualization facil-

ities. It operates transparently with standard application processes and applications

running as part of containers built on the top of Linux namespaces[74].

5.3 Layer Overview

In this section, we provide a high-level overview of PALMOS, our user-space virtu-

alization layer that integrates accelerator resources with commodity OS components.

The design of the layer is portable, built on top of OpenCL and standard system li-

braries. The layer is transparent to both the OS and applications, requiring no modifi-

cations. It operates as a high priority user-space process which collects and manages

5.3. Layer Overview 85

Virtual
OpenCL

Client

Local
Memory
Allocator

Application

Virtual
OpenCL

Client

Local
Memory
Allocator

Application

Virtual
OpenCL

Client

Local
Memory
Allocator

Application

Central
Memory Allocator

Virtual OpenCL
Server Resource Manager & Application Scheduler

Security Support

OpenCL Impl. Posix Libraries OpenCL Impl. OpenCL Impl.

OpenCL Device &
Context Registry

S
ys

te
m

In
te

rf
ac

e

Platform Topology

A
p

p
lic

at
io

n
In

te
rf

ac
e

P
A

L
M

O
S

R
u

n
ti

m
e

lvl 0

lvl 2

lvl 1

Figure 5.2: Overview of PALMOS. The layer design consists of three levels, the Ap-

plication Interface (level 0), the PALMOS Runtime (level 1) and the System Interface

(level 2), its connection to existing OS and runtimes. PALMOS operates transparently

between existing applications, OS and OpenCL runtimes.

computation and communication requests from different applications and users. It then

schedules them on accelerator resources.

PALMOS builds an environment where each application can safely assume that it

exclusively uses the host and accelerator resources. The application performs ordinary

operations, computes on the host, allocates memory and makes the ususal calls to

OpenCL functions for accelerator use. However, these function calls are forwarded to

PALMOS which decides, for each application, which host CPUs to use, how to allocate

memory and which accelerator to exploit.

5.3.1 Key Design Choices

One of the primary goals of PALMOS is portability and transparency i.e. no change

to existing applications, libraries or OS. This means that the APIs that connect an

OpenCL application to hardware, OpenCL library calls and standard memory man-

agement, must be preserved.

The next design goal is to support efficient heterogeneous multi-tasking and accel-

erator sharing. PALMOS is a separate layer between the applications and OS that man-

ages all the system resources and controls scheduling to improve system throughput.

These design decisions, however, introduce two problems: communication overhead

and security.

Both PALMOS and the applications are ordinary processes that reside in different

address spaces. This preserves compatibility as no piece of software has to be changed

or recompiled. In addition, each application executes in a secure, isolated environment.

86 Chapter 5. Heterogeneous Acceleration Layer

A new challenge is therefore, how to achieve efficient inter-process communication and

data sharing between PALMOS and its attached applications.

We solve this by using POSIX shared memory segments[83], segments of memory

that are allocated independently of a single process and that are later mapped to the ad-

dress spaces of the associated processes. This solution dramatically reduces overheads

but raises security concerns that we address below and in more detail in section 5.7.

5.3.2 PALMOS Structured Design

Figure 6.5 gives an overview of PALMOS. The design consists of three levels. The Ap-

plication Interface, level 0, enables the communication of application with PALMOS

and guarantees transparency and portability. The APIs provided to applications are

identical to those of OpenCL and system libraries. Level 1 is the heart of PALMOS;

it provides inter-vendor accelerator sharing, scheduling control, environment setup,

memory allocation and security. At level 2, the System Interface connects PALMOS

with the existing OS and runtime libraries.

Level 0: The Application Interface: Applications are attached to PALMOS and

interact with it without modifications. This is done via two interfaces (a) a Virtual

OpenCL client that replaces the standard OpenCL library and (b) a Local Memory

Allocator, provided by PALMOS, that replaces the standard memory allocator. Both

interfaces are supplied as dynamic libraries that are preloaded.

Virtual OpenCL Client: It supports all OpenCL 1.2 functions and redirects any

application call to them to the Virtual OpenCL Server of PALMOS instead of the actual

OpenCL library. Virtual OpenCL is built on the top of shared memory for efficiency.

We provide a detailed description of this mechanism in section 5.4.

Local Memory Allocator: This serves the memory allocation requests of the ap-

plication. It is part of a two-level ”Inter-Space” Memory Allocator which enables

data sharing between the application and PALMOS, which are two distinct processes

with distinct address spaces. The allocator leverages shared memory segments and an

Address Space Translation mechanism to enable zero copy data sharing. Section 5.5

provides a detailed description.

5.3.2.1 Level 1: The PALMOS Runtime

This layer provides the core functionality of PALMOS including accelerator manage-

ment, resource sharing control and improved scheduling.

5.4. Virtual OpenCL 87

Resource Manager & Application Scheduler: This monitors the execution of

all applications and makes decisions about their scheduling on host and accelerators.

It also takes care of data placement in multi-node shared memory, NUMA platforms.

The scheduler receives operation requests via Virtual OpenCL and dispatches OpenCL

operations to an accelerator based on its scheduling decisions. Section 5.6 provides

further details.

Virtual OpenCL Server, Central Memory Manager: These are the PALMOS-

side counterparts of the Virtual OpenCL and Inter-Space Memory Allocator. Sec-

tions 5.4 and 5.5 provide further details.

OpenCL Device & Context Registry: It stores accelerator specific information

and OpenCL contexts. OpenCL contexts are now part of the PALMOS runtime reliev-

ing applications of high setup overheads.

Security Support: This addresses security within PALMOS. The PALMOS pro-

cess and the application processes communicate through shared memory segments. In

the absence of security control, there are potential threats. An application could send

an invalid OpenCL call or attempt to communicate through a Virtual OpenCL Client it

does not own. An application may also attempt to access data of a different application.

This component prevents this by controlling the access to shared memory segments.

Further details are provided in section 5.7.

Platform Topology: This detects the topology of multi-node systems including the

number of nodes, the size of local memories, the processor and accelerator locations.

5.3.2.2 Level 2: The System Interface

PALMOS exclusively depends on OpenCL, POSIX[83] and Linux system[67] libraries.

OpenCL provides access and management of the accelerator resources while POSIX

and Linux libraries are used for the management of standard CPU and memory re-

sources, scheduling of application host code, data placement and security control.

5.4 Virtual OpenCL

Virtual OpenCL forwards OpenCL operation requests to PALMOS. It is available to

the application as a dynamic library that replaces standard OpenCL. It ensures trans-

parency for the application, which operates as before without any modification or re-

compilation. Virtual OpenCL consists of (a) a client that is loaded by the application

88 Chapter 5. Heterogeneous Acceleration Layer

f(arg0,...,argN)

Application
Control Flow

OpenCL
Library

Single Address
Space

arg1
arg0

...

ret_val

arg(N-1)
Stack

(a) Standard OpenCL Call

f(arg0,...,argN)

Application
Control Flow

OpenCL
Library

arg1
arg0

...

ret_val

arg(N-1)
SStack

Shared Memory

arg1
arg0

...

ret_val

arg(N-1)
SStack

Shared Memory PALMOS

Addr. Space 0 Addr. Space 1

(b) RPC OpenCL Call

f(*arg0,...,argN)

Application
Control Flow

OpenCL
Library

arg1
*arg0

...

ret_val

arg(N-1)
SStack

Addr. Space 0 Addr. Space 1

Shared Memory

arg1
*arg0

...

ret_val

arg(N-1)
SStack

Shared Memory

IS Allocator

PALMOS

(c) RPC OpenCL Call (IS M. Allocator)

Figure 5.3: Comparison of the function call convention of the standard OpenCL envi-

ronment (a) with our Virtual OpenCL mechanism that supports function calling across

distinct processes. It supports function calling with arguments passed by value (b) and

reference (c).

5.4. Virtual OpenCL 89

process and (b) a server which is part of the PALMOS runtime process. The key issue

is how the client and server communicate in an efficient manner that eliminates data

coping between the different address spaces. We achieve this by using a Shared Stack

which relies on POSIX shared memory.

5.4.1 Shared Stack

Figure 5.3a shows a function call made by the application to the OpenCL library. The

application places the call arguments on the stack and then performs the call. The

called function reads the arguments, executes and returns control.

In our scheme, each call to an OpenCL function is forwarded to the PALMOS

runtime. The call cannot be performed directly as PALMOS and the application are in

different address spaces. Instead there is a Shared Stack where the function arguments

and return values are stored in a shared memory segment, which is mapped onto the

address spaces of both PALMOS and the application. We handle the call as a Remote

Process Call (RPC)[15], where the application makes the call request and PALMOS

is the remote process that performs it. To illustrate this, see figure 5.3b which shows

a function call using the Shared Stack. The application operates in address space 0

and performs an OpenCL call that is served by an OpenCL library that operates in

a different address space, address space 1, owned by PALMOS. The application and

library share the function call data via the Shared Stack. As shown in section 5.9.3, the

use of Shared Stack leads to negligible overhead in comparison to standard OpenCL

and other RPC approaches that use system message passing services or MPI[76].

5.4.2 Shared Data

The above approach works if the arguments are passed by value. If arguments are

passed by reference[46] and pointers are used, then this approach is not sufficient.

Pointers refer to arbitrary addresses of application memory which are not directly ac-

cessible to PALMOS. Our Inter-Space Memory Allocator (Section 5.5) enables data

sharing between the application and PALMOS runtime without data copying. The ap-

plication uses memory allocated through a custom allocator, which is accessible by the

PALMOS runtime.

The RPC OpenCL call is now enhanced as shown in figure 5.3c. Here arg0 of

the function call is a pointer referring to an address in the application address space.

The memory it points to has been allocated by the Inter-Space Memory Allocator.

90 Chapter 5. Heterogeneous Acceleration Layer

PALMOS now can access the application data but the RPC call needs to translate the

address value of arg0, which is valid in address space 0 of the application, to a valid

address in address space 1 of PALMOS runtime. This is done by the Address Space

Translator mechanism of the Inter-Space Allocator with negligible overhead.

5.5 Inter-space Memory Allocator

The Inter-Space Memory Allocator enables zero copy data sharing between the appli-

cations and PALMOS by operating across multiple address spaces. It also supports data

placement control for multi-node NUMA platforms directed by the Resource Manager

& Application Scheduler. Although it is used concurrently by multiple processes and

threads, its operation remains lock free by design.

5.5.1 Two-Level Memory Allocator

Figure 5.4 shows the structure of our two-level custom allocator [12]. The Central

Memory Allocator (CMA) allocates memory chunks from system memory and grants

them for use to Local Memory Allocators (LMA). An LMA is instantiated per appli-

cation thread.

Each chunk is granted exclusively to a single LMA. The LMA manages its chunks

as allocation heaps and serves memory allocation requests made by the application.

When the allocation heaps of an LMA run out of free memory, the LMA requests a

new chunk from CMA. The LMA also yields unused chunks back to CMA. The chunk

size is adaptive to the size of memory allocation requests.

The two level design of our allocator guarantees high performance and responsive-

ness as shown in [12]. Each application thread has its own LMA that manages its own

local heaps and its operation is decoupled from other LMAs and the CMA. It contacts

CMA rarely, only when new chunks are required.

5.5.2 Address Space Translator

The Inter-Space Memory Allocator uses shared memory segments as chunks. The key

issue here is that for each process a shared segment is mapped onto a local address

range that is valid only in the address space of the process. However, PALMOS re-

quires access to application data and a mechanism that translates addresses across the

different address spaces is required. We introduce the Address Space Translator that

5.5. Inter-space Memory Allocator 91

converts local addresses to a global representation and vice-versa. The global repre-

sentation is valid across the address spaces and Address Space Translator converts it to

valid local addresses for each process.

The global representation has the same size with pointer data types, which is equal

to the architecture word size. The most significant half word represents a unique ID

given by the CMA, which uniquely identifies a chunk. The least significant half word

represents an address offset in the chunk. The translation overhead is negligible, as it

only involves simple arithmetic operations. As figure 5.4 shows, address translation

takes place in both application and PALMOS.

Central
Memory
Allocator

Local
Memory
Allocator

Local
Memory
Allocator

Addr. Space Translator

App1 Addr. Space 1

Memory
Chunk

Memory
Chunk

PALMOS Addr. Space 0

Addr. Space Translator

App1 Server App1 Server

Thread Thread

Local
Memory
Allocator

Local
Memory
Allocator

Addr. Space Translator

AppN Addr. Space N

Memory
Chunk

Memory
Chunk

Thread Thread

Addr. Space Translator

AppN Server AppN Server

Figure 5.4: Data Sharing with Inter-Space Memory Allocator. Inter-Space memory

allocator enables zero copy data sharing between the applications and PALMOS. Each

application thread owns a Local Memory Allocator that uses memory chunks, pro-

vided by the Central Allocator, as heaps. A special component, called Address Space

Translator, is used for the translation of data addresses between the address spaces of

applications and PALMOS.

92 Chapter 5. Heterogeneous Acceleration Layer

5.5.3 Lock-free Design

Our memory allocator enables data sharing between PALMOS and applications with-

out the need for mutual exclusion as PALMOS and applications interact in a specific

manner. An application allocates memory and passes a reference to PALMOS with

function calls performed via Virtual OpenCL. While PALMOS processes a call, the

application is blocked waiting for the response guaranteeing that the application code

neither reads nor updates its data.

Furthermore, PALMOS only reads or updates data in application memory loca-

tions specified by the application function calls. It does not allocate new memory that

is accessed by the application. An OpenCL implementation may allocate memory in-

ternally for its operation but this memory resides only in PALMOS and no sharing is

required.

5.6 Resource Manager & Application Scheduler

This section describes the Resource Manager & Application Scheduler (RMAS), the

core component of PALMOS. It manages the system resources, monitors application

execution and performs efficient scheduling on both host and accelerators. Further-

more, it controls data placement and location aware scheduling for multi-node shared

memory systems. RMAS decides which accelerator is used based on its availability. It

also reduces the application setup overhead; expensive operations such as accelerator

reservation and OpenCL context creation are now done during PALMOS initialization

instead of application setup.

5.6.1 PALMOS Session

PALMOS requires that each application is attached to it via a session. This session is

used by RMAS to monitor and control the application execution and by our Security

component (section 5.7) to build a secure environment for both the application and

PALMOS. The session is managed by a protocol with three operations, Attach, De-

tach and Interaction. Those operations run in the background via the Virtual OpenCL

mechanism, no application modification is required or API changes.

The protocol operations exchange messages between the Virtual OpenCL client of

the application and the Virtual OpenCL server of PALMOS runtime via shared memory

segments. PALMOS maintains a shared memory segment, named PALMOS Shared

5.6. Resource Manager & Application Scheduler 93

Virtual OpenCL Client

Detached

Pending

Attached

ASM setup

Attach Request

Session Manager

Validating Req

Waiting

App
Attached

Server Setup

Thread Sched

Attach Response

Attach REQ
(PSM)

 Attach RESP
(ASM)Validating Resp

L. Allocator Setup

State State

(a) Attach

State

Attached

Pending

Detached

L. Allocator Destroy

Detach Request Validating Req

State

Waiting

App
Detached

Detach Response

Detach REQ
(ASM)

 Detach RESP
 (ASM)Validating Resp

Term ConfirmationTermination

Server Destroy

Termination
(ASM)

Virtual OpenCL Client Session Manager

(b) Detach

State

New Call

Pending

Call
Returned

Call Data Write

Request RPC Call Data Read

State

Waiting

Call
Ended

RPC Response

RPC REQ
(ASM)

 RPC RESP
 (ASM)Call Data Read

Virtual OpenCL Client Virtual OpenCL Server

Function call

Call Data Update

(c) Interaction

Figure 5.5: PALMOS Session Protocol. It enables the handshaking of an application

with PALMOS and their further interaction. The protocol operations take place in

the background via the Virtual OpenCL mechanism and no application modification

is required. The design of the protocol is part of our security mechanisms found in

section 5.7.

94 Chapter 5. Heterogeneous Acceleration Layer

Memory (PSM), where it receives attach requests from Virtual OpenCL clients. The

Virtual OpenCL client of an application maintains a shared memory segment, named

Application Shared Memory (ASM) which is used as the Shared Stack (Section 5.4)

and by the attach and detach operations of the PALMOS Session protocol. ASM access

is restricted to the application and PALMOS while PSM is accessible by all applica-

tions (section 5.7).

Attach: Figure 5.5a shows the Attach operation. PALMOS has created PSM and

awaits new requests. The Virtual OpenCL client of the application creates ASM. The

client sends an Attach Request to PALMOS via PSM. PALMOS receives the request,

validates it and instantiates a Virtual OpenCL Server which sends an Attach Response

back via ASM. The Local Memory Allocator of the application is then instantiated by

the Virtual OpenCL client.

Detach: Detach operation, shown in figure 5.5b, takes place just before the appli-

cation termination. The Virtual OpenCL client destroys the Local Memory Allocator

and sends a Detach Request to PALMOS. PALMOS validates the request and sends a

Detach Response back. The client then sends a Termination message and application

terminates. PALMOS then destroys the corresponding Virtual OpenCL Server. All the

communication is done over ASM.

Interaction: Figure 5.5c shows the interaction of application with PALMOS while

the session is established. ASM is used as Shared Stack for Virtual OpenCL (sec-

tion 5.4) where the application performs RPC calls to PALMOS.

5.6.2 Application Scheduling

PALMOS has a unified scheduling approach for both CPU and accelerators. It controls

the scheduling of host code on CPUs and the scheduling of OpenCL communication

and computation operations on accelerators. We deploy a First In First Out (FIFO)

scheduling policy which follows the same priority semantics with the FIFO scheduling

policy of the modern Linux kernel.

