26 research outputs found

    Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction Mention Extraction

    Full text link
    Social media is an useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from twitter. Medical information extraction from social media is challenging, mainly due to short and highly information nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction relies on supervised learning methods, which suffers from labeled data scarcity problem. The State-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which are Long-Short-Term-Memory networks (LSTMs) \cite{hochreiter1997long}. Deep neural networks, due to their large number of free parameters relies heavily on large annotated corpora for learning the end task. But in real-world, it is hard to get large labeled data, mainly due to heavy cost associated with manual annotation. Towards this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction.Comment: Accepted at DTMBIO workshop, CIKM 2017. To appear in BMC Bioinformatics. Pls cite that versio

    Towards reproducible research of event detection techniques for Twitter

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Selection of pseudo-annotated data for adverse drug reaction classification across drug groups

    Full text link
    Automatic monitoring of adverse drug events (ADEs) or reactions (ADRs) is currently receiving significant attention from the biomedical community. In recent years, user-generated data on social media has become a valuable resource for this task. Neural models have achieved impressive performance on automatic text classification for ADR detection. Yet, training and evaluation of these methods are carried out on user-generated texts about a targeted drug. In this paper, we assess the robustness of state-of-the-art neural architectures across different drug groups. We investigate several strategies to use pseudo-labeled data in addition to a manually annotated train set. Out-of-dataset experiments diagnose the bottleneck of supervised models in terms of breakdown performance, while additional pseudo-labeled data improves overall results regardless of the text selection strategy.Comment: Accepted to AIST 202

    Review of trends in health social media analysis

    Get PDF
    This paper surveys recent publications (2008-2017) on using social media data to study public health. The survey describes the main topics being discussed in forums and presents short information about methods and tools used for analysis health social media. We put especial attention on adverse drug reaction detection problem (ADR)

    Adverse drug extraction in twitter data using convolutional neural network

    Get PDF
    The study of health-related topics on social media has become a useful tool for the early detection of the different adverse medical conditions. In particular, it concerns cases related to the treatment of mental diseases, as the effects of medications here often prove to be unpredictable. In our research, we use convolutional neural networks (CNN) with word2vec embedding to classify user comments on Twitter. The aim of the classification is to reveal adverse drug reactions of users. The results obtained are highly promising, showing the overall usefulness of neural network algorithms in this kind of tasks

    UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS

    Get PDF
    The relationship between drug and its side effects has been outlined in two websites: Sider and WebMD. The aim of this study was to find the association between drug and its side effects. We compared the reports of typical users of a web site called: "Ask a patient" website with reported drug side effects in reference sites such as Sider and WebMD. In addition, the typical users' comments on highly-commented drugs (Neurotic drugs, Anti-Pregnancy drugs and Gastrointestinal drugs) were analyzed, using deep learning method. To this end, typical users' comments on drugs' side effects, during last decades, were collected from the website “Ask a patient”. Then, the data on drugs were classified based on deep learning model (HAN) and the drugs' side effect. And the main topics of side effects for each group of drugs were identified and reported, through Sider and WebMD websites. Our model demonstrates its ability to accurately describe and label side effects in a temporal text corpus by a deep learning classifier which is shown to be an effective method to precisely discover the association between drugs and their side effects. Moreover, this model has the capability to immediately locate information in reference sites to recognize the side effect of new drugs, applicable for drug companies. This study suggests that the sensitivity of internet users and the diverse scientific findings are for the benefit of dis¬tinct detection of adverse effects of drugs, and deep learning would facilitate it
    corecore