10 research outputs found

    Event-Based Dynamic Graph Visualisation

    Get PDF
    Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit to compute a layout. However, often dynamic graphs are expressed as a series of events where the nodes and edges have real coordinates along the time dimension that are not confined to discrete timeslices. Current techniques for dynamic graph drawing impose a set of timeslices on this event-based data in order to draw the dynamic graph, but it is unclear how many timeslices should be selected: too many timeslices slows the computation of the layout, while too few timeslices obscures important temporal features, such as causality. To address these limitations, we introduce a novel model for drawing event-based dynamic graphs and the first dynamic graph drawing algorithm, DynNoSlice, that is capable of drawing dynamic graphs in this model. DynNoSlice is an offline, force-directed algorithm that draws event-based, dynamic graphs in the space-time cube (2D+time). We also present a method to extract representative small multiples from the space-time cube. To demonstrate the advantages of our approach, DynNoSlice is compared with state-of-the-art timeslicing methods using a metrics-based experiment. Finally, we present case studies of event-based dynamic data visualised with the new model and algorithm

    A Multilevel Approach for Event-Based Dynamic Graph Drawing

    Get PDF

    Visual analytics of contact tracing policy simulations during an emergency response

    Get PDF
    Epidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex ‘infection maps’ of time-varying transmission trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed collaboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns
    corecore