Thread Scheduling on Host: RMAS manages multi-threaded applications. Each

application thread is attached separately, has its own session and a distinct Virtual

OpenCL Server. That choice guarantees high responsiveness. An application thread

along with its Server thread are scheduled on the same CPU core to increase data

locality.

5.6. Resource Manager & Application Scheduler 95

Operation Scheduling on Accelerators: RMAS manages all the accelerators and

schedules operations of host-device communication and kernel computation on them.

The application has no direct access to accelerators as it uses Virtual OpenCL, our

OpenCL implementation that gives control to PALMOS. RMAS decides which accel-

erator is used at runtime and performs the actual OpenCL calls.

Operation Multiplexing on Accelerators: A scheduling policy may demand the

suspension of an application and the allocation of its computational resources to an-

other application. In the case of host code that runs on CPUs, OS preemption takes

care of this.

For accelerators, however, the OS has no control over operation ordering or pre-

emption. Accelerators may not support resource sharing and preemption. We solve this

by enabling Operation Multiplexing that provides operation scheduling control at the

granularity of OpenCL operations. OpenCL operations requested by the application

are managed by our scheduler which decides which accelerator to use, and the time

and order they will be sent to that accelerator. If an application is Paused, its pending

operations will not be sent to the accelerator until the application is active again. This

is provided by our OpenCL Command Queue implementation.

FIFO Scheduling Policy: When an application starts its execution, a new entry

is added in a Scheduling Priority Queue. Each entry contains the application state

and its priority. We develop a First In First Out (FIFO) scheduling policy with full

priority support on both host and accelerators. The scheduling algorithm is driven by

two events: the Attach and Detach of an application.

Attach Event: When a new application gets attached, the scheduler checks if an

accelerator is available. If yes, it assigns the accelerator to the application, sets its

state to Running and starts its execution. If there is no accelerator available two things

may happen. The scheduler picks the running application with the lowest priority.

If its priority is lower than the newly attached application, preemption is performed

on the host and operation multiplexing on the accelerator. If the priority is higher, the

scheduler sets the state of the newly attached application to Waiting and the application

waits for its execution.

Detach Event: When an application gets detached, the scheduler sets its state

to Completed and releases the accelerator. Then, it checks the Scheduling Priority

Queue for waiting or paused applications. If there is one, the scheduler sets its state to

Running and starts its execution.

96 Chapter 5. Heterogeneous Acceleration Layer

5.6.3 NUMA Awareness

PALMOS provides improved scheduling and data placement for multi-node Non Uni-

form Memory Access (NUMA) platforms. Here the system resources are distributed

among multiple nodes. Each node owns part of the system processors/cores and main-

tains its own physical memory. The nodes communicate and share data through inter-

connects.

Host Code: The scheduling of application threads and the placement of its data

on the same node improves application performance [73]. It reduces the inter-node

communication for data sharing or synchronization. Inter-node interconnects typically

have lower bandwidth than the node memory.

Accelerator Use: Another factor that affects performance is the location of accel-

erators. An accelerator is typically attached to a single node and its use by code running

on remote nodes requires additional communication through the inter-node intercon-

nects. It is highly preferable for an application to exclusively run and use memory

from the node where the accelerator is attached[100][77].

5.7 Security

PALMOS is a user-space virtualization layer for heterogeneous applications that uses

shared memory for efficient inter-process communication. While this design choice

guarantees high performance, it raises security concerns. Security is key part of our

design and we provide a safe environment to both applications and PALMOS.

Secure PALMOS - application interaction: An application interacts with PAL-

MOS through Virtual OpenCL (section 5.4), the Inter-Space Memory Allocator (sec-

tion 5.5) and the Session Protocol (section 5.6.1) which all use shared memory seg-

ments. Our approach for safety is to restrict the access to shared memory segments

only to processes that actually should access them. OS provides permission control

over shared memory segments in the same manner it does for filesystem access. A

shared segment can be read or written only by users and processes that have permis-

sions for those actions. We build a secure environment by enforcing user and group

ownership and the corresponding permissions.

Protection of Application Process: Virtual OpenCL forwards computation and

communication requests to PALMOS while Session Protocol handles the handshaking

between application and PALMOS. Both Virtual OpenCL and Session Protocol access

5.8. Experimental Setup 97

Application Shared Memory (ASM, section 5.6.1), which is created by the application

and needs to be accessed by PALMOS. We set the permission of ASM to be acces-

sible only by the application and PALMOS processes. The use of two shared mem-

ory segments in attach operation of Session Protocol enables communication security.

PALMOS accepts attach requests through its ”public” shared memory, the PALMOS

Shared Memory (PSM) which is accessible to any process. Then, further message

exchanging takes place over ASM, which is accessible only by the application and

PALMOS. By following that approach we block spoofing attacks and data corruption

made by malicious or faulty applications.

Data Privacy: Inter-Space Memory Allocator operates across multiple address

spaces and enables data sharing between the application and PALMOS. We ensure

data privacy by ensuring that application memory is only accessible by the applica-

tion and PALMOS. The Inter-Space Memory Allocator uses memory chunks which

are allocated as shared memory segments. Each chunk is granted to a Local Memory

Allocator (LMA) of an application and needs to be accessed by the application and

PALMOS runtime. We set read and write permissions for that chunk only to the pro-

cesses of the application and PALMOS. Under these permissions the application data

is shared safely between the application and PALMOS.

Buffer Overflow & Illegal Memory Access: We avoid Buffer Overflow attacks in

Virtual OpenCL by perfoming address range and function type checks in both appli-

cation and PALMOS. The memory chunks used by Inter-Space Memory Allocator are

aligned to page size and have sizes multiples of page size. Any application access out-

side their address ranges causes immediately application segmentation fault. If there

is a misuse, PALMOS terminates the application execution, while it continues serving

the other applications.

Special User: For the protection of PALMOS from malicious attacks that can

happen through the user environment, the PALMOS process is executed by a special

account.

5.8 Experimental Setup

We evaluate PALMOS using a wide range of workloads on 6 platform configurations.

Here, we describe how the workloads are selected and present the platform configura-

tions.

98 Chapter 5. Heterogeneous Acceleration Layer

5.8.1 Workloads

The workloads considered, consist of between 1 and 64 concurrently running OpenCL

programs selected from the Parboil benchmark suite[101] and the largest available

dataset is used. Initially, we consider each program in isolation and investigate its

performance. Each benchmark was executed 20 times with the average time taken

recorded. This is performed in every experiment reported in this chapter to reduce

the impact of noise. We then generate multi-program workloads by selecting multiple

benchmarks from Parboil. We looked at workload groups containing 1, 4, 16, 32 and

64 programs to investigate scaling. We randomly selected 50 distinct combinations of

benchmarks for each workload group and report the gmean execution time.

5.8.2 Platform

Our evaluation platform is a NUMA x86 system with two nodes. Each node has an In-

tel Xeon E5-2620 CPU running at 2.00GHz and 8 Gigabytes of DDR3 memory running

at 1333MHz. The system bus is a QPI interconnect. We have attached two NVIDIA

and one AMD GPUs. One NVIDIA and one AMD GPUs are attached on the first node

through its local PCI-Express interface. The second NVIDIA GPU is attached on the

second node through its local interface. Both NVIDIA GPUs are Tesla K20c[80] and

the AMD GPU is Tahiti 7970[3]. The Operating System is Linux with kernel version

3.7 and three OpenCL implementations, Intel OpenCL 1.2 (Build 67279), NVIDIA

OpenCL 1.1 (CUDA 6.0.1) and AMD OpenCL 1.2 (Build 1348.5). Both CPUs are

treated as a single accelerator.

We define distinct platform configurations by making different number of accelera-

tors available for use. Our configurations are (a) Single NVIDIA GPU, (b) Single AMD

GPU, (c) Intel CPU, (d) Two NVIDIA GPUs, (e) Two NVIDIA and one AMD GPUs,

(f) One NVIDIA GPU and Intel CPU, (g) Two NVIDIA GPUs and Intel CPU, (h) Two

NVIDIA GPUs, one AMD GPU and Intel CPU.

Three benchmarks, histo, mri-gridding and sad, fail to run if the CPU is used

as the accelerator. In case of AMD GPU, mri-gridding fails too. The PALMOS

scheduler handles this situation. The benchmarks that fail with one accelerator type

are not scheduled on it. These benchmarks are not fully compatible with OpenCL

standard.

5.8. Experimental Setup 99

5.8.3 Comparison to existing approaches

Vendor Solutions The NVIDIA Kepler architecture enables multi-program execution

and supports concurrent kernel executions that overlap with host-accelerator communi-

cation. We have modified our FIFO scheduling policy to enable concurrent execution

of multiple programs on NVIDIA GPUs. There is, however, limited space for per-

formance improvement because benchmarks tend to consume all the GPU resources

leaving no space for concurrent execution[85].

Message Passing Based Solutions There have been a number of message passing

based schemes that allow sharing of accelerators. As these require extensive devel-

opment and modification of the OpenCL benchmarks to use an extended API, our

evaluation is more limited. We implemented the best performing scheme described in

[11] and evaluated a small number of task scenarios. We compare PALMOS against it

on our shared memory platform.

N 2N 2N+A N+I 2N+I 2N+A+I
Enabled Accelerators

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Th
ro

ug
hp

ut
S

pe
ed

up 1.
48

1.
47

1.
33

1.
43

1.
4

1.
29

System Throughput Speedup

Figure 5.6: Representative of throughput speedup results delived by PALMOS for

multi-program workloads of 64 benchmark instances. We consider the following 6

platform configurations: N: 1 NVIDIA GPU, 2N: 2 NVIDIA GPUs, 2N+A: 2 NVIDIA

and 1 AMD GPUS, 2N+I: 2 NVIDIA GPUS and Intel CPU, 2N+A+I: 2 NVIDIA and

1 AMD GPUs and Intel CPU.

100 Chapter 5. Heterogeneous Acceleration Layer

5.9 Results

The main goal of our work is improving multi-program system throughput. A sum-

mary of the results is shown in figure 5.6 for multi-program workloads consisting of

64 program on each of the 6 platform configurations. Overall, PALMOS delivers sig-

nificant speedups ranging from from 1.29x to 1.48x. The remainder of this section

examines in greater detail the performance of our approach. Section 5.9.1 examines

individual benchmark performance improvement. Section 5.9.2 then evaluates per-

formance for varying sized multi-program workloads on each platform configuration.

Section 5.9.3 provides a direct performance comparison against the Standard OpenCL

environment and an alternate, state-of-the-art message passing based approach.

5.9.1 Single application performance

Here, we evaluate the performance of each application running in isolation. We exam-

ine (a) reduction of application setup overhead and (b) NUMA aware scheduling.

5.9.1.1 Reduced Setup Overhead

In standard OpenCL, an application has significant setup overhead as it must reserve

an accelerator and create an OpenCL context. In the PALMOS environment, those

operations happen once at initialization and overhead is significantly reduced.

NVIDIA GPU: Figure 5.7a shows the total execution times of benchmarks with

an NVIDIA GPU as accelerator and the percentage time spent in setup and execution.

Benchmarks, such as histo and lbm spend as little as 3% and 5% of their execution on

setup, which are reduced by PALMOS to 0.2% and 0.3% as shown in table 5.1, rows 1

and 2. In contrast, benchmarks such as spmv and sgemm spend 97% and 97.6% of their

execution on setup, values that are significantly reduced to 12.2% and 12.2% (table 1,

rows 10 and 11).

AMD GPU: Figure 5.7b shows execution time breakdown for the AMD GPU.

While AMD kernel execution times are approximately the same as NVIDIA, setup

overhead is approximately an order of magnitude faster, 328ms compared to 2630ms.

Benchmarks histo and lbm now spend 0.2% and 0.5% of their execution on setup,

values that are reduced by PALMOS to 0.1% and 0.2% as shown in table 5.1. Bench-

marks such as spmv and sgemm spend the 75.2% and 79.6% of their execution on setup,

those values get reduced to 8.6% and 8.9%.

5.9. Results 101

hist
o

lbm
tpacf

cu
tcp

mri-g
rid

ding
ste

ncil bfs
mri-q sa

d
sp

mv

sg
emm

O
ve

ra
ll

E
xe

cu
tio

n
Ti

m
e

(m
ill

is
ec

on
ds

)
96

56
7

54
68

4

70
15

42
13

36
84

31
34

29
41

29
11

28
43

27
94

27
58

Execution Breakdowns

Application Setup Workload Execution

(a) NVIDIA GPU as Accelerator

mri-g
rid

ding
hist

o
lbm

tpacf
cu

tcp bfs
mri-q

ste
ncil sa

d
sp

mv

sg
emm

O
ve

ra
ll

E
xe

cu
tio

n
Ti

m
e

(m
ill

is
ec

on
ds

)

N
ot

S
up

po
rt

ed

88
68

8
47

47
9

21
91

16
36

69
9

60
1

48
7

43
2

34
5

33
2

Execution Breakdowns

Application Setup Workload Execution

(b) AMD GPU as Accelerator

hist
o

mri-g
rid

ding
sa

d
lbm

tpacf
cu

tcp
ste

ncil bfs
mri-q

sg
emm

sp
mv

O
ve

ra
ll

E
xe

cu
tio

n
Ti

m
e

(m
ill

is
ec

on
ds

)
N

ot
S

up
po

rt
ed

N
ot

S
up

po
rt

ed

N
ot

S
up

po
rt

ed

67
64

1

34
32

2

55
96

21
63

10
31

94
9

65
3

53
3

Execution Breakdowns

Application Setup Workload Execution

(c) CPU as Accelerator

Figure 5.7: Normalized Execution Time Breakdowns of benchmarks on Standard

OpenCL environment. The stacks present the time spent on application setup and on

actual workload execution. Setup times can be prohibitive regardless the accelerator

vendor. PALMOS design reduces this overhead dramatically.

102 Chapter 5. Heterogeneous Acceleration Layer

Bench N(%) NP(%) A(%) AP(%) I(%) IP(%)

histo 3 0.2 0.2 0.1 N/A N/A

lbm 5 0.3 0.5 0.2 0.6 0.2

tpacf 39.1 5 11 2 1.1 0.7

cutcp 65 7 16 2.4 7 1.5

mri-gr 74.6 8.5 N/A N/A N/A N/A

stencil 89 10.1 50 8.3 18 4.7

bfs 93.2 11.4 35 7.0 40 7.9

mri-q 95.7 12.1 43 7.6 42 7

sad 96.5 12.2 58 8.7 N/A N/A

spvm 97 12.2 75.2 8.6 76.2 8.6

sgemm 97.6 12.2 79.6 8.9 61 8.2

Table 5.1: Comparison of Setup Overhead on Standard OpenCL and PALMOS envi-

ronment. The results present the proportion (%) of total execution time spent on setup

per benchmark. N: NVIDIA GPU, NP: NVIDIA GPU with PALMOS, A: AMD GPU,

AP: AMD GPU with PALMOS, I: Intel CPU, IP: Intel CPU with PALMOS.

Intel CPU: Figure 5.7c shows the total execution times when the CPUs are used

as a single accelerator. The executions of OpenCL kernels on CPUs are slower and

Intel OpenCL has lower setup times. Benchmarks such as lbm and tpacf spend 0.6%

and 1.1% of their execution on setup, those values get reduced by PALMOS to 0.2%

and 0.7%, as shown in table 5.1. Benchmarks such as sgemm and spmv spend 61% and

76.2% of their execution on setup and PALMOS reduces it to 8.2% and 8.6%.

Benchmark Classification: Based on the proportion of the total execution time

benchmarks spend on setup we classify them in two groups for later evaluation. The

first includes the benchmarks with High workload that have low setup overhead, which

are histo, lbm, tpacf, cutcp and mri-gridding. The second group includes bench-

marks with Low workloads that have high setup overhead, which are stencil, bfs,

mri-q, sad, spmv and sgemm.

5.9.1.2 NUMA Aware Scheduling and Data Placement

Here, we report the additional speedups delivered by the enhanced NUMA aware mode

of PALMOS. This applies only when GPUs are used as accelerators because both

CPUs are treated as a single accelerator.

NVIDIA GPU: Figure 5.8a shows the speedups for NVIDIA GPUs when PAL-

MOS is NUMA aware which range from 1.0x to 1.43x with a geometric average of

1.14x. Benchmarks that perform significant host-accelerator communication such as

5.9. Results 103

mri-
q

tpa
cf lbm cu

tcp
mri-

gr
idd

ing bfs
sg

em
m

ste
nc

il
sp

mv
sa

d
his

to
Gmea

n

Benchmarks

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

du
p

1.0 1.0 1.0
1

1.0
2

1.1
1 1.1
3 1.1

7 1.1
9 1.2

3
1.3

7 1.4
3

1.1
4

Benchmark Speedup

(a) NVIDIA GPU

mri-
gr

idd
inglbm mri-

q
sg

em
m

tpa
cf sa
d

sp
mv

cu
tcp

ste
nc

il
his

to bfs
Gmea

n

Benchmarks

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

No
t S

up
po

rt
ed

1.0 1.0 1.0 1.0
1.0

2 1.0
4 1.0

5
1.1 1.1

1 1.1
2

1.0
4

Benchmark Speedup

(b) AMD GPU

Figure 5.8: Speedup (NUMA aware scheduling and Data Placement). Execution

speedups for individual benchmarks delivered by the NUMA mode of PALMOS. The

baseline is the standard PALMOS environment. Logarithmic scale. GPU only.

sad and histo present notably higher speedups than benchmarks with reduced com-

munication such as tpacf and cutcp.

AMD GPU: Figure 5.8b shows the speedups for AMD GPU. The reported speedup

values are now lower and range from 1.0x to 1.12x. However, benchmarks with signif-

icant host-accelerator communication, such as histo and bfs still present the highest

speedups of 1.11x and 1.12x.

104 Chapter 5. Heterogeneous Acceleration Layer

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

25.89
Th

ro
ug

hp
ut

S
pe

ed
up

1.
43

1.
35 1.
36

1.
36

25
.8

9
22

.5
7

22
.5

6
22

.5
3

2.
89

1.
71

1.
47 1.
48

3.
87

System Throughput Speedup

(a) Single NVIDIA GPU

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

22.35

Th
ro

ug
hp

ut
S

pe
ed

up

1.
4

1.
35 1.
36

1.
36

21
.5

3
21

.7
22

.1
1

22
.3

5
2.

48

1.
61

1.
45 1.
47

3.
71

System Throughput Speedup

(b) Two NVIDIA GPUs

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

10.05

Th
ro

ug
hp

ut
S

pe
ed

up

1.
32

1.
27

1.
26

1.
26

10
.0

5
7.

33 7.
43 7.
62

1.
8

1.
4

1.
34

1.
33

2.
46

System Throughput Speedup

(c) Two NVIDIA and one AMD GPUs

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

7.25

Th
ro

ug
hp

ut
S

pe
ed

up

1.
3 1.
35 1.
38

1.
38

6.
88 7.
25

6.
96 7.
22

1.
97

1.
48

1.
4 1.
43

2.
46

System Throughput Speedup

(d) One NVIDIA GPU and Intel CPU

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

9.81

Th
ro

ug
hp

ut
S

pe
ed

up

1.
33 1.
35

1.
35

1.
34

7.
29 8.

47 8.
93 9.

81

2.
06

1.
45

1.
4

1.
4

2.
62

System Throughput Speedup

(e) Two NVIDIA GPUs and Intel CPU

high
4

high
16

high
32

high
64

low
4

low
16

low
32

low
64

all
4

all
16

all
32

all
64

Gmean

Benchmarks

1.00

5.67

Th
ro

ug
hp

ut
S

pe
ed

up

1.
31

1.
26

1.
24 1.
25

5.
67

4.
82 5.

13 5.
47

1.
6

1.
33 1.
36

1.
29

2.
1

System Throughput Speedup

(f) Two NVIDIA and one AMD GPUs, In-

tel CPU

Figure 5.9: Throughput Speedup Results delivered by PALMOS. Multi-program sets

are executed on 6 platform configurations where different number and types of accel-

erators are available. We consider 3 groups of benchmarks, the High Workload, Low
Workload and All benchmarks. Group size varies from 4 to 64 benchmark instances.

The baseline is the Standard OpenCL environment. Logarithmic Scale.

5.9. Results 105

5.9.2 Multi-program performance

This section evaluates multi-user, multi-program performance in more detail. We con-

sider three benchmark groups: High, Low and finally All which contains all the bench-

marks of the previous two groups.

To evaluate multi-tasking, we randomly generate sets of benchmarks that run con-

currently on the system. We consider sets of 4, 16, 32 and 64 benchmark instances.

For each benchmark group and set size we randomly generate 50 permutations of the

benchmarks belonging to that group. We run each of these permutations 20 times to

eliminate noise. We present a geomean throughput speedup for each benchmark group

and set size as shown in figure 5.9.

Single NVIDA GPU: Figure 5.9a shows the throughput speedup when a single

NVIDIA GPU is available. Here, for High workloads as the size of the workload

increases from 4 to 64, the improvement gains level to around a 1.36x speedup as

resource contention begins to increase. For Low workloadsour improvements are ac-

tually more significant, ranging from 25.89x to 22.53x. The decrease happens due to

resource contention. Combining all benchmarks together and running them gives im-

provements from 1.48x to 2.89x. The High workload sets, that have long execution

times, have lower performance gains than Low workload sets. However, for the All
workload sets, PALMOS provides significant throughput speedups. Averaged across

each scenario we see a significant 3.87x improvement over standard OpenCL.

Two NVIDIA GPUs: Figure 5.9b gives the throughput speedup results when two

NVIDIA GPUs are available. When compared to figure 5.9a, the speedups obtained

are highly consistent. However, the results for Low workloads are now reduced and

they range from 21.53x to 22.35x. The results for All workloads are slightly reduced

ranging from 2.48 to 1.47. This happens because (a) the same workloads are now com-

puted on two accelerators and the concurrency reduces the potential performance im-

provements, (b) some overhead is introduced for using two accelerators. The NUMA

aware scheduling reduces that overhead but still many driver and OS operations are

centralized. Overall, the average improvement across all the scenarios is 3.71x.

Two NVIDIA and one AMD GPUs: Figure 5.9c shows the results for two NVIDIA

and one AMD GPUs. Here the results follow the trends of the previous configura-

tions but the throughput speedup gains are reduced giving a geomean improvement of

2.46 while Low workloads report significant reductions ranging from 10.05 to 7.62x.

The reason for the relative reduction is (a) the lower setup cost introduced by AMD

106 Chapter 5. Heterogeneous Acceleration Layer

OpenCL, (b) the higher overhead of managing and using three accelerators of different

vendors and (c) the fact that the same workloads are now computed by three accelera-

tors concurrently. The Low workload set of 4 benchmarks reports a higher throughput

speedup of 10.05x in comparison to larger Low sets because of lower resource con-

tention.

One NVIDIA GPU and Intel CPU: Figure 5.9d shows the results when one

NVIDIA GPU and Intel CPU are available as accelerators. The throughput speedup

trends remain the same with the previous configurations but they are now degraded,

specially for Low workloads which now have throughput speedup ranging from 6.88

to 7.22. The improvement rates are degraded mainly because of (a) the longer execu-

tion times on CPU and (b) the reduced setup overhead of Intel OpenCL. The geomean

speedup is 2.46x.

Two NVIDIA GPUs and Intel CPU: Figure 5.9e shows the throughput speedup

results given by PALMOS when two NVIDIA GPUs and Intel CPU are available. The

throughput speedup results are now higher in comparison with the One NVIDIA GPU

and Intel CPU configuration. The reason is that there are two NVIDIA GPUs in use

(a) that lead to faster executions and (b) have higher setup overheads in contrast to Intel

CPU. The geomean improvement is 2.62x.

Two NVIDIA GPUs, one AMD GPU and Intel CPU: Here we make all the ac-

celerators available. The results, shown in figure 5.9f, follow the same trends as before

but the throughput values are further reduced. Low workloads now range from 5.67x

to 5.47x and the mixed, All workloads from 1.6 to 1.29. High workloads remain on

the same levels. The reason is (a) the overhead of using multiple accelerators of three

different vendors, (b) the lower setup overhead of Intel and AMD OpenCL implemen-

tations, (c) the slower executions on CPU and (d) the fact that the same workloads are

executed concurrently on 4 accelerators. However the geomean throughput speedup,

2.1x, is still significant.

5.9.3 PALMOS against existing approaches

In this section we evaluate the performance of PALMOS against the default OpenCL

environment and an alternative approach [11] which uses message passing for com-

munication and we refer to it as Cloud. We consider four versions of Cloud. The first

version controls all the accelerators centrally, where there is little application setup

overhead. The second, is a secure version called secCloud, where a new OpenCL

5.9. Results 107

PALMOS Default Cloud secCloud nCloud nsecCloud
Execution Environment

Ex
ec

ut
io

n
Ti

m
e

(M
ill

is
ec

on
ds

)
18

29
18

28
71

40

57
96

86

59
09

26

38
40

87

39
53

27

PALMOS against Default OpenCL and MPI

Figure 5.10: This figure shows the absolute times for the execution of (spmv, histo,

spmv, histo) set on PALMOS, Default OpenCL and the 4 versions of Cloud infras-

tructure.

context is created per application The last two versions are NUMA aware versions

of Cloud and secCloud, called nCloud and nsecCloud. As the OpenCL benchmarks

have to be modified to use Cloud, we perform a smaller evaluation than the previous

section. Here, we use one of the NVIDIA GPUs as the accelerator.

Performance Overview: Here, we take a pair of Parboil benchmarks, histo from

the High workload group and spmv from the Low workload group and we create a

workload set, (spmv, histo, spmv, histo). We run it on PALMOS, Standard OpenCL,

and, once suitably modified, on the four Cloud infrastructures and the results are shown

in figure 5.10. PALMOS outperforms all the other approaches. PALMOS is 57%

faster than default OpenCL execution, where the speedup comes from the reduced

setup overhead and NUMA awareness. It outperforms Cloud and secCloud by 217%

and 223% respectively. The Cloud approaches require extensive data copies across

different address spaces, something that PALMOS avoids by using shared memory.

Cloud is 7% faster than its secure version, secCloud. The NUMA aware versions,

nCloud and nsecCloud are significantly faster. The data placement improves the data

copying performance. However, both remain significantly slower.

108 Chapter 5. Heterogeneous Acceleration Layer

WriteBuffer ReadBuffer KExec
Functions

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
(N

an
os

ec
on

ds
)

48
64

54
8

10
54

12

30
66

0

48
64

60
8

10
54

75

30
71

9

76
35

90
7

21
75

94

31
85

0

Virtual OpenCL Overhead
Default
Virtual OpenCL
MPI

Figure 5.11: Virtual OpenCL overhead. Comparison against default call convention

and RPC via MPI. Results are normalized to Default.

Virtual OpenCL Performance Analysis: Figure 5.11 shows the execution times

for function calls performed with (a) the default call convention of standard OpenCL,

(b) Virtual OpenCL and (c) MPI when executing spmv.

Kernel execution, clEnqueueNDRangeKernel, as expected, is roughly the same

for each scheme. In the case of host-accelerator communication, clEnqueueWrite-
Buffer and clEnqueueReadBuffer, Virtual OpenCL introduces negligible overhead.

MPI however introduces an overhead of 1.56x and 2.06x as data need to be copied

before the actual host-accelerator communication can take place. These two calls con-

sume significant proportion of the application execution and lead to critical execution

slowdowns for MPI/message passing based schemes.

5.10 Summary

In this chapter, we have presented PALMOS, a secure user-space virtualization layer

that integratees accelerator resources. It targets heterogeneous systems found in data

center nodes and requires mo modification of OS, OpenCL or the application. Our

approach reduces application setup overhead, enables inter-vendor accelerator sharing

and provides efficient platform aware scheduling. Our evaluation on multiple platforms

5.10. Summary 109

configurations with workloads ranging from 1 up to 64 applications shows average

improvement from 1.29x to 3.87x throughput speedup. We also show that our approach

outperforms both vendor accelerator sharing facilities and message passing solutions.

The next chapter presents a technique and software stack component that enable re-

source sharing control on accelerators, while supporting software managed scheduling

on accelerators. This work remains transparent to existing systems and applications

and requires no modifications or recompilation.

Chapter 6

Resource Sharing Control on
Accelerators

This chapter presents a runtime and Just In Time compiler infrastructure that enable

resource sharing control on accelerators, while supporting software managed schedul-

ing on accelerators. Our infrastructure remains transparent to existing systems and

applications and requires no modifications or recompilation. We evaluate on NVIDIA

and AMD GPU platforms. We enforce fairness in accelerator resource sharing and

deliver fairness improvements ranging from 6.8x to 13.66x for different workloads.

Furthermore, we deliver system throughput speedups ranging from 1.13x to 1.31x.

The remainder of the chapter is organized as follows. The challenges and contri-

butions of this chapter are given in section 6.1. Section 6.2 describes our motivation

for accelOS. Section 6.3 introduces our resource sharing scheme for accelerators. Sec-

tion 6.4 presents a high level overview of accelOS infrastructure. Sections 6.5 and 6.6

present the key components and features of accelOS. We present our experimental

setup and evaluation in sections 6.7 and 6.8. Section 6.9 discusses chapter summary.

6.1 Introduction

Accelerators, such as Graphic Processing Units (GPUs) and Field-Programmable Gate

Arrays (FPGAs), are key components of modern parallel platforms. They deliver high

computational throughput with reduced power for data parallel applications. However,

this raw hardware performance comes at a software cost. Although highly parallel, the

accelerators are managed as co-processors and support a limited number of concurrent

111

112 Chapter 6. Resource Sharing Control on Accelerators

kernel executions at a time.

While sharing of accelerator resources is not an issue for dedicated application

systems found in HPC, it is a real barrier for accelerator adoption in general purpose

servers and data centers. Such systems typically host diverse parallel applications

which cannot efficiently share and access accelerators with the existing software stack.

There is no fair resource sharing on accelerators for execution requests arriving concur-

rently from distinct applications. This lack of control makes it impossible to provide

quality of service guarantees and directly affects the overall fairness of the system.

Modern computing systems need a mechanism that allows accelerators to be shared

fairly among several concurrent kernel executions. This should incur minimal over-

head and ideally support immediate deployment in existing systems with minimal dis-

ruption.

This chapter develops a portable and transparent approach for accelerator sharing

control. It enables concurrent space sharing of the accelerator by multiple kernels

without any change to the application code, the Operating System or GPU hardware.

It can be used immediately on existing hardware and OpenCL software stacks [58].

We achieve this by deploying a host runtime environment and a Just In Time(JIT)

compiler. The runtime determines the amount of resources required for the execution

of a single work group1 of every kernel. The runtime then uses this information to nar-

row down the work groups of every kernel execution in order to control the resources

it reserves on the accelerator. To guarantee the correctness of the application we need

to perform the computation of the original number of work groups. This is done by

dynamically assigning additional work to the newly reduced number of work groups.

This procedure requires the transformation of kernel codes and is performed transpar-

ently by our JIT compiler. This scheme ensures all kernels can run concurrently, have

equal resources, benefit from dynamic work group scheduling and no user or system

code has to be modified.

The need for concurrent space sharing of GPUs is well known; in fact GPU man-

ufacturers have separate hardware queues specifically for this purpose. These are in-

tended to allow efficient utilisation by different application streams and kernels. The

NVIDIA architecture is a good example. In practice, however, although 2 or more ker-

nels can be sent for execution, the hardware scheduler currently assigns all resources

to which ever one arrives first. There is no notion of fair access.

1 A work group, in OpenCL, represents a subset of kernel execution threads (work items) that needs
to be scheduled on a single compute unit of the accelerator.

6.1. Introduction 113

There have been hardware based proposals to improve performance [35][79][20][16]

and memory bandwidth[89]. They do not, however, investigate multi-kernel schedul-

ing and fair resource sharing. Furthermore, they crucially require hardware modifica-

tions that are not currently available.

There has also been significant interest in software approaches to GPU sharing for

performance [85][1][43] and power efficiency[52]. However, these techniques require

static code merging with no dynamic control and do not investigate fair resource shar-

ing. Furthermore, they raise security concerns because they merge kernel codes of

different applications and users. There is also significant work proposing host runtime

and Operating System techniques for managing accelerator resources[56] [56][91][71].

However, they focus on allowing tasks to be easily allocated to a CPU or GPU, rather

than resource sharing control on accelerators.

Prior work has extensively investigated system resource sharing for non accelerator

based systems [98][17][104][114][34] and a number of metrics have been proposed

for quantifying fairness[41][49][36]. However, there has been limited work on fair

sharing of accelerator resources, a problem we directly address in this chapter. We

adopt the fairness metric proposed in [32] and extend it to quantify efficiently fairness

on accelerators. We use their definition of fairness where the slowdowns of equal-

priority applications running simultaneously on the accelerators are the same.

This work presents accelOS, a software stack component that consists of a run-

time and a Just In Time compiler and enables resource sharing control and software

managed scheduling on accelerators. It integrates with the existing software stack; its

operation remains transparent to the application, OS and runtime libraries and there is

no requirement for code modifications or recompilation. accelOS operates on the top

of existing hardware facilities and their operations are orthogonal.

To summarize, this chapter makes the following contributions:

• A runtime and JIT compiler infrastructure that enables resource sharing control

on accelerators.

• Fair accelerator sharing for multi-kernel executions.

• Dynamic, software managed scheduling on accelerators.

• Seamless integration with existing systems and portability across accelerator

vendors, OSes and applications.

114 Chapter 6. Resource Sharing Control on Accelerators

Exec
RQST

0

Exec
RQST

1

Exec
RQST

2

Exec
RQST

3

kernel 0

kernel 1

kernel 3

kernel 2

Kernel
0

kernel
1

(a) Standard Accelerator
Sharing

(b) accelOS Accelerator
Sharing

E
xe

c.
 T

im
e

GPU

E
xe

c.
 T

im
e

Resource Space Resource Space

kernel
2

Kernel
3

R
eq

u
es

ts Exec
RQST

0

Exec
RQST

1

Exec
RQST

2

Exec
RQST

3

R
eq

u
es

ts

GPU

Figure 6.1: Accelerator sharing on standard OpenCL (a) against accelOS (b). Standard

OpenCL does not provide resource sharing control leading to unfair sharing and poor

concurrent kernel executions. In contrast, accelOS enforces fair accelerator sharing

leading to efficient concurrent kernel executions and throughput improvements.

Our approach is evaluated extensively by using workloads consisting of multiple

OpenCL kernels from the Parboil benchmark suite. We first evaluate all pairwise com-

binations of kernels (25×25 = 625 in total). We then evaluate 16384, 4-kernel com-

binations randomly selected from the 390265 combinations and 32768 8-kernels ran-

domly selected from the 1.5× 1011 combinations We evaluate performance in terms

of fairness, processor sharing, system throughput and system overhead. We compare

our approach to the hardware baseline and the Elastic Kernels approach [85]. To

show accelOS portability, we evaluate its performance on two modern heterogeneous

platforms from two different manufacturers.

We dramatically improve fairness, ranging from 6.8x to 13.66x. This has the added

bonus of improving system throughput on average from 1.13x to 1.31x. Our scheme

incurs no overhead due to our compiler optimizations, in fact we actually improve

isolated kernel execution times due to dynamic scheduling. We deliver an average

execution speedup of 1.07x and 1.1x on NVIDIA and AMD GPUs.

6.2. Motivation 115

6.2 Motivation

Consider figure 6.1 which graphically presents the execution of four kernels arriving

from distinct applications when concurrently requesting execution on a modern dedi-

cated GPU such as NVIDIA’s Tesla k20m or AMD’s R9 295X2.

Figure 6.1a illustrates typical system behavior when the standard software stack

is used. Rather than executing concurrently, each kernel is executed sequentially in

turn. The reason is that each kernel is able to use the majority of the system resources,

leaving little space to execute the others and leads to sequential executions. The exist-

ing software stack does not support resource sharing control on the accelerator and the

accelerator architecture does not support preemption. This leads to unfair accelerator

sharing for different applications and their users.

Figure 6.1b presents the system behavior where accelOS infrastructure is in place.

accelOs confines resource allocation for kernels so that they have more work per thread

but less concurrent threads and thus demand less system resources. This is done dy-

namically by altering the number of work groups for kernel executions. It also requires

software managed scheduling of the original work groups on accelerators and we sup-

port it. As can be seen the accelerator resources are now allocated equally among the

four kernel executions. This new behavior leads to fair accelerator sharing, concurrent

kernel executions and improved throughput.

6.2.1 Motivational Example

To make this concrete, we consider the performance of 4 kernels, bfs, cutcp, stencil,

and tpacf when concurrently presented for execution using the standard software stack

and accelOS on NVIDIA platform. Figure 6.2a shows the slowdown of each kernel

when executed concurrently relative to executing in isolation. The standard scheme

executes them sequentially and as expected bfs has the least slowdown as it is executed

first while program tpacf has the largest slowdown as it is executed last. accelOS slows

each kernel more evenly giving fairer access to the GPU. Using the unfairness metric

[32], this means that accelOS is 5.79x times fairer as shown in figure 6.2b. As accelOS

is better able to use system resources, it actually improves system throughput as well,

1.31x over the standard scheme, as shown in figure 6.2c.

An alternative scheme, Elastic Kernels [85], attempts to statically merge kernels

when system resources may not be fully utilised. This scheme is able to improve

116 Chapter 6. Resource Sharing Control on Accelerators

bfs cutcp stencil tpacf
Benchmark Kernels

2

4

6

8

10

12

14

In
di

vi
du

al
 S

lo
w

do
w

ns

1.0
3

3.4
5

5.2
1

7.8
2

2.8 3.3
2

3.5
5

3.6
6

Individual Slowdowns
Standard accelOS

(a) Individual Slowdowns. accelOS delivers re-

duced and balanced slowdowns for the kernel exe-

cutions. This denotes fair accelerator sharing and

concurrent kernel executions.

Parallel Execution of bfs, cutcp, stencil and tpacf

2

4

6

8

10

12

Sy
st

em
 U

nf
ai

rn
es

s

7.5
9

5.5
1

1.3
1

System Unfairness
Standard EK accelOS

(b) System Unfairness. We compare the system un-

fairness delived by standard OpenCL and Elastic

Kernels (EK) against accelOS. Lower is better. ac-

celOS outperforms the other approaches.

Parallel Execution of bfs, cutcp, stencil and tpacf
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sy
st

em
 T

hr
ou

gh
pu

t

1.1
4

1.3
1

System Throughput
EK accelOS

(c) System Throughput Speedup. We compare

against the Elastic Kernels (EK). The baseline is the

standard OpenCL. Higher is better. accelOS delivers

better throughput performance.

Figure 6.2: Motivational Example for accelOS. Parallel execution of bfs, cutcp, stencil,

and tpacf. accelOS outperforms other approaches in system fairness and throughput

results.

6.2. Motivation 117

system throughput by 1.14x but does not improve fairness as it does not allocate re-

sources evenly. As can be seen in figures 6.2b and 6.2c accelOS delivers better system

throughput and fairness results than Elastic Kernels.

6.2.2 Standard Scheduling Approach

OpenCL and CUDA do not expose any control on how accelerator resources are allo-

cated among concurrent kernel execution requests. In practice, the execution request

that arrives first tends to reserve all the available resources. This happens for two rea-

sons. First, the hardware and firmware of the accelerator do not constrain the resources

a kernel execution uses. Second, a kernel execution request typically represents a com-

putational range that is large enough to occupy all the accelerator resources.

Consider figure 6.3 which illustrates accelerator sharing and work group schedul-

ing for two parallel kernel execution requests. Here, the accelerator has four compute

units (CUs) and two kernels, A and B. A’s Kernel Execution Range (NDRange) con-

sists of 12 work groups (WGs), while B has 8 work groups.

Figure 6.3a illustrates accelerator sharing and work group scheduling as it happens

today on modern accelerators. Here, the hardware/firmware scheduler assigns work

groups to compute units based on static heuristics. There is no control on how work

groups are assigned to the compute units. Under this scheme the kernel that arrives

first, kernel A in this example, allocates resources across all the compute units and the

scheduler assigns work groups across the units in a round robin fashion. The work

groups of kernel B start executing only after the completion of kernel A. The lack of

resource sharing control leads to serialized kernel executions and unfair sharing.

6.2.3 accelOS: Software Scheduling & Resource Sharing Control

Figure 6.3b shows our approach. The number of work groups for both kernel execu-

tions is now reduced. In our example both A and B now have just 2 work groups.

The work groups of kernel A start executing on compute units 0 and 1, while the work

groups of kernel B executing on compute units 2 and 3.

To ensure the original computation is performed, we have to compute all the orig-

inal work groups of each kernel execution. First of all, each of the original 12 work

groups of A (8 of B) are stored in a software queue and we refer to them as virtual

groups. The software queue is stored in accelerator memory and we refer to it as Vir-

tual NDRange A (B). Next, our JIT compiler transparently modifies the kernel code

118 Chapter 6. Resource Sharing Control on Accelerators

T
im

e

WG0

WG8

... WG10 WG11

WG0 ... WG6 WG7

NDRange A

NDRange B

WG0

WG4

WG0

WG4

WG9

WG1

WG5

WG1

WG5

WG10

WG2

WG6

WG2

WG6

WG11

WG3

WG7

WG3

WG7

CU 0 CU 1 CU 2 CU 3

Accelerator Compute Units Kernel Execution Ranges

(a) In standard OpenCL, there is no resource sharing control. The work groups (WGs) of every

Kernel Execution Range (NDRange) are assigned for computation to the accelerator compute

units (CUs). This is done by static schedulers in a round-robin fashion and there is no control

on how the work groups are assigned to the compute units. The kernel execution that arrives

first allocates all the accelerator resources. When the work groups of the first kernel have been

computed, work groups of the second kernel start executing on the compute units. The lack of

resource sharing control leads to serialized kernel executions and unfair accelerator sharing.

WG0 WG1

VG0

VG0 ... VG6 VG7

Virtual NDRange B

VG10 VG11

NDRange A

WG0 WG1

T
im

e

WG0 WG0

VG0

VG2

VG4

VG6

VG8

VG10

WG1

VG1

VG3

VG5

VG7

VG9

VG11

VG0

VG2

VG4

VG6

WG1

VG1

VG3

VG5

VG7

Virtual NDRange A

NDRange B

CU 1 CU 2 CU 3

Accelerator Compute Units Kernel Execution Ranges

...

CU 0

(b) accelOS enables resource sharing control. This is done by altering the number of work

groups (WGs) of Kernel Execution Ranges. We narrow down the number of work groups to

control the number of compute units (CUs) a kernel uses at a time. This way we allow multiple

kernels to perform concurrently on the accelerator and achieve space sharing. We preserve the

original Execution Range at software level. We store it in accelerator global memory and we

now name it Virtual NDRange and its work groups, Virtual Groups (VGs). Our JIT compiler

transforms the kernel code. The new kernel code performs software work group scheduling by

accessing Virtual NDRange, retrieving and computing virtual groups at runtime.

Figure 6.3: Example of accelerator sharing for two kernel execution requests. We

compare standard OpenCL (a) against accelOS (b). accelOS supports resource sharing

control which enables fair accelerator sharing and concurrent kernel executions.

6.3. Accelerator Resource Sharing Scheme 119

kernel void K(…)
{
 gid=get_global_id();
 ..computation..
}

void K(…)
{
 gid=get_virt_global_id();
 ..computation..
}

kernel void Sched(…)
{
 while (true) {
 vg=retrieve_vgroup();
 Call K for vg;
 }
}

Figure 6.4: A high level schema of our JIT compiler transformation targeting OpenCL

Kernels. We convert OpenCL functions to regular functions and we create a new

scheduling kernel that accesses a Virtual Execution Range via runtime calls, retrieves

virtual groups and performs their computation by calling the converted function. Our

transformation replaces OpenCL work-item functions with runtime calls.

as shown in figure 6.4. It now consists of a simple loop that dynamically dequeues a

virtual group and executes it. This means all the original work is done but uses less

physical resources. In figure 6.3b, work groups WG0 and WG1 dequeue virtual groups

and execute them. The actual virtual groups executed per compute unit will vary due to

dynamic scheduling. The reduction of NDrange and the software scheduling of virtual

groups ensure fair sharing of accelerator resources and efficient allocation of work to

compute units.

The operations of accelOS take place transparently and do not require any modifi-

cation of application code, or changes in the existing software stack. Furthermore, no

hardware changes are required.

6.3 Accelerator Resource Sharing Scheme

The key issue for our fair sharing scheme is determining the right number of work

groups per kernel execution. We wish to determine the appropriate number of work

groups for each kernel execution so that they all approximately allocate equal re-

sources. We consider modern accelerator architectures with compute units that my

120 Chapter 6. Resource Sharing Control on Accelerators

host multiple work group executions at a time if their resource requirements can be

satisfied. There are three resources that we need to consider for accelerator sharing:

thread number, local memory usage and register usage.

Thread number: We first have to constrain the number of work groups each ker-

nel i executes so that all the concurrent threads can execute concurrently. If T is the

maximum number of threads a device can execute, and wi is the size of a work group

for each kernel i then we must constrain the number of work groups xi for each kernel:

∑
i

xiwi ≤ T

To ensure that each kernel has roughly the same resource we have:

mini(min j(|xiwi− x jw j|))

where we try to minimise the difference in resource between all kernels.

Local Memory: A similar set of constraints can be built for local memory usage.

Let L be the maximum local memory available, and mi is the memory usage of a work

group then the number of work groups yi per kernel is:

∑
i

yimi ≤ L

Again to ensure that each kernel has roughly the same resource we have:

mini(min j(|yimi− y jm j|))

Registers: Again a similar set of constraints can be built for register usage. Let R

be the maximum registers available, and ri is the register usage of a work group then

the number of work groups zi per kernel is:

∑
i

ziri ≤ R

Again to ensure that each kernel has roughly the same resource we have:

mini(min j(|ziri− z jr j|))

Determining Number of Work Groups: Each of the three constraints can be

approximately solved as follows:

xi =
T

Kwi
,yi =

L
Kmi

,zi =
R

Kri

6.4. Infrastructure Overview 121

S
ys

te
m

In
te

rf
ac

e
A

p
p

lic
at

io
n

In
te

rf
ac

e
ac

ce
lO

S

lvl 0

lvl 2

lvl 1

App 0 App N

ProxyCL ProxyCL

...

Host
Runtime

Just In Time
Compiler

Standard OpenCL

Kernel 0

Kernel N
… … …
… …

Software
Work-Group
Scheduling

A
c

c
e

le
ra

to
r

Figure 6.5: accelOS Infrastructure Overview. It is organized in three levels. The ap-

plication interface (level 0), accelOS core (level 1) and systems interface (level 2).

accelOS core consists of two components, the host runtime and the Just In Time (JIT)

compiler. The runtime monitors OpenCL applications, manages accelerator resources

and schedules kernel execution requests on the accelerator. The JIT compiler trans-

forms kernel codes and links them against a GPU runtime library that enables software

work group scheduling.

Given that all constraints must hold simultaneously the final work group size is

min(xi,yi,zi). As these are Diophantine equations the resulting work group sizes may

be conservative. If not all resources are used, we apply a simple greedy heuristic to

incrementally increase the number of work-groups iteratively across the kernel execu-

tions until resource saturation.

6.4 Infrastructure Overview

We provide a high level overview of the accelOS infrastructure as it is shown in fig-

ure 6.5. accelOS monitors OpenCL applications, manages accelerator resources and

enables fair accelerator sharing. Our work remains fully compatible and portable to

existing software stacks, accelerator vendors and applications. accelOS infrastructure

is seamlessly integrated in existing systems without requiring code modifications or

recompilation. Our infrastructure which supports the techniques described above is

122 Chapter 6. Resource Sharing Control on Accelerators

organized in 3 levels.

Application interface (level 0): It is responsible for monitoring and interacting

with OpenCL applications. The monitoring is done via a library called ProxyCL
which replaces standard OpenCL. The communication between ProxyCL and acce-

lOS is done over Interprocess Shared Memory[83] which guarantees low overhead.

This approach has been proposed in PALMOS[71].

accelOS (level 1): It is a background system process that provides the core func-

tionality of accelOS and consists of two components, a host runtime and a Just in

Time (JIT) compiler. The host runtime monitors OpenCL applications via Proxy CL,

manages accelerator resources and schedules kernel execution requests. It is further

described in section 6.5. The JIT compiler transforms kernel codes and links them

against a GPU scheduling library in order to support software work group scheduling.

It is further described in section 6.6.

System Interface (level 2): It is the connection of accelOS with the existing system

infrastructure. We use standard OpenCL in order to leverage accelerators. This way

we can deploy our work on existing systems.

6.5 Host Runtime

This section presents the host runtime of accelOS. It consists of two components de-

scribed below.

6.5.1 Application Monitor

This is the only component of accelOS that interacts with applications via ProxyCL.

It monitors OpenCL requests made by applications. If these requests involve new ker-

nel code compilation or kernel execution special actions take place. The finite state

machine (FSM) of figure 6.6 presents its operation. When an application performs

an OpenCL request three scenarios may take place. (a) If the request creates a new

OpenCL Program the JIT compiler takes control, analyzes and transforms the kernel

code. The original operation is then performed with the transformed version of the

code. (b) If the request is a new kernel execution, Kernel Scheduler takes control,

which changes the number of work groups in order to control resource allocation and

schedules its execution. (c) For any other request, the application continues its execu-

tion instantly and accelOS does not intervene.

6.6. Just In Time Compilation 123

6.5.2 Kernel Scheduler

It centrally manages the scheduling of kernel execution requests. It leverages the ac-

celerator resource sharing algorithm described in section 6.3 to select the number of

work groups for each kernel execution. For every request, it first constructs a Virtual

Kernel Execution Range which is copied in the accelerator memory. It then alters the

global size of the Kernel Execution Range to match the new number of work groups.

It does not modify the work group size or the dimensions of the computation. Finally,

it launches the kernel.

The host runtime is built exclusively in user-space and relies on standard POSIX

and OpenCL libraries.

App

Monitor JIT CompilerK. Scheduler
New clProgramNew K. Exec

Transformed Kernel CodesAltered NDRange

No changes
(a)(b)

(c)

Figure 6.6: Application Monitor Operation. Each Time an application performs an

OpenCL call, the monitor component checks its type. Special actions take place if an

operation either involves compilation of new kernel code or a kernel execution.

6.6 Just In Time Compilation

Our Just In Time (JIT) compiler intervenes in the standard compilation procedure of

OpenCL kernels. It transforms kernel codes and links them statically against a runtime

library that enables the software scheduling of virtual groups by accessing a Virtual

Execution Range as we described in section 6.2.3. Its operations remain transparent to

the application and no modifications are required. Our compiler infrastructure is based

on LLVM[63] while we rely on vendor toolchains for target code generation.

This section first describes how we intervene to the standard compilation proce-

dure. We then describe our code transformation technique. Lastly, we present our

GPU scheduling library.

124 Chapter 6. Resource Sharing Control on Accelerators

OpenCL JIT Compiler

SPIR OpenCL C

Native Code

OpenCL JIT Compiler

SPIR OpenCL C

Native Code

LLVM IR Gen

accelOS Kernel
Transformation

GPU Runtime
Linkage

SPIR/OpenCL C

(a) (b)

accelO
S

 JIT

Figure 6.7: OpenCL Kernel Compilation Procedure on (a) Standard OpenCL against

(b) accelOS. We intervene the standard compilation procedure, we analyze and trans-

form the kernel code and link it against our GPU scheduling library. We remain traspar-

ent to the existing software stack and no application modification is required.

6.6.1 Compilation Procedure

Figure 6.7a presents the compilation procedure under standard OpenCL. The appli-

cation provides the kernel code either in OpenCL C or SPIR representation[59]. The

vendor compiler then performs a set of optimizations and generates native code for the

accelerator.

Figure 6.7b presents our scheme. We intercept the OpenCL call that provides the

kernel code. If the code is given in OpenCL C we use Clang to generate LLVM IR.

SPIR representation is already compatible with LLVM IR. We instantiate an LLVM

Pass Manager and load our compiler passes. We transform kernel codes and statically

link them against our GPU scheduling library. Next, if the vendor compiler supports

SPIR, we generate SPIR code. Otherwise, we generate OpenCL C. Finally, we use the

vendor compiler for the target code generation.

6.6.2 Transformation Overview

Our compiler transformation enables software work group scheduling on existing OpenCL

kernels without requiring any change or action from the developer. For every OpenCL

6.6. Just In Time Compilation 125

kernel we perform the following:

1. Convert OpenCL function to a regular computation function.

2. Extend the function interface with pointer arguments to the data structures of the

runtime.

3. Replace built-in work item functions with runtime equivalents.

4. Create a scheduling kernel function. Its interface includes all the arguments of

the original kernel function plus pointer arguments to the runtime data structures.

5. Generate the scheduling kernel body that atomically accesses the Virtual NDRange

of the kernel execution and calls the computation function for every virtual

group.

The next paragraphs present a kernel transformation example.

6.6.2.1 Kernel Transformation Example

Consider the code of figure 6.8a where each work item either adds or subtracts the

input of two buffers depending on its group ID. The kernel function arguments are two

input and one output buffers.

Figure 6.8b presents the transformed version of the code. We first convert the

kernel function to a regular function and we replace the built-in, work item functions

of OpenCL with runtime function calls as it is shown in the lines 5 and 6. The runtime

functions require access to data structures and for that reason we have added three

trailing arguments to the function interface. The first, rt, provides access to the Virtual

Kernel Execution Range (Virtual NDRange), the second, sd, to scheduling information

which is local at work group level. The last, hdlr, is a special runtime handler.

6.6.2.2 Software Scheduling Control

Lines 14 to 33 of figure 6.8b consist the code that controls the dynamic scheduling

of the virtual groups. We define the scheduling code as a kernel function with the

arguments of the original kernel function followed by three additional arguments. rt
provides access to the Virtual NDRange, sd to scheduling information local to the work

group. The last one, lheap, is a memory buffer allocated in local memory; it is used as

a heap for serving memory allocations.

126 Chapter 6. Resource Sharing Control on Accelerators

1 k e r n e l void mop (g l o b a l c o n s t f l o a t ∗ ina ,

2 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗ o u t)

3 {
4 s i z e t g i d = g e t g l o b a l i d (0) ;

5 s i z e t g r i d = g e t g r o u p i d (0) ;

6

7 i f (g r i d<NConstan t)

8 o u t [g i d]= i n a [g i d] + i n b [g i d] ;

9 e l s e
10 o u t [g i d]= i n a [g i d] − i n b [g i d] ;

11

12 }

(a) Kernel Code Example.
1 void mop (g l o b a l c o n s t f l o a t ∗ ina ,

2 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗ out ,

3 g l o b a l s t r u c t RT ∗ r t , l o c a l s t r u c t SD ∗ sd , i n t h d l r)

4 {
5 s i z e t g i d = r t g l o b a l i d (rd , h d l r , 0) ;

6 s i z e t g r i d = r t g r o u p i d (rd , h d l r , 0) ;

7

8 i f (g r i d<NConstan t)

9 o u t [g i d]= i n a [g i d] + i n b [g i d] ;

10 e l s e
11 o u t [g i d]= i n a [g i d] − i n b [g i d] ;

12 }
13

14 k e r n e l void d y n s c h e d (g l o b a l c o n s t f l o a t ∗ ina ,

15 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗ out ,

16 g l o b a l s t r u c t RT ∗ r t , l o c a l s t r u c t SD ∗ sd ,

17 l o c a l void ∗ l h e a p)

18 {
19 s i z e t i n d ;

20

21 i f (r t i s m a s t e r w o r k i t e m ())

22 r t e n v i n i t (r t ,& sd) ;

23

24 f o r (; ;) {
25 i f (r t i s m a s t e r w o r k i t e m ())

26 r t s c h e d w g r o u p (r t ,& sd) ;

27 b a r r i e r (CLK LOCAL MEM FENCE) ;

28 i f (sd . s t a t u s ==RUN TERMINATE)

29 break ;

30 f o r (i n d =sd . wg base ; ind<sd . wg end ; ++ i n d)

31 mop (ina , inb , out , r , i n d) ;

32 }
33 }

(b) Kernel Code After Transformation.

Figure 6.8: Kernel Code Transformation and Runtime Library Support for software

work group scheduling on accelerators. Our compiler transforms the original kernel

code. It injects runtime calls and adds control flow for scheduling control and links

against our GPU scheduling library.

6.6. Just In Time Compilation 127

The scheduling environment is initialized in lines 21 and 22. This call is made by

a single work item, the master of the work group. All the work items proceed to a

loop, where the master, line 26, retrieves virtual groups for execution from the Virtual

NDRange. We have an adaptive scheduling scheme that may assign more than one

virtual groups for execution at a time. For every group we call the function code, line

32, and the runtime work item functions provide the appropriate group and global ID

values.

Local Data Hoisting: OpenCL standard exclusively permits declaration of data in

local address space as part of a kernel function body and not regular functions. We

convert the original kernel code to a regular function and we need to hoist its local

data declarations in the scheduling kernel function body. The allocation of hoisted

declarations is done via runtime function calls.

6.6.3 GPU Runtime Library

Our library performs the runtime scheduling of virtual groups provided by Virtual Ker-

nel Execution Ranges (Virtual NDRanges). Every work group has a runtime instance

performing virtual group scheduling. The library provides operations for environment

control and scheduling. It also provides replacements for the work item functions of

OpenCL. The original work groups of a kernel execution are now described by vir-

tual groups and our runtime replacements provide the appropriate values for work item

functions at runtime.

6.6.4 Adaptive Scheduling

Our runtime operations involve few mathematical operations that consist negligible

overhead. The exceptional case is the scheduling operation that involves an atomic op-

eration. Performing software scheduling on kernels with small number of instructions

may expose significant overhead. To avoid this, we support the scheduling of multiple

virtual groups at a time. We rely on the following heuristic. If the total number of in-

structions in LLVM IR is less than 10, a scheduling operation assigns 8 virtual groups

to the work group at a time. Respectively, 6 groups for less than 20 instructions, 4

groups if less than 30, 2 groups if less than 40. Otherwise, the scheduling is done with

1 work group at a time.

128 Chapter 6. Resource Sharing Control on Accelerators

6.7 Experimental Setup

In this section we describe the platforms, workloads, metrics and methodology we use

in our evaluation.

6.7.1 Evaluation Platforms

We evaluate our approach on two distinct heterogeneous platforms with GPUs from

different manufacturers. Both platforms have the same host processor: an Intel i7

4770K CPU @ 3.50GHz and 16GB of DDR3 RAM at 1600Mhz. The first plat-

form contains an NVIDIA Tesla K20m[80] GPU; while the second has an AMD R9

295X2[3]. Both systems run Linux with kernel version 3.13. We use the NVIDIA

OpenCL platform, version 331.79 and the Accelerated Parallel Processing framework

of AMD, version 1445.5.

6.7.2 Workloads

We use all the kernels from the OpenCL version of the Parboil benchmark suite [101].

We consider workloads consisting of 2, 4 or 8 parallel kernel execution requests. We

first evaluate all pairwise combinations of kernels. As there are 25 Parboil kernels, this

gives 25×25 = 625 in total. It is impractical to evaluate all the available combinations

for workloads of 4 and 8 requests and we evaluate a subset of them. There are 390265

4-program workload combinations from which we randomly selected 16384. There

are 1.5× 1011 8-kernel combinations from which we randomly selected 32768. To

have robust results, each workload is executed 20 times and the mean execution time

is reported.

6.7.3 Comparison to other approaches

We present all results relative to the baseline OpenCL environment provided by NVIDIA

and AMD. To provide a broader evaluation, we implemented the the Elastic Kernels

[85] approach. This work was originally aimed at CUDA and required a port to

OpenCL.

6.7.4 Metrics

We evaluate our scheme with respect to fairness and throughput using existing metrics.

6.8. Results 129

Fairness Metrics for Accelerator Sharing: A heterogeneous system is considered

fair, if the slowdowns of kernel executions running concurrently on the accelerator

resources are the same [32][78][98]. We adopt the metrics proposed in [32].

The Individual Slowdown ISk of a kernel execution k is:

ISk =
T (s)k

T (a)k

where T (s) is the number of nanoseconds it takes to perform the kernel execution

while it shares the accelerator with other executions. T (a) is the number of nanosec-

onds it takes to perform the execution in isolation. System unfairness, U is defined:

U =
max(IS0, IS1, . . . , ISN−1)

min(IS0, IS1, . . . , ISN−1)

Fairness improvement over baseline for either our scheme or elastic kernels is a

simple ratio: Ubaseline
UX

, where UStandard and UX are the system unfairness values for

standard OpenCL and either our scheme or elastic kernels, respectively.

Kernel Execution Overlap: The amount of time kernels co-execute is another

measure of GPU sharing. Execution overlap O is defined as

O =
T (c)
T (t)

where T (t) is the total time the accelerator is executing at least one of the kernels

and T (c) is the amount of time all the kernels are co-executing.

Throughput Speedup: Although we focus on fairness, overall performance is

also important. We report overall speedup relative to the baseline i.e. (Tbaseline
TX

) where

Tbaseline is the time for all kernels to execute on the standard system and Tx is the time

for either our approach or the elastic kernels scheme to execute all kernels.

Additional metrics: To evaluate the overhead of our scheme, we measure the

time for a single kernel to execute using our approach vs the baseline. We also report

average normalized turn around time (ANTT) and worst case ANTT to allow direct

comparison with [85]. We also provide STP results [33].

6.8 Results

In this section, we evaluate accelOS which enables resource sharing control on accel-

erators. accelOS delivers efficient and fair multi-kernel executions, where sets of 2, 4

or 8 parallel kernel execution requests perfrom concurrently.

130 Chapter 6. Resource Sharing Control on Accelerators

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

10

20

30

40

50

60

70

Sy
st

em
 U

nf
ai

rn
es

s

8.4
3

19
.65

43
.42

19
.3

5.5

18
.93

46
.7

16
.94

1.2
4

1.8
9

3.5
4

2.0
2

Average System Unfairness
Standard EK accelOS

(a) NVIDIA k20m.

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

20

40

60

80

100

Sy
st

em
 U

nf
ai

rn
es

s

12
.97

31
.25

57
.51

28
.57

7.9
3

40
.54

67
.43

27
.88

1.5
8

3.2
7

4.2
1

2.7
9

Average System Unfairness
Standard EK accelOS

(b) AMD R9 295X2.

Figure 6.9: Average System Unfairness. We compare the system unfairness delived by

standard OpenCL and Elastic Kernels (EK) against accelOS. Lower is better. accelOS

outperforms the other approaches.

We present fairness results in section 6.8.1. Concurrent kernel execution results

are discussed in section 6.8.2. Our work has the added bonus of improving system

throughput. A detailed description is given in section 6.8.3. We, finally, investigate

the performance overhead of accelOS in section 6.8.4. Our optimized version of acce-

lOS compensates the originally introduced overhead and achieves notable performance

improvements.

6.8.1 Fairness in Accelerator Sharing

Key goal of this work is to enable resource sharing control on accelerators and enforce

fair sharing for multi-kernel executions. Here, we investigate what is the impact of

accelOS on fairness. We use the metrics of Unfairness and Fairness Improvement as

6.8. Results 131

described in section 6.7. For the Unfairness metric, lower values are better while for

the Fairness Improvement metric, higher values are better.

6.8.1.1 Result Summary

Figure 6.9a shows the average results on the NVIDIA platform. accelOS reduces un-

fairness from 8.43 to 1.24 for 2 requests, from 19.65 to 1.89 for 4 requests and from

43.42 to 3.54 for 8 requests. It leads to fairness improvements of 6.8x, 10.4x and

12.27x, while the average improvement is 9.55x. accelOS outperforms Elastic Ker-

nels (EK) approach which delivers fairness improvements of 1.53x, 1.03x and 0.93x,

respectively and an average improvement of 1.13x.

Figure 6.9b shows the results on the AMD platform. Here, the benefits of accelOS

are similar to those of NVIDIA. accelOS delivers 8.21x improvement for 2 execution

requests, 12.97 against 1.58. In the case of 4 requests, it improves fairness by 9.56x

where it reduces unfairness from 31.25 to 3.27. For 8 requests, accelOS improves

by 13.66x, reducing unfairness from 28.57 to 2.79. accelOS, again, outperforms EK

which delivers fairness improvements of 1.63x, 0.77x and 0.85x with an average of

1.02x.

Given the results, accelOS efficiently achieves resource sharing control and leads

to significant fairness improvements for multi-kernel executions on both NVIDIA and

AMD platforms.

6.8.1.2 Individual Results

Figures 6.10a and 6.10b provide an overview of the fairness improvement results

across the workloads we use in our experiments. We provide individual results for

workloads of 2, 4 and 8 kernel execution requests on both NVIDIA and AMD plat-

forms for accelOS and EK. In case of accelOS, the results range from 0.81x to 15.84x

times improvement, where less than 2% of the workloads have a negative fairness re-

sult. In contrast, the EK delivers negative results for 44% of the workloads.

accelOS enables dynamic resource sharing control via software managed schedul-

ing on accelerators in contrast to EK which relies on static heuristics and static resource

allocation. accelOS successfully adapts to large number of requests and fairly assigns

system resources while EK fails.

132 Chapter 6. Resource Sharing Control on Accelerators

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Workloads

0

2

4

6

8

10

12

14

16

18

Fa
irn

es
s

Im
pr

ov
em

en
t

Fairness Improvement across Workloads

accelOs - 2 RQSTs
accelOs - 4 RQSTs
accelOs - 8 RQSTs

EK - 2 RQSTs
EK - 4 RQSTs
EK - 8 RQSTs

(a) NVIDIA K20m.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Workloads

0

2

4

6

8

10

12

14

16

18

Fa
irn

es
s

Im
pr

ov
em

en
t

Fairness Improvement across Workloads

accelOs - 2 RQSTs
accelOs - 4 RQSTs
accelOs - 8 RQSTs

EK - 2 RQSTs
EK - 4 RQSTs
EK - 8 RQSTs

(b) AMD R9 295X2.

Figure 6.10: Fairness Improvements delivered by accelOS and Elastic Kernels for sets

of 2, 4 and 8 kernel execution requests. Higher is better. Here, we present the fairness

improvement results for all the sets we investigate. The sets are organized in fractions

based on their result values. The values increase as we move from left to right. The

circle and polygon shapes are meant for easing readability on black and white printouts.

6.8. Results 133

6.8.1.3 Pairwise Results

We provide additional insights on the fairness results delivered by accelOS and EK

for a selection of 2-kernel workloads in figure 6.11. The selection has been done by

pairing the available OpenCL kernels by the alphabetical order of their names. accelOS

steadily delivers the best results on both NVIDIA and AMD. We have spotted two

cases where EK and accelOS deliver nearly the same results. The sad-calc 16 - sgemm

pair on NVIDIA and mri-q computePhiMag - mri-q ComputeQ pair on AMD suffer

from performance degradations due to work group imbalances that negatively affect

our software scheduling heuristics. These performance degradations in conjunction

with the execution times of these kernels makes accelOS less effective. However, our

work delivers significant improvements even for these two cases.

bfs
cutcp

histo
_fin

al

histo
_in

ter

histo
_m

ain

histo
_presca

n
lbm

mri-g
r_b

inning

mri-g
r_re

order

mri-g
r_G

PU

mri-g
r_s

can_L1

mri-g
r_s

can_in
ter1

mri-g
r_s

can_in
ter2

mri-g
r_u

niform
Add

mri-g
r_s

plitS
ort

mri-g
r_s

plitR
earra

nge

mri-q
_ComputePhiMag

mri-q
_ComputeQ sad-ca

lc

sad-ca
lc_8

sad-ca
lc_1

6

sgemm spmv

ste
ncil tpacf

bfs

Benchmark Kernels

5

10

15

20

Sy
st

em
 U

nf
ai

rn
es

s

9.
53

8.
75

7.
61

12
.9

4

4.
4

15
.3

1

9.
23

6.
5

1.
89

12
.2

3

9.
43

4.
99

7.
99

4.
57 5.

41

3.
28

7.
53

3.
2

1.
5

8.
52

7.
43

1.
56

6.
71

1.
47 3.

23 4.
25

1.
09

1.
12 1.
59

1.
23

1.
11

1.
06

1.
13

1.
04

1.
16

1.
32 1.
53

1.
22

1.
33

System Unfairness for Selected 2-Kernel Workloads

Standard EK accelOS

(a) NVIDIA k20m.

bfs
cutcp

histo
_fin

al

histo
_in

ter

histo
_m

ain

histo
_presca

n
lbm

mri-g
r_b

inning

mri-g
r_re

order

mri-g
r_G

PU

mri-g
r_s

can_L1

mri-g
r_s

can_in
ter1

mri-g
r_s

can_in
ter2

mri-g
r_u

niform
Add

mri-g
r_s

plitS
ort

mri-g
r_s

plitR
earra

nge

mri-q
_ComputePhiMag

mri-q
_ComputeQ sad-ca

lc

sad-ca
lc_8

sad-ca
lc_1

6

sgemm spmv

ste
ncil tpacf

bfs

Benchmark Kernels

5

10

15

20

Sy
st

em
 U

nf
ai

rn
es

s

11
.5

3

9.
57

14
.9

6

7.
34

14
.5

4

8.
45

5.
23

15
.3

2

13
.5

7

11
.3

6

7.
34

12
.5

4

7.
0

5.
99 6.
43

5.
54

3.
51

8.
98

4.
21 4.
89

3.
53

2.
53 3.
21 4.

45

8.
02

4.
23

1.
71

1.
23

1.
39

1.
04 1.
54 2.
14

1.
38

1.
12 2.

03

1.
37

1.
26 2.
06

1.
04

System Unfairness for Selected 2-Kernel Workloads

Standard EK accelOS

(b) AMD R9 295X2.

Figure 6.11: Unfairness results for a selection of 2-kernel workloads. The selection

has been done by pairing the available OpenCL kernels by the alphabetical order of

their names. We provide unfairness results for standard OpenCL, Elastc Kernels (EK)

and accelOS. Lower is better.

134 Chapter 6. Resource Sharing Control on Accelerators

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

20
40
60
80

100
120
140

Ex
ec

ut
io

n
Ov

er
la

p
(%

)

21
3 0 0.0

71

43

7

27.75

94 87 82 87.53

Average Kernel Execution Overlap

Standard EK accelOS

(a) NVIDIA K20m.

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

20

40

60

80

100

120

Ex
ec

ut
io

n
Ov

er
la

p
(%

)

4 0 0 0.0

53

17
0 0.0

83
75 69 75.45

Average Kernel Execution Overlap

Standard EK accelOS

(b) AMD R9 295X2.

Figure 6.12: Average Kernel Execution Overlap. Comparison of the kernel execution

overlap (percentage) on standard OpenCL and Elastic Kernels (EK) against accelOS.

Higher is better. accelOS massively improves the percentage of time kernel executions

co-exist and perform concurrently on the accelerator.

6.8.2 Concurrent Kernel Executions

We investigate concurrency for multi-kernel executions. We show that the resource

sharing control imposed by accelOS permits multiple kernels to effectively co-exist

and compute concurrently. We use the Kernel Execution Overlap metric described in

section 6.7. Higher result values are better.

Figure 6.12a provides the results for the NVIDIA platform. In the case of 2 re-

quests, we improve from 21% to 94%. For 4 requests, standard OpenCL delivers 3%

while we deliver 87%. Finally, for 8 requests, standard OpenCL delivers 0%, while we

enable 82%. accelOS outperforms Elastic Kernels (EK) approach which delivers 71%,

43% and 7%, respectively.

AMD platform behaves worse than NVIDIA. As can be seen in figure 6.12b, stan-

dard OpenCL delivers 4%, 0% and 0% for 2, 4 and 8 requests, respectively. accelOS,

in contrast, enables improved concurrency. It delivers 83%, 75% and 69% for the 3

request sizes. accelOS again is more efficient than EK which delivers 53%, 17% and

6.8. Results 135

0%, respectively.

Both on NVIDIA and AMD, the Execution Overlap results are lower when we

scale up from 2 to 8 requests. This happens because (a) the accelerator multi-tenancy

leads to higher resource contention between the kernel executions and (b) the varying

kernel workloads that lead to execution time imbalances.

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Th

ro
ug

hp
ut

 S
pe

ed
up

1.08 1.02
0.91

1.0
1.13 1.19 1.23 1.18

Average System Throughput Speedup

EK accelOS

(a) NVIDIA K20m.

2 4 8 Gmean
Number of Concurrent Kernel Execution Requests

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Th
ro

ug
hp

ut
 S

pe
ed

up

1.07
0.95 0.9

0.97

1.17 1.19
1.31

1.22

Average System Throughput Speedup

EK accelOS

(b) AMD R9 295X2.

Figure 6.13: Average System Throughput Speedups for sets of 2, 4 and 8 kernel ex-

ecution requests. We compare against the Elastic Kernels (EK). The baseline is the

standard OpenCL. Higher is better.

6.8.3 System Throughput

We evaluate throughput speedups delivered by accelOS and compare against the Elas-

tic Kernels(EK)[85]. The baseline is the standard OpenCL.

6.8.3.1 Result Summary

The results for NVIDIA are shown in figure 6.13a. We deliver an average speedup of

1.13x against 1.08x of EK for 2 requests and 1.19x against 1.02x of EK for 4 requests.

136 Chapter 6. Resource Sharing Control on Accelerators

Finally, we deliver a speedup of 1.23x against 0.91x of EK for 8 requests. On average

for all the request sizes, accelOS delivers 1.18x while EK 1.00x.

The results for AMD are shown in figure 6.13b. We deliver a speedup of 1.17x

against 1.07x of EK for 2 requests, 1.19x against 0.95x of EK for 4 requests. Finally,

we deliver a speedup of 1.31x against 0.9x for 8 requests. On average for all the request

sizes, accelOS delivers 1.22x while EK 0.97x.

accelOS enables resource sharing control and dynamic work group scheduling.

This leads to significant throughput results that increase as we scale up to larger num-

ber of requests. In contrast, the EK approach relies on static heuristics and static re-

source allocation and fails to manage large number of requests or adapt to dynamic

system changes. This is the reason that EK delivers negative results for large number

of requests.

6.8.3.2 Individual Results

Figures 6.14a and 6.14b provide an overview of the throughput speedup results across

the workloads we use in our experiments. We provide individual results for workloads

of 2, 4 and 8 kernel execution requests on both NVIDIA and AMD platforms for

accelOS and EK. The throughput speedup results range from 0.52x to 4.8x. Less than

5% of the workloads have slowdowns for accelOS while 54% of the workloads have

slowdowns for EK.

6.8.4 accelOS Overhead

Our infrastructure performs a kernel code transformation and adds a software layer

that enables software work group scheduling. These changes raise concerns regarding

performance penalties and we investigate them here. We compare kernel execution

times delivered by accelOS against Standard OpenCL. We, specially, consider two

versions of accelOS, the (a) naive and (b) optimized versions; the last includes the

adaptive scheduling described in section 6.6. Figures 6.15a and 6.15b present the

comparison results for the NVIDIA and AMD GPUs, respectively, where we use the

speedup metric (ExecTimeStandard
ExecTimeaccelOS

).

In the case of NVIDIA, shown in figure 6.15a, speedup values range from 0.92x

to 1.03x for naive and from 0.96x to 1.14x for optimized. The geometric average is

0.98x for naive and 1.07x for optimized. For the optimized version, the one we use

for our experiments, benchmark kernels sgemm and uniformAdd of mri-gridding have

6.8. Results 137

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Workloads

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 S

pe
ed

up

System Throughput across Workloads

accelOs - 2 RQSTs
accelOs - 4 RQSTs
accelOs - 8 RQSTs

EK - 2 RQSTs
EK - 4 RQSTs
EK - 8 RQSTs

(a) NVIDIA K20m.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Workloads

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 S

pe
ed

up

System Throughput across Workloads

accelOs - 2 RQSTs
accelOs - 4 RQSTs
accelOs - 8 RQSTs

EK - 2 RQSTs
EK - 4 RQSTs
EK - 8 RQSTs

(b) AMD R9 295X2.

Figure 6.14: System Throughput Speedups for sets of 2, 4 and 8 kernel execution

requests. We compare against the Elastic Kernels (EK). The baseline is the standard

OpenCL. Higher is better. Here, we present the throughput speedup results for all the

sets we investigate. The sets are organized in fractions based on their result values.

The values increase as we move from left to right. The circle and polygon shapes are

meant for easing readability on black and white printouts.

138 Chapter 6. Resource Sharing Control on Accelerators

bfs
cutcp

histo
_fin

al

histo
_in

ter

histo
_m

ain

histo
_presca

nlbm

mri-g
r_b

inning

mri-g
r_re

order

mri-g
r_G

PU

mri-g
r_s

can_L1

mri-g
r_s

can_in
ter1

mri-g
r_s

can_in
ter2

mri-g
r_u

niform
Add

mri-g
r_s

plitS
ort

mri-g
r_s

plitR
earra

nge

mri-q
_ComputePhiMag

mri-q
_ComputeQ

sad-ca
lc

sad-ca
lc_8

sad-ca
lc_1

6
sgemm

spmv
ste

ncil
tpacf

Gmean

Benchmark Kernels

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Pe
rfo

rm
an

ce
 C

om
pa

ris
on

0.
99 1.
0

0.
98

0.
94 0.

97 1.
0

0.
98

0.
97 0.
99 1.
0

0.
97 0.
99 1.
0

0.
92

1.
03

1.
02

1.
0

0.
98

0.
98 1.
0

1.
0

0.
95 0.

98 1.
0

0.
99

0.
98

1.
08

1.
08 1.

11

0.
98

1.
11

1.
06 1.

11

1.
07 1.
09 1.

14

1.
09

1.
07 1.
08

0.
97

1.
13

1.
09

1.
02

1.
12

1.
09

1.
08

1.
07

0.
96 0.
98 1.

04

1.
12

1.
07

Individual Kernel Performance Comparison

Naive Optimized

(a) NVIDIA k20m.

bfs
cutcp

histo
_fin

al

histo
_in

ter

histo
_m

ain

histo
_presca

nlbm

mri-g
r_b

inning

mri-g
r_re

order

mri-g
r_G

PU

mri-g
r_s

can_L1

mri-g
r_s

can_in
ter1

mri-g
r_s

can_in
ter2

mri-g
r_u

niform
Add

mri-g
r_s

plitS
ort

mri-g
r_s

plitR
earra

nge

mri-q
_ComputePhiMag

mri-q
_ComputeQ

sad-ca
lc

sad-ca
lc_8

sad-ca
lc_1

6
sgemm

spmv
ste

ncil
tpacf

Gmean

Benchmark Kernels

0.6

0.8

1.0

1.2

1.4

Pe
rfo

rm
an

ce
 C

om
pa

ris
on

0.
99

0.
97

0.
96 1.

0

0.
98

0.
96 1.

03

1.
02

1.
0

1.
0

0.
99 1.
02

0.
97

0.
94

1.
03 1.
04

0.
91

1.
03

1.
02

1.
0

0.
93

1.
02

1.
0 1.

04

1.
03

0.
99

1.
13

1.
11 1.
14

1.
01

1.
13

0.
97

1.
18

1.
12 1.
15 1.
17

1.
06 1.

13

1.
12

1.
02

1.
19

1.
16

0.
95

1.
17

1.
16

1.
05

0.
96

1.
07

1.
03

1.
16

1.
1

1.
1

Individual Kernel Performance Comparison

Naive Optimized

(b) AMD R9 295X2.

Figure 6.15: accelOS Performance Impact. We compare accelOS against the standard

OpenCL environment. We consider two versions of accelOS, the naive and optimized.

The naive leads to small average slowdowns while the optimized significantly boosts

performance. By default, we use the optimized version.

the lowest values, 0.96x and 0.97x, while splitSort of mri-gridding and GPU of mri-

gridding have the highest values of 1.13x and 1.14x, respectively.

In the case of AMD, shown in figure 6.15b, speedups range from 0.91x to 1.04x for

naive and from 0.95x to 1.19x for optimized. For the optimized version, the one we use

for our experiments, kernels such as ComputePhiMag of mri-q and calc 16 of sad have

the lowest values, 0.95x and 0.96x, while kernels lbm and splitSort of mri-gridding

have the highest values of 1.18x and 1.19x. The geometric average is 0.99x for naive

and 1.10x for optimized.

Our naive implementation of accelOs leads to small slowdowns of 2% and 1%.

However our optimized version does not just compensate the overhead but it leads

to significant performance gains. This is due to the software work group schedul-

ing which is dynamic and leads to well balanced scheduling. As we describe in sec-

tion 6.6.4, we consider the overhead of our runtime on short kernels where we use a

heuristic to minimize that overhead. However, we still suffer small slowdowns for few

6.9. Summary 139

kernels on both platforms.

EK accelOS

RQSTs STP ANTT W. ANTT STP ANTT W. ANTT

2 1.13 3.57 56.7 1.15 1.12 8.2

4 0.99 4.33 72.2 1.18 1.32 14.2

8 0.93 7.57 87.59 1.25 1.78 23.1

Table 6.1: Additional metrics and measurements comparing accelOS against the Elas-

tic Kernels (EK) on NVIDIA K20m. Higher values are better for STP, while lower

values are better for ANTT. W. ANTT is the worst ANTT value reported.

EK accelOS

RQSTs STP ANTT W. ANTT STP ANTT W. ANTT

2 1.04 4.2 64.6 1.18 1.35 13.4

4 0.97 6.83 84.6 1.18 2.12 19.5

8 0.92 7.98 98.54 1.28 3.26 31.34

Table 6.2: Additional metrics and measurements comparing accelOS against the Elas-

tic Kernels (EK) on AMD R9 295X2. Higher values are better for STP, while lower

values are better for ANTT. W. ANTT is the worst ANTT value reported.

6.8.5 Additional Evaluation Metrics

Prior research work has considered some additional metrics which are STP[85][33]

for system throughput evaluation and ANTT[85] as an indirect metric for quantifying

system fairness. We provide a brief summary of the average results for Elastic Kernels

and accelOS on NVIDIA, in figure 6.1 and on AMD, in figure 6.2. accelOS clearly

delivers better results on both platforms.

6.9 Summary

In this chapter we presented accelOS, a runtime and compiler infrastructure that en-

ables software work group scheduling on accelerators. It enables fair accelerator shar-

ing, efficient multi-kernel executions and throughput speedups. accelOS integrates

seamlessly with the existing software stack and it does not require any modification or

recompilation of the applications, libraries or drivers.

We delivered fairness improvements ranging from 6.8x to 13.66x for multi-kernel

140 Chapter 6. Resource Sharing Control on Accelerators

workloads of various sizes. Furthermore, we deliver system throughput speedups rang-

ing from 1.13x to 1.31x.

The last contribution of this thesis has been presented in this chapter. The next

chapter concludes the thesis by providing a brief summary of all the contributions as

well as a critical analysis and directions for future work.

Chapter 7

Conclusion

This thesis has introduced several methods for addressing key challenges of multi-

tasking on heterogeneous systems. A host-device communication optimization that

reduces communication overhead has been presented in chapter 4. Chapter 5 presents

a heterogeneous accelerator layer that enables central management of accelerators and

fine-grained inter-vendor accelerator sharing. A technique and a software stack infras-

tructure that enable resource sharing control on accelerators is presented in chapter 6.

All the contributions presented in this thesis seamlessly integrate to existing software

stacks and are portable across vendors. In addition, they do not require any application

code modification or recompilation and preserve existing programming models.

The structure of this chapter is organized as follows. Section 7.1 briefly summa-

rizes the contributions of this thesis. A critical analysis of the contributions is given in

section 7.2. Future work directions are given in section 7.3.

7.1 Contributions

This section summarizes the main contributions of this thesis as they have been pre-

sented in the previous three chapters.

7.1.1 Host-Device Communication Optimization

A technique for host-device communication optimization is presented in chapter 4.

It reduces the communication overheads introduced by heterogeneous system designs

where additional data transfers are required between distinct physical memories. This

141

142 Chapter 7. Conclusion

work proposes a technique that relies on automatic platform characterization and ap-

plication tracing and transparently improves application performance. It does that by

selecting the appropriate memory allocation and communication policies. The pro-

posed design does not require any application modification, integrates seamlessly to

the existing software stack and is portable across vendors. It delivers significant per-

formance improvements for a large number of benchmarks on three platforms.

7.1.2 Heterogeneous Acceleration Layer

A heterogeneous acceleration layer, named PALMOS, is presented in chapter 5. PAL-

MOS is a user-space virtualization layer that enables central management of accel-

erator resources, fine-grained inter-vendor accelerator sharing and efficient workload

scheduling. Its operation remains completely transparent to applications and no ap-

plication changes are required. It interacts with applications via the OpenCL standard

and relies on the programming model of OpenCL. The PALMOS design is portable

and supports multiple vendors on a single system configuration. It delivers perfor-

mance improvements for individual applications and system throughput improvements

for multi-application workloads. Multiple system configurations have been evaluated

where different number and types of accelerators are available.

7.1.3 Resource Sharing Control on Accelerators

The final contribution of this thesis is a technique and software infrastructure for re-

source sharing control on accelerators, named accelOS, described in detail in chapter 6.

It provides a method to manage accelerator sharing for parallel workload execution re-

quests arriving from multiple users and applications. It enforces fair access to acceler-

ator resources and concurrent accelerator sharing. accelOS is seamlessly integrated to

existing software stacks and does not require any application modification or changes

in accelerator architecture. It dramatically improves system fairness while delivering

system throughput improvements and enables multi-tasking on accelerators.

7.2 Critical Analysis

While this thesis has presented some significant contributions to the field of heteroge-

neous computing, some aspects of the used methods and approaches demand a critical

analysis. Four issues are described in the next sections.

7.2. Critical Analysis 143

7.2.1 Alternative Designs in Kernel Space

In this thesis, all the proposed system designs and software development concern soft-

ware stack components and compiler infrastructures that operate in user space. There

are no contributions at the Operating System level. This is due the limitations of the

current software infrastructure. Each accelerator vendor provides its proprietary ver-

sion of drivers and runtime libraries which do not follow any standard development

practice or development interface. OpenCL, which is a user-space library, is the only

shared interface across different vendors and accelerator categories. Under the cur-

rent scheme, research prototypes and production systems that target portability and

inter-vendor heterogeneity should rely on the user-space library implementations of

OpenCL. Furthermore, many operations required for the management of heteroge-

neous systems introduce significant complexity and their potential merge in kernel

space may introduce performance or resilience issues. However, hybrid designs that

involve both operations in user and kernel spaces are definitely worth exploring. There

is a quite clear need for inter-vendor interoperability and well defined standards for

accelerator management and sharing.

7.2.2 Feedback Driven Resource Management

The proposed contributions perform resource management by monitoring the activ-

ity of applications, controlling their operations on accelerators and keeping track of

system status. However, there is no adaptive mechanism where our infrastructure im-

proves its resource management decisions by analyzing runtime information. This in-

formation may be application performance, resource contention and the interaction of

different applications that co-exist on the system. Hardware performance counters pro-

vide access to significant information regarding application performance and system

behavior. However, current architectures tend to support single application profiling

and tracing aimed of later off-line usage of the collected data. Architecture designs

with enhanced hardware counters and software support for dynamic multi-application

monitoring could be useful for their integration in adaptive schemes. Furthermore,

accelerators have limited support for performance counters which typically follow a

trade-off of either sacrificing measurement precision or monitoring a subset of accel-

erator resources. This approach may sufficiently serve traditional profiling needs but

introduces significant challenges for their leverage by adaptive resource management

schemes.

144 Chapter 7. Conclusion

7.2.3 Unified Management of Computation and Graphics

Workloads

This thesis exclusively considers multi-tasking on heterogeneous systems for computa-

tion workloads and there is no consideration of graphics processing. All the presented

contributions focus on improving multi-tasking and execution of computation work-

loads. This limitation may not be an issue for multi-tasking systems that are dedicated

to computation, such as data center nodes. However, it is a significant problem for

mobile devices and desktop systems where applications are a mix of computation and

graphics workloads. Current software stack and vendor designs do not provide the

required access for dynamically managing accelerator resources for both computation

and graphics tasks. However, recently introduced standards, such as Vulkan, enable a

unified programming model for computation and graphics operations on accelerators.

This new model potentially provides the required abstraction and resource access for

investigating unified management of both workload types.

7.2.4 Performance Evaluation with non GPU accelerators

The contributions of this thesis follow a portable design that adapts to different types

of heterogeneous systems. However, all the performance evaluation has exclusively

been done on heterogeneous systems consisting of CPUs and GPUs of multiple ven-

dors. This is due to the easy access to GPU processors. Evaluation of the presented

contributions on systems equipped with non GPU accelerator types such as Xeon Phi

and FPGAs could provide more insights for these platforms and potentially explore

application areas that are not fully covered by computing on GPUs.

7.3 Future Work

This section briefly introduces directions on how the presented work could be extended

in the future.

7.3.1 Unified Management of Computation and Graphics

This work enables efficient multi-tasking for computation workloads on heterogeneous

systems while ignoring graphics processing requirements of applications. One poten-

tial direction for future work is to extend the designs of this thesis to provide unified

7.3. Future Work 145

management of computations and graphics on accelerators. New programming stan-

dards, such as Vulkan, may support this effort.

7.3.2 Workload Migration across Processors

Modern applications typically consist of multiple execution phases which have dif-

ferent behavior and resource requirements. A scheme that supports the migration of

different application phases across processor types can benefit application and system

performance while improving power efficiency.

7.3.3 Dynamic Code Optimizations

Modern computing systems comprise diverse processor types including CPU and GPUs

of radically different architectures. Each processor architecture benefits by different

application code optimizations. Due to the high diversity of existing systems an ap-

plication cannot be statically optimized for every possible system. A Just In Time

compiler infrastructure could transparently perform the required optimizations on the

target system during application execution.

7.3.4 Power Aware Resource Management

The contributions of this thesis provide an infrastructure that enables central accelera-

tor management and resource sharing control. This infrastructure could be extended to

be aware of power requirements and perform power efficient resource management.

7.3.5 Integrated and Mobile GPUs

The work of this thesis could be extended by specially considering integrated and mo-

bile graphics chips. These architectures provide functionality not found in discrete

GPUs, such as memory coherency, which could enhance multi-tasking on heteroge-

neous systems.

7.3.6 Operating Systems running on Accelerators

Accelerators have evolved to complex processor architectures which serve an increas-

ing number of diverse tasks. Having accelerators with dynamic and adaptive resource

allocation, memory management and scheduling is crucially important. This would

146 Chapter 7. Conclusion

be ideally served by an Operating System (OS) running on the accelerator resources.

Under this scheme a heterogeneous system would have a full OS running on its host

resources and satellite OSes running on each accelerator. The host OS would then pe-

riodically exchange coordination messages and directives with the satellite OSes. This

approach would require architecture and Operating System modifications but it would

provide great flexibility for efficient resource management and software execution.

7.4 Summary

This chapter concludes the thesis. It first provided a summary of the main contributions

and then presented a critical analysis of various work aspects. Lastly, this chapter

presented directions for future work.

Bibliography

[1] J.T. Adriaens, K. Compton, Nam Sung Kim, and M.J. Schulte. The case

for gpgpu spatial multitasking. In High Performance Computer Architecture

(HPCA), 2012 IEEE 18th International Symposium on, pages 1–12, Feb 2012.

(Cited on pages 33 and 113.)

[2] Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer, Todd

Mummert, and Michael Pigott. Pds: A virtual execution environment for soft-

ware deployment. In Proceedings of the 1st ACM/USENIX International Con-

ference on Virtual Execution Environments, VEE ’05, pages 175–185, New

York, NY, USA, 2005. ACM. (Cited on pages 38 and 83.)

[3] AMD. Accelerated parallel processing: Opencl programming guide revision

2.7, 2013. (Cited on pages 69, 75, 79, 98, and 128.)

[4] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and

Wen-mei W. Hwu. An adaptive performance modeling tool for gpu architec-

tures. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’10, pages 105–114, New York, NY,

USA, 2010. ACM. (Cited on page 49.)

[5] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. Resource containers: A

new facility for resource management in server systems. In OSDI, volume 99,

pages 45–58, 1999. (Cited on pages 38 and 83.)

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualiza-

tion. In Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, pages 164–177, New York, NY, USA, 2003. ACM. (Cited

on pages 36 and 83.)

147

148 Bibliography

[7] Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T. Lewis, Tatiana Sh-

peisman, Chunling Hu, Yang Ni, and Ali-Reza Adl-Tabatabai. Efficient map-

ping of irregular c++ applications to integrated gpus. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, pages 33:33–33:43, New York, NY, USA, 2014. ACM. (Cited on

page 41.)

[8] Michael Bauer, Henry Cook, and Brucek Khailany. Cudadma: Optimizing gpu

memory bandwidth via warp specialization. In Proceedings of 2011 Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, pages 12:1–12:11, New York, NY, USA, 2011. ACM. (Cited

on page 47.)

[9] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-

hania. The multikernel: A new os architecture for scalable multicore systems.

In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems

Principles, SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM. (Cited

on page 34.)

[10] M. Becchi and S. Cadambi. Memory-efficient regular expression search using

state merging. In INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE, pages 1064–1072, May 2007. (Cited on

page 65.)

[11] Michela Becchi, Kittisak Sajjapongse, Ian Graves, Adam Procter, Vignesh Ravi,

and Srimat Chakradhar. A virtual memory based runtime to support multi-

tenancy in clusters with gpus. In Proceedings of the 21st International Sym-

posium on High-Performance Parallel and Distributed Computing, HPDC ’12,

pages 97–108, New York, NY, USA, 2012. ACM. (Cited on pages 35, 99,

and 106.)

[12] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-

son. Hoard: A scalable memory allocator for multithreaded applications. SIG-

PLAN Not., 35(11):117–128, November 2000. (Cited on pages 44 and 90.)

[13] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic memory safety

for unsafe languages. In Proceedings of the 27th ACM SIGPLAN Conference

Bibliography 149

on Programming Language Design and Implementation, PLDI ’06, pages 158–

168, New York, NY, USA, 2006. ACM. (Cited on page 45.)

[14] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing

high-performance memory allocators. In Proceedings of the ACM SIGPLAN

2001 Conference on Programming Language Design and Implementation, PLDI

’01, pages 114–124, New York, NY, USA, 2001. ACM. (Cited on page 44.)

[15] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.

ACM Trans. Comput. Syst., 2(1):39–59, February 1984. (Cited on page 89.)

[16] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultaneous branch

and warp interweaving for sustained gpu performance. In Proceedings of the

39th Annual International Symposium on Computer Architecture, ISCA ’12,

pages 49–60, Washington, DC, USA, 2012. IEEE Computer Society. (Cited on

pages 43 and 113.)

[17] Francisco J Cazorla, Peter MW Knijnenburg, R Sakellariou, E Fernandez,

A Ramirez, and M Valero. Qos for high performance smt processors for embed-

ded systems. IEEE MICRO, 24(4):24–31, 2004. (Cited on pages 32 and 113.)

[18] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee,

and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium

on, pages 44–54, Oct 2009. (Cited on pages 28, 49, and 69.)

[19] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. Dymaxion: Optimizing

memory access patterns for heterogeneous systems. In Proceedings of 2011 In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’11, pages 13:1–13:11, New York, NY, USA, 2011. ACM.

(Cited on page 48.)

[20] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li, and Shih-Lien

Lu. Guided region-based gpu scheduling: Utilizing multi-thread parallelism

to hide memory latency. In Parallel Distributed Processing (IPDPS), 2013

IEEE 27th International Symposium on, pages 441–451, May 2013. (Cited on

pages 43 and 113.)

150 Bibliography

[21] Juan A. Colmenares, Gage Eads, Steven Hofmeyr, Sarah Bird, Miquel Moretó,

David Chou, Brian Gluzman, Eric Roman, Davide B. Bartolini, Nitesh Mor,

Krste Asanović, and John D. Kubiatowicz. Tessellation: Refactoring the os

around explicit resource containers with continuous adaptation. In Proceedings

of the 50th Annual Design Automation Conference, DAC ’13, pages 76:1–76:10,

New York, NY, USA, 2013. ACM. (Cited on page 38.)

[22] ID Coope. Circle fitting by linear and nonlinear least squares. Journal of Opti-

mization Theory and Applications, 76(2):381–388, 1993. (Cited on page 61.)

[23] B.R. Coutinho, G.L.M. Teodoro, R.S. Oliveira, D.O.G. Neto, and R.A.C. Fer-

reira. Profiling general purpose gpu applications. In Computer Architecture and

High Performance Computing, 2009. SBAC-PAD ’09. 21st International Sym-

posium on, pages 11–18, Oct 2009. (Cited on page 48.)

[24] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the con-

trol dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, Oc-

tober 1991. (Cited on pages 26 and 63.)

[25] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud

Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management:

A holistic approach to memory placement on numa systems. In Proceedings of

the Eighteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’13, pages 381–394, New

York, NY, USA, 2013. ACM. (Cited on page 46.)

[26] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and

qos-aware cluster management. In Proceedings of the 19th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’14, pages 127–144, New York, NY, USA, 2014. ACM.

(Cited on page 82.)

[27] Todd Deshane, Zachary Shepherd, J Matthews, Muli Ben-Yehuda, Amit Shah,

and Balaji Rao. Quantitative comparison of xen and kvm. Xen Summit, Boston,

MA, USA, pages 1–2, 2008. (Cited on page 36.)

[28] Docker. Docker Project. http://www.docker.com/. (Cited on pages 39

and 83.)

http://www.docker.com/

Bibliography 151

[29] Micah Dowty and Jeremy Sugerman. Gpu virtualization on vmware’s hosted

i/o architecture. SIGOPS Oper. Syst. Rev., 43(3):73–82, July 2009. (Cited on

page 39.)

[30] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti. rcuda: Reduc-

ing the number of gpu-based accelerators in high performance clusters. In High

Performance Computing and Simulation (HPCS), 2010 International Confer-

ence on, pages 224–231, June 2010. (Cited on page 35.)

[31] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and

Stephen J. Fink. Compiling a high-level language for gpus: (via language sup-

port for architectures and compilers). In Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’12,

pages 1–12, New York, NY, USA, 2012. ACM. (Cited on page 41.)

[32] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via

source throttling: A configurable and high-performance fairness substrate for

multi-core memory systems. In Proceedings of the Fifteenth Edition of ASPLOS

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XV, pages 335–346, New York, NY, USA, 2010. ACM. (Cited on

pages 33, 113, 115, and 129.)

[33] S. Eyerman and L. Eeckhout. System-level performance metrics for multipro-

gram workloads. Micro, IEEE, 28(3):42–53, May 2008. (Cited on pages 129

and 139.)

[34] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for

smt processor scheduling. In Proceedings of the Fifteenth Edition of ASPLOS

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XV, pages 91–102, New York, NY, USA, 2010. ACM. (Cited on

pages 32 and 113.)

[35] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic

warp formation and scheduling for efficient gpu control flow. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 40, pages 407–420, Washington, DC, USA, 2007. IEEE Computer So-

ciety. (Cited on pages 43 and 113.)

152 Bibliography

[36] R. Gabor, Shlomo Weiss, and A. Mendelson. Fairness and throughput in switch

on event multithreading. In Microarchitecture, 2006. MICRO-39. 39th Annual

IEEE/ACM International Symposium on, pages 149–160, Dec 2006. (Cited on

pages 32 and 113.)

[37] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan, Vishakha

Gupta, Ripal Nathuji, Radhika Niranjan, Adit Ranadive, and Purav Saraiya.

High-performance hypervisor architectures: Virtualization in hpc systems. In

Workshop on System-level Virtualization for HPC (HPCVirt). Citeseer, 2007.

(Cited on page 37.)

[38] Isaac Gelado, John H. Kelm, Shane Ryoo, Steven S. Lumetta, Nacho Navarro,

and Wen-mei W. Hwu. Cuba: An architecture for efficient cpu/co-processor data

communication. In Proceedings of the 22Nd Annual International Conference

on Supercomputing, ICS ’08, pages 299–308, New York, NY, USA, 2008. ACM.

(Cited on page 48.)

[39] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and

Wen-mei W. Hwu. An asymmetric distributed shared memory model for hetero-

geneous parallel systems. In Proceedings of the Fifteenth Edition of ASPLOS

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XV, pages 347–358, New York, NY, USA, 2010. ACM. (Cited on

page 41.)

[40] Sanjay Ghemawat et al. Tcmalloc: Thread-caching malloc. goog-perftools.

sourceforge. net/doc/tcmalloc. html, 2009. (Cited on page 44.)

[41] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. Dominant resource fairness: Fair allocation of multiple

resource types. In NSDI, volume 11, pages 24–24, 2011. (Cited on pages 33

and 113.)

[42] Ivan Grasso, Simone Pellegrini, Biagio Cosenza, and Thomas Fahringer. Lib-

water: Heterogeneous distributed computing made easy. In Proceedings of the

27th International ACM Conference on International Conference on Supercom-

puting, ICS ’13, pages 161–172, New York, NY, USA, 2013. ACM. (Cited on

page 35.)

Bibliography 153

[43] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron. En-

abling task parallelism in the cuda scheduler. In Workshop on Programming

Models for Emerging Architectures, pages 69–76, 2009. (Cited on pages 34

and 113.)

[44] Abhishek Gupta, Laxmikant V. Kalé, Dejan S. Milojicic, Paolo Faraboschi,

Richard Kaufmann, Verdi March, Filippo Gioachin, Chun Hui Suen, and Bu-

Sung Lee. Exploring the performance and mapping of hpc applications to plat-

forms in the cloud. In Proceedings of the 21st International Symposium on

High-Performance Parallel and Distributed Computing, HPDC ’12, pages 121–

122, New York, NY, USA, 2012. ACM. (Cited on page 37.)

[45] Xin Huo, Sriram Krishnamoorthy, and Gagan Agrawal. Efficient scheduling of

recursive control flow on gpus. In Proceedings of the 27th International ACM

Conference on International Conference on Supercomputing, ICS ’13, pages

409–420, New York, NY, USA, 2013. ACM. (Cited on page 43.)

[46] ISO. C standard. Technical report, 2011. (Cited on pages 63 and 89.)

[47] Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. Au-

gust. Dynamically managed data for cpu-gpu architectures. In Proceedings of

the Tenth International Symposium on Code Generation and Optimization, CGO

’12, pages 165–174, New York, NY, USA, 2012. ACM. (Cited on page 47.)

[48] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic cpu-gpu communication management

and optimization. In Proceedings of the 32Nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’11, pages 142–

151, New York, NY, USA, 2011. ACM. (Cited on page 46.)

[49] Raj Jain, Dah-Ming Chiu, and William Hawe. A quantitative measure of fairness

and discrimination for resource allocation in shared computer systems. 1998.

(Cited on pages 33 and 113.)

[50] Feng Ji, A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, Wu chun Feng, and Xiaosong

Ma. Efficient intranode communication in gpu-accelerated systems. In Paral-

lel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW),

2012 IEEE 26th International, pages 1838–1847, May 2012. (Cited on page 47.)

154 Bibliography

[51] Feng Ji, Heshan Lin, and Xiaosong Ma. Rsvm: A region-based software vir-

tual memory for gpu. In Proceedings of the 22Nd International Conference on

Parallel Architectures and Compilation Techniques, PACT ’13, pages 269–278,

Piscataway, NJ, USA, 2013. IEEE Press. (Cited on page 45.)

[52] Qing Jiao, Mian Lu, Huynh Phung Huynh, and T. Mitra. Improving gpgpu

energy-efficiency through concurrent kernel execution and dvfs. In Code Gen-

eration and Optimization (CGO), 2015 IEEE/ACM International Symposium

on, pages 1–11, Feb 2015. (Cited on page 113.)

[53] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.

Das. Owl: Cooperative thread array aware scheduling techniques for improving

gpgpu performance. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’13, pages 395–406, New York, NY, USA, 2013. ACM. (Cited on

page 43.)

[54] Patryk Kaminski. Numa aware heap memory manager. AMD Developer Cen-

tral, 2009. (Cited on page 46.)

[55] Poul-Henning Kamp. malloc (3) revisited. In USENIX Annual Technical Con-

ference, 1998. (Cited on page 45.)

[56] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. Time-

graph: Gpu scheduling for real-time multi-tasking environments. In Proc.

USENIX ATC, pages 17–30, 2011. (Cited on pages 34 and 113.)

[57] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott A Brandt. Gdev:

First-class gpu resource management in the operating system. In USENIX An-

nual Technical Conference, pages 401–412, 2012. (Cited on page 40.)

[58] Khronos Group. The opencl specification, version 1.2, 2011. (Cited on pages 1,

18, 19, 20, 52, 82, and 112.)

[59] Khronos Group. The spir (standard portable intermediate representation) speci-

fication, version 1.2, 2012. (Cited on pages 21, 26, and 124.)

[60] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a

single compute device image in opencl for multiple gpus. In Proceedings of

Bibliography 155

the 16th ACM Symposium on Principles and Practice of Parallel Program-

ming, PPoPP ’11, pages 277–288, New York, NY, USA, 2011. ACM. (Cited

on page 39.)

[61] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:

the linux virtual machine monitor. In Proceedings of the Linux Symposium,

volume 1, pages 225–230, 2007. (Cited on pages 36 and 83.)

[62] Richard P. Larowe, Jr. and Carla Schlatter Ellis. Experimental comparison of

memory management policies for numa multiprocessors. ACM Trans. Comput.

Syst., 9(4):319–363, November 1991. (Cited on page 46.)

[63] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong pro-

gram analysis transformation. In Code Generation and Optimization, 2004.

CGO 2004. International Symposium on, pages 75–86, March 2004. (Cited on

pages 25 and 123.)

[64] Che-Rung Lee, Shih-Hsiang Lo, Nan-Hsi Chen, Yeh-Ching Chung, and I-Hsin

Chung. Gpu performance enhancement via communication cost reduction: Case

studies of radix sort and wsn relay node placement problem. In Cluster, Cloud

and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium

on, pages 132–139, May 2012. (Cited on page 47.)

[65] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transpar-

ent cpu-gpu collaboration for data-parallel kernels on heterogeneous systems.

In Proceedings of the 22Nd International Conference on Parallel Architectures

and Compilation Techniques, PACT ’13, pages 245–256, Piscataway, NJ, USA,

2013. IEEE Press. (Cited on page 41.)

[66] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik.

Supporting soft real-time tasks in the xen hypervisor. In Proceedings of the 6th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, VEE ’10, pages 97–108, New York, NY, USA, 2010. ACM. (Cited

on page 37.)

[67] Linux Documentation. Linux programmer’s manual, 2014. (Cited on page 87.)

[68] Allen D. Malony, Scott Biersdorff, Wyatt Spear, and Shangkar Mayanglambam.

An experimental approach to performance measurement of heterogeneous par-

allel applications using cuda. In Proceedings of the 24th ACM International

156 Bibliography

Conference on Supercomputing, ICS ’10, pages 127–136, New York, NY, USA,

2010. ACM. (Cited on page 48.)

[69] Christos Margiolas and Michael F. P. O’Boyle. Portable and transparent host-

device communication optimization for gpgpu environments. In Proceedings

of Annual IEEE/ACM International Symposium on Code Generation and Op-

timization, CGO ’14, pages 55:55–55:65, New York, NY, USA, 2014. ACM.

(Cited on page 5.)

[70] Christos Margiolas and Michael F.P. O’Boyle. accelos: Portable and transparent

software managed scheduling on accelerators for fair resource sharing. Under

Submission. (Cited on page 5.)

[71] Christos Margiolas and Michael F.P. O’Boyle. Palmos: A transparent, multi-

tasking acceleration layer for parallel heterogeneous systems. In Proceedings of

the 29th ACM on International Conference on Supercomputing, ICS ’15, pages

307–318, New York, NY, USA, 2015. ACM. (Cited on pages 5, 113, and 122.)

[72] Jason Mars and Lingjia Tang. Whare-map: Heterogeneity in ”homogeneous”

warehouse-scale computers. In Proceedings of the 40th Annual International

Symposium on Computer Architecture, ISCA ’13, pages 619–630, New York,

NY, USA, 2013. ACM. (Cited on page 82.)

[73] C. McCurdy and J. Vetter. Memphis: Finding and fixing numa-related per-

formance problems on multi-core platforms. In Performance Analysis of Sys-

tems Software (ISPASS), 2010 IEEE International Symposium on, pages 87–96,

March 2010. (Cited on pages 49 and 96.)

[74] Paul B Menage. Adding generic process containers to the linux kernel. volume 2

of Linux Symposium, pages 45–58, 2007. (Cited on page 84.)

[75] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Disengaged schedul-

ing for fair, protected access to fast computational accelerators. In Proceedings

of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, pages 301–316, New York,

NY, USA, 2014. ACM. (Cited on page 34.)

[76] Message Passing Interface Forum. Mpi: A message-passing interface standard,

version 3.0. Technical report, 2012. (Cited on pages 23 and 89.)

Bibliography 157

[77] Paulius Micikevicious. Multi-gpu programming. GTC 2012. (Cited on page 96.)

[78] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling

for chip multiprocessors. In Proceedings of the 40th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 40, pages 146–160, Wash-

ington, DC, USA, 2007. IEEE Computer Society. (Cited on page 129.)

[79] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,

Onur Mutlu, and Yale N. Patt. Improving gpu performance via large warps and

two-level warp scheduling. In Proceedings of the 44th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO-44, pages 308–317, New

York, NY, USA, 2011. ACM. (Cited on pages 43 and 113.)

[80] NVIDIA. Nvidia kepler gk110 architecture, 2012. (Cited on pages 69, 83, 98,

and 128.)

[81] NVIDIA. CUDA C Programming Guide, Version 6.0. 2014. (Cited on pages 1,

11, 52, and 82.)

[82] NVIDIA GRID. Nvidia. http://www.nvidia.co.uk/object/

grid-vdi-desktop-virtualisation-uk.html. (Cited on page 83.)

[83] Open Group and IEEE. The posix specification, version 1-2008, 2008. (Cited

on pages 86, 87, and 122.)

[84] OpenVZ. The openvz linux containers. http://www.openvz.org/. (Cited on

pages 39 and 83.)

[85] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving

gpgpu concurrency with elastic kernels. In Proceedings of the Eighteenth Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, pages 407–418, New York, NY, USA, 2013.

ACM. (Cited on pages 33, 99, 113, 114, 115, 128, 129, 135, and 139.)

[86] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox,

P. Harvey, P.M. Harvey, H.P. Hofstee, C. Johns, J. Kahle, A. Kameyama,

J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D.L. Stasiak,

M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa.

Overview of the architecture, circuit design, and physical implementation of a

http://www.nvidia.co.uk/object/grid-vdi-desktop-virtualisation-uk.html
http://www.nvidia.co.uk/object/grid-vdi-desktop-virtualisation-uk.html
http://www.openvz.org/

158 Bibliography

first-generation cell processor. Solid-State Circuits, IEEE Journal of, 41(1):179–

196, Jan 2006. (Cited on page 1.)

[87] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley, and

Saman Amarasinghe. Portable performance on heterogeneous architectures. In

Proceedings of the Eighteenth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS ’13, pages

431–444, New York, NY, USA, 2013. ACM. (Cited on page 42.)

[88] Rezaur Rahman. Intel R© Xeon Phi Coprocessor Architecture and Tools: The

Guide for Application Developers. Apress, 2013. (Cited on pages 1 and 8.)

[89] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Cache-conscious

wavefront scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO-45, pages 72–83, Wash-

ington, DC, USA, 2012. IEEE Computer Society. (Cited on pages 43 and 113.)

[90] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and

redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’88, pages 12–27,

New York, NY, USA, 1988. ACM. (Cited on page 26.)

[91] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Em-

mett Witchel. Ptask: Operating system abstractions to manage gpus as compute

devices. In Proceedings of the Twenty-Third ACM Symposium on Operating Sys-

tems Principles, SOSP ’11, pages 233–248, New York, NY, USA, 2011. ACM.

(Cited on page 113.)

[92] Sangmin Seo, Junghyun Kim, and Jaejin Lee. Sfmalloc: A lock-free and mostly

synchronization-free dynamic memory allocator for manycores. In Parallel Ar-

chitectures and Compilation Techniques (PACT), 2011 International Conference

on, pages 253–263, Oct 2011. (Cited on page 45.)

[93] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, and Xiaofeng Meng. Facilitating

inter-application interactions for os-level virtualization. In Proceedings of the

8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments,

VEE ’12, pages 75–86, New York, NY, USA, 2012. ACM. (Cited on page 39.)

Bibliography 159

[94] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:

Elastic resource scaling for multi-tenant cloud systems. In Proceedings of the

2Nd ACM Symposium on Cloud Computing, SOCC ’11, pages 5:1–5:14, New

York, NY, USA, 2011. ACM. (Cited on page 37.)

[95] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vcuda: Gpu-accelerated high-

performance computing in virtual machines. Computers, IEEE Transactions on,

61(6):804–816, June 2012. (Cited on page 40.)

[96] Baojiang Shou, Xionghui Hou, and Li Chen. A compiler-assisted runtime-

prefetching scheme for heterogenous platforms. In Parallel Architectures and

Compilation Techniques (PACT), 2011 International Conference on, pages 215–

215, Oct 2011. (Cited on page 42.)

[97] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. Gpufs: Inte-

grating a file system with gpus. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’13, pages 485–498, New York, NY, USA, 2013. ACM.

(Cited on page 34.)

[98] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simulta-

neous mutlithreading processor. SIGPLAN Not., 35(11):234–244, November

2000. (Cited on pages 32, 113, and 129.)

[99] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry

Peterson. Container-based operating system virtualization: A scalable, high-

performance alternative to hypervisors. In Proceedings of the 2Nd ACM SIGOP-

S/EuroSys European Conference on Computer Systems 2007, EuroSys ’07,

pages 275–287, New York, NY, USA, 2007. ACM. (Cited on pages 38 and 83.)

[100] Kyle Spafford, Jeremy S. Meredith, and Jeffrey S. Vetter. Quantifying numa

and contention effects in multi-gpu systems. In Proceedings of the Fourth Work-

shop on General Purpose Processing on Graphics Processing Units, GPGPU-4,

pages 11:1–11:7, New York, NY, USA, 2011. ACM. (Cited on pages 49 and 96.)

[101] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen

Chang, Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu. Parboil:

160 Bibliography

A revised benchmark suite for scientific and commercial throughput comput-

ing. Center for Reliable and High-Performance Computing, 2012. (Cited on

pages 28, 49, 69, 98, and 128.)

[102] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtual-

izing i/o devices on vmware workstation’s hosted virtual machine monitor.

In USENIX Annual Technical Conference, General Track, pages 1–14, 2001.

(Cited on page 37.)

[103] Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtualization

solution with mediated pass-through. In Proc. USENIX ATC, 2014. (Cited on

page 40.)

[104] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for

multiprogrammed shared-memory multiprocessors. In ACM SIGOPS Operating

Systems Review, volume 23, pages 159–166. ACM, 1989. (Cited on pages 32

and 113.)

[105] A. Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil. Software

pipelined execution of stream programs on gpus. In Code Generation and

Optimization, 2009. CGO 2009. International Symposium on, pages 200–209,

March 2009. (Cited on page 41.)

[106] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan Sur, and

Dhabaleswar K Panda. Mvapich2-gpu: optimized gpu to gpu communication

for infiniband clusters. Computer Science-Research and Development, 26(3-

4):257–266, 2011. (Cited on page 47.)

[107] Zhikui Wang, Xiaoyun Zhu, P. Padala, and S. Singhal. Capacity and perfor-

mance overhead in dynamic resource allocation to virtual containers. In In-

tegrated Network Management, 2007. IM ’07. 10th IFIP/IEEE International

Symposium on, pages 149–158, May 2007. (Cited on page 38.)

[108] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and perfor-

mance in the denali isolation kernel. SIGOPS Oper. Syst. Rev., 36(SI):195–209,

December 2002. (Cited on pages 38 and 83.)

[109] JB White III and Jack J Dongarra. Overlapping computation and communi-

cation for advection on hybrid parallel computers. In Parallel & Distributed

Bibliography 161

Processing Symposium (IPDPS), 2011 IEEE International, pages 59–67. IEEE,

2011. (Cited on page 47.)

[110] C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi gf100 gpu architecture.

Micro, IEEE, 31(2):50–59, March 2011. (Cited on page 69.)

[111] Shucai Xiao, P. Balaji, Qian Zhu, R. Thakur, S. Coghlan, Heshan Lin, Gao-

jin Wen, Jue Hong, and Wu chun Feng. Vocl: An optimized environment for

transparent virtualization of graphics processing units. In Innovative Parallel

Computing (InPar), 2012, pages 1–12, May 2012. (Cited on page 35.)

[112] Chao-Tung Yang, Hsien-Yi Wang, Wei-Shen Ou, Yu-Tso Liu, and Ching-Hsien

Hsu. On implementation of gpu virtualization using pci pass-through. In Cloud

Computing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on, pages 711–716, Dec 2012. (Cited on page 40.)

[113] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A gpgpu compiler for

memory optimization and parallelism management. In Proceedings of the 31st

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’10, pages 86–97, New York, NY, USA, 2010. ACM. (Cited on

page 42.)

[114] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing

shared resource contention in multicore processors via scheduling. In Proceed-

ings of the Fifteenth Edition of ASPLOS on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS XV, pages 129–142, New

York, NY, USA, 2010. ACM. (Cited on pages 32 and 113.)

	cover sheet
	christos_margiolas_thesis_final
	Introduction
	Multi-tasking Challenges on Heterogeneous Systems
	Contributions
	Thesis Outline

	Technical Background
	Heterogeneous Systems
	Concept
	Central Processing Units
	Graphics Processing Units
	Non-Uniform Memory Access Systems
	Thesis Directions

	Accelerator Programmability
	Concept
	OpenCL
	CUDA Comparison
	Thesis Directions

	Runtime Environments
	Concept
	Design Aspects

	Compiler Infrastructure
	Concept
	LLVM Compiler Infrastructure

	Evaluation Methodology
	Metrics
	Benchmarks

	Summary

	Related Work
	System Resource Sharing
	Homogeneous Systems
	Heterogeneous Systems
	Inter-Node Accelerator Resource Sharing

	System Resource Virtualization
	Hypervisor based Virtualization
	OS-level Virtualization
	Accelerator Virtualization

	Workload Scheduling on Heterogeneous Systems
	Runtime and Compiler Approaches
	Computer Architecture

	Memory Management and Data Sharing
	Memory Allocators
	Non-Uniform Memory Access Architectures
	Communication Optimizations for Heterogeneous Systems

	Performance Evaluation & Modeling on Accelerators
	Summary

	Host-Device Communication Optimization
	Introduction
	Motivation
	Performance Impact
	Summary

	Optimization Overview
	Platform Characterization
	Application Characterization
	Runtime Optimization

	Platform Characterization
	Memory Allocation Policies
	Platform Characterization Procedure

	Application Tracing
	Call Trace
	Trace Compression

	Application Analysis
	Runtime Optimization
	Memory Allocation Manager

	Experimental Setup
	Platforms
	Benchmarks

	Results
	Results on NVIDIA GTX 580
	Results on AMD Radeon HD 5970 and NVIDIA Tesla k20c
	Tuned Version of Parboil for NVIDIA
	What policy to use
	Comparing against a naive approach

	Summary

	Heterogeneous Acceleration Layer
	Introduction
	Motivation
	Layer Overview
	Key Design Choices
	PALMOS Structured Design

	Virtual OpenCL
	Shared Stack
	Shared Data

	Inter-space Memory Allocator
	Two-Level Memory Allocator
	Address Space Translator
	Lock-free Design

	Resource Manager & Application Scheduler
	PALMOS Session
	Application Scheduling
	NUMA Awareness

	Security
	Experimental Setup
	Workloads
	Platform
	Comparison to existing approaches

	Results
	Single application performance
	Multi-program performance
	PALMOS against existing approaches

	Summary

	Resource Sharing Control on Accelerators
	Introduction
	Motivation
	Motivational Example
	Standard Scheduling Approach
	accelOS: Software Scheduling & Resource Sharing Control

	Accelerator Resource Sharing Scheme
	Infrastructure Overview
	Host Runtime
	 Application Monitor
	 Kernel Scheduler

	Just In Time Compilation
	Compilation Procedure
	Transformation Overview
	GPU Runtime Library
	Adaptive Scheduling

	Experimental Setup
	Evaluation Platforms
	Workloads
	Comparison to other approaches
	Metrics

	Results
	Fairness in Accelerator Sharing
	Concurrent Kernel Executions
	System Throughput
	accelOS Overhead
	Additional Evaluation Metrics

	Summary

	Conclusion
	Contributions
	Host-Device Communication Optimization
	Heterogeneous Acceleration Layer
	Resource Sharing Control on Accelerators

	Critical Analysis
	Alternative Designs in Kernel Space
	Feedback Driven Resource Management
	Unified Management of Computation and Graphics Workloads
	Performance Evaluation with non GPU accelerators

	Future Work
	Unified Management of Computation and Graphics
	Workload Migration across Processors
	Dynamic Code Optimizations
	Power Aware Resource Management
	Integrated and Mobile GPUs
	Operating Systems running on Accelerators

	Summary

	Bibliography

